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Algebraic and topological properties of
big mapping class groups

PRIYAM PATEL
NICHOLAS G VLAMIS

Let S be an orientable, connected topological surface of infinite type (that is, with
infinitely generated fundamental group). The main theorem states that if the genus
of § is finite and at least 4, then the isomorphism type of the pure mapping class group
associated to S, denoted by PMap(S), detects the homeomorphism type of S. As a
corollary, every automorphism of PMap(S) is induced by a homeomorphism, which
extends a theorem of Ivanov from the finite-type setting. In the process of proving
these results, we show that PMap(S) is residually finite if and only if S has finite
genus, demonstrating that the algebraic structure of PMap(.S) can distinguish finite-
and infinite-genus surfaces. As an independent result, we also show that Map(S)
fails to be residually finite for any infinite-type surface S. In addition, we give a
topological generating set for PMap(.S) equipped with the compact-open topology.
In particular, if S has at most one end accumulated by genus, then PMap(S) is
topologically generated by Dehn twists, otherwise it is topologically generated by
Dehn twists along with handle shifts.

20E26, 37E30, 57M07, 57S05

1 Introduction

A surface is of finite type if its fundamental group is finitely generated; otherwise, it is
of infinite type. Throughout, all surfaces are assumed to be connected, orientable, and
to have compact (possibly empty) boundary.

The mapping class group, denoted by Map(S), of a surface S is the group of orientation-
preserving homeomorphisms of S up to isotopy, where we require all homeomorphisms
as well as every stage of an isotopy to fix dS pointwise. The algebraic and geometric
structure of mapping class groups of finite-type surfaces is generally well understood.
In contrast, very little is known about big mapping class groups, ie mapping class
groups of infinite-type surfaces.
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Big mapping class groups arise naturally from the study of group actions on surfaces
(eg Calegari [12]), taut foliations of 3—manifolds (eg Cantwell and Conlon [14]), and
the Artinization of groups (eg Funar and Kapoudjian [18; 19]). (See Calegari [13]
for a detailed discussion of these connections.) There has been a recent trend aimed
at understanding infinite-type surfaces and their mapping class groups. For instance,
recent work has investigated big mapping class group actions on hyperbolic graphs (eg
Aramayona, Fossas and Parlier [2], Bavard [6] and Durham, Fanoni and Vlamis [16]).

This article focuses on the algebraic structure of big mapping class groups. Our methods
use the language of topological groups and initiates the study of big mapping class
groups in this category. The motivation for our work is a type of algebraic rigidity
question for mapping class groups:

Question 1.1 Does the isomorphism type of Map(S) determine the topology of S ?
In particular, if Map(S) is isomorphic to Map(S’), then are S and S’ homeomorphic?

Remark Since the original submission of this article, Question 1.1 has been answered
in the affirmative by Bavard, Dowdall and Rafi [7]. Their techniques are different
than those used in this article in the proof of Theorem 1. In particular, we use a
topological-group-theoretic characterization of Dehn twists to prove Theorem 1, and
Bavard, Dowdall and Rafi use an algebraic characterization of Dehn twists to obtain
their result.

With the exception of finitely many sporadic cases in low complexity, we can see that
Question 1.1 has a positive answer in the finite-type setting. To do so, observe that
the rank of the center of Map(S), the virtual cohomological dimension of Map(S)
(see Harer [21]), and the rank of a maximal abelian subgroup in Map(S) (see Birman,
Lubotzky and McCarthy [11]) together determine the genus, number of punctures, and
the number of boundary components of S and thus its topological type.

Observe that Map(S) is countable if and only if S is of finite type. Therefore, the
isomorphism type of Map(S) can distinguish between finite- and infinite-type surfaces.
This reduces the question to considering specifically infinite-type surfaces, where little
is known. The invariants mentioned for the finite-type setting, with the exception of
the rank of the center, are all infinite for big mapping class groups.

In progress towards this question, we change our focus to a natural subgroup of Map(S).
In particular, we will work with the pure mapping class group, denoted by PMap(S),
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consisting of mapping classes acting trivially on the topological ends of S (see
Section 2.2 for the definition of ends). In this setting we address the same question and
provide a partial answer:

Theorem 1 Let S be a surface whose genus is finite and at least 4. If S’ is a
surface, then any isomorphism between PMap(S) and PMap(S’) is induced by a
homeomorphism.

If S has empty boundary, then the extended mapping class group, denoted by Map® (),
is the degree-2 extension of Map(S) that includes orientation-reversing mapping
classes; otherwise, we set Map™® (S) = Map(S). Setting S’ = S in Theorem 1 yields a
generalization of a celebrated result of Ivanov [25] for finite-type mapping class groups:

Corollary 2 If S is a borderless surface whose genus is finite and at least 4, then the
natural monomorphism from Map™(S) to Aut(PMap(S)) is an isomorphism.

An essential aspect of the proof of Theorem 1, just as in Ivanov’s work, is to give
a characterization of Dehn twists (Proposition 3.7), which allows us to conclude
that an isomorphism of pure mapping class groups must send Dehn twists to Dehn
twists. To obtain this characterization, we introduce a nonstandard topology t,, on
PMap(S), described in detail in Section 3. In Corollary 5.4, we discuss the structure of
Out(PMap(S)); in particular, it is isomorphic to the automorphism group of a countable
boolean algebra.

Because of Theorem 1, it is natural for one to expect that PMap(.S) is a characteristic
subgroup of Map(S). If this is the case, then Corollary 2 can be extended to Map(S)
to again match the finite-type setting. We state these as conjectures with the same
assumptions as in Theorem 1; however, we expect these conjectures and Corollary 2 to
hold in general.

Conjecture 1.2 Let S be a surface whose genus is finite and at least 4.

(1) PMap(S) is a characteristic subgroup of Map(S) and Map®(S).
(2) If S is borderless, then Aut(Map™(S)) = Aut(Map(S)) = Map™(S).

(This conjecture has been subsequently proven —in greater generality — by Bavard,
Dowdall and Rafi [7].)
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The first step in proving Theorem 1 is to distinguish finite- and infinite-genus surfaces
via the algebraic structure of their associated pure mapping class groups. In order to
do this, we investigate whether big mapping class groups are residually finite. As these
results are of independent interest, we include Theorem 3 as a summary of the results
in Section 4. Recall that a group is residually finite if the intersection of its proper
finite-index normal subgroups is trivial.

Theorem 3 Let S be any surface.

(1) PMap(S) is residually finite if and only if S has finite genus.
(2) Map(S) is residually finite if and only if S is of finite type.

Note that the finite-type cases are handled by Grossman [20]. Using the structure of 7y,
we show that PMap(S) is residually finite whenever S has finite genus (Proposition 4.1).
We then introduce the infinite-stranded braid group B, show that it fails to be
residually finite (Corollary 4.3), and prove that it embeds in every finite-genus big
mapping class group (Proposition 4.4). Thus, Map(S) is not residually finite when S
is of infinite type and has finite genus. Proposition 4.6 shows that PMap,(S), the
subgroup of Map(S) consisting of mapping classes with compact support, has no finite
quotients when S has infinite genus. This fact is almost immediate from a theorem of
Paris [31] and implies that when S has infinite genus, Map(S) and PMap(S) are not
residually finite.

The reason PMap(S), when S is a finite-genus surface, behaves differently than other
big mapping class groups is the existence of forgetful homomorphisms to finite-type
pure mapping class groups. We use these forgetful homomorphisms to build the
topology 7, on PMap(S) mentioned above (see Section 3). Understanding basic
topological properties of 7y, is the key to characterizing Dehn twists and understanding
the residual properties of PMap(S). The construction of 7, naturally leads to an
inverse limit of finite-type pure mapping class groups, which is the completion (as
uniform spaces) of the associated big pure mapping class group. This inverse limit
viewpoint is thoroughly discussed in Section 7.

As Dehn twists and the topology of ty, play a critical role in our understanding
of PMap(S), it is natural to understand which of these properties hold in the more
standard compact-open topology. Equipping the group of homeomorphisms of a surface
with the compact-open topology, we give Map(SS) the corresponding quotient topology.
We let 7, denote the restriction of this topology to PMap(S). Note that if S is of finite
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type, then 7, is the discrete topology. From the definition of 7y, and the Dehn-Lickorish
theorem, it follows that Dehn twists topologically generate (PMap(S), ty).

In the following theorem, we see that Dehn twists topologically generate (PMap(S), 74)
if S has finite genus; however, this can fail in the infinite-genus setting. Intuitively, a
topological end of a surface is accumulated by genus if there is a sequence of handles
converging to the end (see Section 2.2 for the precise definition). In order to build a
topological generating set in the infinite-genus setting we introduce the notion of a
handle shift in Section 6. Roughly speaking, a handle shift is a homeomorphism which
applies a +1 shift to a Z-indexed collection of handles in the surface. This notion
allows us to build a topological generating set for (PMap(S), 74):

Theorem 4 The set of Dehn twists topologically generate (PMap(S), t,) if and only
if S' has at most one end accumulated by genus. If S has at least two ends accumulated
by genus, then the set of Dehn twists together with the set of handle shifts topologically
generate (PMap(S), 74).

1.1 Outline

In Section 2 we give the necessary background, which focuses on the structure of the
space of ends of an infinite-type surface.

In Section 3, we define the topology 7y, show it is Hausdorff (Lemma 3.4), and
investigate the closure of the set of Dehn twists (Lemma 3.6), allowing us to characterize
Dehn twists (Proposition 3.7). Section 4 is dedicated to investigating residual finiteness.

Given the results of Section 4, Section 5 focuses on finite-genus surfaces. In this section,
we combine the characterization of Dehn twists from Section 3 and results regarding
homomorphisms between finite-type mapping class groups to conclude the proof of
Theorem 1 in Propositions 5.1 and 5.3.

In Section 6, we introduce the notion of a handle shift and prove Theorem 4. In
Section 7, we discuss inverse limits of finite-type pure mapping class groups and finish
the paper by showing the proper containment 7, C 74 in Section 7.1.
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2 Background

2.1 Curves

A simple closed curve in a surface S is the image of a topological embedding S < .
A simple closed curve is trivial if it is homotopic to a point; it is peripheral if it either
is homotopic to a boundary component or bounds a once-punctured disk in §; it is
essential if it is neither trivial nor peripheral; it is separating if its complement is
disconnected and nonseparating otherwise. If ¢ is a simple closed curve in S, then we
let [c] denote its isotopy class in S. Given two isotopy classes of simple closed curves
[c] and [d], their geometric intersection number, denoted by i ([c], [d]), is defined to be

i([c],[d]) =min{|c'Nd’|: [c'] = [c] and [d'] = [d]}.
When is it clear from context, we will conflate a simple close curve with its isotopy class.

Recent work of Herndndez, Morales and Valdez [22] assures us that, just as in the finite-
type setting, simple closed curves play an essential role in the study of big mapping
class groups. In particular, they extend the Alexander method to infinite-type surfaces
[22, Theorem 1.1], yielding the following lemma:

Lemma 2.1 [22, Corollary 1.2] Suppose S is an infinite-type surface without bound-
ary. If an element of Mapi (S) fixes the isotopy class of every simple closed curve,
then it is trivial.

We will need one final notion: if F C S is a subsurface, then we call F essential if it is
connected and the inclusion F < § induces a monomorphism PMap(F) < PMap(S),
where a homeomorphism of F is extended to S by the identity.

2.2 Ends

In order to work with infinite-type surfaces, it is essential to understand their space of
ends, which we now define.

Definition 2.2 Let S be an infinite-type surface and fix an exhaustion {K;};cn of S
by compact subsurfaces, that is, each K; is a compact surface of S, K; C K;41, and

Uien Ki = S.
e Anendof S isasequence {U,};eN such that each U; is a connected component
of S~ K; and U;11 C U; forall i € N.
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e Define Ul.* to be the set of all ends that contain U;, where U; is a connected
component of S ~ K;. The space of ends of S, denoted by Ends(S), consists —
as a set— of the ends of S. It is equipped with the topology generated by sets
of the form U;*.

Note that the construction of Ends(S) is independent of the choice of exhaustion.

The space Ends(S) is Hausdorft, totally disconnected, second countable, and compact
(see [1, Chapter 1, Sections 36-37]); hence, it can be realized as a closed subset of the
Cantor set. An end of S comes in two types:

e Anend {U;} is accumulated by genus if U; has infinite genus for all i .

e Anend {U;} is planar if U; is planar for all but finitely many i .

In addition, an end is isolated if it is an isolated point in the topology given above. We
will use the word puncture to denote an isolated planar end.

Kerékjarté [36] showed that the homeomorphism type of an orientable infinite-type
surface is determined by the quadruple

(g,b,Endseo(S), Ends(S)),

where g € N U {0, oo} is the genus of S, b € N is the number of boundary compo-
nents, and Endss(S) C Ends(S) is the subset of ends accumulated by genus (see
Richards [34] for a proof).

An immediate consequence of the classification of infinite-type surfaces is:

Lemma 2.3 (definition of S) When S has finite genus, there exists a unique — up to
homeomorphism — compact surface, which we label S, containing S such that S ~ S
is homeomorphic to Ends(S).

The surface S given by Lemma 2.3 is the Freudenthal compactification of S. Note
that the Freudenthal compactification exists for any surface, but is not a manifold in
general.

Given the definition of Ends(S) it is clear that a homeomorphism of S induces a
homeomorphism of Ends(S). As any isotopy must fix the ends of S, we see that there
is an induced action of Map(S) on Ends(S). The pure mapping class group PMap(S)
is the kernel of this action.
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Proposition 2.4 [8, Proposition[.1] Let D denote the unit disk and let T1 be a totally
disconnected compact subset contained in the interior of D. Given a homeomorphism
f: T1 — I1 there exists a homeomorphism f : D — D and a regular neighborhood N
of 0D such that f|n = f and f|N =id.

Observe that since a regular neighborhood of the boundary of D is fixed pointwise, it
follows that f is orientation-preserving. This yields:

Corollary 2.5 If S has finite genus, then the induced homomorphism Map(S) —
Homeo(Ends(S)) is surjective.

3 The initial topology

For the entirety of this section, we require S to have finite genus and be of infinite type.
In this setting, we will introduce a topology on PMap(S) that is suited to our algebraic
study of the group. Define the set A(.S) to be the set of finite subsets of Ends(S), that is,

A(S) = {A CEnds(S) : |A| < oc0}.

When it is clear from context, we will simply write A. For each A € A, we de-
fine the surface S3 = S ~ A. The inclusion iy: S < S, induces a homomorphism
@,.: PMap(S) — PMap(S;). This homomorphism is the forgetful homomorphism,
where one forgets all ends of S notin A.

The initial topology, denoted by 1, , on PMap(S) is the initial topology with respect
to the family of maps {@;}1eca, that is, it is the coarsest topology such that ¢, is
continuous for each A € A, where we equip PMap(.S;) with the discrete topology. If at
this point the reader is inclined to think about inverse limits, we discuss this viewpoint
in Section 7.

For the rest of the section our goal is to present two key lemmas (Lemmas 3.4 and 3.6)
regarding the algebraic structure of PMap(S). Before starting, we need to understand
the center of PMap(S), which we denote by Z(PMap(S)). Recall that the pure
mapping class group of any finite-type surface is generated by Dehn twists (see
[17, Section 4.4.4]). Combining this fact with the definition of the initial topology
above, we have the following lemma as an immediate corollary:

Lemma 3.1 (PMap(S), ty) is topologically generated by Dehn twists.
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Lemma 3.2 An element of PMap(S) is central if and only if it fixes the isotopy class
of every simple closed curve.

Proof Let f € PMap(S). Recall that if ¢ is a simple closed curve in S, then
fTe- 7l = T#(). Now assume that f fixes the isotopy class of every simple
closed curve. It follows that f -T.- f~1 = T¢(c) = T¢ for any simple closed curve c.
Therefore, f commutes with every Dehn twist in PMap(.S) and hence, by Lemma 3.1,
f commutes with every element of a topological generating set for PMap(S). It is an
easy exercise to show that multiplication in (PMap(S), ty,) is continuous. Therefore,
we can conclude that f € Z(PMap(S)).

Now assume that f is central. It follows that T, = f -T.- f~1 = T#(c) and hence
f([c]) = [c] for every simple closed curve ¢ in S. |

Lemma 3.3 Z(PMap(S)) is generated by the Dehn twists about the boundary com-
ponents of S. In particular, it S is borderless then PMap(S') has trivial center.

Proof Let G < PMap(S) be the subgroup generated by the Dehn twists about the
boundary components of S.

Let R be the surface obtained from S by gluing a once-punctured disk to each compo-
nent of dS. Let t: S < R be the associated inclusion and tx: PMap(S) — PMap(R)
the induced homomorphism. By construction, ¢y is surjective. To see this, note that ¢ is
continuous and every Dehn twist in PMap(R) is an image of a Dehn twist in PMap(S).

As 1y is surjective, it follows that if f € Z(PMap(S)), then tx(f) € Z(PMap(R)).
By Lemma 3.2, t«(f) fixes the isotopy class of every simple closed curve; therefore,
as R is borderless, we can apply Lemma 2.1 to see that ¢4 ( f) is trivial.

A direct replacement of the finite-type Alexander method with the infinite-type Alexan-
der method [22] in the proof of [17, Theorem 3.18] implies G = ker i ; in particular,
f € G. Therefore, Z(PMap(S)) C G.

Now, let f €G. Then f fixes the isotopy class of every simple closed curve. Lemma 3.2
allows us to conclude that f is central and G C Z(PMap(S)). m|

Lemma 3.4 1, is Hausdorft.
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Proof To show the Hausdorff property, it is enough to show that any point can be
separated from the identity with open sets. By the definition of t,, and continuity of
left multiplication, it is enough to show that

ﬂ ker ¢y = {id}.

A€EA
Let f € PMap(S) be a nontrivial element. If f is central in PMap(S), then by
Lemma 3.3 it is a product of Dehn twists about boundary components and hence the
same is true for @, ( f). In particular, f is not an element of ker ¢, whenever |A| > 1.
Assuming f is not central, by Lemma 3.2, there exists an essential simple closed
curve a in S such that f(a) is not homotopic to a. Choose an essential finite-type
surface F' C S so that genus(F) = genus(S) and both a and f(a) are contained
in F. Let A € A be such that the intersection of A with each component of S ~ F is
nonempty. It follows that iy | is an embedding of F into S, as an incompressible
surface; in particular, iy (f(a)) and iy (a) are not homotopic in Sy . Tt follows that
@, (f) does not fix the isotopy class of i (a) in S ; hence, f ¢ ker g, . O

The proof of Lemma 3.4 tells us that PMap(.S) inherits the residual properties of finite-
type pure mapping class groups. In particular, Lemma 3.4 combined with the work of
Grossman [20] implies that PMap(S) is residually finite. This is discussed in more
depth in Section 4. In addition, it follows from the inverse limit construction in Section 7
and Lemma 3.4 that (PMap(S), 7 ) is a topological group (see Proposition 7.1).

The goal of the next key lemma (Lemma 3.6) is to detect Dehn twists in PMap(.S).
In the case of finite-type surfaces, the main idea behind Ivanov’s results in [25] on
the automorphisms of mapping class groups is to algebraically characterize Dehn
twists. Given an automorphism preserving Dehn twists, one can then build a map
on the collection of simple closed curves in order to determine the isotopy class of a
homeomorphism. Building off the literature surrounding homomorphisms between
mapping class groups, we take a similar approach in Section 5.

Given a simple closed curve @ in S let [a] denote its isotopy class in S and let [a]y
denote the isotopy class of i (a) in S} . For the sake of the argument below, we record
an obvious lemma:

Lemma 3.5 Forany A € A,
i([a], [p]) = i([al;, [D]2),

where a and b are any two simple closed curves in S.
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Figure 1: The sequence of Dehn twists {7, }o, in PMap(S), where
S = C ~ N, converges to the identity in 7y, , but does not converge in 1,
to any homeomorphism.

Let D denote the collection of Dehn twists in PMap(.S) and let D denote the collection
of Dehn twists in PMap(S} ). The subgroup of PMap(S) generated by D is the group
of compactly supported mapping classes, denoted by PMap.(S). We will use this
notation throughout the article.

Lemma 3.6 The closure of D in 1y is D = D U {id}.

We note that this statement also holds in 7,; we give a proof in Section 6 (see
Proposition 6.4). Additionally, the reader should be warned that the subtlety in the
proof of the lemma lies in the fact that the stabilizer of an isotopy class of a curve is not
open in 7y, . This failure for a stabilizer of a curve to be open follows from the proof of
Proposition 7.6 and is demonstrated by the example illustrated in Figure 1, which shows
an example of a (nonintuitive) sequence of Dehn twists converging to the identity.

Proof Fix an exhaustion K; C K, C --- of S by essential finite-type genus(S)—
subsurfaces. Observe, for later in the proof, that the direct limit of the groups
{PMap(Ky)jnen is PMap.(S).

We first see that the identity is in the closure of D. Recall that the sets of the form
ker ¢, for A € A form a neighborhood basis for the identity in (PMap(S), 7y ). Given
A € A we can find a clopen subset U of Ends(S) disjoint from A and a disk D C S
such that U C D. The Dehn twist about dD is then an element in D Nker ¢, . It follows
that D intersects every neighborhood of the identity and hence the identity is in D.

As 1y, is not first countable when Ends(S) is uncountable (see Lemma 7.4), it is
necessary for the remainder of the proof for us to work with nets as opposed to sequences;
however, the reader will lose no intuition by replacing the word net with sequence.

Algebraic € Geometric Topology, Volume 18 (2018)



4120 Priyam Patel and Nicholas G Viamis

Let I be a directed set and let {7, };cs be anetin D, where T¢; denotes the Dehn twist
about the simple closed curve ¢;. Assume the net converges to f € (PMap(S), ty).
Further assuming that f is not the identity, we will then show that f is a Dehn twist.

We first claim that f* is an element of PMap,.(S). Suppose not. Then, by Lemma 3.3,
f is not in the center of PMap(SS), so there exists an essential simple closed curve a
with [f(a)] # [a]. Choose N € N such that both a and f(a) can be homotoped
into Ky . Foreach n € N with n > N we can find b,, homotopic into the complement
of K, such that [ f(b,)] # [bn]. Fix n € N with n > N. Then there exists m € N
with m > n and where b, and f(b,) are homotopic into K,,. Choose A € A such
that A intersects each component of S ~ K.

Given the choice of A, we have [ f(a)]) # [a]x and [ f(bn)]x # [bn]y. It follows that
©4 (f) is nontrivial and thus a Dehn twist, call it 7', as our net is in D. By construction,

T(la]p) = ea()(alp) # lalp  and T([balp) = @2 (f)([bnln) # [bala-

Choose a simple closed curve ¢ in K, such that T = T{., . Then
* i([c]a. [aln) > 0,
* i([c]a. [bnl3) > 0, and
 i(alx.[bn]a) =0,

where the first two inequalities follow from the fact that T fixes neither [a]) nor [b,], .
The last equality comes from the fact that a and b, are disjoint combined with
Lemma 3.5. A direct application of [17, Proposition 3.4] gives the inequality

i((T([al3). [ba]a) = i([c]a. [ala) i([c]a. [Baln) > O.

Another application of Lemma 3.5 yields

i([f (@), [ba]) Z i([f @)]x. [bn]r) = i(T ([a]n). [bn]2) > 0.

As n was arbitrary, we see that f(a) must exit every compact set of .S'; hence, it cannot
be compact and f is not a homeomorphism.

It follows there exists n € N such that f € PMap(K,) < PMap.(S). Let m € N
such that m > n and K, is contained in the interior of K,,. Choose A € A such
that A intersects each component of S ~ K, nontrivially. We have that ¢; restricted to
PMap(K},) is injective and induced by the inclusion i, |k, : K, < S~ A; in particular,
as f € PMap(K,) and ¢, (f) is a Dehn twist, we must have that f is a Dehn twist. O
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As a direct consequence, we give a characterization of Dehn twists. For A € A, let D,
be the union of the Dehn twists in PMap(S}) with the identity, so Dy = ¢, (D).

Proposition 3.7 f € D ifand only if ¢, (f) € D, forevery A € A.

Proof The forward direction is trivial. For the reverse, assume f € PMap(S) such
that ¢, (f) € D, for every A € A. For each A € A choose Tj € D such that
@ (T1) = @3 (f). This implies that the net {Tj },ca converges to f; hence, f € D
by Lemma 3.6. |

4 Residual finiteness

A group is residually finite if the intersection of all of its finite-index proper normal
subgroups is trivial. As noted earlier, the work of Grossman [20] tells us that mapping
class groups of finite-type surfaces are residually finite. As this property is inherited by
subgroups it follows that pure mapping class groups are also residually finite.

In this section, we will prove Theorem 3 in a series of propositions. We break the

section into two subsections handling the finite- and infinite-genus cases separately.

4.1 Finite genus

As a start, we properly record the result mentioned in Section 3:
Proposition 4.1 If S has finite genus, then PMap(S) is residually finite.

Proof Let f € PMap(S) be an arbitrary nontrivial element. Then by Lemma 3.4 there
exists A € A such that f ¢ ker ¢, . Further, since PMap(S}) is residually finite [20]
there exists a homomorphism : PMap(S;) — G, where G is a finite group and

f gker(yopy). 0

In a slight change of perspective, we will focus on the full mapping class group Map(S)
for the remainder of this subsection.

Let B, denote the n—stranded braid group, which is also the mapping class group of
the n—punctured disk. The classical presentation for B, is

0;0; =0,0; for |i—j|>2and 1 <i,j <n-—1,
Bn: 01,...,0n—1 . .
0i0i+10; =0i+10;0;+1 for 1 <i<n-2
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With this presentation we see that there are natural inclusions t, ,;: By <> B),, whenever
n < m. In particular (B, 1, ) is a directed system of groups and we define By, to
be the direct limit. The presentation for By, is immediate from that of Bj, namely,
0i0j =0;0; for |i—j|>2andi,j €N,
Bso = {oi:ieN}) Y a l. i1z / .
0i0i+10; = 0;+10i0;+1 for i € N
We will proceed by proving that B, is not residually finite and that it is a subgroup of
every finite-genus big mapping class group.

Proposition 4.2 Every finitely generated quotient of B, is cyclic.

Proof Let f: Boo — G be a surjective homomorphism to a finitely generated group.
We can then find some N such that f|p, is surjective. For m > N, 05, commutes
with every element of By ; hence, f(oy,) is in the center of G for every m > N. In
particular, f(oy) commutes with f(on+1). From the relations, it is easy to see that
if f(o;) commutes with f(o;j+1), then f(0;) = f(0;+1). It now follows that G is
generated by f(o7). |

The abelianization of B, is isomorphic to Z; in particular, from Proposition 4.2, it
follows that every finite quotient of B, factors through its abelianization. Thus the

commutator subgroup is in the intersection of every proper finite-index normal subgroup
of Bso. This shows:

Corollary 4.3 By is not residually finite.

Proposition 4.4 Let S be an infinite-type surface. If S has finite genus, then B, is a
subgroup of Map(S).

In fact, Proposition 4.4 holds whenever S has infinitely many planar ends, but we will
not use the full generality of the result in what follows.

Proof The proof splits into two cases: Ends(S) has either infinitely or finitely many
isolated points. Let us start by assuming that Ends(S) has infinitely many isolated
points. As Ends(S) is separable, the set of isolated ends must be countably infinite,
so we can choose a labeling {p1, p2,...} of the isolated ends. For each n € N let
D, C S be an n—punctured disk satisfying

(1) Ends(Dp) ={pi1,...,pn}, and
2) D, CDyyr.
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It follows that D, is an essential subsurface of S ; in particular, the embedding D, < S
induces an injection Map(D;,) — Map(S). Recall that Map(D,) =~ B,. By the
universal property of direct limits, the inclusions D, < D, induce an injective
homomorphism Bs, <> Map(S) as desired.

Now assume Ends(S) has a finite number of isolated points {pi,..., pn}. It follows
that C =Ends(S)~{p1,..., pn} is perfect. Let D C S be a disk such that DN F = &
and D NC = C’, where C’ is a clopen subset of C. It follows from Brouwer’s
topological characterization of the Cantor set (see [27, Theorem 7.4]) that C’ is home-
omorphic to the Cantor set. The work of Funar and Kapoudjian [18, Section 7] implies
Boo <Map(D ~ C’); thus, Boo <Map(S) as D ~ C’ is an essential subsurface. 0O

Combining Corollary 4.3 and Proposition 4.4, we have:

Corollary 4.5 If S is a finite-genus surface of infinite type, then Map(S) is not
residually finite.

4.2 Infinite genus

In this subsection we will prove the remaining pieces of Theorem 3 involving infinite-
genus surfaces.

Proposition 4.6 If S has infinite genus, then PMap,.(S) has no finite quotients.
This has an immediate corollary:
Corollary 4.7 PMap,.(S) is perfect and does not virtually surject onto 7Z.

Mapping class groups of finite-type surfaces are known to be perfect [32] (except for
some low-complexity cases). Motivated by Kazhdan’s property (T), Ivanov conjectured
that mapping class groups of finite-type surfaces do not virtually surject onto Z (see
[28, Problem 2.11.A]). (Equivalently, this says H;(G,Q) = 0 for any finite-index
subgroup G of Map(S).) Putman and Wieland [33] have proven stability conditions
for this conjecture; it would be fascinating if the stability could manifest into a statement
about big mapping class groups.

As a second corollary, we have our desired result in relation to Theorem 3:

Corollary 4.8 Neither Map(S) nor PMap(S) is residually finite when S has infinite
genus.
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The heavy lifting in the proof of Proposition 4.6 is done by a theorem of Paris [31],
which says that when S is a finite-type genus-g surface, the minimal index of a proper
subgroup of PMap(S) is bounded below by a linear function in g. (The work of
Berrick, Gebhardt and Paris [9] gives the exact value as an exponential function in g.)

Proof of Proposition 4.6 Let {F},},cn be an exhaustion of S by essential finite-type
surfaces. Then genus(Fy,) — oo as n — oo. Let m,, denote the minimal index of a
subgroup in PMap(Fy). Then limy,_, m, = oo [31].

Suppose N is a proper normal subgroup of PMap,.(S) with finite index k. As
PMap,.(S) is the direct limit of {PMap(F;)},en, we have that there exists M € N
such that PMap(F;,) is not a subgroup of N for all m > M (otherwise N would not
be proper). It follows that for m > M the intersection N N PMap(F;,) is a proper
normal subgroup of PMap(F;,) with index at most k. However, this implies that the
sequence {my},eN is bounded, a contradiction. a

S Morphisms

The goal of this section is to finish the proof of Theorem 1 with Propositions 5.1 and 5.3.
We then deduce corollaries about the outer automorphism group. The tools in this
section combine the results on the initial topology in Section 3 with the literature on
homomorphisms between mapping class groups (namely, [4; 15]). By Proposition 4.1
and Corollary 4.8, the algebraic structure of PMap(S) detects whether S has finite or
infinite genus. For the remainder of the section, we focus on finite-genus surfaces.

Proposition 5.1 Let S and S’ be finite-genus surfaces. If the genus of S is at least 3
and strictly greater than that of S’, then there is no monomorphism from PMap(S) to
PMap(S’).

Proof Suppose S and S’ are surfaces satisfying
genus(S) > max{3, genus(S’)}

and that y: PMap(S) — PMap(S’) is a homomorphism. Let F C S be an essen-
tial finite-type subsurface with genus(F') = genus(S) and ¢: PMap(F) — PMap(S)
the inclusion homomorphism. For each A € A(S’), we obtain a homomorphism
V1: PMap(F) — PMap(S}) defined by the composition y; = ¢, o ¥ o, where ¢,
is the forgetful map defined in Section 3. Because F and S i are finite-type and
genus(F) > max{3, genus(S i)}, it follows from [4, Proposition 7.1] that v, is trivial.
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Further, as A was arbitrary, we see that

Y ou(PMap(F)) C ﬂ ker ¢y,
AEA(S)

implying that «(PMap(F)) C ker ¥ by Lemma 3.4; hence, ¥ is not injective. a

Continuing with our progress towards Theorem 1, we can now assume that if PMap(S)
and PMap(S’) are isomorphic, then they have the same genus. We have one additional
lemma before finishing the final proposition towards Theorem 1.

Lemma 5.2 Let S and S’ be surfaces such that their genera are finite, equal, and
at least 4. If W: PMap(S) — PMap(S’) is an isomorphism, then ¥ preserves Dehn
twists.

Proof Let 7, denote the Dehn twist along a simple closed curve ¢. Choose an essential
finite-type surface F C S such that ¢ C F and genus(F) = genus(S). The inclusion
F < S induces a homomorphism ¢: PMap(F) — PMap(S). For each A € A(S’) we
define ¢ : PMap(F) — PMap(S i) to be the composition ¢, o W o ¢, where again ¢,
is the forgetful map defined in Section 3. If ¢, is nontrivial, then [4, Theorem 1.1]
implies ¢, is induced by an inclusion F — S )’L (note that this is where the lower bound
on genus is required!).

In particular, ¢} sends Dehn twists in PMap(F') into D,. As T, is the image of a
Dehn twist in PMap(F) under ¢, we have that ¢; o W(7,) € D, for each A € A(S’).
By Proposition 3.7, W(7;) is a Dehn twist. m|

Proposition 5.3 Let S and S’ be surfaces. If the genera of S and S’ are finite, equal,
and at least 4, then any isomorphism between PMap(S) and PMap(S’) is induced by
a homeomorphism.

Proof Let W: PMap(S) — PMap(S’) be an isomorphism. Observe that the centers
Z(PMap(S)) and Z(PMap(S’)) of PMap(S) and PMap(S’), respectively, are iso-
morphic, and therefore, S and S’ have the same number of boundary components by
Lemma 3.3. By applying Lemma 5.2 to both ¥ and W', we see that W restricts to
an isomorphism from PMap,.(S) to PMap,(S”).

IThe statement of [4, Theorem 1.1] requires the genus to be at least 6; however, the remark immediately

following the theorem statement in the article states that this requirement can be decreased to 4 under our
assumptions.
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Let F; C F, C--- be an exhaustion of S by essential finite-type surfaces such that
genus(Fy) = genus(S) and 05 C dF, foreach n € N. Recall that essential surfaces are
connected by definition. It follows that the direct limit of the groups {PMap(Fy)},eN
with respect to the natural inclusions is PMap,.(S).

Fix n € N and let dy, ..., d, be a collection of essential simple closed curves in Fj,
such that the set {Ty,,..., T4, } of Dehn twists generates PMap(F},). For each i €
{1,...,m} let d] be the simple closed curve in S" such that ¥ (T, ) = Tqy; the
existence of d/ is guaranteed by Lemma 5.2. Let R’ be a regular neighborhood of
d{U---Ud,,. It is possible that one or more boundary components of R’ bounds
either a disk or a once-punctured disk in S’. If this is the case, glue the associated
disk or once-punctured disk onto these boundary components; we call the resulting
surface R, .

Observe that since any Dehn twist about a boundary component of S’ can be written as a
product of Dehn twists about curves contained in R, , we can conclude that S’ C dR,, .
We now claim that the surface R, is connected: Indeed, observe that d; and d; are
disjoint if and only if d; and d J’ are disjoint. Using that ¥ is an isomorphism, the
above fact follows from the fact that 7y, and 75, commute if and only if d; and d; are
disjoint. It now follows that dj U---Ud,, is connected as dj U---U dp, is connected;
hence, R, is connected.

As genus(Fy) = genus(S) = genus(S’), we have (again by [4, Proposition 7.1]) that
genus(Ry,) = genus(Fy). Now if f € PMap(S’) is in the centralizer of PMap(R;,),
then f commutes with le{ foreach i €{l,...,m}; in particular, f is in the centralizer
of W(PMap(Fy)). Conversely, if f € PMap(S’) is in the centralizer of W(PMap(Fy)),
then again f commutes with the Dehn twist leg for every i €{l,...,m}; therefore,
as the collection of curves {dy,...,d,,} is filling in R,, we can conclude that f is
in the centralizer of PMap(R,). The above discussion also implies that an element
in the centralizer of PMap(R;,) is supported in the complement of the interior of R ;
therefore, by Lemma 3.3, the center of the centralizer of PMap(R,,) is generated by
the boundary components of R, . In particular, the rank of the center of the centralizer
of PMap(R,) is the number of boundary components of R, (the same holds for
F, and PMap(F},)). Now the center of the centralizer of PMap(F,) and that of
W (PMap(Fy)) are isomorphic; it follows from the above that F,, and R, have the
same number of boundary components.

Let Z, denote the center of PMap(F},). From the preceding discussion, we have
established that the center of the centralizer of PMap(R,) is the center of PMap(R;,).
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The same holds for PMap(F},) in PMap(S). Further, we can conclude that W(Z,)
is the center of PMap(R,). This implies that ¥ induces a monomorphism from
PMap(Fy)/Z, to PMap(R,)/ V(Z,). Observe that PMap(Fy,)/Z, is the pure map-
ping class group of the surface obtained by capping off the boundary components
of F, with once-punctured disks and the same is true for PMap(R,)/ ¥ (Z,) and R,.
Combining [15, Theorem 1.2.7] with the fact that F,, and R, have the same number
of boundary components, we see they also have the same number of punctures; in
particular, F; and R, are homeomorphic.

We can now apply [4, Theorem 1.1] to see that Wy, := W|pyap(F,) s induced by an
embedding ¥,: F;, < Rj; it follows from our discussion thus far that i, is in fact
a homeomorphism and W, an isomorphism. As W|ppp, (s) 1S an isomorphism to
PMap,.(S”), it follows that PMap,(S’) is the direct limit of groups {PMap(R;)}neN -
It also follows that Ry C R, C --- is an exhaustion of S’ by essential finite-type
surfaces: indeed, if not, then there exists an essential simple closed curve in the
complement of | J,,cp Ry, but this would imply that the Dehn twist about this curve is
not an element of | J, cpy PMap(R,)., a contradiction. We can now conclude that S’
is the direct limit of the spaces {R,},en With respect to inclusion. Note that S is
the direct limit of the spaces {Fy},en as well. Given the construction of i, we can
build the following commutative diagram where each indexed i and j is the natural
inclusion and the natural numbers n and m satisfy m > n:

Fn—>Fm

AN N

o

The existence of the unique continuous map ¥: S — S’ is guaranteed by the universal
property of direct limits. If we repeat the above process starting with W™, we see
that y is the desired homeomorphism between S and S’ O

Observe that after the immediate application of Lemma 5.2 in the proof Proposition 5.3,
the proof reduces to proving the analogous statement for PMap,.(S). The inspiration
for this portion comes from [3, Proposition 9.1], in which the authors show that
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an automorphism of PMap,.(S) —in the special case where S has finite genus and
Ends(S) is a Cantor set— preserves Dehn twists.

As pointed out in the introduction, Corollary 2 is an immediate consequence of
Proposition 5.3 and Lemma 3.3, that is, for a borderless surface S we have

Aut(PMap(S)) = Map® (S)

when 4 < genus(S) < co. We point out an alternative proof: By Lemma 5.2, an
automorphism permutes the Dehn twists and hence induces an automorphism of the
curve graph (two curves are disjoint if and only if their associated Dehn twists commute).
In an recent paper [23], it is shown that the automorphism group of the curve graph
is the extended mapping class group. One can then follow a— by now — standard
argument to obtain Corollary 2. (This is the route taken in the recent work [7] in which
Question 1.1 is answered.)

As a corollary to Corollary 2, we see the topological structure of Ends(S) becoming
apparent in the algebra of PMap(S).

Corollary 5.4 If S is a borderless surface whose genus is finite and at least 4, then
Out(PMap(S)) is isomorphic to Homeo(Ends(S)) x Z /2Z.

Proof Corollary 2.5 tells us the homomorphism Map(S) — Homeo(Ends(S)) is
surjective and by extension Map™ () — Homeo(Ends(S)) is also surjective. It follows
that there exists an order-two orientation-reversing homeomorphism fixing all the ends
of S;let f € Map™(S) be such an element. It follows that

Map™(S) = Map(S) x Z/27Z,

where the Z /27 factor is identified with { ). It easily follows from Corollary 2 and
Corollary 2.5 that

Out(PMap(S)) = Map™(S)/ PMap(S) = Homeo(Ends(S)) x Z/27Z. O
Given Corollary 5.4, it is natural to ask if the isomorphism type of Out(PMap(S))
determines the homeomorphism type of Ends(S). This is equivalent to asking: given a

closed subset E of the Cantor set, does the isomorphism type of Homeo(E) determine
the homeomorphism type of E?

Note that there is an easy counterexample: if £ = C LU X where X is a one-point
space and C is a Cantor space, then Homeo(C) = Homeo(E). It was originally
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conjectured by Monk [30] that this was the only counterexample; however, another
counterexample was given by McKenzie [29, Theorem 6]. On the other hand, McKenzie
[29, Theorem 5] showed the conjecture holds in a large subclass; namely, if the closure
of the isolated points in E is clopen, then Homeo(FE) determines E. (The work of
Monk and McKenzie is in the category of boolean algebras; one can translate to the
language above using Stone’s representation theorem.)

In light of Theorem 1, it is natural to pose the following:

Problem 5.5 Find correspondences between algebraic invariants of PMap(S) and
topological invariants of S.

As an example, we highlight the work of Monk:

Proposition 5.6 [30, Corollary 2.1 and Theorems 3 and 5] Let E be a closed subset
of the Cantor set with infinite cardinality.

(1) Homeo(E) is simple if and only if E is homeomorphic to either a Cantor space
or the disjoint union of a Cantor space and the one-point space.

(2) If m e N with 1 <m < oo, then E is homeomorphic to C U{p1,..., pm} if
and only if Homeo(E) = Sym,,, x Homeo(C), where C is a Cantor space.

(3) Homeo(FE) has exactly two proper normal subgroups if and only if E is homeo-
morphic to the one-point compactification of N .

6 The compact-open topology

We begin by restating the definition of the mapping class group: Equip Homeo(S)
with the compact-open topology. Then

Map(S) = mo(Homeo™ (S, 35)),

where Homeo™ (S, 05) is the group of orientation-preserving homeomorphisms of S
fixing dS pointwise. With this definition, Map(S) comes equipped with a natural
topology, namely, the corresponding quotient topology, giving Map(S) the struc-
ture of a topological group. If S is a finite-type surface, then this is the discrete
topology on Map(S) (one way to see this is as a consequence of the Alexander
method [17, Proposition 2.8]). We set 7, to be the corresponding subspace topology
on PMap(S). It follows from Lemma 2.1 that the identity component of Homeo™ (S)
is closed when S is borderless. This implies that the one-point sets in (PMap(S), 74)
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are closed; it is a standard exercise to show that in a topological group this implies the
group is Hausdorff. (A similar argument works for surfaces with boundary.)

Moreover, it is metrizable:
Proposition 6.1 (PMap(S), t;) is metrizable.

Proof As Homeo(S,dS) is first countable and Map®(S) is the image under an
open quotient map, it follows that (PMap(S), t4) is first countable. By the Birkhoff—
Kakutani theorem [10; 26], every first-countable Hausdorff topological group is metriz-
able. |

Recall that for a finite-type surface, a combination of the Dehn—Lickorish theorem and
the Birman exact sequence (see [17, Chapter 4]) tells us that PMap(S) is generated
by Dehn twists. In the infinite-type setting this of course cannot be true as PMap(S)
is uncountable; however, building off the result in the finite-type setting we are able
to obtain topological generating sets for PMap(S). The remainder of this section is
dedicated to proving Theorem 4.

Before we get to the proof of Theorem 4, we need to introduce a class of homeomor-
phisms contained in PMap(S). Consider the surface 3 defined by taking the surface
R x [0, 1], removing the interior of each disk of radius % with center of the form (n, %) ,
for each n € Z, and attaching a torus with one boundary component to the boundary of
each such disk. Let o be the homeomorphism of X that behaves like (x, y)— (x+1, y)
on the interior of X and tapers to the identity in a neighborhood of 9% (see Figure 2).
One should think of ¢ as obtained by sliding the n"—handle (in the disk with center

(n., 3)) horizontally until it reaches the position of the (n+1)®-handle.

Given a surface S with at least two ends accumulated by genus, consider an embedding
of ¥ into S inducing an injection Ends(X) <> Ends(S). The homeomorphism o can
then be extended to all of S by the identity. The isotopy class of the extension o
defines an element of PMap(S); we call such an element a handle shift.

In the proof of Proposition 6.2, we will make use of the notion of a pants decomposition:
a pants decomposition of a surface S is a maximal collection P of pairwise disjoint,
pairwise nonisotopic, essential simple closed curves with the property that any simple
closed curve on § intersects at most finitely curves in 7. The complement of the union
of curves in a pants decomposition is a disjoint union of surfaces each of which is
homeomorphic to a thrice-punctured sphere.

Towards Theorem 4 we prove the following proposition.
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Figure 2: The surface 3. Outside the dotted lines, the homeomorphism o is
the identity. The arcs o (a) and b are homotopic inside X.

Proposition 6.2 The set of Dehn twists topologically generate (PMap(S), t;) when S
has at most one end accumulated by genus. If S has at least two ends accumulated by
genus, then the set of Dehn twists together with the set of handle shifts topologically
generate (PMap(S), 74).

Proof Let D denote the collection of Dehn twists in PMap(S). Since Dehn twists
generate finite-type pure mapping class groups and PMap,(S) is a direct limit of
finite-type pure mapping class groups, it follows that (D) = PMap,.(S). In light of the
finite-type results, we will assume S is of infinite type. When § has at least two ends
accumulated by genus, let PMapj, (S) denote the subgroup of PMap(S) generated by
Dehn twists and handle shifts.

Take f € PMap(S) to be an arbitrary element. Abusing notation, we will conflate f
with a representative homeomorphism. Fix a pants decomposition P of S. Let
{P1, P2, ...} be the components of the complement of UyeP y in S, labeled so that
the surface R, = U?=1 P; is connected, where P; is the closure of P; in S. Choose
a component, call it @, of dP; and let F be a finite-type essential surface such that

e both a and f(a) are contained in F,
e cach component of dF is separating, and

* each component of S ~ F intersects Ends(S) nontrivially.

When S has at most one end accumulated by genus, we additionally require F to be
such that

¢ at most one component of S ~ F' has positive genus.
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By the classification of surfaces, the PMap(S)—orbit of @, up to isotopy, is determined
by its partition of Ends(S), its partition of 35, and the topological type of its com-
plements. (This is true for any surface and any simple closed curve in the surface.)
Observe that the construction of F' guarantees that ¢ and f(a) must induce the same
partition of 0F and Ends(F’) as well.

First, if a is nonseparating, then both a and f(a) are nonseparating in F, so there
exists g, € PMap(F) < PMap(S) such that g4(a) = f(a). In addition, we require
that g, fixes an orientation on a.

Now suppose a is separating. In the case where S has at most one end accumulated
by genus, there is a component U of S ~a that has finite genus. Let W =U N F
and V = f(U) N F. Note that since S has at most one end accumulated by genus,
S ~ F has at most one component with positive genus, and when S is a surface
of finite genus, F can be chosen to have the same genus as S. It follows that
genus(W) = genus(V'), and therefore, the components of F ~a and F ~ f(a) have
the same topological type. In particular, there exists g, € PMap(F) < PMap(S) such
that g4(a) = f(a). In both of these cases, g, is supported on a finite-type surface and
hence is contained in PMap,.(S).

Since g, 1o f fixes @ and both f and g, fix Ends(S) pointwise, g !o f restricts to a
homeomorphism of each component of S ~ a. Let b 7 a be another component of 0P,
and let S’ be the component of S ~a containing 5. We can then repeat the above
process with S replaced by S’ and f by ga_l o f'|s’. If P1 has a third boundary compo-
nent, then we repeat this process with this final component. In either case, we have built
a homeomorphism g € PMap,.(S) such that g1(P1) = f(P1) and gl_1 o f fixes each
boundary component of Py. Thus, f; = gl_1 o f restricts to the identity on P; = R;.

Let S7 be the component of S ~ P; containing P5. Following the same reasoning as
above and working in PMap(S,), we can find a product of Dehn twists in PMap(S3),
call it gh, such that g5~ o f{ is the identity when restricted to P, where f| is the
restriction of f; to S». Choose an element g/ in the stabilizer of Py in PMap,(S)
whose restriction to S agrees with g5. Defining g> = g1 0 g5 € PMap_.(S) we have
that g5 Lo f restricts to the identity on R, after composing with Dehn twists about
the components of dP; if necessary.

Continuing in this fashion, we construct g, € PMap,.(S) such that g, Lo f restricted
to Ry is the identity. As R, is an exhaustion of S, we see that g,; Lo f converges to
the identity; hence, g, — f as desired.
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Now suppose that S has at least two ends accumulated by genus. Note that we may
no longer be able to choose F to satisfy the fourth bullet point above. Let a be a
separating curve with each component of S ~ a being infinite genus and let U be a
component of F' ~a. Itis possible that genus(}') # genus(W), where W =UNF and
V = f(U) N F. If this is the case, there exists a handle shift 7 € PMap,,(S) such that
h(a) induces the same partition of dF and Ends(F) as a and f(a), where h(a) C F,
and such that the genera of #(U) N F and V are equal. Thus, there exists g, €
PMap(F) < PMap(S) such that g, oh(a) = f(a). Of course, g, oh € PMap,(S), so
we can now repeat the argument above to produce k, € PMap, (S) suchthat k, — f. O

The next proposition shows that introducing handle shifts is essential when S has at
least two ends accumulated by genus.

Proposition 6.3 If S has at least two ends accumulated by genus, then PMap,.(S) is
not dense in (PMap(S), 7).

Proof We begin by describing a property of all elements of PMap,(S), and then
show that handle shifts do not have this property and cannot be approximated by those
elements that do. Choose a separating simple closed curve a such that each component
of S ~a has infinite genus. Let f be an arbitrary element of PMap_.(S). Let F
be an essential finite-type subsurface of S so that f € PMap(F) < PMap(S) and
F satisfies the first three bullet points in the proof of Proposition 6.2. Let U be a
component of F ~a. Then U and f(U) contain the same components of dF. Further,

genus(U) = genus( f(U)), so either [ f(a)] = [a] or i([a],[f(a)]) > 0.

Now, let b be a simple closed curve so that @ and b cobound a genus-1 subsurface
of S. It is not hard to see that there exists a handle shift 7 € PMap(S) with h(a) = b.
Thus, no element in PMap,.(S) can agree with & on the compact set a, since b = h(a)
and a are distinct and disjoint; hence, PMap,(S) is not dense in (PMap(S),1,). O

Propositions 6.2 and 6.3 together imply Theorem 4.

In Lemma 3.6, we gave the closure of the set of Dehn twists in 7y, . In the finite-genus
setting, the analogous result holds for 7, and is obtained by combining Lemma 3.6
and Proposition 7.6. Below we give a proof in general, regardless of whether the genus
of S is finite or infinite:

Proposition 6.4 The closure of D in 7, is D = D U {id}.
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Proof Let K; C K; C--- be an exhaustion of S by essential finite-type subsurfaces.
We first see that the identity is in D (which is a repeated argument from the beginning
of Lemma 3.6). Let b, be a simple closed curve contained in the complement of K.
Then the sequence {7}, }nen C D converges to the identity in (PMap(S), 74).

Following the proof outline of Lemma 3.6, we want to show that if a sequence
{Ty4,;}ien C D converges to a nonidentity element f € (PMap(S), 74), then f is
compactly supported.

Assume that f ¢ PMap,(S). It follows that there exists a natural number N such that
for every integer n with n > N there exists an integer i, such that the curve a;,,, up to
isotopy, is contained in neither K, nor its complement and intersects K nontrivially.

By possibly increasing i, we may assume that the curve a;, has nontrivial intersection
with a single boundary component of 0Ky, call it b. For each curve q;,, let b, be
a component of K, such that i(a;,,b,) > 0. As the compact-open topology agrees
with the topology of compact convergence, there exists J € N such that, up to isotopy,
S (D) =Tg; (b) forall j > J. Apply [17, Proposition 3.4] to obtain

i(f(b),bn) =i(Ta;, (b),bp) =i(ai,.b)i(ai,.bn) >0,
whenever i, > max{J, N}. It follows that f(b) leaves every compact set; hence, it
must not be compact and f* cannot be a homeomorphism. Therefore, f € PMap,.(S).

We can now find m € N such that all but finitely many of the 7, are elements of
PMap(K;,) < PMap.(S). The subspace topology on PMap(K,,) is discrete, so the
sequence {7y; };eN is eventually constant; in particular, f is an element of D. |

Note that from the above proof we see that a sequence in D converges to a Dehn twist
in 74 if and only if it is eventually constant. This is not the case in 7y, : Consider
the curves a, in Figure 1 from Section 3 with the modification that the curve a,
partitions off {0, 1,n} in N U {0}. The sequence {7},} C D would then converge
to Ty, in (PMap((C ~ (N U{0})), rw) , but would not converge in 7.

7 Inverse limits

For the entirety of this section, S will be a finite-genus surface. To simplify notation,
for A € A(S), we let
G, = PHomeo™ (S, 95, 1)
= {f € Homeo™ (S,0S) : f(p) = p forevery p € A}
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and
G = PHomeo™ (S, 35, Ends(S))

= {f e Homeo™"(§,3S): f(p) = p for every p € Ends(S)}.

Equip Homeo(S, 3S) with the compact-open topology and equip G and each G with
the subspace topology.

Observe that Homeo(S, dS) and Homeo(S, S, Ends(S)) are isomorphic. Further-
more, it is clear that the compact-open topology on the latter group must be at least as
fine as the former. However, the classical work of Arens [5, Theorem 3] tells us that
the compact-open topology on the former group is the strongest admissible topology
making it a topological group; hence, the two groups are topologically isomorphic. In
other words, we may treat the ends of S as marked points.

The inclusion maps ¢, ,,: Gy, < G, whenever A C u, make ({G}, {ta,,}) aninverse
system. We can then set G, to be the inverse limit and define ¢y: Gy, — G, to be the
projections. The initial topology on G with respect to the collection {t3} gives Gy, the
structure of a topological group; this is the standard topology given to an inverse limit
of topological groups. With this topology, we see that Gy, is topologically isomorphic
to the intersection of the G , each endowed with the compact-open topology, so

GL=()G1=6G.
AEA

For the remainder of the section we will identify G and Gp,.

As PMap(S) = mo(G), we want to investigate whether PMap(S) has the structure
of an inverse limit. Similar to the above, the maps ¢y , induce forgetful maps
O PMap(S,,) — PMap(S,).
This defines an inverse system ({PMap(S;)}, {gx,,.}) and we can take the inverse limit
L(S) = lim PMap(S;).
A€EA
Let my: L(S) — PMap(S}) be the projections defining L(S). Giving PMap(S}) the
discrete topology for each A € A, we equip L(S) with the initial topology with respect

to {73} 1ea - The universal property of inverse limits gives a continuous homomorphism
®: (PMap(S), tyw) — L(S).

Proposition 7.1 & is a topological embedding. Further, ® is a topological isomor-
phism if and only if S is of finite type.
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Figure 3: The surface S = C ~ Z. The sequence of Dehn twists {7y, }neN
converges in L(S), but not in (PMap(S), tw).

Proof Lemma 3.4 implies that 7,, separates points and hence @ is injective. It is
clear from the definition that t,, agrees with the subspace topology when PMap(S) is
viewed as a subset of L(S). Note that if S is of finite type, then L(S) = PMap(S),
so for the remainder we may assume that S is of infinite type.

We now show that @ fails to be onto. We will show this in the case S = C <~ Z;
the general case can be ascertained by replacing each integer in Z with a clopen set
of Ends(S) in the general case.

For each n € N, let a, be the boundary of a regular neighborhood of the line segment
on the real axis connecting 1 and n + 1 as in Figure 3. Let T}, € PMap(S) denote the
Dehn twist about a,. For each A € A, the sequence {¢;(Ty)} is eventually constant;
call this limit Dehn twist T, € PMap(S,). It follows that the sequence {7} },eN
converges to T € L(S), where T has coordinates ¢; (T) = T}.

We claim 7 is not in PMap(S); we proceed by contradiction. Suppose T € PMap(S)
and conflate 7' with a representative homeomorphism. Let b, be the boundary of the
ball centered at the origin with radius n 4 % Using Lemma 3.5 and a similar argument
as in the proof of Lemma 3.6, we see that i (T (by), b,) > 0. It follows that T (b;)
cannot be compact, a contradiction. a

We point out the contrast between the pure homeomorphism group of § being an
inverse limit and the pure mapping class group failing to do so. It is natural to ask if the
topologies 7, and 74 agree as the compact-open topology and the initial topologies
agree on the level of homeomorphism groups. Proposition 7.6 tells us that this also
fails to be the case (when S is of infinite type).

Now recall that a topological group is Polish if it is separable and completely metrizable.
Such groups have many nice properties and are studied extensively in descriptive set
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theory. Of particular interest is the work of Rosendal [35], which provides a theory of
coarse geometry for Polish groups that are not locally compact.

Proposition 7.2 L(S) is Polish if and only if the cardinality of Ends(S) is countable.

Before getting to the proof of Proposition 7.2, we separate out two lemmas that are
interesting to us in their own right. Observe that by the definition of the initial topology
and the Dehn—Lickorish theorem, the first lemma is immediate.

Lemma 7.3 L(S) is topologically generated by Dehn twists.

Lemma 7.4 If the cardinality of Ends(S) is uncountable, then (PMap(S), ty) is not
first countable.

The proof mimics the standard proof that an uncountable product of discrete topological
spaces is not first countable.

Proof Suppose that {U,},eN is a countable neighborhood basis of the identity
in PMap(S). For each n € N there exists a finite set A, C A such that

V= ﬂ kergp, C U,.
AEA,

Therefore, {V},},eN is a countable neighborhood basis for the identity.

Define C C Ends(S) such that A C C if and only if there exists n € N with A € A,,.
As C is countable, we can find © € A such that u N C = & and |u| > 4. We
claim that ker ¢, is a neighborhood of the identity not containing any of the V;. We
proceed by contradiction: Suppose that V,, C ker ¢, . Pick a simple closed curve ¢ in §
bounding a disk D in S disjoint from each A € A,, and satisfying |D N p| = 2. The
Dehn twist 7 about ¢ satisfies T¢ € V, and T, ¢ ker ¢,,. Thus, there is no countable
neighborhood basis of the identity. |

Proof of Proposition 7.2 If S is finite-type, then L(S) is equal to PMap(S) and
has the discrete topology, so the result is immediate. Suppose now that Ends(S) is
countably infinite. Let {A,},en C A be cofinal, so that

L(S) =limPMap(S,,,).
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We can then define the metric d: L(S) — R: for any two elements f, g € L(S), set
d(f.g)=1if my (f) # mp,(g) forevery n € N, otherwise set

d(f.g) =min{2™" 17, (f) = m2,(8)}-

It is a routine exercise to check that d is in fact a complete metric and induces the
initial topology on L(S). Lemma 7.3 tells us that L () is separable; hence, it is Polish.
To finish the proof, Lemma 7.4 tells us that L(S) is not metrizable if the cardinality
of Ends(S) is uncountable. |

Corollary 7.5 If the cardinality of Ends(S) is countably infinite, then L(S) is home-
omorphic to the Baire space NN .

(Another realization of the Baire space is the space of irrational numbers as a subspace
of the real line.)

Proof First observe that L(S) is a subspace of a direct product of discrete spaces;
hence, it has a basis of clopen sets, so it is zero-dimensional. Given that L(S) is
zero-dimensional and Polish, to show that L(S) is homeomorphic to the Baire space it
is enough to show that every compact set has empty interior; this utilizes the topological
characterization of the Baire space by Alexandrov and Urysohn (see [27, Theorem 7.7]).
As in the proof of Proposition 7.2, let {1, },eny C A be a cofinal subset. With this
setup, the sets of the form 7, !(g), where 7, = 7 1, and g € PMap(S;, ), give a basis
for the topology of L(S).

Let C C L(S) be compact. Assume that C has nonempty interior. Then there exists
n € N and g € PMap(S,,) such that nn_l(g) C C. As 7, !(g) is closed and C is
compact, we must have that 7, 1(g) is compact. But, then 7,11 (m, 1(g)) is compact
as 141 is continuous. This is a contradiction as 7y, 41 (7, 1 (2)) has infinite cardinality
in a discrete space. a

Even when Ends(.S) is uncountable, L(S), as an inverse limit of discrete spaces, has
the structure of a complete uniform space [24, Exercise IV.8]. Hence, in either case,
L(S) can be viewed as the completion of PMap(S).

7.1 Comparing topologies

Recall from Lemma 7.4 that if the cardinality of Ends(S) is uncountably infinite, then
(PMap(S), ty) is not metrizable, so, in this case, 1y, 7# 74 ; moreover, we have:
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Proposition 7.6 If S is of finite type, then ty, = t4; otherwise, there is a strict
containment Ty, C Tq.

Proof We have already noted that when S is of finite type both 7, and 7, are discrete.
Let us assume from now on that S is of infinite type. In the above notation, for A € A, let
Y. G —PMap(S,) be the homomorphism factoring through G . As ¥, is continuous
for each A € A, we have that the projection homomorphism ¢: G — (PMap(S), ty)
is continuous. By the definition of 7, this shows that 7, C 74.

By the remark preceding the statement of Proposition 7.6, we may assume that the
cardinality of Ends(S) is countable. To finish the proof, we will find a sequence
that converges in 7, but notin 7;. Let Ky C K> C --- be an exhaustion of S by
essential finite-type surfaces each of whose genus agrees with S. Choose a sequence of
homeomorphisms g, € G such that g, restricts to the identity on K, which implies
that g, — 1 in G. If g, = q(gn), then g, — 1 in 7,4, hence in 7y, as well.

For each A € A, let n), be the largest integer n such that A intersects each component
of the complement of K, in S. In addition, for each A € A, choose an isotopy
class of an essential simple closed curve in S, denoted by ¢, , such that ¢, is trivial
in S and ¢y N Ky, fills Ky, . Let T, denote the Dehn twist about ¢ and define
h) € PMap(S) tobe T) o gy, .

The map A — PMap(S) defined by A — hj gives a net in PMap(S). Now, the
collection of sets of the form U,, =ker ¢, for € A form a neighborhood subbasis for
the identity in 7y, . If A D u, then we claim &) € U,,. First, observe that K, , C Kp, ,
so that gy, restricted to K, is the identity. It follows that ¢, (gn, ) is trivial. Also,

ou(Ty) = @20 0r(Ty)

is the identity as T, € ker ¢, by definition. This shows that &) € U, forall A D . In
particular, the net {h,},ca converges to the identity in Ty,.

We claim that this net does not converge in 7. Let
U={fePMap(S): f = q(f), where f~(K1) =K,}.

Then U is an open neighborhood of the identity in 7, . Indeed, let V' be an open regular
neighborhood of K;. Then U is the image, under ¢, of

UK1,V)={f€G: f(Ki)CV}
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which is a basis element for the compact-open topology on G. Further, as ¢ is both a

homomorphism and a quotient map, it is open; hence U is open. Now observe that

h) ¢ U for any A; this follows from the fact that given any simple closed curve ¢ C K1,

we have h) (c) = Ty (c), which intersects dK; nontrivially. |
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