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Abstract

Mining social media content for tasks such as detecting personal
experiences or events, suffer from lexical sparsity, insufficient train-
ing data, and inventive lexicons. To reduce the burden of creating
extensive labeled data and improve classification performance, we
propose to perform these tasks in two steps: 1. Decomposing the
task into domain-specific sub-tasks by identifying key concepts,
thus utilizing human domain understanding; and 2. Combining the
results of learners for each key concept using co-training to reduce
the requirements for labeled training data. We empirically show the
effectiveness and generality of our approach, Co-Decomp, using
three representative social media mining tasks, namely Personal
Health Mention detection, Crisis Report detection, and Adverse
Drug Reaction monitoring. The experiments show that our model
is able to outperform the state-of-the-art text classification models—
including those using the recently introduced BERT model-when
small amounts of training data are available.
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1 Introduction

Social networks, such as Twitter and Facebook, have become insep-
arable parts of societies. A broad spectrum of topics are shared and
discussed in the networks every day, and this has turned them into
a suitable means for the online public monitoring. The applications
include, but not limited to, consumer opinion mining [18], stock
market prediction [7], sarcasm detection [12], and user reputation
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management [3]. These cases signify that social networks, e.g., Twit-
ter, went beyond their initial purpose years ago—which was being
simple personal messaging tools!. Personal Event Detection is an
example of the online public monitoring. For instance, in the case
of Personal Health Mention detection [30], the aim is to mine and
track any individual health event. Scalability, real-time surveillance,
and rapid response to potential outbreaks are the main advantages
of this task when it is used inside a public health monitoring sys-
tem. Another example is Crisis Report detection [16] through social
media, which aims to mine user postings and alert humanitarian
institutions and agencies during natural disasters.

Even though social networks are a valuable source of informa-
tion, mining user postings comes with several challenges. For in-
stance, the tasks usually suffer from the lack of enough training data
[21]. Even in the cases that there is enough resources to construct
a training set, the class distributions might be highly imbalanced
[1, 33]. Thus, having machine learning models to perform well in
this data scarce environment is of great value.

In classification tasks a common practice is to first extract a set
of features, either manually or through representation learning,
and then train a classifier over the resulting feature vectors. While
training a single classifier over the entire content is a standard
practice, an end-to-end classifier may require substantial amount
of annotated data. Instead, for a subset of tasks, we can use domain
knowledge to decompose the problem into a set of sub-tasks, and
use a separate learner to tackle each one individually. This can lead
to the development of models which are equipped with domain
understanding and require less training data. For instance, if the
task is cancer surveillance on the Twitter website, in the tweet T
FJust went to my Oncology appointment at the Hospital!!! Praying that
it’s not cancer”, we might be able to infer the class label from the
contextual information of either the word “I” or “cancer”. Therefore,
we can solve each classification problem individually and aggregate
the results.

We propose Co-Decomp, a semi-supervised model that can clas-
sify short text for problems with a set of sub-tasks. While our model
can be potentially applied to any problem that is centered around
a group of concepts or entities, we focus on three personal event
detection tasks; because they usually suffer from the lack of train-
ing data and imbalanced class distributions, as mentioned earlier.
Namely, we focus on Personal Health Mention detection [21], Crisis
Report detection [16], and Adverse Drug Reaction monitoring [33],
and show that Co-Decomp can outperform state-of-the-art classi-
fiers in semi-supervised settings. In summary, our contributions
are:

Uhttps://www.nytimes.com/2010/10/31/technology/31ev.html
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e We propose Key Concept Sets to decompose a particular
category of text classification problems, referred to as de-
composable problems, into a set of sub-tasks.

e We introduce a co-training model to effectively utilize the
problem decomposition, and reduce the need for training
data.

e We show that a category of personal event detection tasks
fall into the class of decomposable problems. We carry out
comprehensive experiments on four datasets, and show that
our model reduces the need for training data, and can out-
perform state-of-the-art classifiers in the low data regime.

Together, these contributions significantly advance the state of
the art in the personal event detection and related tasks. Next, we
review the related work to place our contributions in context.

2 Related Work

Our model falls into the category of divide-and-conquer algorithms,
and this family of algorithms have been employed in text classifi-
cation before. For example, a pipeline of filtering steps have been
applied to documents in order to filter out the confidently negative
ones [1]. The main difference between our model and the pipelining
approach is that we initially decompose the task into a set of sub-
tasks that can be complementary, whereas in the case of pipelining,
the final classifier still needs to tackle the same initial task. Ad-
ditionally, our decomposition reduces the need for training data
such that the task can be solved in semi-supervised settings. Our
model is also deeply connected to the information extraction [26],
relation classification [41], and semantic role labeling [35] tasks
in natural language processing. In addition to be agnostic towards
the number of entities and their relation type, which are pivotal
in the mentioned tasks, our proposal is mainly a new perspective
on tackling text classification problems in semi-supervised settings.
Thus, in contrast to these tasks, we are not concerned about entity
extraction or relation classification, but our focus is on how to de-
compose the classification problem such that the resulting pieces
are good representations.

Another related topic, which has inspired our work, is Annotator
Rationale technique introduced in [40]. The authors use manual
annotations within documents to derive new training examples. To
take into account the possible biases in the synthesized examples,
they also adjust the classification model accordingly. Similar to
their approach, our model also relies on the annotations within
each document. The manual annotation of the sentences within
each document raises efficiency concerns about the cost of prepar-
ing the training data. However, they carry out a set of extensive
experiments and show that the effort of labeling the sentences
within each document is not significant. Specifically, they show
that when the classification task is predetermined but the set of
candidate sentences and words is open and unknown, human anno-
tators can rapidly scan the text and highlight the important sections.
In our model, this issue is even less concerning, because once the
set of Key Concept Sets is defined, they can be automatically dis-
covered and highlighted; and ready to annotate. The main difference
between Co-Decomp and Annotator Rationale is that our model
relies on domain-guided problem decompositions to derive new
training examples. Consequently, Co-Decomp is able to divide the
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Figure 1: Illustration of Co-Decomp method for detecting
personal health mentions (cancer), where the task is decom-
posed into detecting positive human mentions (Class C1)
and actual health event (cancer) mentions (Class C2). In the
training phase, classifiers for C1 and C2 are trained over the
labeled instances of C1 and C2. To label the unseen exam-
ples in the test phase, the predictions of classifiers for C1
and C2 are aggregated.

initial problem into potentially smaller tasks, and tackle each one
individually.

In the context of the personal health event detection, the closest
work to ours is the WESPAD model introduced in [21]-We have
included the model as a baseline. The underlying assumption of
WESPAD is that there is enough data to extract good lexical fea-
tures. Even though this model works well in supervised settings, in
Section 6 we will show that it performs poorly in semi-supervised
settings. Finally, in contrast to general semi-supervised learning
models such as transductive [19], graph-based [42], generative [29],
or hybrid models [5], our model is a novel method to incorporate do-
main knowledge into the learning process. Therefore, our solution
can be still implemented in any of the machine learning frameworks
which can regulate the interaction between multiple learners, e.g.,
[6, 14, 32]. In summary, our work advances the state of the art by
identifying the problem decomposition in text classification tasks,
proposing an effective co-training model to utilize the technique,
and showing the superiority of the model in semi-supervised set-
tings across multiple tasks.

3 Co-Decomp: Method Description

We begin this section by presenting an example, and explaining the
intuition behind Co-Decomp. Consider the task of cancer surveil-
lance in Twitter. The common practice is to extract a set of feature
vectors from user postings—manually or automatically-and train a
classifier over the extracted vectors. However, this approach has
some drawbacks. First, the classifier needs to learn a mapping func-
tion from the linguistic patterns that appear in tweets to the class
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labels. Even if the patterns are not semantically and directly related
to the task, the classifier still needs to learn to discard them. Sec-
ond, no domain understanding is used to tackle the problem. With
sufficient training data, classifiers can ultimately discover the right
feature set, and detect the correct mapping function. But this is
not the case in semi-supervised settings with insufficient labels. To
address these issues, our proposal is to decompose the task into a
set of complementary sub-tasks, and tackle each one individually.

For instance, in the case of cancer surveillance, as shown in
Figure 1, the original task can be decomposed into (1) detecting
positive mentions of humans (marked by “Task 1” in Figure 1)
and (2) detecting positive mentions of the word cancer (marked
by “Task 2” in Figure 1). A tweet may contain multiple human
mentions and cancer mentions, as shown in the case of the tweet
“id: 17 in Figure 1. The mentions that refer to the human with the
reported cancer are labeled positive, while the remaining mentions
are labeled as negative. Two separate classifiers are trained over
the mentions of humans and the mentions of cancer, respectively.
The two classifiers are then aggregated in a co-training framework
to result a robust model. In the following subsections, we define
Key Concept Sets and decomposable problems. Then, we describe
our model Co-Decomp, which utilizes the problem decomposition
in a co-training framework.

3.1 Decomposable Text Classification Tasks

In this section, we introduce Key Concept Sets, which allow us to
decompose a problem into a set of sub-tasks. Let 7 be the distribu-
tion over document and class pairs z: (d,c) € Dx{0,1,--- },and V
be the vocabulary set. Also let f : (w, d, i) — R™ be a vector-valued
function which captures the contextual information of the i-th oc-
currence of term w in document d, and maps it into an n-dimension
space of real values. Given threshold y, we define K to be a Key
Concept Setif: 1) K € V 2) Vw,v € K: || f(w,3,:) — f(v,5,9)] <y
3) There exists distribution ¢ over the value of f and class pairs
¢: (f,c) € fx{0,1,---} such that Vd € D,3w € K,3 (w,d, i) :
(i)~ S (F(w,d. 1), c)~.

Thus, a Key Concept Set is a subset of the vocabulary set-attribute
(1)-in which its members are contextually similar-governed by y
in attribute (2)-and if we train a classifier on the context vectors of
its members, there is at least one term in every document where
its label is the same as the document label-attribute (3). We call
a classification problem decomposable, if there exists at least one
Key Concept Set in the vocabulary set.

Key Concept Sets simplify the classification inference, since the
classification over the documents can be replaced with the classi-
fication over the key-concept-set terms in the documents. More
specifically the advantages are: First, the dimension of the context
function f is usually much smaller than the size of the vocabulary
set V, thus feature selection becomes easier. Second, since intu-
itively there are limited ways of using a word in context, there
is less variance in distribution ¢ in comparison to distribution 7,
which can virtually model the entire language. Third, as we will
discuss in the next section, we can rely on our domain understand-
ing to identify Key Concept Sets, and therefore, equip the model
with a knowledge that otherwise it would need to learn through
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more training data. This will help the model to generalize better
with smaller number of training examples.

3.2 Domain-Guided Key Concept Set
Identification

To identify Key Concept Sets we rely on human knowledge. Our
model is proposed for the tasks which are tailored for specific
entities or concepts. Therefore, we assume once the problem state-
ment is defined, the identification of the subject entities will be
straightforward. To demonstrate that this assumption holds in some
real-world scenarios, in Section 4 we present three tasks that follow
this motif. Namely, we discuss Personal Health Mention detection
[21], Crisis Report detection [16], and Adverse Drug Reaction mon-
itoring [33] tasks. We show that, even though there is a large body
of work behind each one, they can be viewed as decomposable
problems and addressed similarly. This is striking, since to the best
of our knowledge so far no connection has been made between
these three tasks. We conjecture that there may be an even larger
set of tasks that have the same attributes and can be potentially
decomposable—one particularly interesting case which we may
explore in the future is the product review task in social media.

A short note on the role of human knowledge in our model.
Our model is not a human-in-the-loop algorithm. Once the train-
ing stage begins, no human supervision is required. In the regular
learning, the learner mines the entire feature space to detect the
conclusive subset of features. To do so, the model requires enough
training data. We are in fact eliminating this step, and reducing
document level classification to word level classification. In other
words, we rely on human knowledge to relocate one of the data ex-
ploration steps from the learning stage to the design stage. Thus, the
learning procedure still occurs, however, in a smaller feature space
with less variation. The idea of reliance on human knowledge is not
novel. For instance, the distant supervision model [26], assumes the
user has enough domain expertise to introduce a large noisy dataset.
Co-training model [6], assumes the user has enough information
about the task to introduce two subsets of features. And the data
programming model [32], assumes the user has enough knowledge
to provide the learner with a set of heuristics. Interestingly, all of
these models are proposed for the low data regime.

3.3 Co-Decomp: Exploiting Task
Decomposition for Semi-Supervised
Learning

The contextual similarity between the members of a Key Concept
Set, that was introduced in the previous section, insures that the
sets that can potentially capture different aspects of documents are
not combined 2. Being able to capture multiple views of the same
problem—-even loosely—is shown to be effective in models such as
co-training [6, 28]. Thus, we propose to use co-training to utilize
the problem decomposition3. Algorithm 1 illustrates the training
2The similarity condition-introduced by y—does not by itself guarantee orthogonality
of the features. However, if two subsets of vocabularies are contextually different, and
their context vectors are indicators of the document class, then, we assume they can
capture different aspects of the document.

3We consider the binary classification problems, however, our model can also generalize
to multi-label classification problems.
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procedure of Co-Decomp. Since there could be multiple occurrences
of the members of a Key Concept Set in a document, the problem
is viewed as a multiple instance learning problem [9], where each
document is called an example, and each set member occurrence
in the document is called an instance. The procedure is iterative,
and in every iteration the set of labeled instances of every example
are used to train a classifier. Then the classifiers are used to label
the instances of the unlabeled data, and according to the multiple
instance learning selection metric the examples are labeled-e.g,
based on their most confident positive instance. Finally, the most
confident positive and negative examples of each Key Concept Set
are added to the pool of the labeled training data.

Algorithm 1 Training Procedure of Co-Decomp

1: procedure TRAIN

2:  Given:

3 L : Set of labeled examples

4 U : Set of unlabeled examples

5 J : Number of key concept sets

6 K : Number of iterations

7. Return:

8 C[1...]]: array of classifiers trained on instances of
each key concept set in L and U

9. Execute:

10: fori < 1toK do

11: for j «— 1to J do

12: Train C; on instances of key concept set jin L

13: Use Cj and multiple instance learning metric to
label the examples in U

14: Store the most confident positive and negative ex-

amples in EP; and EN;
15: for j «— 1to J do
16: Delete EPj and ENj in U and add them to L

17: Return C[1...]J]

Algorithm 2 illustrates the test procedure. The array of classifiers
trained in Algorithm 1 are used to label the unseen examples. To la-
bel every example, each classifier is used to calculate the probability
of the example being positive, and then a simple criterion similar
to the one proposed in [6] is used to label the example. In a more
complicated scenario, each classifier could have a prior reliability
score, however, for simplicity we opted for the model proposed in
[6].

A short note on the orthogonality of Key Concept Sets.
Multi-view learning techniques [39] are effective even in the pres-
ence of correlated views. Particularly in the case of co-training al-
gorithm, numerous studies have shown that the initial assumption
of orthogonality between the views was over-strong. For instance,
Balcan, Blum, and Yang [4] propose a theoretical framework and
argue that if the classifiers in each view are sufficiently strong PAC-
learners, then the initial constraint on the views can be substantially
relaxed. In the application domain, Nigam and Ghani [28] show
that by randomly splitting lexical features, one can construct two
separate views for co-training algorithm. Jones et al., [20], propose
Co-EM algorithm for information extraction. Their two feature sets
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Algorithm 2 Test Procedure of Co-Decomp

1: procedure TEST

2. Given:

3: ] : Number of key concept sets

4 C[1...]]: array of classifiers

5. Test : Test set

6:  Return:

7. Labeled test set

8: Execute:

9:  for exmpl in Test do

10: for j « 1to Jdo

11: Use C;j and multiple instance learning metric to find the
probability of exmpl being positive

12: Store the corresponding probability in P;
13 if [T/, Pi > [T/_,(1- P;) then

14: exmpl is positive

15: else

16: exmpl is negative

17: Return Test

are noun phrases and their surrounding contexts. They show that
even though these two feature sets are highly correlated, they can
be still effective in a co-training model.

In the next section, we use Co-Decomp to propose a solution to
a set of personal event detection tasks in social media.

4 Applications: Personal Event Detection

In this section, we show that Co-Decomp is applicable to three
important real-world scenarios: Personal Health Mention detection
(PHM), Crisis Report detection (CR), and Adverse Drug Reaction
monitoring (ADR). We show that these three tasks are decompos-
able problems and have a unified solution.

4.1 Personal Health Mention Detection

Personal Health Mention detection (PHM) is described in [21], and
concerns “identifying postings in social data, which not only contain
a specific disease, but also mention a person who is affected”. To
employ Co-Decomp, we regard the two entities that are present in
the problem statement as the Key Concept Sets: 1) The set of all
human mentions. 2) The disease keyword mentioned in the task.
We argue that both of the sets loosely follow the conditions which
are described in Section 3.1. Intuitively, all the human mentions
have similar contextual vectors (condition (2)); and by construction,
there is at least one human mention that determines the label of
the user posting (condition (3)). The same reasoning applies to the
second Key Concept Set; there must be at least one occurrence of
the disease keyword which determines the label of the user posting
(condition (3)).

After identifying the Key Concept Sets, the next step is to pre-
pare the training set. We implemented a tool to automatically ex-
tract the human mentions and highlight the mentions for manual
annotation—-similar to Annotators Rationale method [40]. Since
user postings are short, we assumed all the disease mentions in
the positive user postings were positive instances of the second
Key Concept Set. All the human mentions and disease mentions of
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the negative user postings were assumed to be negative instances.
Thus, the extraction and annotation of the disease mentions, the
extraction of the human mentions, and also the annotation of the
negative human mentions are all fully automatic. Only the anno-
tation of the positive human mentions is manual-after a tweet is
labeled positive, the user is asked to highlight the affected human
mention.

We followed Algorithm 1 for training the classifiers, and aug-
mented the labeled data with unlabeled data. To add positive in-
stances of Key Concept Sets to the labeled data, we selected the most
confidently labeled instance and its most probable counterpart in
the other Key Concept Set-we effectively stored the set of instances
as labeled data. For example, assume the classifier trained over dis-
ease mentions confidently labeled the word “cancer” positive in
the tweet “a friend of me is diagnosed with cancer”. Then, we added
this instance to the set of labeled data, and also used the classifier
trained over the human mentions to label the mentions of human
in the tweet, i.e., “friend” and “me”, and selected the most confident
one and added to the labeled data. To add negative instances of Key
Concept Sets to the labeled data, we selected the example which all
of its instances were confidently labeled negative, and added to the
labeled data. To test our model, we followed Algorithm 2.

4.2 Crisis Report Detection

Crisis Report detection (CR) as defined in [17] concerns* “detect-
ing reports of casualties and/or injured people due to the crisis. Or
reports and/or questions about missing or found people”. We regard
the two entities mentioned in the problem statement as the Key
Concept Sets: 1) The set of all human mentions. 2) The crisis key-
word mentioned in the task. In this study, we focus on the reports
which were posted during an earthquake. To prepare the training
set and evaluate our model, we followed the same procedure that
we used for the PHM problem.

4.3 Adverse Drug Reaction Monitoring

Adverse Drug Reaction monitoring (ADR) is defined in [11], and is
meant for ‘“detecting personal injuries resulting from medical drug
use”. We regard the two entities mentioned in the problem statement
as the Key Concept Sets: 1) The set of all human mentions. 2) The
set of all drug mentions. To prepare the training set and evaluate
our model, we re-implemented all the decisions that we made for
the PHM problem.

4.4 Implementation Details

In this section we provide a detailed explanation of the modules and
components used in Co-Decomp to address the tasks mentioned
earlier. Specifically, we discuss the context function described in
Section 3.1, the classifiers described in Section 3.3, the extraction
of the Key Concept Sets mentioned in Sections 4.1, 4.2, and 4.3; and
finally the learning representation of the Key Concept Sets.

Context Function. We used contextual embeddings as the context
function described in Section 3.1. We used the BERT model [8], even
though other models such as ELMO could be also used [31]. We

4There are also other variations of this task, e.g., displacing or evacuating people,
during different incidents [2].
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used the base variant, and pre-trained it on Twitter data—see below
for the details about pre-training.

Used Classifiers. We used logistic regression classifier as the learn-
ers mentioned in Section 3.3. Thus, after fine-tuning the embeddings
using the training data, we used the contextual features to train
the logistic regression classifiers®. The Mallet implementation of
logistic regression [24] was used in this step.

Key Concept Set Extraction. To detect human mentions we used
a weak rule-based classifier. The accurate detection of human men-
tions is out of our research scope; here, we aim to show that even a
weak human mention detector can contribute to the performance.
The rules for human mention detection were as follows: Using the
Stanford Named Entity Recognition (NER) tagger [10] we labeled
all of the “PERSON” tags. Using the Stanford Parts of Speech (POS)
tagger [36] we labeled all of the personal pronoun tags except for
the word “it”. We also labeled all of the Twitter mentions-indicated
by the sign “@”. Finally, we used a dictionary of 240 words manually
collected from the Web to cover the remaining cases. Since not all
of the human mentions are explicitly referred in user postings, we
also used a simple noisy rule based human mention synthesizer: If
a sentence started with a past tense verb we inserted the word “1”
at the beginning. If a sentence started with an adjective we inserted
“i am” at the beginning. If a sentence started with a past participle
verb we inserted “i have” at the beginning. If a sentence started with
a present continuous verb we inserted “i am” at the beginning. And
finally, if a sentence started with “is”, we replaced it with “i am”.
We empirically developed these rules, and as mentioned earlier,
to achieve a better performance they can be replaced with more
sophisticated models.

The model relies on the positive mentions of the humans in
the positive tweets—described in Section 4.1. One of the authors of
the article supplied the annotations. The rules for the annotation
were as follows: The explicit mentions of the humans which are
associated with the event (either disease, or disaster, or drug injury)
should be annotated. If the explicit mention does not exist, the
implicit mentions which are associated with the event should be
annotated.

To extract the disease Key Concept Set mentioned in Section 4.1,
we conducted a keyword search for the disease name in the task
description. For instance if the task is about Parkinson’s disease
surveillance, the disease Key Concept Set contains the word {Parkin-
son’s}. To extract the crisis Key Concept Set mentioned in Section
4.2, we also performed a keyword search for the incident in the task
description. As mentioned earlier, in this study we focused on an
earthquake incident. Thus, the crisis Key Concept Set contains the
keywords {earthquake, quake}. To extract the drug Key Concept Set
described in Section 4.3, we used the list of drug names published
in [33], and conducted a keyword search for the drug names in the
list.

Learning Key Concept Set Representations. Since the human
mentions are lexically different-although we expect them to be
contextually similar-we replaced all of them with a mask token
HUM_TOK and learned the representation. To do so, we collected
a set of 7,598,545 random tweets by Twitter API in October 2018,
replaced all the human mentions with this token, and pre-trained

5We made this decision based on implementation considerations.
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the base variant of the BERT model for 10 epochs—with default
hyperparameters as mentioned in [8]. The word vectors used in
the personal health mention detection and crisis report detection
tasks are the output of this model. To unify the representations of
the drug mentions, we used the list of drug names published in
[33] to collect a set of 28,710 tweets containing the drug names 6
replaced the names with DRUG_TOK and further pre-trained the
above mentioned model for 10 epochs. The word vectors used in
the adverse drug reaction monitoring task are the output of this
model.

5 Experimental Setup

In this section we first describe the datasets that we used in the ex-
periments, and then, we review the baselines that we implemented,
and finally discuss the training procedure.

5.1 Datasets

For personal health mention detection task we used two datasets.
First, the dataset introduced in [23], which we call FLU dataset 7 At
the time of downloading this dataset, there were still 2,837 tweets
available to crawl, in which 49% of them are negative—awareness
tweets—and 51% of them are positive-report actual cases of flu.
Second, the dataset introduced in [21], which we call PHM dataset.
At the time of downloading this dataset, there were 7,192 tweets
available to crawl. This dataset consists of 6 diseases: Alzheimer’s,
heart attack, Parkinson’s, cancer, depression, and stroke. All of
these sub-datasets are highly imbalanced, positive examples span
between 11% to 40% of the cases. For crisis report detection task,
we used the earthquake related dataset introduced in [17], which
we call CRISIS dataset. This dataset contains a set of 2,013 tweets
which were posted during the California earthquake in 2014 8. Only
11% of the tweets in this dataset are positive cases of injured or
missing people. For adverse drug reaction monitoring task, we used
the dataset introduced in [33], which we call ADR dataset. At the
time of crawling the dataset, there were 4,355 tweets available.
This dataset is also highly imbalanced, only 10% of the tweets are
positive cases of drug injures. Table 1 summarizes the 4 datasets
and their target prediction tasks.

5.2 Baselines

To compare the performance of our method, we implemented the
following methods and classifiers. Model hyperparameters were
tuned based on the training folds and datasets, and in most cases
their optimal values were dependent on the training data.

NB. A Naive Bayes classifier is trained over unigrams and bigrams,
as it has been shown to perform well with small training sets [27].
EM. We implemented the Expectation Maximization algorithm
proposed by [29], which is known to work well in semi-supervised
settings. We experimented with the set of {10,20,50,100} for the
number of unlabeled documents.

SWe used the Twitter streaming API for four weeks, and collected about 300K tweets,
however, found that the majority of them were duplicates.

7We used the infection vs awareness version of FLU dataset, for detailed information
about the datasets please refer to the cited articles.

8Reference [17] also introduces a few more datasets. We used the California earthquake
version, and split by the injured and missing vs other categories.
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Name Target # Tweets | % Positive
FLU [23] Positive flu cases 2837 51
PHM [21] Alzheimer 1256 18
PHM [21] Heart attack 1219 13
PHM [21] Parkinson’s 1040 11
PHM [21] Cancer 1242 21
PHM [21] Depression 1213 40
PHM [21] | Stroke 1222 14
CRISIS [17] | Injured or missing | 2013 11
ADR [33] Drug injuries 4355 10

Table 1: Summary of FLU [23], PHM [21], CRISIS [17], and
ADR [33] datasets and their associated prediction tasks. The
third and fourth columns report the size of the dataset and
percentage of the positive tweets respectively.

FastText. We trained the shallow neural network classifier intro-
duced in [13], which can update word embeddings during the train-
ing. We experimented with {0.05,0.1,0.25,0.5} for the learning rate,
and {2,4} for the window size.

WESPAD. We trained the PHM model introduced in [21], which is
specifically designed for Personal Health Mention detection. We ex-
perimented with {3,4,5} for the number of clusters, and {0.05,0.15,0.3}
for threshold values.

BERT-BASE. We included the model introduced in [8], which is
named BERT and uses a multi-layer transformer encoder followed
by one layer of a fully connected neural network for binary classi-
fication problems. In the experiments we observed that the large
variant shows poor performance when the training data is small,
thus we report the results of the base variant BERT-BASE-which
has fewer layers. We followed the parameter settings suggested in
[8]; but empirically observed that if we set the number of epochs
for fine-tuning to 15, the model is more stable and performs better.
BERT-TW. Since we experimented with Twitter data, we also pre-
trained BERT in order to adjust the language model. Thus, we used
the set of 7 million tweets described in Section 4.4 to further pre-
train BERT-BASE for 10 epochs—-without replacing human mentions.
The hyperparameters were set to what is suggested in [8], and by
the time the pre-training was done, the performance of the internal
language modelling tasks for sample tweets was similar to the
performance of BERT-BASE for sample Wikipedia pages.
BERT-DR. We also used the set of drug related tweets mentioned
in Section 4.4-without replacing the drug mentions—to further pre-
train BERT-TW to be used in ADR task. We used the same parameter
setting as BERT-TW.

Co-BE-LE. In order to boost the BERT model with Bootstrapping,
we also included a co-training model with two learners: One Naive
Bayes classifier trained over unigrams and bigrams, and one logistic
regression classifier trained over the BERT-TW or BERT-DR repre-
sentation of the tweets—depending on the task. We experimented
with {13,25,50} as the number of iterations in co-training model.
Co-Decomp. Our method described in Section 4. We empirically
set the number of iterations in the co-training model to 25-based
on the training and development folds in the FLU dataset-and did
not do any further tuning beyond what we did for BERT-TW. We
report all the results with this setting unless stated otherwise.
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5.3 Training Details

We used standard 10-fold cross validation to train, validate, and
test all of the models. To evaluate the models in semi-supervised
settings, we did not use the entire training and validation data, but
randomly sampled a few examples and used the rest of the examples
as unlabeled data. In the next section, we report the results when
we have 100 training examples, however, we also show that our
model still performs well when the number of available training
examples increases. To split the datasets into the folds, we used
stratified sampling to preserve the original class distribution in the
datasets. We also preserved the folds and samples identical across
the experiments to ensure that all of the models use exactly the same
training and test data. Since there is a natural randomness in neural
network initialization and regularization techniques, we carried
out all of the experiments 5 times, and averaged the performance
results.

Because the datasets are highly imbalanced, following the argu-
ment in [25], we used the F1 measure in the positive class to tune
the models. In the next section we report F1, Precision, and Recall
in the positive class—averaged over the test folds.

6 Results and Discussion

In this section, we first report the performance results in FLU, PHM,
CRISIS, and ADR datasets, and then analyze our model through a
series of experiments.

6.1 Performance Results

Table 2 summarizes the F1, precision, and recall of the models in
FLU and PHM datasets—the results in PHM dataset are averaged
over the topics. Table 3 summarizes the results in CRISIS dataset,
and Table 4 reports the results in ADR dataset. We also report the
performance of the models in PHM dataset across all the topics in
Table 5. The experiments show that Co-Decomp outperforms state-
of-the-art classifiers across the majority of the tasks. We can see
that the improvements in the imbalanced datasets (PHM and ADR)
are more noticeable than the improvements in the balanced dataset
(FLU). We can also see that the semi-supervised learning model
Co-BE-LE performs relatively well, although it has a low precision.
In contrast, our model maintains a high precision. We attribute
this advantage to the easier tasks that Co-Decomp is tackling-i.e.,
selecting the most confident unlabeled instances via the context
representations versus via the document representations. Finally,
the results suggest that crisis report detection is an easier problem
than adverse drug reaction monitoring, because even though both
CRISIS and ADR have about 10% positive examples, the perfor-
mance of the models in the ADR dataset is much lower. We will
discuss this dataset in more detail in the next section.

6.2 Discussion

To better understand the impact of each component in our model,

we report the results of the ablation study in Table 6. Since PHM dataset

was the most diverse dataset (it constitutes 6 sub-topics), we carried
out the experiment in this dataset. The results show that the weak
human mention classifier is clearly contributing to the performance
when it is combined with the disease mention classifier. Then a
further improvement is achieved when co-training iterations are
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Figure 2: F1 at different training set size cut-offs for BERT-
DR and Co-Decomp models in ADR dataset. There are 3,919
examples in the training folds of ADR dataset—excluding the
test folds in 10 fold cross validation.

performed. However, the improvement after 50 iterations comes at
the cost of dramatic deterioration in precision, which might not be
desirable.

In Section 6.1, we observed that the performance of the models
in ADR dataset was very low. To investigate the performance of
the models as the function of the training set size, in Figure 2 we
report the performance of Co-Decomp in comparison to the state-
of-the-art BERT-DR classifier at different training set size cut-offs in
this dataset. The results show that even in supervised settings our
model is on par with strong classifiers—for this dataset and with
manual feature engineering the F1 of 0.538 is reported in [33]°.

Finally, often in the real world situations, practitioners who try
to tackle a classification problem, may have a small training set for
the task and a larger diverse training set in the similar domains. We
tried to evaluate our model in such a scenario. Thus, we assumed
FLU dataset was the small training set which was available to do
influenza surveillance in social media, and PHM dataset was the
bigger diverse dataset which was available for similar domains. In
Table 7, we report the results of domain adaptation in FLU dataset,
when we use PHM dataset as the out-of-domain training data. We
randomly sampled 500 positive and 500 negative examples from
PHM dataset and fine-tuned the models; then further fine-tuned
them using the training folds of FLU dataset, and finally used for
labeling the FLU test folds—we used this approach to prevent from
the catastrophic forgetting phenomenon in neural networks [22].
The results signify that even with a moderately large balanced
training set, a supervised model cannot outperform Co-Decomp.

In this study we defined problem decomposition, and showed
that it has at least three important real-world applications in social
media. Our model is defined for the tasks that are centered around
a set of entities or concepts. Co-Decomp can be also regarded as
an approach to incorporate domain knowledge into the machine
learning models. In Section 3.1, we presented three arguments that
explain why our model is effective: 1) The vector representation
of words is smaller than the vector representation of documents.

9The ADR task has been extensively explored in supervised settings [34, 37, 38].
However, the studies on semi-supervised ADR are limited [15]
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FLU dataset PHM dataset
Model F1 Precision Recall F1 Precision Recall
NB 0.752 0.712 0.800 0.304 0.616 0.255
EM 0.766 0.708 0.843 0.407 0.528 0.414
FastText 0.747 0.728 0.772 0.278 0.626 0.215
WESPAD 0.763 0.728 0.805 0.336 0.668 0.272
BERT-BASE 0.757 0.739 0.790 0.572 0.682 0.537
BERT-TW 0.786 0.782 0.800 0.563 0.698 0.512
Co-BE-LE 0.771 0.715 0.838 0.577 0.627 0.593
Co-Decomp 0.809 0.800 0.822 0.630 0.674 0.617

Table 2: F1, precision, and recall in FLU and PHM datasets for all the models.

CRISIS dataset
Model F1 Precision Recall
NB 0.545 0.865 0.400
EM 0.568 0.625 0.535
FastText 0.382 0.815 0.258
WESPAD 0.607 0.932 0.458
BERT-BASE 0.710 0.818 0.676
BERT-TW 0.732 0.859 0.678
Co-BE-LE 0.609 0.615 0.614
Co-Decomp 0.765 0.880 0.694

Table 3: F1, precision, and recall in CRISIS dataset for all the
models.

ADR dataset

Model F1 Precision Recall
NB 0.020 0.267 0.011

EM 0.072 0.168 0.052
FastText 0.004 0.100 0.002
WESPAD 0.016 0.300 0.008
BERT-BASE 0.082 0.274 0.054
BERT-DR 0.098 0.290 0.066
Co-BE-LE 0.184 0.183 0.202
Co-Decomp 0.259 0.302 0.236

Table 4: F1, precision, and recall in ADR dataset for all the
models.

Thus, classification is easier over the words. 2) There are limited
ways of using a word in a context. 3) Equipping the model with
domain knowledge. The last argument, is based on the fact that
we use domain understanding to impose a new inductive bias on
the learner, through removing less important word features and
targeting the pivotal entities in the task.

7 Conclusions and Future Work

We proposed a novel semi-supervised model for classification tasks
that are centered around specific entities or concepts. Our model
is based on: (1) decomposing the problem into a set of sub-tasks,
and (2) combining the results in a co-training framework. By lever-
aging domain knowledge to decompose problems, and employing
co-training framework to reinforce the underlying classifiers, our
model Co-Decomp is able to generalize well and outperform state-
of-the-art classifiers in semi-supervised settings. We showed that
our model is applicable to at least three important personal event
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detection problems, namely, Personal Health Mention detection,
Crisis Report detection, and Adverse Drug Reaction monitoring.
We also carried out extensive experiments and reported the perfor-
mance of the model in various settings. The results indicate that
Co-Decomp is able to consistently and significantly outperform
state-of-the-art classifiers in the three mentioned tasks.

Our current research introduces three potential future work
directions. First, investigating other tasks which may be decom-
posable. As we discussed in Section 3.2, the tasks that are centered
around entities and concepts can be potential targets. For instance,
our model can be applied to the customer satisfaction task—where
the mentions of human and the product can serve as candidate
Key Concept Sets. The next two future directions are on the theory
aspect of our method. One direction is to investigate the extent
in which the choice of Key Concept Sets can impact the model
performance. This will help us to understand whether our model
can be applied to the tasks that the domain understanding is incom-
plete. Even though our experiments with a weak human mention
detector showed promising results, we believe further investigation
is required to understand if noisy Key Concept Sets can still be
beneficial. And finally, the last future direction is to investigate the
ways of automatically discovering Key Concept Sets.
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