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Solvability for Photoacoustic Imaging with

Idealized Piezoelectric Sensors
Sebastián Acosta

Abstract—Most reconstruction algorithms for photoacoustic
imaging assume that the pressure field is measured by ultrasound
sensors placed on a detection surface. However, such sensors do
not measure pressure exactly due to their non-uniform directional
and frequency responses, and resolution limitations. This is
the case for piezoelectric sensors that are commonly employed
for photoacoustic imaging. In this paper, using the method
of matched asymptotic expansions and the basic constitutive
relations for piezoelectricity, we propose a simple mathematical
model for piezoelectric transducers. The approach simultane-
ously models how the pressure waves induce the piezoelectric
measurements and how the presence of the sensors affects the
pressure waves. Using this model, we analyze whether the data
gathered by piezoelectric sensors leads to the mathematical
solvability of the photoacoustic imaging problem. We conclude
that this imaging problem is well-posed in certain normed
spaces and under a geometric assumption. We also propose an
iterative reconstruction algorithm that incorporates the model
for piezoelectric measurements. A numerical implementation of
the reconstruction algorithm is presented.

Index Terms—Inverse problems, thermoacoustics, optoacous-
tics, tomography, ultrasound

I. INTRODUCTION

PHOTOACOUSTIC tomography is a non-ionizing imaging

modality designed to advantageously combine the high

contrast of optical absorption with the high resolution from

broadband ultrasound waves. The imaging of optical absorp-

tion reveals important functional and pathological information

about biological tissues [1]–[4].

One of the open challenges concerning photoacoustic inver-

sion is the incorporation of realistic models for acoustic mea-

surements. This need for modeling the physics of ultrasound

sensors has been recognized in [5]–[8]. It has been claimed

that ultrasound measurements can be described as a linear

combination of the pressure field and its normal derivative at

the boundary. With that motivation, Dreier and Haltmeier [9]

recently established explicit formulas for the inversion of the

two-dimensional wave equation from Neumann boundary data

for circular and elliptical domains. In a related effort, Zangerl,

Moon and Haltmeier [10] derived Fourier-based reconstruction

formulas for the spherical detection geometry from knowledge

of Robin boundary data.

Most other reconstruction algorithm assume that waves

propagate freely across the detection boundary and that the

pressure field (Dirichlet data) is measured exactly. These

assumptions are not satisfied in practice. The pressure wave are
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affected by the presence of the sensors and the acoustic sensors

do not measure pressure directly. They measure a surrogate

for pressure that depends on the actual transducer mechanism.

The most common mechanisms for ultrasound applications are

based on the piezoelectric effect [11]–[13], on Fabry–Perot

interferometry [14]–[17] or on fiber-optic refractometry [18]–

[20]. In [21] we formulated a model specifically tailored to the

Fabry–Perot sensor design. In this paper, we derive a similar

model for piezoelectric sensors and analyze the well-posedness

of photoacoustic imaging with such measurements. In order

to attain a balance between accuracy and simplicity, the

model we develop here is based on the following underlying

idealizations:

(a) The sensors are treated as point-like detectors. Hence,

we do not account for resolution limitations due to the

finite size of sensing elements. See [12], [13], [22]–[25]

for investigations concerning this issue. We also assume

that the domain to be imaged is fully enclosed by the

detection surface.

(b) We assume that in each detector, the piezoelectric film

is flat and its thickness is small in comparison to the

wavelengths under consideration. In practice, industrial

processes can manufacture piezoelectric films with thick-

ness 30 – 100 µm approximately [11], [26]–[29].

(c) Although the sensors contain elastic materials that may

support shear waves, our analysis is valid for compres-

sional waves governed by the scalar wave equation.

(d) For the piezoelectric film, the poling direction is along

its thickness, and the piezoelectric properties are trans-

versely isotropic in the plane perpendicular to the poling

direction. The sensing film is mechanically isotropic.

(e) Sensors may have complex structures, including a casing

for structural integrity, electrodes, bonding layers and

multiple paddings designed to match the mechanical

impedance of the acoustic medium [30]–[32]. However,

we assume a simple design consisting of the piezoelectric

film, sandwiched by electrode foils of negligible thick-

ness, mounted on a much thicker backing layer. This

follows models described in [26], [27], [32].

An illustration of the idealized setup is shown in Figure 1.

The acoustic domain, denoted by Ω, contains soft tissue with

variable density ρ and variable wave speed c. The piezoelectric

film Ωp has a small uniform thickness ǫ > 0, constant density

ρp and constant wave speed cp. The thick backing layer Ωb

has constant density ρb and constant wave speed cb. The

interface between the acoustic domain and the piezoelectric

film is denoted Γ. The interface between the piezoelectric film

and the backing layer is denoted Γǫ.
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Fig. 1: Acoustic domain Ω with density ρ and wave speed c.
Piezoelectric material Ωp of uniform thickness ǫ, density ρp
and wave speed cp. The thick backing layer Ωb has density ρb
and wave speed cb. The interface between the acoustic domain

and the piezoelectric film is denoted by Γ. The interface

between the piezoelectric film and the backing layer is denoted

by Γǫ.

In section II we derive a model for the transduction from

pressure to electrical voltage which is the physical quantity

acquired by the piezoelectric sensors. In section III we derive

an effective boundary condition for the transmission of waves

from the acoustic medium of interest into the piezoelectric

sensor. This effective transmission condition accounts for the

influence that the sensor exerts on the acoustic waves. Using

the coupled models for piezoelectric measurements and wave

propagation, in section IV we define the forward problem

associated with photoacoustic imaging. Then in section V

we state and prove the solvability of the imaging problem

with piezoelectric measurements. A reconstruction algorithm

is proposed in section VI where some numerical simulations

are presented. The conclusions follow in section VII.

II. MODEL FOR PIEZOELECTRIC MEASUREMENTS

We start the modeling of the piezoelectric measurements

from the basic constitutive relations for both piezoelectric and

mechanical variables. Since the sensing material is mechani-

cally isotropic, the 3× 3 symmetric stress tensor σ is related

to the 3× 3 symmetric strain tensor s as follows,

σij = λδij (s11 + s22 + s33) + 2µ sij (1)

where the direction along the thickness of the piezoelectric

film is denoted as the 3-axis, and the 1-axis and 2-axis are the

transverse plane. Here δij is the Kronecker delta, and λ and

µ are the first and second Lamé coefficients. The equation of

mechanical motion is

ρp∂
2
t u = ∇ · σ (2)

where u is the 3 × 1 material displacement vector. For

irrotational deformations, i.e. in the absence of shear stress,

the above equation can be simplified in order to relate the

particle displacement u to the pressure pp in the piezoelectric

film,

ρp∂
2
t u = −∇pp (3)

where the pressure pp is defined as

pp = − (λ+ 2µ) div u. (4)

Combining (3) and (4), we find that the pressure field pp
satisfies the wave equation,

∂2t pp = c2p∆pp (5)

where the wave speed cp is defined by c2p = (λ+ 2µ) /ρp.

The piezoelectric transducer measures the electrical voltage

V across the piezoelectric film generated by the mechanical

deformation due to the transmitted acoustic waves. We proceed

to derive the mathematical relationship between the voltage V
and the pressure pp in the piezoelectric material. Our guiding

references are [31, Ch. 5], [32, Ch. 5] and [27]. Under small

perturbations of field conditions, the linearized constitutive

relation for the piezoelectric effect is the following

D = εE + dσ (6)

where D is the 3 × 1 electric displacement vector (electric

charge per area), E is an externally applied 3×1 electric field

(voltage per length) and ε is the 3 × 3 dielectric permittivity

tensor (capacitance per length). Following [27], it is convenient

to express the symmetric stress tensor σ (force per area) as

a 6× 1 vector and the piezoelectric tensor d (electric charge

per force) as a 3× 6 matrix,

d =





0 0 0 0 d15 0
0 0 0 d24 0 0
d31 d32 d33 0 0 0



 , σ =

















σ11
σ22
σ33
σ23
σ31
σ12

















.

In the absence of an external electric field in (6), the normal

electric displacement D3 is given by

D3 = d31σ11 + d32σ22 + d33σ33. (7)

As assumed above, the piezoelectric tensor is transversely

isotropic, which allows us to simplify the notation as follows

d⊥ = d31 = d32 and d = d33. Combining the constitutive

relations (1) and (7) we obtain the electric displacement in

terms of the strain,

D3 = e⊥s11 + e⊥s22 + es33 (8)

where e⊥ = 2d⊥ (λ+ µ) + dλ and e = d (λ+ 2µ) + 2d⊥λ.

As a consequence, using the definition of strain s in terms of

the displacement u, we obtain

D3 = e⊥div u + (e− e⊥) ∂n (n · u) (9)

where n is the normal vector on Γ and ∂n represents the

derivative along the normal direction or 3-axis. Now we take

two time-derivatives of (9) and combine with (3)-(4) to obtain

∂2tD3 = −

[

e⊥
λ+ 2µ

∂2t pp +
(e− e⊥)

ρp
∂2npp

]

. (10)
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Express ∆ = ∂2n + ∆⊥ where ∆⊥ represents the surface

Laplacian on the transverse plane, recall that c2p = (λ+2µ)/ρp
and solve for ∂2npp in (5) to plug it into (10) to obtain

∂2tD3= −

[

e⊥
ρp
c−2
p ∂2t pp +

(e− e⊥)

ρp

(

c−2
p ∂2t pp −∆⊥pp

)

]

= −
ec−2

p

ρp

[

∂2t pp −
(e− e⊥)

e
c2p∆⊥pp

]

. (11)

By definition of voltage as an electric potential, the voltage

V generated across the piezoelectric film by the 3-component

of the electric displacement D satisfies

∂nV =
D3

ε33
(12)

where ε33 is the dielectric permittivity along the 3-axis.

Integrating (12) across the piezoelectric film and combining

the result with (11), we obtain our model for the piezoelectric

measurements

∂2t V ∝ ∂2t pp − κc2p∆⊥pp (13)

with vanishing initial state. Here the symbol ∝ denotes equal-

ity up to a multiplicative constant (which is typically estimated

through experimental calibration). In (13), it is assumed that

the pressure field is constant across the piezoelectric film. This

assumption is rigorously justified in the next section.

The symbol κ appearing in the model (13) is a unitless

coefficient defined by the elastic and piezoelectric properties

of the sensing film

κ =
e− e⊥
e

=
2 (d− d⊥)µ

d (λ+ 2µ) + 2d⊥λ

=
(1− 2ν) (1− d⊥/d)

1− ν (1− 2d⊥/d)
(14)

where we have expressed λ = ρpc
2
pν/(1 − ν) and µ =

ρpc
2
p(1 − 2ν)/(2 − 2ν) in terms of Poisson’s ratio ν to

obtain the last equality. Common values for all these physical

parameters are shown in Table I for polyvinylidene fluoride

(PVDF) piezoelectric sensors.

We note from (13) that a theoretically perfect transduction

from pressure to voltage would be attained if the coefficient

κ = 0. However, due to the nature of the poling processes

employed to manufacture these piezoelectric materials, the

coefficients d and d⊥ have opposite signs and generally

|d|> |d⊥|. This implies that 1 < (1− d⊥/d) < 2. Hence, in

order for κ = 0, the Poisson’s ratio would have to be ν = 0.5
which requires the piezoelectric material to be incompressible.

In practice, Poisson’s ratio for PVDF films ranges from 0.2 to

0.4 approximately. We note that κ ranges from 0.3 to 1.5, for

the realistic range of values for the Poisson’s ratio ν and the

piezoelectric ratio d⊥/d displayed in Table I.

III. EFFECTIVE MODEL FOR WAVE PROPAGATION

Typically, the piezoelectric film and the backing layer are

acoustically more rigid and heavier than the biological medium

of interest. Therefore, the presence of the sensors induces

partial reflections of the waves. Here we seek to model how

the sensors exert influence on the pressure waves. This model

TABLE I: Estimates for the physical parameters of PVDF

piezoelectric sensors [11], [26], [27], [30], [32]–[35].

Parameter Value Units

PVDF thickness ǫ 10 – 60 µm

PVDF density ρp 1780 – 1950 kg m−3

PVDF wave speed cp 1300 – 2300 m s−1

PVDF Poisson’s ratio ν 0.2 – 0.4

Piezoelectric coeff. d -(30 – 35) pC/N

Piezoelectric coeff. d⊥ 3 – 15 pC/N

Coefficient κ 0.3 – 1.5

Backing density ρb 1900 – 2500 kg m−3

Backing wave speed cb 1000 – 4000 m s−1

takes the form of an effective impedance boundary condition

that replaces the more involved transmission process for waves

traveling from the acoustic domain Ω, through the piezoelec-

tric film Ωp and into the backing layer Ωb. We assume that

the pressure field pb in the backing layer is outgoing which

translates into satisfying a radiation condition of the form,

∂npb + c−1
b ∂tpb +Hpb = 0 on Γǫ (15)

where H is the mean curvature of the surface Γ. See [36], [37]

for a derivation.

As in [21], we make some geometric assumptions about the

domain Ωp occupied by the piezoelectric film. We let Ωp =
{y ∈ Ωc : 0 < dist(y,Γ) < ǫ}. For sufficiently small ǫ, the

domain Ωp can be expressed as a family of parallel surfaces

parametrized by 0 < z < ǫ and defined by Γz = {y = x +
zn(x) : x ∈ Γ} where n(x) is the normal vector at x ∈ Γ. For

smooth Γ and sufficiently small ǫ, the surfaces Γz are well-

defined, smooth and mutually disjoint. Each point y ∈ Ωp

can be uniquely represented in the form y = x + zn(x) for

x ∈ Γ and 0 < z < ǫ. In addition, the normal vector at

y ∈ Γz coincides with the normal vector at x ∈ Γ. See details

concerning parallel surfaces in [38, Sect. 6.2].

The transmission of the pressure field from the acoustic

domain into the piezoelectric film is governed by the following

transmission conditions at the interface Γ,

p = pp and ρ−1∂np = ρ−1
p ∂npp on Γ, (16)

where p and pp are the pressure in the acoustic medium

and piezoelectric film, respectively. The first condition in

(16) ensures the continuity of the pressure field. The second

condition in (16) ensures the continuity of particle motion in

the normal direction. Similar transmission conditions hold at

the interface Γǫ,

pp = pb and ρ−1
p ∂npp = ρ−1

b ∂npb on Γǫ, (17)

where pb is the pressure in the backing layer. The pressures

p, pp and pb satisfy the wave equation with respective wave

speeds c, cp and cb.

Now we proceed to use the method of matched asymptotic

expansions to derive an effective model for the interplay

between the pressure fields and the piezoelectric sensor. For

an introduction to this method, see [39]. First we consider the
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formal asymptotic expansions for the pressure fields,

p(t, x) = p0(t, x) + ǫ p1(t, x) +O(ǫ2) (18a)

pp(t, x, z) = p0p(t, x, z) + ǫ p1p(t, x, z) +O(ǫ2) (18b)

pb(t, x) = p0b(t, x) + ǫ p1b(t, x) +O(ǫ2) (18c)

and introduce a change of variable in order to extract the effect

of the piezoelectric film thickness ǫ,

z = ǫ ζ for ζ ∈ [0, 1]. (19)

The boundary value problem for the pressure field pp in the

piezoelectric film, governed by the wave equation (5) and the

transmission conditions (16)-(17), can be recast in terms of ζ
and terms with same powers of ǫ are gathered to obtain the

following cases.

a) O(ǫ0)-terms:

∂2ζp
0
p = 0, for ζ ∈ (0, 1),

p0 = p0p and ∂ζp
0
p = 0, at ζ = 0,

p0p = p0b and ∂ζp
0
p = 0, at ζ = 1,

which imply that p0p is constant as a function of ζ and that

the first effective transmission condition is that

p0 = p0p = p0b, on Γ. (20)

b) O(ǫ1)-terms:

∂2ζp
1
p = 0, for ζ ∈ (0, 1),

p1 = p1p and ρ−1∂np
0 = ρ−1

p ∂ζp
1
p, at ζ = 0,

p1p = p1b and ρ−1
p ∂ζp

1
p = ρ−1

b ∂np
0
b, at ζ = 1,

which imply that ∂ζp
1
p is constant as a function of ζ and that

the second effective transmission condition is

ρ−1∂np
0 = ρ−1

p ∂ζp
1
p = ρ−1

b ∂np
0
b on Γ. (21)

Combining (15) and (20)-(21), we obtain closed-form ef-

fective governing equations for the leading order term p0 of

the acoustic field in the domain Ω,

∂2t p
0 − c2∆p0 = 0 in {t > 0} × Ω, (22)

ρb∂np
0 + ρc−1

b ∂tp
0 + ρHp0 = 0 on {t > 0} × Γ. (23)

Similar models for photoacoustics are studied in [8], [21], [40],

[41].

As an example for the response of the piezoelectric sensor

design, we can analyze its behavior for plane waves and

for a flat boundary Γ. Both the boundary value problem

(22)-(23) and the model for the measurements (13) play an

important role in this analysis. A plane wave of the form

pinc = ei(x·k−ωt) propagating in the direction of k, induces

a reflection governed by (23). The total pressure field p is the

superposition of the incident and reflected wave,

p(x, t) = ei(x·k−ωt) +Rei(x·kr−ωt) +O(ǫ) (24)

where R is the reflection coefficient, kr is the reflection

wavenumber satisfying |k|= |kr|= ω/c and n · kr = −n · k,

where n is the outward normal on Γ. We can write n · k =
|k|cos θ where θ is the angle of incidence. Plugging (24) into

(23) and neglecting the O(ǫ) terms, we find that the reflection

coefficient satisfies

R =
cos θ − α

cos θ + α
, where α =

ρc

ρbcb
. (25)

After plugging (24)-(25) into the model (13) and evaluating at

the origin x = 0, we find that the piezoelectric measurements

satisfy the following directivity pattern

V

pinc
=

(

1 +
cos θ − α

cos θ + α

)

(

1− κ
c2p
c2

sin2 θ

)

(26)

where κ is given by (14). Figure 2 displays the directional

response (26) in decibels as a function of the incidence

angle θ and piezoelectric coefficient κ over a realistic range

of values shown in Table I. We observe that for values of

κ > c2/c2p, a critical angle appears. For incidence at this

critical angle, vanishing measurements are obtained by the

piezoelectric sensor design. This critical angle is given by

θcr = arcsin
(

c c−1
p κ−1/2

)

.

Fig. 2: Directivity (26) in decibels for piezoelectric sensor as

a function of the incidence angle θ and coefficient κ. The

parameters correspond to a PVDF film with (compressional)

wave speed cp = 2000 m/s and density ρp = 1800 kg/m3

and a backing layer with (compressional) wave speed cb =
1000 m/s and density ρb = 2000 kg/m3. The acoustic medium

corresponds to water with wave speed c = 1500 m/s and

density ρ = 1000 kg/m3.

IV. THE FORWARD PROBLEM

Now we proceed to define the forward problem of pho-

toacoustic imaging in terms of the wave propagation model

(22)-(23) and the model for piezoelectric measurements (13).

We neglect higher order terms O(ǫ) studied in the previous

section, so that the pressure field p is assumed to satisfy the

following initial value problem,

∂2t p− c2∆p = 0 in (0, T )× Ω (27a)

ρb∂np+ ρc−1
b ∂tp+ ρHp = 0 on (0, T )× Γ (27b)

p = f and ∂tp = 0 on {t = 0} × Ω (27c)
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where 0 < T <∞ is the measurement time to be determined

later. Recall that the underlying assumption concerning media

properties are that c is bounded from below and above, and is

smooth in Ω, and that cp, cb, ρp, ρb, ρ and κ are constants.

The forward mapping is given by

F : f 7→ V (28)

where, according to the piezoelectric model (13), the measured

electric voltage V satisfies

∂2t V = ∂2t p− κc2p∆⊥p on (0, T )× Γ (29a)

V = ∂tV = 0 on {t = 0} × Γ (29b)

for the pressure field p evolving according to (27) from the

initial condition f . The mapping (28), which we seek to invert

for photoacoustic imaging, encodes the physical principles

for acoustic wave propagation from the unknown pressure

profile f to the measured electrical voltage V generated by

the piezoelectric sensors.

We work with the standard Sobolev spaces based on square-

integrable functions defined on the domain Ω or the boundary

(0, T )×Γ. The associated inner product extends as the duality

pairing between functionals and functions. For the Sobolev

space H0(Ω), the inner product is weighted by c−2 so that

the differential operator c2∆ is formally self-adjoint. The well-

posedness in Sobolev spaces of the initial value problem (27)

is a well-established result [42], [43].

V. THE INVERSE PROBLEM

The inverse problem associated with photoacoustic imaging

is the following: Given the voltage measurements V modeled

by (29) on Γ×(0, T ), induced by the pressure field p satisfying

(27), find the unknown initial condition f . The solvability of

this inverse problem depends on the geometry of the domain

Ω, the profile of the wave speed c and the time T <∞. These

conditions are made precise in the following assumption,

known as the geometric control condition or a nontrapping

condition for the geodesic flow. We work with the manifold Ω
endowed with the Riemannian metric c−2dx2. See [44], [45]

for details.

Assumption 1 (Nontrapping condition): Let Ω be a simply

connected bounded domain with smooth boundary Γ. Assume

there exists To < ∞ such that any (unit speed) geodesic ray

of the manifold (Ω, c−2dx2), originating from any point in Ω
at time t = 0, reaches the boundary Γ at a nondiffractive point

before t = To.

With this assumption in place, we can state the main result

of the paper in the form of a theorem.

Theorem 1: Under the Assumption 1 for the manifold

(Ω, c−2dx2) and time T > To, the forward mapping F :
H1

0 (Ω) → H1([0, T ];H0(Γ)) is injective, that is, the pho-

toacoustic imaging problem is uniquely solvable. Moreover,

the following stability estimate,

‖f‖H0(Ω)≤ C‖V ‖H1([0,T ];H0(Γ)) (30)

holds for some constant C > 0.

We wish to make some comments before we proceed with

the proof. Notice in (30) that we are only able to dominate

f in the norm of H0(Ω) (rather than in the norm of its

stated space H1
0 (Ω)) with the measured data V in the norm

of H1([0, T ];H0(Γ)). By contrast, when the Dirichlet data

is measured on [0, T ] × Γ, then the imaging operator (left

inverse of F) enjoys stability estimates as a mapping from

H0([0, T ]× Γ) to H0(Ω), or from H1([0, T ]× Γ) to H1
0 (Ω).

See [8], [44], [46] for details. Hence, there is an apparent loss

of stability due to the nature of the piezoelectric measurement

model (29). The double time-integration needed to invert the

left-hand side of (29a) does not fully restore the regularity

lost by the application of the hyperbolic differential operator

on the right-hand side of (29a). This is a well-known property

concerning regularity of hyperbolic equations [42]. We also

note that Theorem 1 is slightly different from what is presented

in [21] where the imaging operator was shown to satisfy a

stability estimate as a mapping from H0([0, T ];H1(Γ)) to

H0(Ω). Hence, formally, there is a mild loss of stability of

one degree either in space or in time, but not both.

Now, it is convenient to define the following operation

(∂−1
t v)(t) =

∫ t

0

v(s) ds (31)

so that ∂−1
t ∂tv = ∂t∂

−1
t v = v for any sufficiently smooth v

such that v = 0 at t = 0. Now let

u = ∂−1
t p (32)

where p and V satisfy (29) and p(0) = f ∈ H1
0 (Ω). Then it

follows that u solves the following initial value problem,

∂2t u− κc2p∆⊥u = ∂tV on (0, T )× Γ (33a)

u = ∂tu = 0 on {t = 0} × Γ. (33b)

The following lemma is a well-established result. See [42,

§7.2, Thms. 3-5] or [43, Ch. 3, §8, Thm. 8.1] for details.

Lemma 1: Let u solve (33). If V ∈ H1([0, T ];H0(Γ)), then

the field u ∈ Ck([0, T ];H1−k(Γ)) for k = 0, 1. Moreover, the

following stability estimate

‖u‖Ck([0,T ];H1−k(Γ))≤ C‖V ‖H1([0,T ];H0(Γ)) (34)

holds for some constant C > 0.

The definition of the Bochner spaces H1([0, T ];H0(Γ)) and

Ck([0, T ];H1−k(Γ)) can be found in [42], [43]. Using Lemma

1, we proceed to prove the main theoretical result of the paper.

In what follows, the generic constant C > 0 changes from

inequality to inequality, but it does not depend on f , p or V .

Proof of Theorem 1: Under Assumption 1 for the

manifold (Ω, c−2dx2) and time T > To, observability of

waves from the boundary [44], [45] yields that

‖f‖H0(Ω)≤ C‖p‖H0([0,T ]×Γ) (35)

for some constant C = C(Ω, c, T ). Now, from the definition

(32) of u and the stability estimate in Lemma 1 for k = 1, we

obtain that

‖p‖C1([0,T ];H0(Γ))≤ C‖V ‖H1([0,T ];H0(Γ)). (36)

Since the norm of C1([0, T ];H0(Γ)) dominates the norm of

H0([0, T ]×Γ), combining (35) and (36) we obtain the desired

result (30).

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at  http://dx.doi.org/10.1109/TUFFC.2020.3005037

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 6

VI. NUMERICAL SIMULATIONS

Now we propose and numerically implement a reconstruc-

tion algorithm to solve the PAT problem at the discrete level.

The reconstructions presented here are based on the Landwe-

ber iterative method [47, Ch. 6] with Nesterov’s acceleration.

See Stefanov and Yang [48] for an excellent analysis of the

Landweber method for a similar problem. The iterative process

is defined in Algorithm 1. In brief, the Landweber method is

based on inverting (28) by solving

(I − (I − γF∗F)) f = γF∗V

where the normal operator (F∗F) is positive definite and

γ > 0 is chosen small enough so that the spectrum of

(I − γF∗F) is contained in (−1, 1) making it a contraction.

The parameter γ is known as the relaxation factor. The

parameter µ, known as the momentum factor, allows for the

acceleration of the convergence. Unfortunately, it is hard to

choose γ and µ optimally. We resort to trial and error to set

them satisfactorily. In the presence of noise, the number K of

iterations is chosen according to a regularization rule.

For the Landweber method, it is necessary to evaluate the

adjoint F∗ of the forward operator F . This evaluation amounts

to solve the following final boundary value problem,

∂2t ϕ− c2∆ϕ = 0 (0, T )× Ω (37a)

ρb∂nϕ− ρc−1
b ∂tϕ+ ρHϕ = −ρbη (0, T )× Γ (37b)

ϕ = 0 and ∂tϕ = 0 {t = T} × Ω (37c)

where η solves

∂2t η = ∂2t ψ − κc2p∆⊥ψ in (0, T )× Γ (38a)

η = 0 and ∂tη = 0 on {t = T} × Γ (38b)

in order to define the adjoint mapping as

F∗ : ψ 7→ ∂tϕ|t=0. (39)

It can be shown, using straight-forward integration by parts,

that indeed F∗ is the adjoint of F or equivalently that

〈f, ∂tϕ|t=0〉Ω= 〈p, η〉[0,T ]×Γ

= 〈p,
(

I − κc2p∆⊥∂
−2
t

)

ψ〉[0,T ]×Γ

= 〈V, ψ〉[0,T ]×Γ

for all sufficiently smooth f and ψ, where V = F(f)
according to (28) and ∂tϕ|t=0= F∗(ψ) according to (39).

The brackets 〈·, ·〉X denote the inner product of the Hilbert

space H0(X) which extends as the duality pairing between

the Sobolev functionals and functions.

Algorithm 1 Accelerated Landweber iteration

Set 0 < K, 0 < γ < 2‖F‖−2 and 0 ≤ µ < 1.

Initial guesses u0 = F∗V and v0 = u0
for k = 1, 2, ...,K do

vk = uk−1 − γ (F∗Fuk−1 − u0) /‖u0‖
uk = vk + µ (vk − vk−1)

return uK

Fig. 3: A: Coarse mesh for the FEM method. B: Exact profile

to be reconstructed showing the brain vasculature imaged with

MRI technology [49]. C: Synthetic piezoelectric measurements

as modeled by (28).
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Both the forward map F and its adjoint F∗ are discretized

using a piecewise linear finite element method (FEM) in

space and the explicit Newmark method for the time stepping.

The discretization parameters are chosen to satisfy the CFL

stability condition. The FEM is implemented on triangulations

of the domain Ω. For the numerical simulations, we have non-

dimensionalized the physical parameters displayed in Table I

in order to have c = 1, diam(Ω) = 2 and ρ = 1. The final time

T = 2. The non-dimensional parameters of the piezoelectric

film have been chosen as follows ρp = 1.5, cp = 1.0. The

parameters of the backing layer are ρb = 2.0 and cb = 1.0.

The piezoelectric-elastic coupling coefficient κ = 0.9. These

non-dimensional parameters are consistent with the ranges of

their dimensional counterparts listed in Table I.

Figure 3 displays a coarse mesh used for the FEM, the exact

pressure profile to be reconstructed and the boundary measure-

ments. These measurements were synthetically generated by

applying the discrete version of the forward operator F using

the aforementioned numerical method for the wave equation.

The FEM for the reconstruction procedure has 109,762 degrees

of freedom and 6,400 time steps covered the time window for

T = 2. The mesh employed to generate the measurements

was more refined, with mesh size approximately half of the

mesh size employed in the reconstruction steps, and the data

was down-sampled to the reconstruction mesh using linear

interpolation.

The performance of the Algorithm 1 for various values of

the momentum factor µ is displayed in Figure 4. Significant

improvements are observed for increasing values of µ. For

instance, in order to reach below 1% relative error, the original

Landweber method (µ = 0.0) takes 36 iterations, whereas

the accelerated method with µ = 0.6 takes 12 iterations. For

values µ > 0.7, some instability is observed.
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Iteration

0.1%

1%

10%

R
e
l 
E

rr
o
r

=0.0

=0.2
=0.4

=0.6

Fig. 4: Relative error versus iteration number, for various

values of the momentum factor µ to accelerate the Landweber

iterations. The relaxation factor γ = 5× 10−2 in all cases.

In order to visualize the impact of improperly modeling

the piezoelectric measurements, we have implemented two

reconstructions of the initial acoustic profile. In both case,

Fig. 5: Error profiles for synthetic measurements obtained

using the piezoelectric model (28). A: Reconstruction using

an interpretation of the measurements as piezoelectric data.

The relative error is 0.54%. B: Reconstruction using a naive

interpretation of the measurements as Dirichlet data. The

relative error is 6.43%.

the same synthetic measurements are used. For the first

reconstruction, we properly interpret the given measurements

as generated by the piezoelectric model (28) and carry out

the reconstruction using Algorithm 1. After 50 iterations we

obtain a relative error of 0.54%. For the second reconstruction,

we improperly interpret the measurements as the Dirichlet

data of the pressure field. This is the naive model commonly
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employed by others but inconsistent with the piezoelectric

transduction. The reconstruction is carried out using Algorithm

1 modified by setting κ = 0 which is equivalent to assuming

that the measurements are Dirichlet data. After 50 iterations

we obtain a relative error of 6.43%. The error profiles for both

reconstructions are displayed in Figure 5.
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Iteration

1%

10%

R
e
l 
E

rr
o
r

white noise

pink noise

red noise

Fig. 6: Relative error versus iteration number for white, pink

and red noise. In all cases the noise level is at 10%.

The effect of noise added to the piezoelectric measurements

is also explored. We have considered three types of noise:

white, pink and red. These are characterized by increasing

autocorrelation distances or equivalently faster decay of their

spectral power. White or Gaussian noise has equal power

spectral density (PSD) at different frequencies. Pink noise has

a PSD decaying like ω−1 as ω → ∞. Red or Brownian noise

has a PSD decaying like ω−2. Figure 6 displays the relative

error as a function of the iteration number for the three types

of noise at a 10% level. We observe that the reconstruction

method can handle best the white noise. The error for the

pink noise is greater. And the reconstruction error for the red

noise is the greatest of the three types of noise.

This phenomenon could be explained by studying the spec-

tral characteristics of the discrete normal operators (F∗F)
or (FF∗). The iterations from the Landweber algorithm

correspond to truncated Neumann series [48],

uK = γ
K
∑

k=0

(I − γF∗F)
k
(F∗V ),

where binomial formula yields

(I − γF∗F)
k
=

k
∑

j=0

(

k

j

)

(−γF∗F)
j
.

Therefore, the Landweber iterate uK could be expressed as

uK=

K
∑

k=0

k
∑

j=0

ckj (F
∗F)

j
(F∗V )

= F∗

K
∑

k=0

k
∑

j=0

ckj (FF∗)
j
V (40)

for some coefficients ckj . This last expression motivates the

study of how the discrete normal operator (FF∗) responds to

the noise contained in the piezoelectric measurements. Figure

7 displays the average power spectral response to time- and

space-tracings of white noise as the input to (FF∗). We

observe that the operator (FF∗) suppresses the high frequency

components. This explains why the reconstruction algorithm

can handle white noise better than pink or red noise. The latter

noise types have a larger portion of their power residing over

low frequencies. Therefore, the reconstruction algorithm does

not suppress those types of noise.
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Fig. 7: Frequency response of the normal operator (FF∗) to

white noise as the input.

VII. DISCUSSION AND CONCLUSIONS

We have proposed a mathematical model for the acous-

tic measurements transduced by piezoelectric sensors. This

model, taking the form (28), is highly idealized as described in

the Introduction. This idealization allows us to attain a balance

between correctness and simplicity in order to analyze the

properties of the model (see section III) and the solvability of

the associated photoacoustic problem (see sections IV-V).

The directional response for plane waves derived in sec-

tion III and displayed in Figure 2 matches the experimental

measurements carried out by other researchers [11]–[13], [30].

Design considerations for the mechanical and electrical prop-

erties of the piezoelectric film (condensed in the parameter κ
defined in (14)) play a role in the appearance of critical angles

where the sensitivity of the sensor vanishes. The incorporation

of this type of sensor response into reconstruction algorithms

has been highlighted as one of the challenges associated

with photoacoustic imaging [7], [24], [50]–[52] and partially

investigated in [6], [8]–[10], [21]. Our present paper represents

a novel contribution to this research effort.
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We note that our mathematical model for the piezoelectric

sensor is qualitatively similar to the model for the Fabry–

Perot transducer proposed in [21] in spite of the completely

different physical principles from which they are derived.

Hence, a common mathematical framework can be used to

analyze both types of sensors. From the theoretical perspective,

as stated in Theorem 1, we conclude that the photoacoustic

imaging problem is solvable for piezoelectric measurements.

However, some stability is lost compared to measuring directly

the Dirichlet data.

We have also proposed an iterative reconstruction Algorithm

1 based on an accelerated Landweber method. We imple-

mented proof-of-concept synthetic simulations to highlight the

importance of incorporating the proper modeling of the piezo-

electric transducer. We carried out reconstructions with and

without the proper piezoelectric model. See the error profiles

shown in Figure 5. We observe that certain features, whose

wavefronts may have reached the measurement boundary at a

non-normal incidence, are missed by the naive reconstruction.

We also investigated the effect of noise of different spectral

characteristics. The reconstruction method can handle white

noise better than pink or red noise. See Figures 6. This

is due to suppression of high-frequency components in the

measurements. See Figure 7.

One limitation of the proposed method relates to the numer-

ical characteristics of the FEM and Newmark time-stepping.

Notice in Figure 4 that the error initially decays exponentially

as the theory for the Landweber method predicts. However,

as the iterations continue, the error eventually stagnates. This

stagnation may be attributed to the fact that the measurements

were synthetically generated on a mesh different from the

reconstruction mesh. Among other issues, the discrete version

of F∗ may not be an exact adjoint for the discrete version of F .

Also, the numerical scheme to solve the wave equation suffers

from numerical dispersion. Different frequency components

of the initial pressure profile travel at different group velocity

towards the detection boundary. As a consequence, the discrete

version of (F∗F) loses coercivity (becomes ill-conditioned)

and the reconstructed images suffer from aberration. Reme-

dies for this phenomenon have been investigated, including

regularization, two-grid methods and numerical schemes with

lower dispersion. See [45, Sect. 6.8-6.10], [53] and references

therein. However, these improvements fall outside of the scope

of this paper.

As future research, it would be very important to explicitly

model the influence of matching layers commonly employed

in the design of piezoelectric sensors [30], [32]. Matching

layers play an important role in optimizing the transmission of

high-frequency acoustic energy into the sensor. In this paper,

this transmission is modeled by (27b) which for a flat surface

simplifies to
1

ρ

∂p

∂n
+

1

Zb

∂p

∂t
= 0.

Here Zb = ρbcb is the acoustic impedance of the thick backing

substrate which usually does not match the acoustic impedance

Z = ρc of the fluid or the acoustic impedance Zp = ρpcp of

the piezoelectric film. Matching layers are designed to have

an impedance Zml such that Z < Zml < Zp . Zb so that the

wave field experiences a more gradual change of media across

the fluid-sensor interface.

The validity of the proposed asymptotic model is limited to

small values for the thickness ǫ of the piezoelectric film with

respect to the wavelength of the acoustic waves. Advanced

industrial processes are able to manufacture piezoelectric films

with thickness in the range 30 – 100 µm approximately. As

shown in Table I, the wave speed in PVDF materials ranges

from 1300 – 2300 m/s. Hence, we expect our model to be

valid for frequencies . 12 MHz. For higher frequencies, the

wave field is affected by the presence of the piezoelectric

film and the thin matching layer [30]. In such a scenario,

our transmission model would be inappropriate. Hence, there

remains a need for a more complete model that can accurately

handle multiple frequency scales.
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