
A Kaczmarz Algorithm for Solving Tree Based
Distributed Systems of Equations

Chinmay Hegde, Fritz Keinert, and Eric S. Weber

Abstract The Kaczmarz algorithm is an iterative method for solving systems of
linear equations. We introduce a modified Kaczmarz algorithm for solving systems
of linear equations in a distributed environment, i.e., the equations within the system
are distributed over multiple nodes within a network. The modification we introduce
is designed for a network with a tree structure that allows for passage of solution
estimates between the nodes in the network. We prove that the modified algorithm
converges under no additional assumptions on the equations. We demonstrate that
the algorithm converges to the solution, or the solution of minimal norm, when the
system is consistent. We also demonstrate that in the case of an inconsistent system
of equations, the modified relaxed Kaczmarz algorithm converges to a weighted least
squares solution as the relaxation parameter approaches 0.

1 Introduction

The Kaczmarz method [16] is an iterative algorithm for solving a system of linear
equations Ax = b, where A is an m×k matrix.Written out, the equations are a∗i x = bi
for i = 1, . . . ,m, where a∗i is the ith row of the matrix A. Given a solution guess
x(n−1) and an equation number i, we calculate ri = bi − a∗i x

(n−1) (the residual for

Chinmay Hegde
Electrical and Computer Engineering, Iowa State University, Ames, IA 50011, e-mail: chinmay-
hegde@gmail.com, current: Electrical and Computer Engineering, New York University, New
York, NY 10012

Fritz Keinert
Department of Mathematics, Iowa State University, 396 Carver Hall, Ames, IA 50011 e-mail:
keinert@iastate.edu

Eric S. Weber
Department of Mathematics, Iowa State University, 396 Carver Hall, Ames, IA 50011 e-mail:
esweber@iastate.edu

1

2 Chinmay Hegde, Fritz Keinert, and Eric S. Weber

equation i), and define
x(n) = x(n−1) +

ri
‖ai ‖2

ai . (1)

This makes the residual of x(n) in equation i equal to 0. Here and elsewhere, ‖ · ‖ is
the usual Euclidean (`2) norm. We iterate repeatedly through all equations (i.e. we
consider limn→∞ x(n) where n ≡ i mod m, so the equations are repeated cyclically).
Kaczmarz proved that if the system of equations has a unique solution , then x(n)
converges to that solution. Later, it was proved in [33] that if the system is consistent
(but the solution is not unique), then the sequence converges to the solution of
minimal norm . Likewise, it was proved in [7, 21] that if inconsistent, a relaxed
version of the algorithm can provide approximations to a weighted least-squares
solution .

Obtaining the nth estimate requires knowledge only of the i-th equation (n ≡ i
mod m as above) and the n−1-st estimate. We suppose that the equations are indexed
by the nodes of a tree, representing a network in which the equations are distributed
over many nodes. In our distributed Kaczmarz algorithm, solution estimates can only
be communicated when there exists an edge between the nodes. The estimates for the
solution will disperse through the tree, which results in several different estimates of
the solution. When these estimates then reach the leaves of the tree, they are pooled
together into a single estimate. Using this single estimate as a seed, the process is
repeated, with the goal that the sequence of single estimates will converge to the true
solution. We illustrate the dispersion and pooling processes in Figure 1.

1.1 Notation

For linear transformations T , we denote by N(T) and R(T) the kernel (nullspace)
and range, respectively. We use ρ(T) to denote the spectral radius .

When a∗ = a∗v corresponds to a row of the matrix A indexed by a node v, we will
denote the linear projection onto the subspace a∗vz = 0 by:

Pv(z) =
(
I −

ava∗v
a∗vav

)
(z) (2)

and the affine projection onto the linear manifold a∗vz = bv by:

Qv(z) = Pv(z) + hv (3)

where hv is the vector that satisfies a∗vhv = bv and is in N(Pv).
A tree is a connected graph with no cycles. We denote arbitrary nodes (vertices)

of a tree by v, u. Our tree will be rooted; the root of the tree is denoted by r . Following
the notation from MATLAB, when v is on the path from r to u, we will say that v is
a predecessor of u and write u ≺ v. Conversely, u is a successor of v. By immediate
successor of v we mean a successor u such that there is an edge between v and u (this

Solving Distributed Systems of Equations 3

is referred to as a child in graph theory parlance [35]). Similarly, v is an immediate
predecessor (i.e. parent). We denote the set of all immediate successors of node v by
C(v). A node without a successor is called a leaf; leaves of the tree are denoted by
`. We will denote the set of all leaves by L. Often we will have need to enumerate
the leaves as `1, . . . , `t , hence t denotes the number of leaves.

A weight w is a nonnegative function on the edges of the tree; we denote this
by w(u, v), where u and v are nodes that have an edge between them. We assume
w(u, v) = w(v, u), though we will typically write w(u, v) when u ≺ v. When u ≺ v,
but u is not a immediate successor, we write

w(u, v) :=
J−1∏
j=1

w(u j+1, u j) (4)

where v = u1, . . . , uJ = u is a path from v to u.
When the system of equations Ax = b has a unique solution, we will denote this

by xS . When the system is consistent but the solution is not unique, we denote the
solution of minimal norm by xM , which is given by

xM = argmin {‖x‖ : Ax = b}. (5)

1.2 The Distributed Kaczmarz Algorithm

The iteration begins with an estimate (say x(n)) at the root of the tree. When node u
receives from its immediate predecessor v an input estimate x(n)v , it generates a new
estimate via the Kaczmarz update:

x(n)u = x(n)v +
ru(x(n)v)

‖au ‖2
au, (6)

where the residual is given by

ru(x(n)v) := bu − a∗ux(n)v . (7)

The root node updates the estimate that begins the iteration using its equation:

x(n)r = x(n) +
rr (x(n))
‖ar ‖2

ar . Node u then passes this estimate to all of its immediate

successors, and the process is repeated recursively. We refer to this as the dispersion
stage . Once this process has finished, each leaf ` of the tree now possesses an
estimate: x(n)

`
.

The next stage, which we refer to as the pooling stage , proceeds as follows. For
each leaf, set y(n)

`
= x(n)

`
. Each node v calculates an updated estimate as:

4 Chinmay Hegde, Fritz Keinert, and Eric S. Weber

y(n)v =
∑

u∈C(v)

w(u, v)y(n)u , (8)

subject to the constraints that w(u, v) > 0 when u ∈ C(v) and
∑

u∈C(v) w(u, v) = 1.
This process continues until reaching the root of the tree, resulting in the estimate
y(n)r .

We set x(n+1) = y(n)r , and repeat the iteration. The updates in the dispersion stage
(Equation 6) and pooling stage (Equation 8) are illustrated in Figure 1.

a∗rx = br

a∗vx = bv

a∗`t x = b`t

a∗`1
x = b`1

x(n)r

x(n)v

x(n)
`t

x(n)
`1 y(n)v

y(n)r

y(n)
`t

y(n)
`1

(a) equations distributed
across nodes

(b) updates disperse
through nodes

(c) updates pool and
pass to next iteration

Fig. 1 Illustration of updates in the distributed Kaczmarz algorithm with measurements indexed
by nodes of the tree.

Wenote that the tree topology is fixed a priori, and remains fixed over all iterations.

1.3 Related Work

The Kaczmarz method was originally introduced in [16]. It became popular with
the introduction of Computer Tomography, under the name of ART (Algebraic Re-
construction Technique). ART added non-negativity and other constraints to the
standard algorithm [8]. Other variations on the Kaczmarz method allowed for re-
laxation parameters [33], re-ordering equations to speed up convergence [11], or
considering block versions of the Kaczmarz method with relaxation matricesΩi [7].
Relatively recently, choosing the next equation randomly has been shown to dra-
matically improve the rate of convergence of the algorithm [32, 40, 28]. Moreover,
this randomized version of the Kaczmarz algorithm has been shown to be com-
parable to the gradient descent method [26]. Recent advances in accelerating the
Kaczmarz method include subsampling techniques, meaning subsampling the rows
of the matrix [27], or sketching the full matrix with a preconditioner [9].

Our version of the Kaczmarz method differs from these versions in the following
crucial sense. Each node has access to only its equation. Therefore, the next equation
cannot be chosen randomly or otherwise, since the ordering of the equations is
determined a priori by the network topology and thus is different from all randomized
versions. Similarly, the block versions and sketched versions require access to several
(but not necessarily all) of the rows simultaneously; this is also prohibited in our

Solving Distributed Systems of Equations 5

distributed context. Our version here is most similar to the Cimmino method [6],
which was extended in [3], as well as the greedy method given in [23]. Both of these
methods involve averaging estimates, in addition to applying the Kaczmarz update,
as we do here. The proofs in [23] require the system to be consistent, which we do
not, and the method (and proofs) in [3] require access to columns of the matrix as
well as rows. Because of these differences, we make no direct comparisons.

The situation we consider in the present paper can be considered a distributed
estimation problem . Such problems have a long history in applied mathematics,
control theory, and machine learning. At a high level, similar to our approach, they
all involve averaging local copies of the unknown parameter vector interleaved with
update steps [34, 36, 31, 2, 25, 15, 38, 29, 39, 30]. Recently, a number of protocols
for gossip methods , including a variation of the Kaczmarz method, was analyzed
in [20]. The protocols analyzed in that paper require the system to be consistent for
convergence guarantees.

Following [38], a consensus problem takes the following form. Consider the
problem of minimizing:

F(x) =
m∑
v=1

fv(x),

where fv is a function that is known (and private) to node v in the graph. Then, one can
solve this minimization problem using decentralized gradient descent, where each
node updates its estimate of x (say xv) by combining the average of its neighbors
with the negative gradient of its local function fv:

x(n+1)
v =

1
deg v

∑
u

m(v, u)x(n)u − ω∇ fv(x(n)v),

where M = (m(v, u)) ∈ {0, 1}m×m represents the adjacency matrix of the graph.
Specializing fv(x) = cv(bv − a∗vx)2 yields our least-squares estimation problem that
we establish in Theorem 4 (where cv is a fixed weight for each node).

However, our version of the Kaczmarz method differs from previous work in a
few aspects: (i) we assume an a priori fixed tree topology (which is more restrictive
than typical gossip algorithms); (ii) there is no master node as in parallel algorithms,
and no shared memory architecture; (iii) as we will emphasize in Theorem 4, we
make no strong convexity assumptions (which is typically needed for distributed
optimation algorithms, but see [24, 22] for a relaxation of this requirement); and (iv)
we make no assumptions on the matrix A, in particular we do not assume that it is
nonnegative.

On the other end of the spectrum are algorithms that distribute a computational
task over many processors arranged in a fixed network. These algorithms are usually
considered in the context of parallel processing, where the nodes of the graph
represent CPUs in a highly parallelized computer. See [1] for an overview.

The algorithm we are considering does not really fit either of those categories. It
requires more structure than the gossip algorithms, but each node depends on results
from other nodes, more than the usual distributed algorithms.

6 Chinmay Hegde, Fritz Keinert, and Eric S. Weber

This was pointed out in [1]. For iteratively solving a system of linear equations, a
SuccessiveOver-Relaxation (SOR) variant of the Jacobimethod is easy to parallelize;
standard SOR, which is a variation on Gauss-Seidel, is not. The authors also consider
what they call the Reynolds method, which is similar to a Kaczmarz method with all
equations being updated simultaneously. Again, this method is easy to parallelize. A
sequential version called RGS (Reynolds Gauss-Seidel) can only be parallelized in
certain settings, such as the numerical solution of PDEs.

A distributed version of the Kaczmarz algorithm was introduced in [17]. The
main ideas presented there are very similar to ours: updated estimates are obtained
from prior estimates using the Kaczmarz update with the equations that are available
at the node, and distributed estimates are averaged together at a single node (which
the authors refer to as a fusion center, for us it is the root of the tree). In [17], the
convergence analysis is limited to the case of consistent systems of equations, and
inconsistent systems are handled by Tikhonov regularization [14, 12] rather than by
varying the relaxation parameter. Another distributed version was proposed in [19],
which has a shared memory architecture.

Finally, the Kaczmarz algorithm has been proposed for online processing of data
in [13, 5]. In these papers, the processing is online, so neither distributed nor parallel.

2 Analysis of the Kaczmarz Algorithm for Tree Based
Distributed Systems of Equations

In this section, we will demonstrate that the Kaczmarz algorithm for tree based
equations as defined in Equations (6) and (8) converges. We consider three cases
separately: (i) the system is consistent and the solution is unique; (ii) the system
is consistent but there are many solutions; and (iii) the system is inconsistent. In
Subsection 2.1, we prove that for case (i) the algorithm converges to the solution,
and in Subsection 2.2, we prove that for case (ii) the algorithm converges to the
solution of minimal norm. Also in Subsection 2.2, we introduce the relaxed version
of the update in Equation (6).We prove that for every relaxation parameterω ∈ (0, 2),
the algorithm converges to the solution of minimal norm. Then in Subsection 2.3, we
prove that for case (iii) the algorithm converges to a generalized solution x(ω) which
depends on ω, and x(ω) converges to a weighted least-squares solution as ω→ 0.

2.1 Systems with Unique Solutions

For our analysis, we need to trace the estimates through the tree. Suppose that
the tree has t leaves; for each leaf `, let p` − 1 denote the length of the path
between the root r and the leaf `. We will denote the nodes on the path from r
to ` by r = (`, 1), (`, 2), . . . , (`, p`) = `. During the dispersion stage, we have for
p = 2, . . . , p` :

Solving Distributed Systems of Equations 7

x(n)
`,p
= x(n)

`,p−1 +
©­«

r`,p(x(n)`,p−1)

‖a`,p ‖2
ª®¬ a`,p .

Then at the beginning of the pooling stage, we have the estimates y(n)
`

:= x(n)
`

(we
denote x(n)

`
:= x(n)

`,p`
and y(n)

`
:= y(n)

`,p`
). These estimates then pool back at the root as

follows (the proof is a straightforward induction argument):

Lemma 1 The estimate at the root at the end of the pooling stage is given by:

y(n)r =
∑̀
∈L

w(`, r)y(n)
`
.

Note that also by induction, we have that∑̀
∈L

w(`, r) = 1. (9)

Theorem 1 Suppose that the equation Ax = b has a unique solution, denoted by xS .
There exists a constant α < 1, such that

‖xS − x(n+1)‖ ≤ α‖xS − x(n)‖.

Consequently,
lim
n→∞

x(n) = xS,

and the convergence is linear in order.

Proof Along any path from the root r to the leaf `, the dispersion stage is identical
to the classical Kaczmarz algorithm, and so we can write (see [18]):

xS − x(n)
`
= P`,p` (x

S − x(n)
`,p`−1) = P`,p` . . . P`,2P`,1(xS − x(n)), (10)

from which it follows immediately that

‖xS − x(n)
`
‖ ≤ ‖xS − x(n)‖. (11)

We claim that unless xS = x(n), we must have a strict inequality for at least one
leaf, say `0. Indeed, suppose to the contrary that for every leaf `, we had equality in
Equation (11), then by Equation (10), we must have for every node v = (`, k) in the
path from the root r to the leaf `:

Pv(xS − x(n)) = xS − x(n). (12)

Therefore, we obtain

a∗v(xS − x(n)) = 0 for all nodes v. (13)

8 Chinmay Hegde, Fritz Keinert, and Eric S. Weber

By our assumption that the equation has a unique solution, we obtain that xS −x(n) =
0.

By Equations (9) and (11) and our previous claim, we have

‖xS − x(n+1)‖ <
∑̀
∈L

w(`, r)‖xS − x(n)‖ = ‖xS − x(n)‖. (14)

By continuity and compactness, there is a uniform constant α less than 1 that
satisfies the claim. This completes the proof. �

As we shall see in the sequel, we can interpret the above proof in the following
way: define the mapping

P :=
∑̀
∈L

w(`, r)P`,p` . . . P`,2P`,1,

then the mapping z 7→ xS − P(xS − z) is a contraction with unique fixed point xS .
Moreover, the iteration of the algorithm can be expressed as:

x(n+1) = xS − P(xS − x(n)). (15)

2.2 Consistent Systems

We shall show in this section that the distributed Kaczmarz algorithm as defined in
Equations (6) and (8) will converge to the solution with minimal norm in the case
that there exists more than one solution. We first introduce the relaxed version of
the algorithm (required to deal with inconsistent systems); we will show that for any
appropriate relaxation parameter, the relaxed algorithm will converge to the solution
of minimal norm.

The relaxed distributed Kaczmarz algorithm for tree based equations is as follows.
Choose a relaxation parameter ω > 0 (generally, we will require ω ∈ (0, 2), though
see Section 3 for further discussion). At each node w during the dispersion stage of
iteration n, the Kaczmarz update becomes:

x(n)w = x(n)v + ω
rw(x(n)v)

‖aw ‖2
aw . (16)

We suppress the dependence of x(n)v on ω, but we will consider the limit

x(ω) := lim
n→∞

x(n) (17)

which (in general) depends on ω. We will prove in Theorem 2 that when the system
of equations is consistent, then this limit exists and is in fact independent of ω.

As in Equations (2) and (3), we use Pv and Qv to denote the linear and affine
projections, respectively. We will need the fact that Qv is Lipschitz with constant 1:

Solving Distributed Systems of Equations 9

‖Qvz1 −Qvz2‖ ≤ ‖z1 − z2‖.

The relaxed Kaczmarz update in Equation (16) can be expressed as:

x(n)u = [(1 − ω)I + ωQu]x(n)v =: Qω
u x(n)v .

Thus, the estimate x(n)
`

of the solution at leaf `, given the solution estimate x(n) as
input at the root r , is:

x(n)
`
= Qω

`,p`
· · ·Qω

`,2Qω
`,1x(n) =: Qω` x(n). (18)

We can now write the full update, with both dispersion and pooling stages, of the
relaxed Kaczmarz algorithm as:

x(n+1) =
∑̀
∈L

w(`, r)Qω` x(n) =: Qωx(n). (19)

We note that, as above, each Qω
v is a Lipschitz map with constant 1 whenever

0 < ω < 1, but in fact, since Qvz1 − Qvz2 = Pvz1 − Pvz2, we have that Qω
v is

Lipschitz with constant 1 whenever 0 < ω < 2. Moreover, as
∑
`∈L w(`, r) = 1, we

obtain:

Lemma 2 For 0 < ω < 2, Qω
`
and Qω are Lipschitz with constant 1.

We note that the mappings Q(·)
(·)
,Q
(·)

(·)
are affine transformations; we also have use

for the analogous linear transformations. Similar to Equations (18) and (19), we
write

Pωv := (1 − ω)I + ωPv;
Pω` := Pω`,p` · · · P

ω
`,2Pω`,1;

Pω :=
∑̀
∈L

w(`, r)Pω` .

Theorem 2 If the system of equations given by Ax = b is consistent, then for any
0 < ω < 2, the sequence of estimates x(n) as given in Equation (19) converges
to the solution xM of minimal norm as given by (5), provided the initial estimate
x(0) ∈ R(A∗).

We shall prove Theorem 2 using a sequence of lemmas. We follow the argument as
presented in Natterer [21], adapting the lemmas as necessary. For completeness, we
will state (without proof) the lemmas that we will use unaltered from [21]. (See also
Yosida [37].)

Lemma 3 ([21], Lemma V.3.1)
Let T be a linear map on a Hilbert space H with ‖T ‖ ≤ 1. Then,

H = N(I − T) ⊕ R(I − T).

10 Chinmay Hegde, Fritz Keinert, and Eric S. Weber

Lemma 4 ([21], Lemma V.3.2)
Suppose {zk} is a sequence in Cd such that for any leaf ` ∈ L,

‖zk ‖ ≤ 1 and lim
k→∞
‖Pω` zk ‖ = 1.

Then for 0 < ω < 2, we have

lim
k→∞
(I − Pω`)zk = 0.

Lemma 5 Suppose {zk} is a sequence in Cd such that

‖zk ‖ ≤ 1 and lim
k→∞
‖Pωzk ‖ = 1,

then for 0 < ω < 2, we have

lim
k→∞
(I − Pω)zk = 0.

Proof Note that
(I − Pω) zk =

∑̀
∈L

w(`, r)
(
I − Pω`

)
zk,

so it is sufficient to show that the hypotheses of Lemma 4 are satisfied. Since
‖Pω

`
zk ‖ ≤ 1 and

∑
` w(`, r) = 1, we have

1 = lim
k→∞
‖Pωzk ‖ ≤ lim

k→∞

∑̀
∈L

w(`, r)‖Pω` zk ‖ ≤ 1.

Thus, we must have lim ‖Pω
`

zk ‖ = 1 for every ` ∈ L. �

Lemma 6 For 0 < ω < 2, we have

N(I − Pω) =
⋂

v node
N(I − Pv). (20)

Proof Suppose Pvz = z for every node v. Then

Pωz =
∑̀
∈L

w(`, r)Pω`,p` . . . P
ω
`,1z =

∑̀
∈L

w(`, r)z = z

thus the left containment follows.
Conversely, suppose that Pωz = z. Again, we obtain

‖z‖ = ‖Pωz‖ ≤
∑̀
∈L

w(`, r)‖Pω`,p` · · · P
ω
`,1z‖ ≤ ‖z‖

which implies that
Pω`,p` · · · P

ω
`,1z = z

Solving Distributed Systems of Equations 11

for every leaf `. Hence, for every `, and every j = 1, . . . , p` , Pω
`, j

z = z. �

Lemma 7 ([21], Lemma V.3.5)
For 0 < ω < 2, (Pω)k converges strongly, as k →∞, to the orthogonal projection

onto ⋂
v node

N(I − Pv) = N(A).

The proof is identical to that in [21], using Lemmas 3, 5, and 6.

Proof (Proof of Theorem 2) Let y be any solution to the system of equations. We
claim that for any z,

Qωz = Pω(z − y) + y (21)

Indeed, for any nodes v and w, and consequently for any leaf `, we have

Qω
v z = y + Pωv (z − y)

⇒ Qω
wQω

v z = y + Pωw Pωv (z − y)
⇒ Qω` z = y + Pω` (z − y)

⇒
∑̀
∈L

w(`, r)Qω` z =
∑̀
∈L

w(`, r)
(
y + Pω` (z − y)

)
,

which demonstrates Equation (21).
Therefore, by Lemma 7, we have that for any z,

(Qω)
k z→ y + Pr(z − y),

as k → ∞, where Pr is the projection onto N(A). If z ∈ R(A∗), we have that
y + Pr(z − y) is the unique solution to the system of equations that is in R(A∗), and
hence is the solution of minimal norm. �

We can see that for z ∈ R(A∗), the convergence rate of (Qω)k z → xM is linear,
but we will formalize this in the next subsection (Corollary 1).

2.3 Inconsistent Equations

We now consider the case of inconsistent systems of equations. For this purpose, we
must consider the relaxed version of the algorithm, as in the previous subsection.
Again, we assume 0 < ω < 2 and consider the limit

lim
n→∞

x(n) = x(ω).

We will prove in Theorem 3 and Corollary 1 that the limit exists, but unlike in the
case of consistent systems, the limit will depend on ω. Moreover, we will prove in
Theorem 4 that the limit

12 Chinmay Hegde, Fritz Keinert, and Eric S. Weber

lim
ω→0

x(ω) = xLS

exists, and xLS is a generalized solution which minimizes a weighted least-squares
norm.We follow the presentation of the analogous results for the classical Kaczmarz
algorithm as presented in [21]. Indeed, we will proceed by analyzing the distributed
Kaczmarz algorithm using the ideas from Successive Over-Relaxation (SOR). We
need to follow the updates as they disperse through the tree, and also how the updates
are pooled back at the root, and so we define the following quantities.

We begin with reindexing the equations, which are currently indexed by the nodes
as a∗vx = bv . As before, for each leaf `, we consider the path from the root r to the
leaf `, and index the corresponding equations as:

a∗`,1x = b`,1, . . . , a∗`,p` x = b`,p` .

For each leaf `, we can define:

A` =

©­­­­­«
a∗`,1
a∗`,2
...

a∗`,p`

ª®®®®®¬
, b` =

©­­­­«
b`,1
b`,2
...

b`,p`

ª®®®®¬
, D` =

©­­­­­«
a∗`,1a`,1 0 . . . 0

0 a∗`,2a`,2 . . . 0
...

...
. . .

...
0 0 . . . a∗`,p` a`,p`

ª®®®®®¬
and

L` =

©­­­­«
0 0 . . . 0 0

a∗`,2a`,1 0 . . . 0 0
...

...
. . .

...
...

a∗`,p` a`,1 a∗`,p` a`,2 . . . a∗`,p` a`,p`−1 0

ª®®®®¬
Then from input x(n) at the root of the tree, the approximation at leaf ` after the
dispersion stage in iteration n is given by:

x(n)
`
= Qω` x(n) = x(n) +

p∑̀
j=1

u ja`, j = x(n) +A∗`u,

where
u :=

(
u1 . . . up`

)T
= ω (D` + ωL`)

−1
(
b` − A`x(n)

)
.

Therefore, we can write

x(n)
`
= x(n) + ωA∗` (D` + ωL`)

−1
(
b` − A`x(n)

)
=

(
I − ωA∗` (D` + ωL`)

−1A`

)
x(n) + ωA∗` (D` + ωL`)

−1 b` .

Combining these approximations back at the root yields:

Solving Distributed Systems of Equations 13

x(n+1) =
∑̀
∈L

w(`, r)x(n)
`

=
∑̀
∈L

w(`, r)
(
I − ωA∗` (D` + ωL`)

−1A`

)
x(n) + ω

∑̀
∈L

w(`, r)A∗` (D` + ωL`)
−1 b`

=

(
I − ω

∑̀
∈L

w(`, r)A∗` (D` + ωL`)
−1A`

)
x(n) + ω

∑̀
∈L

w(`, r)A∗` (D` + ωL`)
−1 b` .

(22)

We write
x(n+1) =

∑̀
∈L

w(`, r)Bω` x(n) +
∑̀
∈L

w(`, r)bω`

where

Bω` := I − ωA∗` (D` + ωL`)
−1A` ; bω` := ωA∗` (D` + ωL`)

−1 b` . (23)

Written in this form, for each leaf `, the input at the root undergoes the linearly
ordered Kaczmarz algorithm. So, if the input at the root is x(n), then the estimate at
leaf ` is:

x(n)
`
= Qω` x(n) = Bω` x(n) + bω` .

As we shall see, for each leaf ` and ω ∈ (0, 2), Bω
`
has operator norm bounded by 1,

and the eigenvalues are either 1 or strictly less than 1 in magnitude. We state these
formally in Lemma 8.

We enumerate the leaves of the tree as `1, . . . , `t , and write:

A =
©­­«
A`1
...
A`t

ª®®¬ b =
©­­«
b`1
...

b`t

ª®®¬
The system of equations Ax = b becomes:

Ax = b (24)

where many of the equations are now repeated in Equation (24). However, we have
N(A) = N(A) and R(A∗) = R(A∗).

We also write

D :=
©­­­­«
D`1 0 . . . 0
0 D`2 . . . 0
...

...
. . .

...
0 0 . . . D`t

ª®®®®¬
L =

©­­­­«
L`1 0 . . . 0
0 L`2 . . . 0
...

...
. . .

...
0 0 . . . L`t

ª®®®®¬
(25)

so

14 Chinmay Hegde, Fritz Keinert, and Eric S. Weber

(D + ωL)−1 =

©­­­­­«

(
D`1 + ωL`1

)−1 0 . . . 0
0

(
D`2 + ωL`2

)−1
. . . 0

...
...

. . .
...

0 0 . . .
(
D`t + ωL`t

)−1

ª®®®®®¬
(26)

We also define

W =

©­­­­«
w(`1, r)Ip`1

0 . . . 0
0 w(`2, r)Ip`2

. . . 0
...

...
. . .

...
0 0 . . . w(`t, r)Ip`t

ª®®®®¬
(27)

Note that sinceD +ωL andW are block matrices with blocks of the same size, and
inW the blocks are scalar multiples of the identity, we have that the two matrices
commute:

(D + ωL)−1W =W(D + ωL)−1 =W1/2 (D + ωL)−1W1/2. (28)

We can therefore write Equation (22) as

x(n+1) =
(
I − ωA∗ (D + ωL)−1WA

)
x(n) + ωA∗ (D + ωL)−1Wb.

:= Bωx(n) + bω .

Note that R(A∗) is an invariant subspace for Bω , and that bω ∈ R(A∗). We let
B̂ω denote the restriction of Bω to the subspace R(A∗). As we shall see, provided
the input x0 ∈ R(A∗), the sequence xk converges. In fact, we will show that the
transformation B̂ω is a contraction, and since bω ∈ R(A∗), then the mapping

z 7→ B̂ωz + bω

has a unique fixed point within R(A∗). We shall do so via a series of lemmas.

Lemma 8 For each leaf ` and for ω ∈ (0, 2), Bω
`

is Lipschitz continuous with
constant at most 1 (i.e. it has operator norm at most 1). Consequently, B̂ω is also
Lipschitz continuous with constant at most 1.

Moreover, for each leaf ` and ω ∈ (0, 2), if λ is an eigenvalue of Bω
`
with |λ | = 1,

then λ = 1. Consequently, any eigenvalue λ , 1 has the property |λ | < 1.

Proof For input zi , we have that

Qω` zi = Bω` zi + bω` ,

hence
‖Bω` z1 − B

ω
` z2‖ = ‖Q

ω
` z1 − Q

ω
` z2‖ ≤ ‖z1 − z2‖

Solving Distributed Systems of Equations 15

by Lemma 2. Since Bω is a convex combination of the Bω
`
, it also has Lipschitz

constant at most 1. The last conclusion follows from [21, Lemma V.3.9]. �

Theorem 3 The spectral radius of B̂ω is strictly less than 1.

Proof For each leaf `, Lemma 8 implies that

‖Bω` ‖ ≤ 1, |〈Bω` v, v〉| ≤ ‖v‖2. (29)

Let λ be an eigenvalue for B̂ω . We must have λ , 1; if it were not so, then there
exists a nonzero z ∈ R(A∗) with B̂ωz = z. However, by Lemma 6 we must have
z ∈ N(A) = N(S) which is a contradiction. Let v be a unit norm eigenvector for λ.
We have

|λ | = |〈B̂ωv, v〉| ≤
∑̀
∈L

w(`, r)|〈Bω` v, v〉| ≤ 1.

Now suppose that |λ | = 1, then we similarly obtain

λ =
∑̀
∈L

〈Bω` v, v〉 (30)

from which we deduce that the argument of the complex number 〈Bω
`

v, v〉 is inde-
pendent of the leaf `. Therefore, we must have for every leaf `

〈Bω` v, v〉 = λ. (31)

However, we know by the Cauchy-Schwarz inequality that equality in Equation
(31) can only occur when (v, λ) is an eigenvector/eigenvalue pair for Bω

`
. However,

Lemma 8 implies that none of the leaves ` have the property that λ is an eigenvalue,
so we have arrived at a contradiction. �

Corollary 1 For ω ∈ (0, 2) and for any initial input x(0) ∈ R(A∗), we have that the
sequence given by

x(n+1) = B̂ωx(n) + bω (32)

converges to a unique point in R(A∗), independent of x(0), and the convergence rate
is linear.

The following can be found in [21, Theorem IV.1.1]:

Lemma 9 For each ω ∈ (0, 2), let

x(ω) = lim
n→∞

x(n)

where x(n) are as in Equation (32). Then, x(ω) is the unique vector that satisfies the
conditions

A∗ (D + ωL)−1W(b − Az) = 0; z ∈ R(A∗). (33)

Theorem 4 For each ω ∈ (0, 2), let

16 Chinmay Hegde, Fritz Keinert, and Eric S. Weber

x(ω) = lim
n→∞

xn

as in Equation (32). Then,
lim
ω→0

x(ω) = xLS

where xLS minimizes the functional

z 7→ 〈D−1W(b − Az), (b − Az)〉. (34)

Proof Let xLS be the unique vector that satisfies the conditions

A∗D−1W
(
b − AxLS

)
= 0; xLS ∈ R(A∗). (35)

We have that x(ω), as the unique solution of Equation (33) and xLS , as the unique
solution of Equation (35), satisfy

x(ω) = xLS +O(ω).

Indeed, this follows from the fact that (D + ωL)−1 → D−1 as ω→ 0, together with
the fact that x(ω), xLS ∈ R(A∗). �

We can re-write Equation (34) in the following way:

z 7→ 〈D−1V(b − Az), (b − Az)〉 (36)

where D is the diagonal matrix with entries given by ‖av ‖2, and V is the diagonal
matrix whose entry for node v is given by:

Vvv =
∑̀
∈L
`≺v

w(`, r).

2.4 Distributed Solutions

For each node v in the tree, the sequence of approximations x(n)v and y(n)v will have a
limit, i.e. the following limits exist:

lim
n→∞

x(n)v = xv; lim
n→∞

y(n)v = yv . (37)

In the relaxed case, these limits may depend on the relaxation parameter ω; if so we
will denote this dependence by xv(ω) and yv(ω).

Corollary 2 If the system of equations Ax = b is consistent, then for every node v

and every ω ∈ (0, 2), the limits xv and yv as in Equation (37) equal xM , the solution
of minimal norm.

Solving Distributed Systems of Equations 17

Proof We have by Theorem 2 that x(ω) = xM for every ω ∈ (0, 2). For a node v, let
the path from the root r to v be denoted by r = (v, 1), . . . , (v, pv) = v, where pv − 1
is the length of the path. Then, we have that

lim
n→∞

x(n)v = lim
n→∞

Qω
v,pv
· · ·Qω

v,1x(n) = Qω
v,pv
· · ·Qω

v,1x(ω) = xM .

This holds as a consequence of the fact that any solution to the system of equations
is invariant under Qω

(·)
.

Since we have that y(n)v is a convex combination of the vectors x(n)
`
, which all

converge to x(ω), we have that yv = xM also. �

Corollary 3 If the system of equations Ax = b is inconsistent, then for every node v
and every ω ∈ (0, 2), the limits xv and yv as in Equation (37) exist and depend on
ω. Moreover, we have

lim
ω→0

xv(ω) = xLS lim
ω→0

yv(ω) = xLS,

where xLS is the vector as in Theorem 4.

Proof We apply the SOR analysis of x(n)v = Qω
(v,pv)

· · ·Qω
(v,1)x

(n) with input x(n) to
obtain

x(n)v = B
ω
v x(n) + bωv

where Bωv and bωv are analogous to those in Equation (23). Taking limits on n, we
obtain

xv(ω) = Bωv x(ω) + bωv .

Since, as ω→ 0, we have that Bωv → I, bωv → 0, and x(ω) → xLS , we obtain

lim
ω→0

xv(ω) = xLS .

As previously, yv(ω) is a convex combination of x`(ω), so yv(ω) → xLS as
ω→ 0 also. �

2.5 Error Analysis

We consider the question of how errors propagate through the iterations of the
dispersion and pooling stages. We model errors as additive; the sources of errors
could be machine errors, transmission errors, errors from compression to reduce
communication complexity, etc. Additive errors then take on the form

x(n)v,e = x(n)v + ε
(n)
v ; y(n)v,e = y(n)v + δ

(n)
v (38)

Here, x(n)v,e and y(n)v,e are the error-riddled estimates which are passed to the successor
(or predecessor) nodes in the dispersion (or pooling) stage, respectively, with additive

18 Chinmay Hegde, Fritz Keinert, and Eric S. Weber

errors ε (n)v and δ(n)v . Measurement errors, meaning errors in b, are considered in
[4, 10].

We trace the errors during the dispersion stage as follows: for node v on a path
between the root r and leaf `, and the path parameterized by r = (`, 1), . . . , (`, p`) = `,
suppose that v = (`, k). Then, the error introduced at node v (with errors introduced
at no other node) results in the estimate

x(n)
`,e
= Qω

`,p`
· · ·Qω

`,k+1(x
(n)
v + ε

(n)
v)

= Qω
`,p`
· · ·Qω

`,k+1(x
(n)
v) + ε̃

(n)
v,`

(39)

= Qω` (x
(n)) + ε̃

(n)
v,`
.

Equation (39) follows for some ẽ(n)v since theQω
(·)
are affine transformations. We have

that

‖ε̃
(n)
v ‖ = ‖Q

ω
`,p`
· · ·Qω

`,k+1(x
(n)
v + ε

(n)
v) −Qω

`,p`
· · ·Qω

`,k+1(x
(n)
v)‖ ≤ ‖ε

(n)
v ‖

since the Qω
(·)

have Lipschitz constant 1. The additive errors δ(n)v simply sum in the
pooling stage, and thus we calculate the total errors from iteration n to iteration n+1.

Lemma 10 Suppose we have additive errors as in Equation (38) introduced in
iteration n. Suppose no errors were introduced in previous iterations. Then the
estimate after iteration n is:

x(n+1)
e = x(n+1) +

∑
v

∑̀
∈L
`≺v

w(`, r)ẽ(n)v +
∑
v

w(v, r)δ(n)v,e . (40)

The magnitude of the error is bounded by:

‖x(n+1)
e − x(n+1)‖ ≤ K max {‖ε (n)v ‖, ‖δ

(n)
v ‖} (41)

where K is 2 times the depth of the tree.

We write
E (n) =

∑
v

∑̀
∈L
`≺v

w(`, r)ẽ(n)v +
∑
v

w(v, r)δ(n)v,e . (42)

Theorem 5 If the additive errors in Equation (38) are uniformly bounded by M ,
and the system of equations Ax = b has a unique solution, then the sequence of
approximations {x(n)e } has the property that

lim sup
n→∞

‖x(ω) − x(n)e ‖ ≤
2K M

1 − ρ(Bω)
(43)

where K is the depth of the tree.

Proof We have

Solving Distributed Systems of Equations 19

x(n)e = x(n) +
n∑

k=1
(Bω)

n−k E (k).

As noted previously, ‖E (k)‖ ≤ 2K M , and if Ax = b has a unique solution, then
ρ(Bω) < 1 (see proof of Theorem 1).

Thus, for any matrix norm ‖ · ‖ with ρ(Bω) < ‖Bω ‖

‖x(n) − x(n)e ‖ ≤

n−1∑
k=0

2K M ‖Bω ‖k

from which Equation (43) follows. �

If the system of equations does not have a unique solution, then the mapping
Bω has 1 as an eigenvalue, and so the parts of the errors that lie in that eigenspace
accumulate. Hence, no stability result is possible in this case.

3 Implementation and Examples

For the standard Kaczmarz algorithm, it is well known that the method converges
if and only if the relaxation parameter ω is in the interval (0, 2). For our distributed
Kaczmarz, the situation is not nearly as clear. The proofs of Theorems 2 and 4 require
that ω ∈ (0, 2), but in numerical experiments, convergence occurred for ω ∈ (0,Ω)
for some Ω ≥ 2. The largest Ω observed was around 3.8. The precise upper limit
depends on the equations themselves. In this section, we perform a preliminary
analysis of the computation of Ω and the optimal ωopt for a very simple setup, and
give numerical results for several examples.

3.1 Examples

Example 1

We consider the matrix
A =

(
− sinα cosα

0 1

)
.

In geometric terms, the Kaczmarz method for this example corresponds to projection
onto the x-axis and onto a line forming an angle α with the x-axis.

For standard Kaczmarz, the iteration matrix is

Bω = I − ωA∗(D + ωL)−1 A =
(

1 − ω sin2 α ω sinα cosα
ω(1 − ω) sinα cosα (1 − ω)(1 − ω cos2 α)

)
.

20 Chinmay Hegde, Fritz Keinert, and Eric S. Weber

The eigenvalues are

λ =

[
ω2 cos2 α

2
+ (1 − ω)

]
± ω cosα

√
(ω − 2)2 − ω2 sin2 α.

For smallω, the eigenvalues are real and decreasing as a function ofω. They become
complex at

ωopt =
2

1 + sinα
,

which is between 1 and 2.After that point, both eigenvalues havemagnitudeω−1, and
the spectral radius increases in a straight line. The dependence of ρ onω is illustrated
below in the left half of Figure 3. Here α = π/3, ωopt ≈ 1.0718, ρopt ≈ 0.0718.

As pointed out in [21], there is a strong connection between the classicalKaczmarz
method and Successive Over-Relaxation (SOR). In SOR the relationship between ω
and ρ shows the same type of behavior.

The example with two equations is too small to implement as distributed Kacz-
marz, but we consider something similar. We project the same x(n) onto each line,
and average the result to get x(n+1). We will refer to this as the averaged Kaczmarz
method.

The iteration matrix is

Bω =
(
1 − ω

2 sin2 α ω
2 sinα cosα

ω
2 sinα cosα ω

2 sin2 α − ω + 1.

)
The eigenvalues here are always real and vary linearly with ω, namely

λ1,2 = 1 +
ω

2
(± cosα − 1) .

They both have the value 1 at ω = 0, and are both decreasing with increasing ω. The
first one reaches (−1) at

Ω =
4

1 + cosα
.

Thus, the upper limitΩ is somewhere between 2 and 4, depending on α. In numerical
experiments with the distributed Kaczmarz method for larger matrices, we have
observed Ω near 4, but never above 4. We conjecture that Ω can never be larger than
4.

The minimum spectral radius occurs at ωopt = 2, independent of α, with ρopt =
cosα. The dependence of ρ on ω is illustrated below in the left half of Figure 3.
In this example, the graph for the averaged Kaczmarz method consists of two line
segments, with ωopt = 2, ρopt = 0.5.

Figure 2 illustrates the optimal ω for α = π/2. The optimal ω for standard
Kaczmarz is ω = 1, with ρ = 0. Convergence occurs in a single step. For the
averaged method, the optimal ω is 2, where again convergence occurs in a single
step. The averaged method would still converge for a range of ω > 2.

Numerical experiments with larger sets of equations indicate that the optimal
ω for classical Kaczmarz is usually larger than 1, but of course cannot exceed 2.

Solving Distributed Systems of Equations 21

-1.5 -1 -0.5 0 0.5 1 1.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Standard Kaczmarz, =1
x(n)

x(n+1)

-1.5 -1 -0.5 0 0.5 1 1.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Averaged Kaczmarz, =1
x(n)

x(n+1)

-1.5 -1 -0.5 0 0.5 1 1.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Averaged Kaczmarz, =2
x(n)

x(n+1)

Fig. 2 Example 1 with α = π/2. The pictures show one step of standard Kaczmarz with ω = 1,
and one step of averaged Kaczmarz forω = 1 andω = 2. This illustrates the need for a largerω in
the averaged Kaczmarz method.

The optimal ω for distributed Kaczmarz is usually larger than 2, sometimes even
approaching 4.

Example 2

We used a random matrix of size 8 × 8, with entries generated using a standard
normal distribution. For the distributed Kaczmarz method, we used the 8-node graph
as shown on the right in Figure 4.

For the standard Kaczmarz method, the optimal relaxation parameter was ωopt ≈

1.7354, with spectral radius ρopt ≈ 0.93147. For the distributed Kaczmarz method,
the results were ωopt ≈ 3.7888, with spectral radius ρopt ≈ 0.99087. This is
illustrated in on the right in Figure 3.

Fig. 3 Dependence of the spectral radius ρ of the iteration matrix on the relaxation parameter ω.
The left graph shows Example 1 with α = π/3. The right graph shows Example 2.

22 Chinmay Hegde, Fritz Keinert, and Eric S. Weber

3.2 Implementation

The implementation of the distributed Kaczmarz algorithm is based on the Matlab
Graph Theory toolbox. This toolbox provides support for standard graphs and di-
rected graphs (digraphs), weighted or unweighted. We are using a weighted digraph.
The graph is defined by specifying the edges, which automatically also defines the
nodes. Specifying nodes is only necessary if there are additional isolated nodes. Both
nodes and edges can have additional properties attached to them. We take advantage
of that by storing the equations and right-hand sides, as well as the current approx-
imate solution, in the nodes. The weights are stored in the edges. We are currently
only considering tree-structured graphs. One node is the root. Each node other than
the root has one incoming edge, coming from the predecessor, and zero or more
outgoing edges leading to the successors. A node without a successor is called a leaf.

The basicKaczmarz step has the formx_new = update_node(node,omega,x).
The graph itself is a global data structure, accessible to all subroutines; it would be
very inefficient to pass it as an argument every time.

The update_node routine does the following:

• Use the equation(s) in the node to update x
• Execute the update_node routine for each successor node
• Combine the results into a new x, using the weights stored in the outgoing edges
• Return x_new

This routine needs to be called only once per iteration, for the root. It will traverse
the entire tree recursively.

3.3 Numerical Experiments

We illustrate the methods with some simple numerical experiments. All experiments
were run with three different nonsingular matrices each, of sizes 3 × 3 and 8 × 8.
All matrices were randomly generated once, and then stored. The right-hand size
vectors are also random, and scaled so that the true solution has L2-norm 1. The test
matrices are

• An almost orthogonal matrix, generated from a random orthogonal matrix by
truncating to one decimal of accuracy

• A random matrix, based on a standard normal distribution
• A random matrix, based on a uniform distribution in [−1, 1]

In each case, we used the optimal ω, based on minimizing the spectral radius of
the iteration matrix numerically. The distributed Kaczmarz method used the graphs
shown in Figure 4. Results are shown in Tables 1 and 2. In all cases, we start with
x0 = 0, so the initial L2-error is e0 = 1. e10 refers to the error after 10 iteration steps.
For an orthogonal matrix, the standard Kaczmarz method converges in a single step.
It is not surprising that it performs extremely well for the almost orthogonal matrices.

Solving Distributed Systems of Equations 23

In all cases, the distributed Kaczmarz has larger spectral radius (and hence slower
convergence). This is to be expected, since the distributed Kaczmarz averages several
estimates into one, so bad estimates will increase the error of the average estimate.

1

2

3

1

2

3

4
5

6

7
8

Fig. 4 The two graphs used in numerical experiments with the distributed Kaczmarz method. For
these trees, all of the weights were uniform: w(u, v) = (C(u))−1.

Standard Kaczmarz Distributed Kaczmarz
ωopt ρopt e10 ωopt ρopt e10

orthogonal 1.00030 0.00294 0 1.33833 0.33753 1.5974 · 10−5

normal 1.07213 0.20188 1.2793 · 10−6 1.82299 0.29611 7.2461 · 10−6

uniform 1.18634 0.37073 9.0922 · 10−4 1.92714 0.82562 1.49608 · 10−1

Table 1 Numerical results for a 3 × 3 system of equations.

Standard Kaczmarz Distributed Kaczmarz
ωopt ρopt e10 ωopt ρopt e10

orthogonal 1.01585 0.04931 1.53 · 10−13 1.76733 0.73919 2.6757 · 10−2

normal 1.73543 0.93147 8.5663 · 10−1 3.78883 0.99087 9.0960 · 10−1

uniform 1.88188 0.92070 7.1463 · 10−1 3.73491 0.99890 7.7508 · 10−1

Table 2 Numerical results for an 8 × 8 system of equations.

Acknowledgements This research was supported by the National Science Foundation and the
National Geospatial-Intelligence Agency under awards DMS-1830254 and CCF-1750920.

References

1. Dimitri P. Bertsekas and John N. Tsitsiklis, Parallel and distributed computation: Numerical
methods, Athena Scientific, Nashua, NH, 1997, originally published in 1989 by Prentice-Hall;
available for free download at http://hdl.handle.net/1721.1/3719.

24 Chinmay Hegde, Fritz Keinert, and Eric S. Weber

2. Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, Jonathan Eckstein, et al., Distributed
optimization and statistical learning via the alternating direction method of multipliers, Foun-
dations and Trends® in Machine Learning 3 (2011), no. 1, 1–122.

3. Yair Censor, Dan Gordon, and Rachel Gordon, Component averaging: an efficient iterative
parallel algorithm for large and sparse unstructured problems, Parallel Comput. 27 (2001),
no. 6, 777–808. MR 1823354

4. Xuemei Chen, The Kaczmarz algorithm, row action methods, and statistical learning algo-
rithms, Frames and harmonic analysis, Contemp. Math., vol. 706, Amer. Math. Soc., Provi-
dence, RI, 2018, pp. 115–127. MR 3796634

5. Yuejie Chi and Yue M Lu, Kaczmarz method for solving quadratic equations, IEEE Signal
Processing Letters 23 (2016), no. 9, 1183–1187.

6. G. Cimmino, Calcolo approssimato per soluzioni dei sistemi di equazioni lineari, La Ricerca
Scientifica XVI, Series II, Anno IX 1 (1938), 326–333.

7. P. P. B. Eggermont, G. T. Herman, and A. Lent, Iterative algorithms for large partitioned linear
systems, with applications to image reconstruction, Linear Alg. Appl. 40 (1981), 37–67.

8. Richard Gordon, Robert Bender, and Gabor Herman, Algebraic reconstruction techniques
(ART) for threedimensional electronmicroscopy and x-ray photography, Journal of Theoretical
Biology 29 (1970), no. 3, 471–481.

9. Robert M. Gower and Peter Richtárik, Randomized iterative methods for linear systems, SIAM
J. Matrix Anal. Appl. 36 (2015), no. 4, 1660–1690. MR 3432148

10. Jamie Haddock and Deanna Needell, Randomized projections for corrupted linear systems,
AIP Conference Proceedings, vol. 1978, AIP Publishing, 2018, p. 470071.

11. C. Hamaker and D. C. Solmon, The angles between the null spaces of X rays, Journal of
Mathematical Analysis and Applications 62 (1978), no. 1, 1–23.

12. Per Christian Hansen, Discrete inverse problems, Fundamentals of Algorithms, vol. 7, So-
ciety for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2010, Insight and
algorithms. MR 2584074

13. G. T. Herman, A. Lent, andH. Hurwitz,A storage-efficient algorithm for finding the regularized
solution of a large, inconsistent system of equations, J. Inst. Math. Appl. 25 (1980), no. 4, 361–
366. MR 578083

14. Gabor T. Herman, Henry Hurwitz, Arnold Lent, and Hsi Ping Lung,On the Bayesian approach
to image reconstruction, Inform. and Control 42 (1979), no. 1, 60–71. MR 538379

15. Björn Johansson, Maben Rabi, and Mikael Johansson, A randomized incremental subgradient
method for distributed optimization in networked systems, SIAM Journal on Optimization 20
(2009), no. 3, 1157–1170.

16. StefanKaczmarz,Angenäherte Auflösung von Systemen linearerGleichungen, Bulletin Interna-
tional de l’Académie Polonaise des Sciences et des Lettres. Classe des SciencesMathématiques
et Naturelles. Série A, Sciences Mathématiques (1937), 355–357.

17. GouthamKamath, Paritosh Ramanan, andWen-Zhan Song,Distributed randomized Kaczmarz
and applications to seismic imaging in sensor network, 2015 International Conference on
Distributed Computing in Sensor Systems, 06 2015, pp. 169–178.

18. StanisławKwapień and JanMycielski,On the Kaczmarz algorithm of approximation in infinite-
dimensional spaces, Studia Math. 148 (2001), no. 1, 75–86. MR 1881441 (2003a:60102)

19. Ji Liu, Stephen J Wright, and Srikrishna Sridhar, An asynchronous parallel randomized Kacz-
marz algorithm, arXiv preprint arXiv:1401.4780 (2014).

20. Nicolas Loizou and Peter Richtárik, Revisiting randomized gossip algorithms: General frame-
work, convergence rates and novel block and accelerated protocols, arXiv:1905.08645,
2019.

21. Frank Natterer, The mathematics of computerized tomography, Teubner, Stuttgart, 1986.
22. I. Necoara, Yu. Nesterov, and F. Glineur, Linear convergence of first order methods for non-

strongly convex optimization,Math. Program. 175 (2019), no. 1-2, Ser.A, 69–107.MR3942886
23. Ion Necoara, Faster randomized block Kaczmarz algorithms, arXiv:1902.09946, 2019.
24. Ion Necoara, Yurii Nesterov, and François Glineur, Random block coordinate descent methods

for linearly constrained optimization over networks, J. Optim. Theory Appl. 173 (2017), no. 1,
227–254. MR 3626645

Solving Distributed Systems of Equations 25

25. Angelia Nedic and Asuman Ozdaglar, Distributed subgradient methods for multi-agent opti-
mization, IEEE Transactions on Automatic Control 54 (2009), no. 1, 48.

26. Deanna Needell, Nathan Srebro, and Rachel Ward, Stochastic gradient descent, weighted
sampling, and the randomized Kaczmarz algorithm, Math. Program. 155 (2016), no. 1-2, Ser.
A, 549–573. MR 3439812

27. Deanna Needell and Joel A. Tropp, Paved with good intentions: analysis of a randomized block
Kaczmarz method, Linear Algebra Appl. 441 (2014), 199–221. MR 3134343

28. Deanna Needell, Ran Zhao, and Anastasios Zouzias, Randomized block Kaczmarz method with
projection for solving least squares, Linear Algebra Appl. 484 (2015), 322–343. MR 3385065

29. Ali H Sayed, Adaptation, learning, and optimization over networks, Foundations and Trends®
in Machine Learning 7 (2014), no. 4-5, 311–801.

30. Kevin Scaman, Francis Bach, Sébastien Bubeck, Laurent Massoulié, and Yin Tat Lee, Op-
timal algorithms for non-smooth distributed optimization in networks, Advances in Neural
Information Processing Systems, 2018, pp. 2740–2749.

31. Devavrat Shah, Gossip algorithms, Foundations and Trends® in Networking 3 (2008), no. 1,
1–125.

32. Thomas Strohmer and Roman Vershynin, A randomized Kaczmarz algorithm with exponential
convergence, Journal of Fourier Analysis and Applications 15 (2009), no. 2, 262–278.

33. Kunio Tanabe, Projection method for solving a singular system of linear equations and its
application, Numer. Math. 17 (1971), 203–214.

34. JohnTsitsiklis, Dimitri Bertsekas, andMichael Athans,Distributed asynchronous deterministic
and stochastic gradient optimization algorithms, IEEE Transactions on Automatic Control 31
(1986), no. 9, 803–812.

35. Douglas B. West, Introduction to graph theory, Prentice Hall, Inc., Upper Saddle River, NJ,
1996. MR 1367739

36. Lin Xiao, Stephen Boyd, and Seung-JeanKim,Distributed average consensus with least-mean-
square deviation, Journal of Parallel and Distributed Computing 67 (2007), no. 1, 33–46.

37. Kôsaku Yosida, Functional analysis, Second edition. Die Grundlehren der mathematischen
Wissenschaften, Band 123, Springer-Verlag New York Inc., New York, 1968. MR 0239384

38. Kun Yuan, Qing Ling, and Wotao Yin, On the convergence of decentralized gradient descent,
SIAM Journal on Optimization 26 (2016), no. 3, 1835–1854.

39. Xin Zhang, Jia Liu, Zhengyuan Zhu, and Elizabeth S. Bentley, Compressed dis-
tributed gradient descent: Communication-efficient consensus over networks, 2018,
arxiv.org/pdf/1812.04048.

40. Anastasios Zouzias and Nikolaos M. Freris, Randomized extended Kaczmarz for solving least
squares, SIAM J. Matrix Anal. Appl. 34 (2013), no. 2, 773–793. MR 3069089

Index

dispersion stage, 4

error, 17
estimation problem, 5

fixed point, 14

gossip method, 5

Kaczmarz, 1
method, 4
update, 8

pooling stage, 4
projection

affine, 3
linear, 2

relaxation parameter, 6
residual, 2

solution, 2
of minimal norm, 2
weighted least-squares, 2

spectral radius, 2

transformations
affine, 9

weight, 3

27

