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Abstract

Prosocial behaviors are encountered in the donation game, the prisoner’s dilemma, re-
laxed social dilemmas, and public goods games. Many studies assume that the population
structure is homogeneous, meaning all individuals have the same number of interaction part-
ners, or that the social good is of one particular type. Here, we explore general evolution-
ary dynamics for arbitrary spatial structures and social goods. We find that heterogeneous
networks, wherein some individuals have many more interaction partners than others, can
enhance the evolution of prosocial behaviors. However, they often accumulate most of the
benefits in the hands of a few highly-connected individuals, while many others receive low
or negative payoff. Surprisingly, selection can favor producers of social goods even if the
total costs exceed the total benefits. In summary, heterogeneous structures have the ability to
strongly promote the emergence of prosocial behaviors, but they also create the possibility
of generating large inequality.

1 Introduction

Prosocial behaviors are often studied using two-player or many-player games. In the first case,
we encounter the donation game (Sigmund, 2010, Radzvilavicius et al., 2019), prisoners dilemma
(Axelrod, 1984, Szabó and Tőke, 1998, Abramson and Kuperman, 2001, Broom and Rychtář,
2013), or relaxed social dilemmas (Maynard Smith, 1982, Hauert and Doebeli, 2004, Doebeli
et al., 2004). In the second case, we are typically in the world of public goods games (Lloyd,
1833, Hardin, 1968, Szabó and Hauert, 2002, Pinheiro et al., 2014, Peña et al., 2016a, Zhong
et al., 2017). In both kinds of games, it is usually assumed that players are in identical positions
and affect all others equally. This homogeneity can be a consequence of the spatial structure of
the population; for example, all individuals might have the same number of neighbors. However,
even within spatially-heterogeneous populations, it is often assumed that every group (or pair)
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plays the same game. In this study, we consider “social goods dilemmas” in which individuals
may pay a cost to produce a good that benefits their neighbors. In social goods dilemmas, the
distribution of benefits and costs can depend on the population structure as well as on the nature
of the good itself. If some individuals are central and well-connected within a group, while others
are peripheral, social goods dilemmas lead to heterogeneous game structures with surprising
evolutionary dynamics.

For social goods produced within an interaction structure, two questions become immediately
apparent: (i) is the benefit of receiving the social good from a specific donor independent of the
number of recipients (non-rival), or does one neighbor’s access to the good decrease that of
another (rival)? and (ii) is the cost of producing a social good a function of the number of
recipients, or is it fixed? In the traditional setting of homogeneous population structures (Nowak
and May, 1992, Nakamaru et al., 1997, Lieberman et al., 2005, Ohtsuki et al., 2006, Taylor et al.,
2007, Chen, 2013, Débarre et al., 2014), there is no reason to consider these cases separately since
the differences between them amount to a simple rescaling of the benefits and/or costs. However,
important distinctions among those social goods arise in heterogeneous societies (Santos and
Pacheco, 2005, Antal et al., 2006, Gómez-Gardenes et al., 2007, Sood et al., 2008, Cao et al.,
2010, Maciejewski et al., 2014, Fan et al., 2017, Allen et al., 2017). In fact, distinguishing
among various kinds of social goods is a common practice in economics Goldfarb and Tucker
(2019), one that has not fully permeated evolutionary game theory (Santos et al., 2008, Li et al.,
2013). The simplest dichotomy is between benefits that are proportional (“p”) to the number
of recipients and those that are fixed (“f”). The same two options for the cost of a good gives
four types of social goods, representing the combinations of benefits and costs: pp (proportional
benefits, proportional costs), ff (fixed benefits, fixed costs), pf (proportional benefits, fixed costs),
and fp (fixed benefits, proportional costs). Our primary focus here is on pp-, ff-, and pf-goods,
which are summarized in Figure 1.

As an example, consider the prosocial act of donating blood (Stutzer et al., 2011). One
recipient’s use of blood decreases that of another, so blood is a rival good. Blood is also divisible,
and a fixed volume of it can be distributed among several individuals in need. However, the nature
of this donation as a social good depends not only on the good itself (blood) but also on how the
behavior is expressed within the population. A donor might attempt to give each individual in
need as much blood as possible, potentially incurring a huge cost for doing so. But they might
also decide on a more modest, fixed donation, to be divided evenly among those in need (and
possibly supplemented by donations from others). The former case is modeled better as a pp-
good, while the latter could be viewed as an ff-good. Similar arguments can be made for other
kinds of social behaviors in human communities, such as helping out coworkers, volunteering at a
charity, and donating money. In nonhuman societies, relevant examples include social grooming
among primates (Dunbar, 1991), food delivery among magpies (Horn et al., 2016), and blood
donation (as food) among vampire bats (Wilkinson, 1984).

All neighbors might also be able to benefit from a good in its entirety, even if production
of the good entails a fixed cost. Volunteering to maintain a public space, such as a park, is one
such example. The cost for doing so can be quantified in terms of time, effort, or money (e.g.
purchasing supplies or hiring a groundskeeper). Barring extenuating circumstances, the benefit
of having a clean park is not necessarily reduced by another person’s use of the space; this can
therefore be seen as a pf-good. Such is also the case for information transmission within a social
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Figure 1: Social goods and prosocial behaviors. a, For pp-goods, a producer pays cost c for each neighbor to
receive benefit b. For ff-goods, a producer pays a fixed cost c irrespective of the number of neighbors, k; each
neighbor receives benefit b/k. For pf-goods, the cost, c, is again independent of the number of neighbors, but now
each neighbor gets to enjoy the benefit, b, in its entirety. b, On a regular graph, such as a two-dimensional grid, all
individuals have the same number of neighbors; here k = 4. For pp-goods, each individual receives payoff 4(b− c).
For ff-goods, each individual receives payoff b − c. Therefore, on regular graphs the payoffs arising for pp-goods
and ff-goods are equivalent up to rescaling both b and c. Scaling only b (resp. c) gives an equivalence between
pf-goods and ff-goods (resp. pf-goods and pp-goods). c, On heterogeneous population structures, such as the star,
the three kinds of social goods lead to distinct payoff distributions, and one cannot be obtained from another by
rescaling b and/or c. Therefore, heterogeneous graphs highlight important differences among social goods.
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network, whose initial acquisition could entail a cost but whose full benefit can be enjoyed by
more than just a single individual. Entertainment, such as podcasts, radio programs, and video
streaming, can also be non-rival (and, in fact, pf-) goods. Publication of a novel scientific finding
or method and development of open-source software ordinarily represent pf-goods as well.

The remaining class, fp-goods, is somewhat less natural than the other three because the
per-capita benefit decreases with the number of recipients, while the overall cost grows. One
way in which such a cost structure might arise is via the production of a divisible, rival good
that involves a cost associated to its transmission to a recipient. That being said, we focus our
examples primarily on pp-, ff-, and pf-goods since all of the interesting behavior we observe can
be illustrated using these kinds of social goods. Our theoretical results cover a much broader
class of social goods, however, and we discuss how they can be used to understand the effects of
general functional dependencies, asymmetric games, and stochastic payoffs on selection.

2 Results

In our model, the interaction structure of the game is given by a graph (or social network) of size
N, in which individuals occupy nodes. The adjacency matrix of this graph satisfies wij = 1 if
i and j are neighbors and wij = 0 if i and j are not neighbors. The links specify interactions
between individuals. Each individual can choose between two strategies. An individual with
strategy A (a “producer”) generates goods to distribute among neighbors and pays costs for
doing so. An individual with strategy B (a “non-producer”) provides no benefits to others and
incurs no costs.

Let wi = ∑N
j=1 wij denote the number of neighbors of i (the “degree” of i). For a pp-good,

a producer at location i pays total cost, cwi, and the total benefit bwi is split among the wi
neighbors; thus, each neighbor receives b. For an ff-good, the producer pays cost, c, and the total
benefit b is split among the wi neighbors; thus, each neighbor receives b/wi. A pf-good is a
hybrid of these two goods; the total cost is c and each neighbor gets b. The behavior is prosocial
if both b and c are positive, which we assume throughout this study. However, we make no
assumptions regarding the ranking of b and c; we allow b > c, b = c, and b < c.

The first question that needs to be explored is: when is a prosocial behavior wealth pro-
ducing? A natural measure for total wealth is simply the sum over all benefits minus all costs,
assuming everyone is a producer. Using this approach, we find that the answer for both pp- and ff-
goods is immediate: on any graph, the prosocial good is wealth producing if and only if b > c. In
contrast, pf-goods can be wealth producing even when b < c since the total benefit, b ∑N

i,j=1 wij,
is based on the number of edges and the total cost, cN, is based on the number of nodes. More
specifically, a pf-good is wealth producing on a graph if and only if b/c > N/ ∑N

i,j=1 wij.
The second question concerns inequality and possible social harm. On a heterogeneous

graph, it is clear that even if everyone produces the social good, highly-connected individuals
can accumulate a much higher payoff than others. Depending on the graph structure, a small
number of individuals could hold the large majority of the wealth that is being produced. The
poorest individuals can also end up with negative payoffs, which we call “harmful prosociality.”
In this case, the poorest members of the population would be better off in the all-B state than
in the all-A state. For pp- and pf-goods, harmful prosociality can arise only if b < c, but for
ff-goods it can arise even if b > c.
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The third question is: under which conditions do producers evolve in a structured population?
Since there is neither mutation nor migration in our model, we use the notion of “fixation prob-
ability” to quantify the effects of selection on a population. Let ρA be the probability that trait
A, held initially by just a single individual within the population, eventually fixes and replaces
the resident B-population. Similarly, we denote by ρB the fixation probability of type B, defined
in the same way as ρA but with A and B swapped. We say that selection favors A relative to
B if ρA > ρB. Intuitively, in a process with negligible mutation rates between the types, this
condition means that the population spends more time in the all-A state than in the all-B state
(Fudenberg and Imhof, 2006).

We first derive a general result that applies to almost any evolutionary update mechanism as
long as some natural properties hold. Suppose that a producer at location i donates Bij to j at
a cost of Cij (Figure 2). Let πi be the fixation probability of a neutral trait starting in location
i (also known the “reproductive value” (Fisher, 1930, Maciejewski, 2014) of i). In the SI, we
define a natural distribution over the non-monomorphic states (meaning states with both types,
A and B) under neutral drift, and we let xij be the probability that i and j have the same type in

this distribution. Finally, let mij
k be the marginal effect of k’s fecundity on the probability that i

replaces j. Using these quantities, which are described in detail in the SI, we show that producers
(A) are favored over non-producers (B) under weak selection (Wild and Traulsen, 2007, Fu et al.,
2009, Wu et al., 2010, 2013a, Mullon and Lehmann, 2014) whenever

N

∑
i,j,k,ℓ=1

πim
ji
k

(
−xjkCkℓ + xjℓBℓk

)
>

N

∑
i,j,k,ℓ=1

πim
ji
k (−xikCkℓ + xiℓBℓk) . (1)

This condition can be evaluated by solving a linear system of O
(

N2) equations, giving an overall
complexity of O

(
N6) (since solving a linear system of n equations requires O

(
n3) operations).

We give examples and interpretations of this condition for specific update rules in Methods.
The social goods we consider here have the property that Bij = bβij and Cij = cγij for some

b, c > 0, where βij and γij are independent of b and c. As a consequence, Equation 1 can be
written as γb > βc, where β and γ are independent of b and c. When γ > 0, this condition
implies that ρA > ρB in the limit of weak selection whenever b/c > (b/c)∗ = β/γ. (b/c)∗ is
known as the “critical benefit-to-cost ratio” for producers to evolve. If γ < 0, then the condition
for producers to evolve is b/c < (b/c)∗ = β/γ. Thus, a negative critical ratio implies that
prosocial behaviors, i.e. those with b, c > 0, cannot evolve; instead, selection can favor spiteful
behaviors with b < 0 and c > 0 (“costly harm”) (Iwasa et al., 1998, Forber and Smead, 2014).
This property is one nuance of critical ratios, namely that they are lower bounds on b/c when
γ > 0 and upper bounds when γ < 0.

2.1 Evolutionary outcomes on heterogeneous structures

We consider several natural update rules that drive evolution through imitation. Under pairwise-
comparison (PC) updating (Szabó and Tőke, 1998), a random individual is chosen to update its
strategy. It compares its own payoff with that of a single, randomly chosen neighbor. If the
neighbor has a higher payoff, then the focal individual adopts the neighbor’s strategy. If the
neighbor has a lower payoff, then the focal individual retains its current strategy. The payoff
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Figure 2: Production and absorption of social goods. A producer at location i donates Bij to j, at a cost of Cij.
We give formulas for Bij and Cij, for each of the social goods we analyze, in terms of the adjacency matrix of the
population structure, which is defined by wij = 1 if i and j share an edge and wij = 0 otherwise. For ff-goods, with
fixed benefits and fixed costs, a producer at location i pays c to donate a total benefit of b, giving b/wi to each of
i’s wi neighbors. The effective cost attributable to a neighbor, j, is Cij = c/wi. Our main examples of benefits and
costs all have the property that Bij = bβij and Cij = cγij for some βij and γij (which are both independent of b and
c). b and c quantify the “magnitude” of the social good, while βij and γij quantify both the nature of the good and
how it is distributed by a producer.

comparison is subject to noise. Death-birth (DB) and imitation (IM) updating are similar, but
they differ in the number of neighbors chosen for comparison and/or whether imitating some
neighbor is compulsory (see Figure 3).

These update rules are highly idealized, but they capture important qualitative features of
behavior imitation (Fudenberg and Imhof, 2008, Roca et al., 2009, Traulsen et al., 2010). For
one thing, a learner is more likely to imitate a model individual’s behavior as the model’s payoff
increases. If a learner cannot compare his or her payoff to all neighbors at once (for instance, if he
or she encounters neighbors only occasionally), then PC updating is relevant. When information
is more readily available, e.g. within scientific collaboration networks, then IM updating could
serve as a better model. In both cases, a learner is not compelled to imitate a behavior. DB
updating, which requires imitating some neighbor, could be interpreted in terms of personnel
turnover within an organization, for example. An individual in the network might be replaced
by a newcomer, who then copies a behavior of someone nearby. We use these (well-studied)
update rules to illustrate interesting evolutionary dynamics of social goods, but we emphasize
that Equation 1 can readily be applied to a wide variety of update mechanisms.

For PC updating, we prove that producers of pp-, ff-, and pf-goods are never favored on ho-
mogeneous graphs. On heterogeneous graphs, it is possible that producers evolve if the benefit-
to-cost ratio exceeds a critical value, (b/c)∗. For pp-goods, we find that (b/c)∗ can never be
between zero and one, which means that b > c is a necessary condition for producers to evolve.
Thus, for pp-goods, producers can evolve only if they improve the overall wealth of the pop-
ulation. Moreover, they can evolve only if they lead to a positive payoff for even the poorest
individuals. In the SI, we also establish this result for pp-goods on heterogeneous graphs under
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Figure 3: Four update rules driving evolutionary dynamics through imitation. When considering how to imitate
a neighbor’s action (A or B) based on payoff, four natural update rules arise, which have each been considered
extensively in the literature. Pairwise-comparison (PC) updating involves an individual choosing a random neighbor
(yellow) with whom he or she compares payoffs. There is an option to imitate the neighbor, but the focal individual
(green) may also choose to retain their existing action. Imitation (IM) updating is similar to this rule, except that the
payoff comparison involves a focal individual and all neighbors. Again, this individual can imitate a neighbor but
does not have to do so. If one insists that one of these neighbors must be imitated, then we have death-birth (DB)
updating. In this case, the green individual is effectively chosen for death because retaining its current behavior is not
an option. The final logical case is when, like in PC updating, only a single neighbor is chosen for comparison. This
time, however, the focal individual must imitate this neighbor. This model turns out to be equivalent to DB updating
when there is no game (i.e. neutral drift) and is therefore not relevant to studying the effects of selection. Our
general result (Equation 1) can also account for many update rules beyond these simple (but important) examples.
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DB and IM updating. In contrast to PC updating, DB and IM updating are known to support the
evolution of producers of pp-goods on homogeneous graphs provided the benefit-to-cost ratio is
sufficiently large (Ohtsuki et al., 2006, Chen, 2013).

Consider, for example, a “rich club” network (Zhou and Mondragon, 2004, Colizza et al.,
2006, McAuley et al., 2007, Fotouhi et al., 2018), which is defined by a central clique of m
individuals, who are connected to each other as well as to n individuals at the periphery. The
peripheral individuals are connected to only those in the central clique. This network provides
an abstraction of an oligarchy, which is defined by three primary components: “the elite are
tightly interconnected among themselves, forming an ‘inner circle’; the masses are organized
through the intermediation of this inner circle; and the masses are poorly interconnected among
themselves” (Ansell et al., 2016). Structures like the rich club arise within corporate hierarchies
(Dong et al., 2015), among students in a classroom (based on academic performance) (Vaquero
and Cebrian, 2013), and among academic institutions (based on funding) (Ma et al., 2015, Szell
and Sinatra, 2015). Surprisingly, (b/c)∗ can fall between zero and one for both ff- and pf-goods
in such populations (see Figure 4 and Extended Data Figure 5). In particular, producers of ff-
goods can evolve even when the total cost of a good exceeds its total benefit.

Note that the critical ratios for pp- and pf-goods in Figure 4 are either both positive or both
negative. This example alludes to a more general finding, for all update rules: a graph can
support producers of pp-goods for sufficiently large b/c if and only if the same is true for pf-
goods. A similar pairing occurs between ff- and fp-goods. In fact, whether there exists some
b, c > 0 for which selection favors producers depends on only the benefits of the social good;
the costs influence the magnitude of (b/c)∗ but not its sign (see Methods and SI for details).
Statistically speaking, we find that there are more population structures on which producers of
ff-goods can evolve than there are for producers of pp- or pf-goods (see Extended Data Figures 6–
7). We also observe critical ratios of strictly less than one for ff- and pf-goods on other kinds of
graphs, including random graphs (Extended Data Figure 8) and other rich club structures (Jiang
and Zhou, 2008) like dense clusters of stars (Extended Data Figure 9). Further comparisons of
critical ratios for different kinds of social goods are shown in Extended Data Figure 10 (small
graphs) and Extended Data Figure 11 (division of a group into factions).
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Figure 4: Heterogeneous graphs allow for efficient evolution of prosocial behavior. The “rich club” network
consists of a central clique of m well-connected individuals surrounded by n individuals at the periphery Fotouhi
et al. (2018). Each of the m “rich” individuals is connected to every other member of the population, but the n
“poor” individuals are connected to only the central clique. For m = 6, we illustrate the effects of increasing n
under PC and DB updating. Under PC updating, the critical ratio for pp-goods approaches 4m − 1 while those of ff-
and pf-goods, remarkably, approach 0. Therefore, producers of ff-goods can evolve even if the total costs exceed the
total benefits. For DB updating with m > 1, only ff-goods have a positive critical ratio when n is large. This ratio
is negative for both pp- and pf-goods, which means that selection can favor “spiteful” pp- and pf-goods provided
these goods are sufficiently harmful to others (relative to their cost). For an ff-good with benefit b and cost c, as n
grows large the all-producer state results in a payoff that approaches ∞ to each of the m individuals and a payoff
that approaches −c to each of the n individuals. Thus, the rich club can hold more than 100% of the total wealth.
We give explicit formulas for (b/c)∗ for any m and n in the SI.
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Figure 5: Evolution of producers of ff-goods with 0 < b ⩽ c on the star (PC updating). The star may be viewed
as a special case of the rich club, in which there is just a single “rich” individual (m = 1). a, invasion and fixation
of a mutant producer arising in a leaf under PC updating. This producer has a payoff of −c, and the non-producer
at the hub gets b. Through drift, this producer can take the hub and propagate a small portion of producers to the
leaves. Once there are k > c/b + 1/ (N − 1) producers at the periphery, a central producer’s payoff exceeds that
of everyone else in the population and selection favors the further spread of producers. b, invasion and fixation of a
mutant non-producer arising in a leaf. As soon as a non-producer captures the hub, selection favors the proliferation
of non-producers. However, when there is just a single non-producer in the population, a producer at the hub has
a much greater payoff than everyone else in the population (even when 0 < b ⩽ c). Thus, relative to the initial
invasion of a producer in a, selection acts much more strongly against the initial invasion of a non-producer in b.
For any fixed b, c > 0, these effects become strong enough as N grows that we find ρA > ρB.

10



-500 -400 -300 -200 -100 0 100 200 300 400 500
-500

-400

-300

-200

-100

0

100

200

300

400

500

0.02

0.04

0.06

0.08

0.1

0.12

0.14

a b

-500 -400 -300 -200 -100 0 100 200 300 400 500
-500

-400

-300

-200

-100

0

100

200

300

400

500

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

𝑝 𝑝
Cr

iti
ca

l b
en

ef
it-

to
-c

os
t r

at
io

 (f
f)

Critical benefit-to-cost ratio (pp) Critical benefit-to-cost ratio (pp)

Cr
iti

ca
l b

en
ef

it-
to

-c
os

t r
at

io
 (f

f)

Erdös-Rényi Small-world

Figure 6: Evolution of producers can be possible for ff-goods but not for pp-goods. a, PC updating on Erdös-
Rényi graphs of size N = 100 for various edge-inclusion probabilities, p. If p is sufficiently small, the critical
benefit-to-cost ratio is positive for both pp- and ff-goods, but for slightly larger p values this ratio can be positive for
ff-goods and negative for pp-goods. In the latter case, producers cannot evolve under any b/c ratio for pp-goods,
but they can evolve for ff-goods as long as b/c is sufficiently large. b, PC updating on small-world networks with
different rewiring probabilities, p. Again, there are many examples for which the critical benefit-to-cost ratio is
positive for ff-goods but negative for pp-goods.

Even when producers improve the total wealth of a population, their evolution can leave the
poorest individuals worse off. In Figure 12, we illustrate this phenomenon using IM updating on
an empirical coauthorship network of 379 scientists (Newman, 2006). Producers of ff-goods can
evolve only when b/c ⪆ 2.5703, in which case the total wealth of the population increases. But
the proliferation of producers on this graph can leave nearly 20% of the population with negative
payoffs, meaning these individuals would prefer the all-B state (non-producers) to the all-A state
(producers). The benefit-to-cost ratio must be at least 34 before everyone is better off in all-A.
Therefore, wealth-producing goods are not necessarily optimal for everyone in the population
(see Extended Data Figure 13 for a summary of possible evolutionary outcomes).

2.2 Asymmetric games

Although our focus so far has been on simple kinds of social goods, our model covers much more
complicated asymmetric games. In particular, Bij and Cij can each be any number, and these
values need not come from a social good with certain properties shared among all producers.
For example, the cost of scientific collaboration, in terms of effort and time, can be less for
those a supervisory role than it is for more junior authors. The benefits to the authors might be
comparable across roles, e.g. in terms of recognition. Of course, the nature of this difference
(both in terms of costs and benefits) is highly dependent on the discipline, with some disciplines
being more egalitarian than others (Laurance, 2006, Venkatraman, 2010, Bošnjak and Marušić,
2012, McNutt et al., 2018).

In addition to benefits and costs, the nature of the social goods themselves might vary from
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of size at most N = 10. Of those that can support the evolution of prosocial behaviors, the critical benefit-to-cost
ratios are given for PC updating, a, and DB updating, b.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8 104

0 1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5 104

N
um

be
r o

f g
ra

ph
s

pp

ff

b

Fraction worse off in all-A

a

N
um

be
r o

f g
ra

ph
s

Critical benefit-to-cost ratio

ff

Figure 8: Heterogeneous graphs allow efficient evolution of prosocial behavior. a, The distribution of the critical
benefit-to-cost ratio under PC updating for 106 preferential-attachment graphs of size N = 100 (see Methods). For
ff-goods, these structures often have critical benefit-to-cost ratios that are less than one. However, the critical ratio
for pp-goods is always greater than one. b, When b/c = (b/c)∗, these graphs result in a majority (but not all) of
the population being worse-off in the all-producer state than in the all-non-producer state.

12



0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

10

20

30

40

50

60

70

80

90

100

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

10

20

30

40

50

60

70

80

90

100

Critical benefit-to-cost ratio (ff) Critical benefit-to-cost ratio (ff)

Cr
iti

ca
l b

en
ef

it-
to

-c
os

t r
at

io
 (p

f)

Cr
iti

ca
l b

en
ef

it-
to

-c
os

t r
at

io
 (p

f)

𝑛 𝑛PC updating DB updating

𝑛 individuals per star

𝑚 stars

a

b c
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under both PC and DB updating when n is large. Illustrated here is the case in which m = 5. This structure has the
interesting property that ff-goods result in lower critical thresholds than pf-goods (both of which are lower than that
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favored under PC updating. We derive explicit formulas for (b/c)∗ for any m and n in the SI.
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Figure 11: Division of a society into two factions. To illustrate the effects of the division of real-world interaction
topologies on evolutionary dynamics, we consider Zachary’s karate club (Zachary, 1977), a, and the subsequent
split of the karate club into two disjoint groups (Girvan and Newman, 2002), b and c. Under PC updating, producers
can evolve on all three networks only in the case of ff-goods. Moreover, even for the two populations (a and b) in
which both ff- and pf-goods can evolve, this split swaps the rankings of the two. In particular, the critical ratio for
pf-goods is lower in a but that of ff-goods is lower in b. The threshold for all individuals to be better off in the all-A
state than in the all-B state, (b/c)∗, is lowered by the split.

location to location. Returning to the rich club (Figure 4), the central clique might represent a
network of content producers (e.g. radio content), while those at the periphery are consumers.
If listeners donate money, then this scenario could be reasonably modeled using pf-goods in the
center and ff- or pp-goods on the periphery. When those on the periphery produce pp- or ff-goods
and those in the central clique produce pf-goods, a sufficient condition for all individuals to be
better off is b > c (provided n ≫ m). It is perhaps unsurprising that in the context of Figure 4,
relative to when everyone produces a pp-good (resp. ff-good), it is generally easier (resp. harder)
for producers to evolve when those in the center produce pf-goods with the same b and c.

For ff-goods on a rich club, another natural question is whether the individuals in the cen-
tral clique can scale up their contributions in order to create better outcomes for those at the
periphery. In Methods, we show that if wealthy producers scale up their contributions in a way
that ensures everyone in the population benefits, it is much harder for producers to evolve at all.
Such a population leads to a trade-off between the following two scenarios: (i) All individuals
in the population produce the same total benefit at the same total cost. Producers easily evolve,
leaving well-connected individuals wealthy at the expense of everyone else. (ii) Well-connected
producers ensure that each neighbor gets back what they contributed. Selection now opposes the
spread of producers, leaving the population more often in the asocial (non-producer) state. In
the SI, we also discuss how an institution can mitigate the harmful effects of certain prosocial
behaviors (like the production of ff-goods), e.g. through a “tax” (Extended Data Figure 14).

Another form of asymmetry arises from stochasticity in the recipient of a donation. Instead
of either producing a social good for each neighbor or dividing it up among the neighborhood, a
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Figure 12: Evolution of prosocial behavior can result in widespread inequality. a, Prosocial inequality arising
in a coauthorship network of 379 scientists (Newman, 2006). For IM updating, ff- and pf-goods have lower barriers
for selection to favor producers than pp-goods ((b/c)∗ ≈ 7.2104 for pp-goods, (b/c)∗ ≈ 2.5703 for ff-goods, and
(b/c)∗ ≈ 0.8506 for pf-goods). In the all-B (non-producer) state, all individuals have the same payoff. But for
ff-goods, at the critical ratio where producers evolve, 75 out of 379 individuals (depicted in green on the graph)
are worse off in all-A than they would be in all-B. b, This fraction decreases as the benefit-to-cost ratio increases.
The benefit-to-cost ratio must be at least (b/c)∗ = 34, which is much larger than (b/c)∗ = 2.5703, for all-A to
be better than all-B for everyone. For pf-goods, there can be some harm to the poorest, but only when b < c. In
contrast, when producers of pp-goods evolve, all individuals in the population are better off. c, In the all-A state, a
smaller portion of the population holds at least 50% of the wealth (depicted in red on the graph) for ff- and pf-goods
than for pp-goods.
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Figure 13: Summary of main examples. A good is wealth-producing (w) if the total payoff (sum of all benefits
minus sum of all costs) is positive when everyone in the population is a producer. It is harmful (h) if at least one
individual has a negative payoff in the all-producer state. For three kinds of social goods (pp, ff, and pf) and update
rules (PC, DB, and IM), this table summarizes when a good can be wealth-producing and/or harmful, as well as
when such a good can evolve. Notably, these results are not influenced much by the choice of update rule.
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Figure 14: Contributions by producers to a public pool can ameliorate payoff inequality. For ff-goods, suppose
that each producer (blue) donates θb to a pool (green) and (1 − θ) b to neighbors, a. If the total value of the public
pool is divided among all members of the population (green arrows, b), then the situation can improve for those
who are worst-off in the all-producer state. In particular, such a pool can result in a positive payoff to everyone in
the population provided the contribution, quantified by θ, is sufficiently large. The trade-off is that this pool also
increases the critical benefit-to-cost ratio required for producers to evolve by a multiplicative factor of 1/ (1 − θ)
(see SI), illustrated in c on a star of size N = 100 under PC updating. For this population structure, d depicts the
payoff of the poorest individual (“leaf” player, at the periphery of the star) in the prosocial (all-A) state as a function
of the fraction contributed to the pool, θ, when b = 2 and c = 1. This payoff is negative when θ ⪅ 1/2, which
means that 99% of the population is better off in the asocial (all-B) state. However, when θ ⪆ 1/2, all individuals
are better off when producers proliferate.
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Figure 15: Diffuse versus concentrated benefits. When a producer, i (center), has a rival good of total benefit b and
cost c available to donate, two natural ways to distribute this good are a to all wi neighbors, divided evenly, and b to a
single neighbor, j, chosen at random. The former describes the scheme of ff-goods. The latter represents a stochastic
payoff scheme in which one lucky neighbor benefits from the good in its entirety. Remarkably, both methods result
in identical critical benefit-to-cost ratios in the limit of weak selection. Therefore, the surprising results reported for
ff-goods, such as the existence of critical ratios strictly less than one, also hold for this scheme. More generally, we
show in the SI that any stochastic payoff scheme can be replaced by an “equivalent” deterministic scheme.

producer might choose a single random neighbor as the recipient of the good in its entirety (Fig-
ure 15). Such a payoff scheme could be driven by indifference, meaning a donor does not care
who receives the benefit, or by a mechanism external to the donor. For example, if an individ-
ual receives a request to participate in double-blind peer review, then this individual’s donation,
which is derived from their referee report, is conferred upon recipient(s) who are not directly
chosen by the reviewer (the journal chooses). In the SI, we show that, under weak selection,
randomly choosing a recipient is equivalent to dividing one’s contribution among all possible
recipients. This is because, when selection is weak, the conditions for success depend only on
expected, rather than actual, payoffs. In particular, from the perspective of evolutionary dynam-
ics, the stochastic donation scheme of Figure 15b is equivalent to that of ff-goods, Figure 15a,
and producers can evolve even when b < c.

2.3 Reciprocity

The behavioral types considered so far are quite simple: produce (A) or do not produce (B),
unconditionally. When individuals have more than one chance to interact prior to an update
to the population, more complex behavioral strategies can emerge. In the iterated prisoner’s
dilemma, an individual can punish past acts of defection and reward past acts of cooperation, and
this mechanism of “direct reciprocity” is well-known for its ability to facilitate the emergence
of cooperation (Trivers, 1971, Nowak, 2006, Press and Dyson, 2012, Stewart and Plotkin, 2013,
2016, Hilbe et al., 2018).
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There are many different ways to model reciprocity of social good production in heteroge-
neous populations. As a starting point, consider the strategy “tit-for-tat” (TFT), which cooperates
(donates) in the first round and then subsequently copies what the opponent did in the previous
round (Axelrod, 1984). Let Bij and Cij be the benefit and cost of i donating to j. In our model,
an individual using TFT gives Bij to every j (at a cost of Cij) in the first round. In subsequent
rounds, i donates Bij to j (still at cost Cij) if and only if j donated to i in the previous round;
otherwise, i gives nothing to j and pays no cost associated to j. Other individuals have no effect
on i’s choice of whether to donate to j.

For pp-goods, this model gives the classical interpretation of TFT in the prisoner’s dilemma,
only now the two-player interactions are the pairwise encounters on a graph. For ff-goods, this
model may be understood as follows. In the first round, each TFT player produces a good at cost
c and divides the benefit, b, among all neighbors. Subsequently, a TFT-player looks around and
counts how many neighbors produced a good in the previous round. If a fraction, x, of one’s
neighbors produced a good, then in the subsequent round this TFT player produces a good of
benefit xb and cost xc (i.e. a fraction x of the original good). This benefit is divided among only
those neighbors who produced a good in the last round. We avoid pf-goods here because the
interpretation of “reciprocity” is much more nuanced for non-excludable goods. The benefits of
a clean environment, for instance, normally cannot be denied to an individual.

We consider competition between the strategies ALLD and TFT, where ALLD (which stands
for “always defect”) is an unconditional non-producer. Since ALLD never produces a good, this
iterated game exhibits quite straightforward behavior: In the first round, TFT is a producer and
ALLD is a non-producer. In all subsequent rounds, TFT produces for, and donates to, only the
other TFT players in their neighborhood. ALLD players get only the benefits they receive in the
first round. In order to distinguish between present and future payoff streams, we use a discount-
ing factor, λ ∈ [0, 1], which can be interpreted the probability of another encounter before the
game ends. When λ = 0, we recover the original model of producers versus non-producers, with
no reciprocity. When λ = 1, the time horizon of the game is infinite (“undiscounted”). For all
values of λ strictly between 0 and 1, the game is finite with 1/ (1 − λ) rounds, on average.

For any λ ∈ [0, 1], the selection condition for TFT to be favored over ALLD is

N

∑
i,j,k,ℓ=1

πim
ji
k

(
−
(
xjk + λxjℓ

)
Ckℓ +

(
xjℓ + λxjk

)
Bℓk
)

>
N

∑
i,j,k,ℓ=1

πim
ji
k (− (xik + λxiℓ)Ckℓ + (xiℓ + λxik) Bℓk) . (2)

When λ = 0, Equation 2 reduces to Equation 1. We derive this result in the SI and provide
simplified formulas for PC, DB, and IM updating in Methods. Figure 16 illustrates the effects
of increasing the time horizon on the critical ratio for TFT to evolve. In each case, reciprocity
lowers the threshold for the evolution of producers. We observe, however, that payoffs in the
all-TFT state are the same as those in the all-producer state. Therefore, the potential for wealth-
reducing and/or harmful prosociality is not eliminated by reciprocity. On the contrary, reciprocity
can enable such outcomes to arise under an expanded range of conditions. Overall, reciprocity
typically facilitates the evolution of prosocial behaviors, which may be either helpful or harmful
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Figure 16: Effects of reciprocity on the selection of prosocial behaviors. Sufficiently large continuation proba-
bilities can facilitate the evolution of TFT by reducing the critical benefit-to-cost ratio. a, Whereas producers can
never evolve on a homogeneous graph under PC updating when there is just one interaction (λ = 0), reciprocity
can favor producers (TFT) even on well-mixed structures. b, The star never supports producers under DB updating,
but for non-zero continuation probabilities, λ, TFT can be favored as long as b/c is sufficiently large. c, On the
empirical coauthorship network considered in Figure 12, increasing λ further promotes the spread of prosocial traits
with low benefit-to-cost ratios under IM updating. In particular, since payoffs in the all-TFT state are identical to
those of the all-producer state, reciprocity for ff-goods can cause worse outcomes for the poorest in the population.

to the population at large and/or to the least well-off. For example, on the coauthorship network
of Figure 12, which corresponds to λ = 0, ff-goods must be wealth-producing for producers
to evolve. But reciprocity, in the form of sufficiently large λ > 0, can support the evolution of
producers even when the underlying social good is wealth-decreasing (b < c).

There is one particular condition under which reciprocity cannot be harmful for a population.
We say that a prosocial behavior is “pairwise mutually beneficial” (PMB) if Bji ⩾ Cij for all i
and j, with strict inequality for at least one pair (i, j). In other words, a behavior is PMB if and
only if for each pair of individuals expressing this behavior, both partners receive at least as much
as they pay (for that particular interaction). PMB behaviors cannot be wealth-decreasing, nor can
they lead to negative payoffs in the all-producer state. The simplest example of a PMB behavior
is the production of pp-goods when b > c. However, whereas the production of pp-goods when
b > c is PMB on any graph, in general whether a behavior is PMB depends on both the good and
the population structure. For example, when b > c, ff-goods are always PMB on regular graphs,
but not necessarily on heterogeneous networks such as the rich club. PMB behaviors are not
always favored by selection, as was demonstrated in our baseline model of one-shot interactions.
However, we show in the SI that, for any given PMB behavior, TFT is favored for all λ greater
than some threshold value λ∗ < 1.

2.4 Stronger selection

The analytical conditions presented so far (e.g. Equation 1) are valid under the assumption that
selection is weak. In the case of PC updating, this assumption means that if i has payoff ui and
j, a neighbor of i, has payoff uj, and if j is chosen as a model individual for comparison to i,

then i imitates the behavioral type of j with probability
(

1 + e−δ(uj−ui)
)−1

, where δ is positive

21



but sufficiently small. A natural question arising here is what happens when δ is not necessarily
small, which is relevant when individuals are highly inclined to imitate a neighbor with a larger
payoff.

Analytical calculations for stronger selection (larger δ) quickly become infeasible for arbi-
trary heterogeneous graphs Ibsen-Jensen et al. (2015), but remain tractable for structures with a
high degree of symmetry, such as the star (Hadjichrysathou et al., 2011). In Figure 17, we con-
sider ff-goods on a star graph of size N = 500. We find that stronger selection can promote the
evolution of producers significantly, both when the total benefits exceed the total costs and vice
versa. We can quantify selection for producers by the fraction of time the population spends in
the all-producer state under rare mutation, which is ρA/ (ρA + ρB). When b = 1/10 and c = 1,
the star spends approximately 64% of the time in the all-producer state at its peak (Figure 17c).
When b = 2 and c = 1, this number is slightly larger at approximately 66% (Figure 17d). In
both cases, the all-producer state is highly unequal, with a large, positive payoff for the individ-
ual at the center of the star and negative payoffs for the N − 1 = 499 remaining individuals at
the periphery.

3 Discussion

A large and growing body of research (Pinheiro et al., 2014, Peña et al., 2016a, Nowak and May,
1992, Ohtsuki et al., 2006, Taylor et al., 2007, Chen, 2013, Débarre et al., 2014, Santos and
Pacheco, 2005, Antal et al., 2006, Gómez-Gardenes et al., 2007, Sood et al., 2008, Cao et al.,
2010, Maciejewski et al., 2014, Fan et al., 2017, Allen et al., 2017, Santos et al., 2008, Taylor,
1992, Wilson et al., 1992, Mitteldorf and Wilson, 2000, Irwin and Taylor, 2001, Grafen, 2007,
Lion and van Baalen, 2008, Tarnita et al., 2009a, Nowak et al., 2009, Rand et al., 2014, Débarre,
2017, Su et al., 2019a,b, Allen et al., 2019) has shown that spatial structure can promote the
evolution of cooperative or prosocial behaviors. Our work, while affirming this principle, reveals
it to be more complicated than it may seem. First, we show that the conditions for prosocial
behaviors to evolve depend crucially on how the costs and benefits are distributed. This, in turn,
depends on whether the goods produced are rival or non-rival, and whether the cost to produce
scales with the number of recipients. To link these economic concepts with the evolutionary
dynamics literature, we have introduced three natural schemes (ff, pp, and pf) for the production
and sharing of goods on networks. Second, and more strikingly, the “prosocial” outcome may
not be socially optimal. Selection can favor outcomes in which all individuals contribute to the
social good, but some expend more in costs than they receive in benefits, leading to negative
payoffs. Additionally, there are structures on which production of ff-goods can evolve when
even they are a net detriment to the population (b < c).

Qualitatively, these results hold for all update rules considered here; the primary differences
among these update rules are in the precise population structures for which the production of
goods is favored (see Extended Data Figures and SI). For example, homogeneous graphs can
support the evolution of producers under DB and IM updating but not under PC updating. Some
heterogeneous structures can favor producers under one update rule but not another. These dif-
ferences are expected given that different update rules describe different evolutionary dynamics.
Our general result (Equation 1) is not restricted to any particular update rule or sharing scheme,
and it can be applied to many other populations.
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Figure 17: Beyond weak selection on the star graph. Increasing the selection intensity can magnify the wealth
inequality due to prosocial behaviors. We illustrate this phenomenon using PC updating on a star graph of size
N = 500 (i.e. rich club with m = 1 and n = 499), with ff-goods. Panels a and c differ from b and d only in the
benefit, b, which is 1/10 in the former and 2 in the latter. The cost is c = 1 in all panels. For both of these cases,
our theoretical results imply that increasing the selection strength from δ = 0 favors the evolution of producers. As
is illustrated, this effect remains for a significant range of selection intensities, δ. Moreover, at its peak, the amount
of time the population spends in the all-producer state is approximately 64% when b = 1/10 (c) and approximately
66% when b = 2 (d). When b = 1/10, the hub gets a payoff of 48.9, while individuals at the periphery get a payoff
of approximately −1. When b = 2, the hub gets 997 and individuals at the periphery again get roughly −1. Thus,
natural selection of prosocial behaviors can result in extremely bad outcomes for large portions of a population.
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One of the main limitations of our study is its restriction to populations of fixed size and
structure. Changes to the population size and/or structure as the population evolves could lead
to additional interesting behavior with respect to social goods (e.g. population growth rates or
the possibility of extinction). Our analysis also focuses on relatively simple social goods (ff, pp,
and pf), which represent idealized versions of what might arise in a real population. Congestible
goods, for example, are non-rival when there are few consumers but become rival when many
stand to benefit from them. A good could also be anti-rival, with the per-capita benefit being
an increasing function of the total number of recipients. We see all of these possibilities as
promising topics for future studies on the evolutionary dynamics of social goods.

Reciprocity is another mechanism that is known to promote the evolution of cooperation
(Trivers, 1971, Nowak, 2006, Press and Dyson, 2012, Stewart and Plotkin, 2013, 2016, Hilbe
et al., 2018), which holds in our model as well. In the context of repeated interactions, reciprocal
prosocial behaviors can evolve in under a broader range of conditions than their unconditional
counterparts. However, this also means that repeated interactions can enable the evolution of
harmful and/or wealth-reducing prosociality in conditions where it would not evolve for one-
shot interactions. While our model touches upon one aspect of reciprocity in the context of
social goods, we also view this topic as an important area for future research.

Our work raises thorny questions about the nature and consequences of cooperative or proso-
cial behaviors. Under what circumstances should we consider such traits desirable? If they
increase a population’s total wealth? If they make everyone better off? If they distribute wealth
evenly? In general, these conditions are distinct, and each must be considered in the context of
the underlying population structure.

In summary, we have shown that heterogeneous population structures act as strong promoters
of the evolution of prosocial behaviors. However, the resulting prosocial behaviors can lead to
payoff distributions in which a few highly-connected nodes accumulate much of the total wealth
(Santos et al., 2008), while poorly-connected nodes end up being harmed. When the population
structure is interpreted as describing informal social ties within a group, these examples may be
seen as instances of the “tyranny of structurelessness” (Freeman, 2013). In particular, the absence
of a formal system of governance can lead to situations in which some (or many) in a group are
worse off. While the impact of institutions (Zhang et al., 2013) on evolutionary dynamics is
a deep topic, our results provide insight into when an intervention might be necessary. These
outcomes call for the design of mechanisms to redistribute wealth in order to maintain a stable
society, which engages in and benefits from prosocial behaviors.

4 Methods

4.1 Modeling evolutionary dynamics

We model a general evolutionary process in a population of finite size, N, using the notion of
a replacement rule (Allen and Tarnita, 2014, Allen and McAvoy, 2019). If the process is in
state x ∈ {0, 1}N at a given time step, where xi = 1 indicates that i has type A and xi = 0
indicates that i has type B, then a replacement event (R, α) is chosen with probability p(R,α) (x).
A replacement event consists of a set of individuals to be replaced, R ⊆ {1, . . . , N}, and a
parentage map, α : R → {1, . . . , N}, where, for i ∈ R, α (i) = j indicates that i is replaced by
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the offspring of j. The distribution
{

p(R,α) (x)
}
(R,α)

defines the replacement rule and specifies

the process driving evolution in the population.
For a fixed payoff scheme, the total payoff to i in state x ∈ {0, 1}N is

ui (x) =
N

∑
j=1

(
−xiCij + xjBji

)
, (3)

where Cij is the cost i pays to donate to j when i is a producer and Bji is the benefit j provides
to i when j is a producer. This payoff is converted to relative fecundity via the formula Fi (x) =
exp {δui (x)}, which is then used to determine the probability of choosing replacement event
(R, α) in state x. For example, suppose that

(
wij
)N

i,j=1 is the adjacency matrix for an undirected,
unweighted graph. Let pij := wij/wi be the one-step probability of moving from i to j in a
random walk on this graph, where wi := ∑N

j=1 wij is the number of individuals neighboring i.
Under pairwise-comparison (PC) updating, the probability of choosing (R, α) is

p(R,α) (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1
N piα(i)

Fα(i)(x)
Fi(x)+Fα(i)(x)

R = {i} for some i ∈ {1, . . . , N} , α (i) ̸= i,

1
N ∑N

j=1 pij
Fi(x)

Fi(x)+Fj(x)
R = {i} for some i ∈ {1, . . . , N} , α (i) = i,

0 otherwise.

(4)

Similarly, the probability of replacement event (R, α) is

p(R,α) (x) =

⎧⎪⎪⎨⎪⎪⎩
1
N

wiα(i)Fα(i)(x)

∑N
k=1 wikFk(x)

R = {i} for some i ∈ {1, . . . , N} ,

0 otherwise

(5)

under DB updating and

p(R,α) (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
N

wiα(i)Fα(i)(x)

Fi(x)+∑N
k=1 wikFk(x)

R = {i} for some i ∈ {1, . . . , N} , α (i) ̸= i,

1
N

Fi(x)
Fi(x)+∑N

k=1 wikFk(x)
R = {i} for some i ∈ {1, . . . , N} , α (i) = i,

0 otherwise

(6)

under IM updating.
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4.2 Fixation probabilities, transient dynamics, and the selection condition

We assume that there is at least one individual who can generate a lineage that takes over the
population. As a result, the population must eventually end up in one of the two monomorphic
states, all-A or all-B. Let ρi

A (resp. ρi
B) be the probability that a single A (resp. B), placed

initially at location i, takes over a population of type B (resp. type A). The mean fixation
probabilities for the two types are then ρA = 1

N ∑N
i=1 ρi

A and ρB = 1
N ∑N

i=1 ρi
B, respectively.

By analyzing the demographic variables (e.g. birth rates and death probabilities) resulting
from this process, together with the transient dynamics (i.e. prior to absorption in all-A or all-
B), we derive a condition for ρA > ρB under weak selection (δ ≪ 1). Specifically, if (i) πi
is the reproductive value of vertex i; (ii) xij is the probability that i and j have the same type

in the neutral process (with respect to a distribution described in the SI); and (iii) mij
k is the

marginal effect of k’s fecundity on i replacing j, then ρA > ρB under weak selection if and
only if Equation 1 holds. Moreover, this condition can be evaluated by solving a linear system
of O

(
N2) equations. The details of this derivation, including a more formal description of xij,

may be found in the SI.

4.2.1 PC updating

For pairwise-comparison (PC) updating, we have ρA > ρB under weak selection if and only if

N

∑
i=1

πi

N

∑
ℓ=1

(−xiiCiℓ + xiℓBℓi) >
N

∑
i,j=1

πi pij

N

∑
ℓ=1

(
−xijCjℓ + xiℓBℓj

)
. (7)

Informally, this condition says that the expected payoff to a producer, i, chosen with probability
πi (which in this case is wi/ ∑N

j=1 wj), exceeds that of a random neighbor. In the SI, we show
that we can evaluate Equation 7 by replacing 1 − xij by τij, where τii = 0 for every i and

τij = 1 +
1
2

N

∑
k=1

pikτkj +
1
2

N

∑
k=1

pjkτik (8)

whenever i ̸= j. Finally, to see what Equation 7 looks like for a given kind of donation, we just
need to give formulas for Bij and Cij. For pp-goods, we have Bij = wijb and Cij = wijc. For ff-
goods, Bij = wijb/wi and Cij = wijc/wi. Finally, for pf-goods, Bij = wijb and Ci = wijc/wi.
In each case, Equation 7 can be expressed as γb > βc, where both β and γ are independent of
b and c, and β > 0. With b, c > 0, a necessary condition for producers to be favored is thus
γ > 0. Writing Bij = bβij and Cij = cγij, we see that when γ > 0, the selection condition is

ρA > ρB ⇐⇒ b
c
>

(
b
c

)∗
:=

β

γ
=

∑N
i,j=1 πi pijτij ∑N

ℓ=1 γjℓ

∑N
i,j=1 πi pij ∑N

ℓ=1
(
τiℓ − τjℓ

)
βℓj

. (9)

On a homogeneous graph, one can show that γ < 0 (see SI), which means that such a
structure cannot support the evolution of producers under PC updating. In a prior study, it was
shown that on large homogeneous graphs, the evolution of cooperation was possible under PC
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updating only in the presence of game transitions (Su et al., 2019c) (in which case the interaction
was essentially a coordination game). In contrast, on any homogeneous graph without game
transitions, producers (including cooperators) cannot be favored under PC updating. However,
as shown in the text, there are many examples of heterogeneous population structures with γ > 0.

4.2.2 DB updating

For death-birth (DB) updating, we have ρA > ρB under weak selection if and only if

N

∑
i=1

πi

N

∑
ℓ=1

(−xiiCiℓ + xiℓBℓi) >
N

∑
i,j=1

πi p
(2)
ij

N

∑
ℓ=1

(
−xijCjℓ + xiℓBℓj

)
. (10)

The interpretation of this condition is analogous to that of the condition for PC updating, except
here the comparison is between a producer and a two-step (rather than one-step) neighbor.

Using the same values of πi and τij described above for PC updating, this condition becomes

ρA > ρB ⇐⇒ b
c
>

(
b
c

)∗
:=

β

γ
=

∑N
i,j=1 πi p

(2)
ij τij ∑N

ℓ=1 γjℓ

∑N
i,j=1 πi p

(2)
ij ∑N

ℓ=1
(
τiℓ − τjℓ

)
βℓj

. (11)

4.2.3 IM updating

For both PC and DB updating, the reproductive value, πi, random walk step-probability, pij,
and recurrence relation for τij (which is a proxy for xij) were the same in both processes. For
imitation (IM) updating, these quantities need to be modified slightly. Let w̃ be matrix obtained
from w by adding a self-loop to each vertex, i.e. w̃ij = wij for i ̸= j and w̃ii = 1 for all
i = 1, . . . , N. Let p̃ij := w̃ij/w̃i be the probability of transitioning from i to j in one step
of a random walk on this modified graph. The reproductive value of i under IM updating is
πi = w̃i/ ∑N

j=1 w̃j, where w̃i = 1 + wi. Under weak selection, we have ρA > ρB if and only if

N

∑
i=1

πi

N

∑
ℓ=1

(−xiiCiℓ + xiℓBℓi) >
N

∑
i,j=1

πi p̃
(2)
ij

N

∑
ℓ=1

(
−xijCjℓ + xiℓBℓj

)
. (12)

The terms xij are again different here than they were for PC and DB updating. However,
interpreting xij in the same way as before (as the probability that i and j have the same type with
respect to a certain distribution in the neutral process), Equation 12 has a natural interpretation as
a comparison between the expected payoff to a producer (left-hand side) and the expected payoff
to a two-step neighbor of a producer (right-hand side). To evaluate this condition, we can replace
1 − xij by τij, where τii = 0 for every i and, whenever i ̸= j, τij satisfies the recurrence

τij = 1 +
1
2

N

∑
k=1

p̃ikτkj +
1
2

N

∑
k=1

p̃jkτik. (13)
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For Bij = bβij and Cij = cγij, the selection condition when γ > 0 is

ρA > ρB ⇐⇒ b
c
>

(
b
c

)∗
:=

β

γ
=

∑N
i,j=1 πi p̃

(2)
ij τij ∑N

ℓ=1 γjℓ

∑N
i,j=1 πi p̃

(2)
ij ∑N

ℓ=1
(
τiℓ − τjℓ

)
βℓj

. (14)

4.3 Asymmetric games

Here, we consider the effects of asymmetric payoffs on rich club graphs with m central nodes
and n peripheral nodes. We are especially interested in the case in which m is fixed and n grows.

Suppose that a producer on the periphery produces a good of cost cp and divides the benefit,
bp, among all neighbors. A producer in the center group pays cr and distributes the benefit,
br, evenly. We consider the case in which bp = b and cp = c, and that br = s (m, n) bp and
cr = s (m, n) cp for some function s (m, n). If everyone on the rich club is a producer (whose
state in {0, 1}N is denoted A), then the payoff to individual i is

ui (A) =

⎧⎪⎨⎪⎩
−s (m, n) c + m−1

m+n−1 s (m, n) b + n
m b i is in the central rich club,

−c + m
m+n−1 s (m, n) b i is on the periphery.

(15)

For a peripheral individual’s payoff to remain non-negative as n → ∞, s (m, n) must grow at
least linearly in n. At the same time, if limn→∞

1
n s (m, n) = ∞, then the payoff to an individual

in the central rich club will eventually become negative as n → ∞. Therefore, we consider
s (m, n) = k1 (m) n + k0 (m) for some functions k0 and k1 of m. Letting n → ∞ gives

lim
n→∞

ui (A) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∞ i is in the central rich club, b
c < mk1 (m) ,

0 i is in the central rich club, b
c = mk1 (m) ,

+∞ i is in the central rich club, b
c > mk1 (m) ,

−c + mk1 (m) b i is on the periphery.

(16)

For the first payoff in Equation 15 to stay non-negative as n → ∞, we require b/c ⩾
mk1 (m). But we also want the second payoff in Equation 15 to be non-negative, i.e. b/c ⩾
1/ (mk1 (m)). Thus, we seek k1 with

c
b
⩽ mk1 (m) ⩽

b
c

. (17)

Such a k1 exists if and only if b ⩾ c, in which case we can set k0 (m) = 0 and k1 (m) = 1/m.
For large n, it follows that each producer in the central clique gives an average of b/m to each
neighbor at a cost of c/m. The per-neighbor benefit and cost values are the same (b/m and
c/m, respectively) for each peripheral individual as well, which effectively transforms the payoff
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structure into that of a pp-good with benefit-to-cost ratio (b/m) / (c/m) = b/c, and we already
know that it is much more difficult for producers of such a good to evolve (if they can at all).

4.4 Reciprocity

For the model of reciprocity defined in the text, we let A and B denote the strategies TFT and
ALLD, respectively. Let ut

i be the payoff to player i in the tth round of the game, i.e.

ut
i (x) =

⎧⎪⎨⎪⎩
∑N

j=1
(
−xiCij + xjBji

)
t = 1,

∑N
j=1 xixj

(
−Cij + Bji

)
t > 1.

(18)

If the discounting factor (continuation probability) is λ ∈ [0, 1), then the overall payoff to i is

ui (x) = (1 − λ)

(
N

∑
j=1

(
−xiCij + xjBji

)
+

∞

∑
t=1

λt
N

∑
j=1

xixj
(
−Cij + Bji

))

= (1 − λ)
N

∑
j=1

(
−xiCij + xjBji

)
+ λ

N

∑
j=1

xixj
(
−Cij + Bji

)
=

N

∑
j=1

(
−
(
1 − λ + λxj

)
xiCij + (1 − λ + λxi) xjBji

)
. (19)

Writing down the payoffs when i uses TFT (xi = 1) and ALLD (xi = 0) separately gives

ui (x) =

⎧⎪⎨⎪⎩
∑N

j=1
(
−Cij + xjBji

)
+ λ ∑N

j=1
(
1 − xj

)
Cij xi = 1,

(1 − λ)∑N
j=1 xjBji xi = 0.

(20)

It follows that, in each state x ∈ {0, 1}N, increasing λ does not decrease the payoff to an A and
does not increase the payoff to a B. For any reasonable process favoring individuals with higher
payoffs (including PC, DB, and IM updating), it follows that ρA is monotonically increasing and
ρB is monotonically decreasing in λ. Furthermore, we note that when λ = 1, i gets 0 when
using ALLD and ∑N

j=1 xj
(
−Cij + Bji

)
when using TFT. If the underlying behavior is pairwise

mutually beneficial (PMB), then in every state each ALLD has a payoff of zero and each TFT
has a payoff of at least zero. Therefore, no reasonable process favoring traits with higher payoffs
should disfavor TFT relative to ALLD when the interactions have an infinite time horizon.

The selection condition for ALLD versus TFT, Equation 2, is derived in the SI. Here, we
explore how this condition can be evaluated for the update rules considered in the text.
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4.4.1 PC updating

For PC updating, the condition for selection to favor TFT relative to ALLD is

ρA > ρB ⇐⇒
N

∑
i=1

πi

N

∑
ℓ=1

(− (xii + λxiℓ)Ciℓ + (xiℓ + λxii) Bℓi)

>
N

∑
i,j=1

πi pij

N

∑
ℓ=1

(
−
(
xij + λxiℓ

)
Cjℓ +

(
xiℓ + λxij

)
Bℓj
)

. (21)

For social goods satisfying Bij = bβij and Cij = cγij, if γ > 0 then this condition is

b
c
>

(
b
c

)∗

λ

=
∑N

i,j=1 πi pij ∑N
ℓ=1
(
τij + λτiℓ − λτjℓ

)
γjℓ

∑N
i,j=1 πi pij ∑N

ℓ=1
(
λτij + τiℓ − τjℓ

)
βℓj

, (22)

where πi and τij are the same as they were previously for PC updating with λ = 0.

4.4.2 DB updating

For DB updating, the condition for selection to favor TFT relative to ALLD is

ρA > ρB ⇐⇒
N

∑
i=1

πi

N

∑
ℓ=1

(− (xii + λxiℓ)Ciℓ + (xiℓ + λxii) Bℓi)

>
N

∑
i,j=1

πi p
(2)
ij

N

∑
ℓ=1

(
−
(
xij + λxiℓ

)
Cjℓ +

(
xiℓ + λxij

)
Bℓj
)

. (23)

For social goods satisfying Bij = bβij and Cij = cγij, if γ > 0 then this condition is

b
c
>

(
b
c

)∗

λ

=
∑N

i,j,ℓ=1 πi p
(2)
ij
(
τij + λτiℓ − λτjℓ

)
γjℓ

∑N
i,j,ℓ=1 πi p

(2)
ij
(
λτij + τiℓ − τjℓ

)
βℓj

, (24)

where πi and τij are the same as they were previously for DB updating with λ = 0.

4.4.3 IM updating

For IM updating, the condition for selection to favor TFT relative to ALLD is

N

∑
i,ℓ=1

πi (− (xii + λxiℓ)Ciℓ + (xiℓ + λxii) Bℓi)

>
N

∑
i,j,ℓ=1

πi p̃
(2)
ij
(
−
(
xij + λxiℓ

)
Cjℓ +

(
xiℓ + λxij

)
Bℓj
)

. (25)
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For social goods satisfying Bij = bβij and Cij = cγij, if γ > 0 then this condition is

b
c
>

(
b
c

)∗

λ

=
∑N

i,j,ℓ=1 πi p̃
(2)
ij
(
τij + λτiℓ − λτjℓ

)
γjℓ

∑N
i,j,ℓ=1 πi p̃

(2)
ij
(
λτij + τiℓ − τjℓ

)
βℓj

, (26)

where πi and τij are the same as they were previously for IM updating with λ = 0.

4.5 Numerical examples

Extended Data Figures 8 and 6 depict critical ratios on random graphs. Extended Data Fig-
ure 8 was generated using a Barabási-Albert preferential attachment model (Barabási and Albert,
1999); the population begins with m0 = 2 individuals, and each new individual is connected to
m = 1 existing members of the population according to the standard degree-weighted distribu-
tion. Extended Data Figure 6a was generated using the G (N, p) Erdös-Rényi model (Bollobás,
2001). Extended Data Figure 6b was created using the Watts-Strogatz model (Watts and Strogatz,
1998) starting from a cycle with edge-rewiring probability p.

For the empirical networks considered in the main text and Extended Data Figures (which
are available on public databases (Leskovec and Krevl, 2014, Rossi and Ahmed, 2015)), we have
used the largest connected component to ensure that fixation is possible in the case of societies
with more than one connected component. The sources of all empirical networks used here are
provided in the corresponding figure captions.

Acknowledgments

We are grateful to Joshua Plotkin for constructive feedback. We would also like to thank Babak
Fotouhi and Christian Hilbe for helpful conversations. This work was supported by the Army
Research Laboratory (grant W911NF-18-2-0265), the Bill & Melinda Gates Foundation (grant
OPP1148627), the John Templeton Foundation (grant 61443), the National Science Foundation
(grant DMS-1715315), and the Office of Naval Research (grant N00014-16-1-2914). The fun-
ders had no role in study design, data collection and analysis, decision to publish, or preparation
of the manuscript.

31



Supporting Information

SI.1 Formally modeling evolutionary dynamics

In this section, we formally establish the conditions for A to be favored over B stated in the main
text. The notation and modeling techniques follow the conventions of Allen and McAvoy (2019).

Since we model two types, A and B, in a population of finite size, N, the state of the pop-
ulation is specified by the configuration of A and B. For simplicity, we denote the state of the
population by a binary vector, x ∈ {0, 1}N, where xi = 1 means that the individual at location i
is has type A, and xi = 0 means that this individual has type B. We denote by A := (1, 1, . . . , 1)
and B := (0, 0, . . . , 0) the two monomorphic (or monoallelic) states, respectively.

We describe evolutionary dynamics using the notion of a replacement rule (Allen and Tarnita,
2014, Allen and McAvoy, 2019). A replacement rule is a distribution

{
p(R,α) (x)

}
(R,α)

over

pairs (R, α), where R is a subset of {1, . . . , N} and α is a map R → {1, . . . , N}. R is the set of
individuals replaced in a given time step, and α is the parentage map, which means that α (i) = j
if and only if the offspring of j replaces i. The probability of choosing replacement event (R, α),
which is denoted by p(R,α) (x), usually depends on the current population state, x ∈ {0, 1}N,
because an individual’s type can influence the probability with which they reproduce and/or die.

The notion of a replacement rule is flexible enough to accommodate a wide variety of models
of spatially structured populationsAllen and Tarnita (2014), Allen and McAvoy (2019). Although
the update rules considered in the main text have at most one individual replaced per time step
(in our notation, p(R,α) (x) = 0 whenever |R| > 1), the results of this section allow for any fixed
or variable number of individuals to be replaced. In Section SI.2 we give specific formulas for
p(R,α) (x) for various update rules.

We assume that
{

p(R,α) (x)
}
(R,α)

satisfies the following property (Allen and McAvoy, 2019),

which formally states that there is at least one individual that can eventually be an ancestor of
the entire population:

Fixation Axiom. There exists i ∈ {1, . . . , N}, an integer m ⩾ 1, and a sequence of replacement
events {(Rk, αk)}m

k=1 such that

• p(Rk,αk)
(x) > 0 for every k ∈ {1, . . . , m} and x ∈ {0, 1}N;

• i ∈ Rk for some k ∈ {1, . . . , m};

• α̃1 ◦ α̃2 ◦ · · · ◦ α̃m (j) = i for every j ∈ {1, . . . , N}, where α̃ : {1, . . . , N} → {1, . . . , N}
denotes the extension of α : R → {1, . . . , N} to all of {1, . . . , N}, i.e.

α̃ (j) :=

⎧⎪⎨⎪⎩
α (j) j ∈ R,

j j ̸∈ R.
(SI.1)

We now describe how a replacement event affects the state of the population. Suppose that
the current state is x ∈ {0, 1}N. Following the replacement event (R, α), individual i inherits
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his or her type from α̃ (i); thus, the type of i is updated from xi to xα̃(i). We denote by xα̃ this

resulting state. Given a replacement rule
{

p(R,α) (x)
}
(R,α)

, we can then define a Markov chain

on {0, 1}N, with the transition probability between x and y in {0, 1}N given by

Px→y := ∑
(R,α)
xα̃=y

p(R,α) (x) . (SI.2)

Since Aα̃ = A and Bα̃ = B for every replacement event, (R, α), A and B are absorbing
states for this chain. Moreover, the Fixation Axiom implies that every non-monomorphic state
is transient, so the chain will eventually end up in either A or B given any initial state. We are
particularly interested in rare-mutant states, which for us means that there are N − 1 of type A
and one of type B or N − 1 of type B and one of type A. Denote by ρi

A (resp. ρi
B) the probability

that A (resp. B) is reached from the state with just a single A (resp. B) at location i. The mean
fixation probabilities of A and B are then ρA := (1/N)∑N

i=1 ρi
A and ρB := (1/N)∑N

i=1 ρi
B,

respectively. This section is dedicated to using a replacement rule to derive a condition for
selection to favor type A relative to type B, i.e. ρA > ρB.

SI.1.1 Demographic variables

The marginal probability of transmission from i to j in state x ∈ {0, 1}N is

eij (x) := ∑
(R,α)

α(j)=i

p(R,α) (x) . (SI.3)

From these marginal probabilities come birth rates and death probabilities,

bi (x) :=
N

∑
j=1

eij (x) ; (SI.4a)

di (x) :=
N

∑
j=1

eji (x) . (SI.4b)

Since the population size is fixed, the average birth rate, b (x) = 1
N ∑N

i=1 bi (x), coincides with
the average death probability, d (x) = 1

N ∑N
i=1 di (x), in every state, x ∈ {0, 1}N.

We let
{

p(R,α) (x)
}
(R,α)

depend on a non-negative parameter, δ ⩾ 0, which quantifies

the intensity of selection within the population. We assume that p(R,α) (x) is continuously-
differentiable in a neighborhood of δ = 0, and we use the “prime” notation (e.g. e′ij) to denote
the δ-derivative evaluated at δ = 0. We further assume that, for δ = 0, p(R,α) (x) is independent
of x (as are the demographic variables derived from the replacement rule). We refer to the case
δ = 0 as neutral drift, and we use the superscript ◦ to denote this special case (e.g. e◦ij).
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SI.1.2 Reproductive value

Suppose that {πi}N
i=1 consists of scalars such that, for every i = 1, . . . , N,

N

∑
j=1

e◦ijπj =
N

∑
j=1

e◦jiπi. (SI.5)

The (unique) solution to Equation SI.5 satisfying ∑N
i=1 πi = 1 is the so-called “reproductive

value” (RV) of i (Maciejewski, 2014, Taylor, 1990). πi can be interpreted as the probability
that, under neutral drift, i generates a lineage that takes over the population (Allen and McAvoy,
2019). Let b̂i (x) := ∑N

j=1 eij (x)πj and d̂i (x) := ∑N
j=1 eji (x)πi be the RV-weighted birth and

death rates, respectively. The mean change in ∑N
i=1 πixi, the RV-weighted abundance of A in

state x, is

∆̂sel (x) :=
N

∑
i=1

xi

(
b̂i (x)− d̂i (x)

)
, (SI.6)

which enjoys the convenient property that ∆̂◦
sel (x) = 0 for every x.

SI.1.3 Mutation and the RMC distribution

For u ∈ [0, 1], consider the Markov chain on {0, 1}N with transition probabilities

P̃x→y :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u 1
N x = A, y = 1

N ,

(1 − u) PA→y x = A, y ̸= 1
N ,

u 1
N x = B, y = 1 − 1

N ,

(1 − u) PB→y x = B, y ̸= 1 − 1
N ,

Px→y x ̸∈ {A, B} .

(SI.7)

In other words, transitions from a non-monomorphic state are the same as in the mutation-free
process; in a monomorphic state, a single mutant type (B in the all-A state and A in the all-B
state) will arise with probability u, and the initial location of this mutant is chosen uniformly-at-
random from the vertices (see Supplementary Figure 1). When u = 0, we have P̃x→y = Px→y

for every x, y ∈ {0, 1}N. But when u > 0, this Markov chain has a single closed communicating
class by the Fixation Axiom, and consequently it has a unique stationary distribution, πMSS.
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Supplementary Figure 1: Mutation and absorption into one of the two monomorphic states. A single mutant arises
with probability u and is placed at location i with probability 1/N. Mutants do not arise in the non-monomorphic
states, and eventually the process returns to a monomorphic state (all-A with probability ρi

A and all-B with probabil-
ity 1− ρi

A) by the Fixation Axiom. The mean fixation probabilities of A and be are then ρA = (1/N)∑N
i=1 ρi

A and
ρB = (1/N)∑N

i=1 ρi
B, respectively. When u > 0, the resulting Markov chain has a unique stationary distribution,

πMSS, which can be used to understand when ρA > ρB.
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In order to get a better understanding of the transient-state dynamics, we define

πRMC (x) := lim
u→0

πMSS (x)
1 − πMSS (A)− πMSS (B)

, (SI.8)

which we call the rare-mutation conditional (RMC) distribution. One may also characterize the
RMC distribution as the stationary distribution for the chain on {0, 1}N − {A, B} defined by

PRMC
x→y :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Px→y +
1
N Px→A y = 1

N ,

Px→y +
1
N Px→B y = 1 − 1

N ,

Px→y
1
N < y < 1 − 1

N .

(SI.9)

The definitions of both of these chains (Equations. SI.7 and SI.9) are slightly different from their
definitions given in Allen and McAvoy (2019), but nonetheless they have the following properties
(whose proofs follow from the arguments of Allen and McAvoy (2019)):

Fact 1. limu→0 πMSS (A) = ρA/ (ρA + ρB) and limu→0 πMSS (B) = ρB/ (ρA + ρB);

Fact 2. The quantity

K := lim
u→0

u
(1 − πMSS (A)− πMSS (B))

(SI.10)

is strictly positive and differentiable in δ in a small neighborhood of δ = 0;

Fact 3. ERMC [φ] = K d
du

⏐⏐⏐
u=0

EMSS [φ] for any φ : {0, 1}N → R with φ (A) = φ (B) = 0.

Fact 4. E◦
RMC [xi] = 1/2 for i = 1, . . . , N.

SI.1.4 Type distributions under neutral drift

The probability that i and j have the same type in the neutral RMC distribution is

xij := E◦
RMC

[
xixj + (1 − xi)

(
1 − xj

)]
= 2E◦

RMC
[
xixj

]
. (SI.11)

36



Let K◦ := limu→0 u/
(
1 − π◦

MSS (A)− π◦
MSS (B)

)
be the value of K at δ = 0. If i ̸= j, then

E◦
RMC

[
xixj

]
= ∑

x ̸=A,B
π◦

RMC (x) xixj

= ∑
x,y ̸=A,B

π◦
RMC (y) PRMC

y→x xixj

= ∑
x,y ̸=A,B

π◦
RMC (y) Py→xxixj + ∑

y ̸=A,B
π◦

RMC (y) ∑
ℓ ̸=i,j

1
N

Py→B

= ∑
y ̸=A,B

π◦
RMC (y) ∑

(R,α)
p◦(R,α)yα̃(i)yα̃(j) − ∑

y ̸=A,B
π◦

RMC (y) Py→A

+ ∑
y ̸=A,B

π◦
RMC (y) ∑

ℓ ̸=i,j

1
N

Py→B

= ∑
(R,α)

p◦(R,α)E
◦
RMC

[
xα̃(i)xα̃(j)

]
− ∑

y ̸=A,B
π◦

RMC (y) Py→A

+
N − 2

N ∑
y ̸=A,B

π◦
RMC (y) Py→B

= ∑
(R,α)

p◦(R,α)E
◦
RMC

[
xα̃(i)xα̃(j)

]
− K◦

2
+

N − 2
N

K◦

2

= ∑
(R,α)

p◦(R,α)E
◦
RMC

[
xα̃(i)xα̃(j)

]
− K◦

N
, (SI.12)

Letting τij :=
(
1 − xij

)
/2K◦ = E◦

RMC
[
x − xixj

]
/K◦ gives, for i ̸= j, the recurrence relation

τij =
1
N

+ ∑
(R,α)

p◦(R,α)τ̃α(i)α̃(j). (SI.13)

For i = j, we have τii = 0 for every i = 1, . . . , N. This system of equations uniquely determines{
τij
}N

i,j=1.

SI.1.5 Payoffs, fecundities, and social goods

In the class of evolutionary processes considered here, interactions result in payoffs, which are
then converted into fecundities. These fecundities are subsequently used to update the state of
the population. More abstractly, every state x ∈ {0, 1}N results in a vector of fecundities,
F ∈ [0, ∞)N, with one entry for every individual. However, this state-to-fecundity mapping
need not be deterministic; it could also be stochastic (Figure 15). In this section, we show that
stochastic mappings can be reduced to deterministic mappings under weak selection.

In practice, state-based replacement rules (introduced in §SI.1.1) often depend on the state, x,
only through its effect on fecundity. In other words, if there is a deterministic state-to-fecundity
map, x ↦→ F (x), where F ∈ [0, ∞)N, then p(R,α) (x) = p(R,α) (F (x)). To avoid confusion when
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we consider stochastic state-to-fecundity mappings below, we denote by p(R,α) a replacement
rule that is a function of state, x, and by q(R,α) a replacement rule that is a function of fecundity,

F. For example, DB updating in a graph-structured population,
(
wij
)N

i,j=1, is defined by the rule

q(R,α) (F) =

⎧⎪⎪⎨⎪⎪⎩
1
N

Fα(i)wα(i)i

∑N
j=1 Fjwji

R = {i} for some i,

0 otherwise.

(SI.14)

In most traditional formulations of evolutionary games with DB updating, there exists a payoff
function u : {0, 1}N → RN that gives a payoff vector for the population as a function of
the state, x. The payoff for player i, ui (x), is then converted to fecundity, Fi (x), by letting
Fi (x) := exp {δui (x)} for some selection intensity parameter, δ ⩾ 0. Thus, we can write

p(R,α) (x) =

⎧⎪⎪⎨⎪⎪⎩
1
N

Fα(i)(x)wα(i)i

∑N
j=1 Fj(x)wji

R = {i} for some i,

0 otherwise.

(SI.15)

Suppose now that we have a fixed fecundity-based replacement rule, q, together with a
stochastic state-to-fecundity mapping. Thus, for every state x ∈ {0, 1}N, there is a distribution
over fecundity vectors F ∈ [0, ∞)N. If Ex denotes expectation with respect to this distribution,
then one obtains a state-based rule,

p(R,α) (x) := Ex

[
q(R,α)

]
. (SI.16)

We consider fecundity-based replacement rules for which q(R,α) (F) = q◦(R,α) + δq′(R,α) (F) +
O
(
δ2) for some function q′(R,α) (F) whenever δ ≪ 1. Moreover, we assume that the distribu-

tion on fecundity is determined by randomness in the payoffs. Specifically, every individual,
i, receives a payoff, ui, based on some probability distribution. This payoff is then converted
to fecundity via the formula Fi (δ) = exp {δui}, where δ ⩾ 0 is the intensity of selection. It
follows that

d
dδ

Ex [Fi (δ)] = Ex
[
F′

i (δ)
]

(SI.17)

for every i = 1, . . . , N.
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Consider the “averaged” replacement rule, p(R,α) (x) := q(R,α) (Ex [F]). By the chain rule,

p(R,α) (x) = Ex

[
q(R,α)

]
= q◦(R,α) + δEx

[
q′(R,α)

]
+ O

(
δ2
)

= q◦(R,α) + δ
N

∑
i=1

∂q(R,α)

∂Fi

⏐⏐⏐⏐⏐
F=F(0)

Ex
[
F′

i (0)
]
+ O

(
δ2
)

= q◦(R,α) + δ
N

∑
i=1

∂q(R,α)

∂Fi

⏐⏐⏐⏐⏐
F=F(0)

dEx [Fi (δ)]

dδ

⏐⏐⏐⏐⏐
δ=0

+ O
(

δ2
)

. (SI.18)

It follows that

d
dδ

⏐⏐⏐⏐⏐
δ=0

p(R,α) (x) =
d
dδ

⏐⏐⏐⏐⏐
δ=0

p(R,α) (x) . (SI.19)

From this equation, together with the fact that fixation probabilities are defined by linear systems
whose coefficients are based on the replacement rule, we conclude that the first-order behavior
of the fixation probabilities must coincide under realized and expected payoffs. Thus, without a
loss of generality, we may assume that the state-to-fecundity mapping is deterministic.

Suppose that type A at location i pays Cij to donate Bij to j. Type B at this same location
pays cij to donate bij to j. Although this formulation accounts for general additive interactions,
we are mostly interested in the case in which A is a producer and B is a non-producer, meaning
bij = cij = 0 for every i and j. In the most general case, however, the cumulative payoff to i is

ui (x) =
N

∑
j=1

(
−xiCij − (1 − xi) cij + xjBji +

(
1 − xj

)
bji
)

. (SI.20)

This formulation can account for both accumulated and averaged payoffs due to the dependence
of Bij, Cij, bij, and cij on both i and j; we give explicit examples along these lines in §SI.3.

SI.1.6 Marginal replacement effects

By the results of §SI.1.5, we may assume (without a loss of generality) that the payoff-to-
fecundity map is deterministic. Let u : {0, 1}N → RN be a payoff function that assigns a
real number, ui (x), to each individual, i, and state, x. Individual i’s payoff is then converted
to fecundity by Fi (x) := exp {δui (x)}. Moreover, we assume that for every x ∈ {0, 1}N, we
have eij (x) = eij (F) (meaning eij depends on x only through the effects of x on fecundity).
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Letting mij
k := ∂

∂Fk

⏐⏐⏐
F=F(0)

eij (F) be the marginal effect of k on i replacing j, we see that

e′ij (x) =
N

∑
k=1

⎛⎝ ∂

∂Fk

⏐⏐⏐⏐⏐
F=F(0)

eij (F)

⎞⎠( d
dδ

⏐⏐⏐⏐⏐
δ=0

Fk (δ)

)
=

N

∑
k=1

mij
k uk (x) . (SI.21)

Note, in particular, that mij
k is independent of the payoffs and structure of the game. It can also

be easily calculated for any process from the details of the update rule; we give examples below.

SI.1.7 Condition for evolutionary success of A relative to B

Our condition for the success of A relative to B is based on the following result, which is a
modification of Theorem 8 of Allen and McAvoy (2019):

Lemma 1. For the class of processes described herein,

ρ′A > ρ′B ⇐⇒ E◦
RMC

[
∆̂′

sel

]
> 0. (SI.22)

Sketch of proof. The expected change in RV-weighted abundance of A in state x is

∆̂ (x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−u 1
N x = A,

u 1
N x = B,

∆̂sel (x) x ̸∈ {A, B} .

(SI.23)

Since this expected change must average out to 0 over the stationary distribution for the chain,

0 = EMSS

[
∆̂
]
= EMSS

[
∆̂sel

]
− u

1
N

πMSS (A) + u
1
N

πMSS (B) . (SI.24)

Differentiating this equation with respect to u at u = 0 gives

N
K

ERMC

[
∆̂sel

]
= lim

u→0
(πMSS (A)− πMSS (B))

=
ρA − ρB

ρA + ρB
, (SI.25)

where, again, K := limu→0 u/ (1 − πMSS (A)− πMSS (B)). Since ∆̂◦
sel (x) = 0 for every

x ∈ {0, 1}N, differentiating Equation SI.25 with respect to δ at δ = 0 gives

N
K◦E◦

RMC

[
∆̂′

sel

]
=

ρ′A − ρ′B
2ρ◦A

. (SI.26)

by Facts 1–3 in §SI.1.3. Since K◦ > 0 and ρ◦A = (1/N)∑N
i=1 πi = 1/N (see §SI.1.2), it
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follows that ρ′A > ρ′B if and only if E◦
RMC

[
∆̂′

sel

]
> 0, as desired.

Theorem 1.

ρ′A > ρ′B ⇐⇒
N

∑
i,j,k,ℓ=1

πim
ji
k

(
−
(
xjk − xik

)
(Ckℓ − ckℓ) +

(
xjℓ − xiℓ

)
(Bℓk − bℓk)

)
> 0.

(SI.27)

Proof. A straightforward calculation using the definition mij
k := ∂

∂Fk

⏐⏐⏐
F=F(0)

eij (F) gives

∆̂′
sel (x) =

N

∑
i=1

xi

(
b̂′i (x)− d̂′i (x)

)
=

N

∑
i,j=1

xi

(
e′ij (x)πj − e′ji (x)πi

)
=

N

∑
i,j=1

πi
(
xj − xi

)
e′ji (x)

=
N

∑
i,j,k=1

πim
ji
k

(
xj − xi

)
uk (x) . (SI.28)

Since xij := 2E◦
RMC

[
xixj

]
, we see that

E◦
RMC

[(
xj − xi

)
uk (x)

]
= E◦

RMC

[(
xj − xi

) N

∑
ℓ=1

(
−xkCkℓ−(1−xk)ckℓ
+xℓBℓk+(1−xℓ)bℓk

)]

=
1
2

N

∑
ℓ=1

(
−xjkCkℓ −

(
1 − xjk

)
ckℓ + xjℓBℓk +

(
1 − xjℓ

)
bℓk
)

− 1
2

N

∑
ℓ=1

(−xikCkℓ − (1 − xik) ckℓ + xiℓBℓk + (1 − xiℓ) bℓk)

=
1
2

N

∑
ℓ=1

(
−xjk (Ckℓ − ckℓ) + xjℓ (Bℓk − bℓk)

)
− 1

2

N

∑
ℓ=1

(−xik (Ckℓ − ckℓ) + xiℓ (Bℓk − bℓk)) . (SI.29)

The theorem then follows at once from Lemma 1.
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Corollary 1. When A is a producer and B is a non-producer (bij = cij = 0 for every i and j),

ρ′A > ρ′B ⇐⇒
N

∑
i,j,k,ℓ=1

πim
ji
k

(
−xjkCkℓ + xjℓBℓk

)
>

N

∑
i,j,k,ℓ=1

πim
ji
k (−xikCkℓ + xiℓBℓk) .

(SI.30)

Remark 1. Although Theorem 1 and Corollary 1 are stated in terms of xij, they can be evaluated
by replacing 1 − xij by τij since τij :=

(
1 − xij

)
/2K◦ for some K◦ > 0. τ can be easily

calculated using Equation SI.13 and the fact that τii = 0 for i = 1, . . . , N. However, the
statements of Theorem 1 and Corollary 1 are somewhat more intuitive using these probabilities,
xij, directly, since then the constituent terms can be interpreted as expected payoffs.

Returning to Equation 1 in the main text, let (i) Pji be the probability that a producer in
location j replaces a random individual in location i and (ii) Qji be the probability that a random
individual in location j replaces a producer in location i. Since P◦

ji = Q◦
ji (i.e. when δ = 0) and

P′
ji =

N

∑
k,ℓ=1

mji
k

(
−xjkCkℓ + xjℓBℓk

)
; (SI.31a)

Q′
ji =

N

∑
k,ℓ=1

mji
k (−xikCkℓ + xiℓBℓk) , (SI.31b)

we see that the signs of the first-order terms of ρA − ρB and ∑N
i,j=1 πi

(
Pji − Qji

)
agree.

SI.1.8 Relationship to inclusive fitness theory

Inclusive fitness theory (Hamilton, 1964, Lehmann and Rousset, 2014, Birch, 2017) is often used
to model the evolution of social behavior. According to this theory, individuals evolve to act as
if maximizing a quantity called inclusive fitness, which is a sum of fitness effects caused by an
actor, each weighted by relatedness to the recipient. Careful analysis has revealed that to define
the inclusive fitness of an individual requires weak selection, additivity of fitness effects, and
other assumptionsBirch (2017), Nowak et al. (2010), Allen and Nowak (2016), which hold in the
model considered here.

Before identifying inclusive fitness effects, we must define individual fitness. The fitness of
a vertex i in a given state x can be defined asAllen and McAvoy (2019)

ωi (x) = πi + b̂i (x)− d̂i (x) = πi +
N

∑
j=1

(
eij (x)πj − eji (x)πi

)
. (SI.32)

We observe that for neutral drift, fitness is simply equal to reproductive value, ω◦
i = πi. For

weak selection, we have

ω′
i (x) =

N

∑
j=1

(
e′ij (x)πj − e′ji (x)πi

)
. (SI.33)
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From Equation SI.21, this can be written as

ω′
i (x) =

N

∑
k=1

Mi
kuk (x) , (SI.34)

where the quantity

Mi
k :=

∂

∂Fk

⏐⏐⏐⏐⏐
F=F(0)

(
eij (F)πj − eji (F)πi

)
=

N

∑
j=1

(
mij

k πj − mji
k πi

)
(SI.35)

describes how the payoff to vertex k affects the fitness of vertex i. We observe from Equa-
tions (SI.28) and (SI.33) that

∆̂′
sel (x) =

N

∑
i=1

xiω
′
i (x) . (SI.36)

Substituting from Equation SI.20, we obtain

ω′
i (x) =

N

∑
k=1

[
Mi

k

N

∑
ℓ=1

(−xkCkℓ − (1 − xk) ckℓ + xℓBℓk + (1 − xℓ) bℓk)

]

=
N

∑
k=1

[
Mi

k

N

∑
ℓ=1

(−xkCkℓ − (1 − xk) ckℓ) +
N

∑
ℓ=1

Mi
ℓ (xkBkℓ + (1 − xk) bkℓ)

]

=
N

∑
k=1

[
xk

N

∑
ℓ=1

(
−CkℓMi

k + BkℓMi
ℓ

)
+ (1 − xk)

N

∑
ℓ=1

(
−ckℓMi

k + bkℓMi
ℓ

)]
. (SI.37)

The final line of Equation SI.37 expresses the neighbor-modulated fitness of vertex i, in that it
identifies the contribution (fitness effect) of each vertex k to the fitness of i. Specifically, this fit-
ness effect is ∑N

ℓ=1
(
−CkℓMi

k + BkℓMi
ℓ

)
for vertices k of type A, and ∑N

ℓ=1
(
−ckℓMi

k + bkℓMi
ℓ

)
for vertices k of type B.

To move from neighbor-modulated to inclusive fitness, one must causally attribute every
fitness effect on every individual to a particular actor in the population (Birch, 2017, Allen and
Nowak, 2016). Even in our simple model, this causal attribution is rather arbitrary and artificial.
For example, if individual i gives benefit Bij to individual j, which in turn alters individual k’s
fitness by an amount BijMk

j , to whom should this effect on k’s fitness be causally attributed? To
i, to j, or both? To make progress, we adopt the convention that all fitness effects are attributed
to the originator of the social good (e.g., terms of the form BijMk

j are attributed to individual i).
To formulate the inclusive fitness of individual i, we now multiply each effect attributable

to individual i by the relatedness of i to the recipient. For a given state x, we use a notion of
“relatedness in state,” such that the relatedness of two individuals is one if they have the same type
and zero otherwise; as a formula, the relatedness of i and j is xixj +(1 − xi)

(
1 − xj

)
. (Later, we

will average over states to obtain relatedness coefficients between zero and one.) Multiplying the
fitness effects from Eq. (SI.37) by the corresponding relatedness-in-state coefficients, we obtain
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the inclusive fitness effect of vertex i in state x as

ωIF
i (x) =

⎧⎪⎨⎪⎩
∑N

k,ℓ=1
(
−CiℓMk

i + BiℓMk
ℓ

)
xk xi = 1,

∑N
k,ℓ=1

(
−ciℓMk

i + biℓMk
ℓ

)
(1 − xk) xi = 0.

(SI.38)

We immediately see that

N

∑
i=1

xiω
IF
i (x) =

N

∑
i,k=1

(
−CiℓMk

i + BiℓMk
ℓ

)
xixk

=
N

∑
i,k=1

(
−CkℓMi

k + BkℓMi
ℓ

)
xixk

=
N

∑
i=1

xiω
′
i (x)

= ∆̂′
sel (x) . (SI.39)

Inclusive fitness, when it exists, is therefore an alternative accounting method that leads to the
same result for the gradient of selection, ∆̂′

sel (x).
To obtain fitness quantities that apply to the overall evolutionary process, we average over

the neutral RMC distribution, conditioned on the type of vertex i. First, we consider neighbor-
modulated fitness. If vertex i has type A then, noting that E◦

RMC
[
xj | xi = 1

]
= xij, we obtain

E◦
RMC

[
ω′

i (x) | xi = 1
]
=

N

∑
k=1

[
xik

N

∑
ℓ=1

(
−CkℓMi

k + BkℓMi
ℓ

)
+ (1 − xik)

N

∑
ℓ=1

(
−ckℓMi

k + bkℓMi
ℓ

) ]
. (SI.40)

If i has type B, then since E◦
RMC

[
xj | xi = 0

]
= 1 − xij, we have

E◦
RMC

[
ω′

i (x) | xi = 0
]
=

N

∑
k=1

[
(1 − xik)

N

∑
ℓ=1

(
−CkℓMi

k + BkℓMi
ℓ

)
+ xik

N

∑
ℓ=1

(
−ckℓMi

k + bkℓMi
ℓ

) ]
. (SI.41)

Now, turning to inclusive fitness, we have

E◦
RMC

[
ωIF

i (x) | xi = 1
]
=

N

∑
k,ℓ=1

(
−CiℓMk

i + BiℓMk
ℓ

)
xik, (SI.42)

44



for type A, and

E◦
RMC

[
ωIF

i (x) | xi = 0
]
=

N

∑
k,ℓ=1

(
−ciℓMk

i + biℓMk
ℓ

)
xik, (SI.43)

for type B.
From Equation SI.39 we have E◦

RMC

[
∆̂′

sel

]
= E◦

RMC

[
∑N

i=1 xiω
IF
i

]
= E◦

RMC

[
∑N

i=1 xiω
′
i

]
,

again demonstrating the equivalence of the neighbor-modulated and inclusive fitness accounting
methods, in the case of this model.

SI.2 Specific update rules

We now turn to specific examples of update rules (Figure 3) in graph-structured populations. Let(
wij
)N

i,j=1 be an undirected, unweighted, connected graph on N vertices. The degree of vertex i

is simply the number of links connected to that vertex, i.e. wi := ∑N
j=1 wij. This graph defines

the structure of the population, with links indicating neighbor relationships.

SI.2.1 Pairwise-comparison (PC) updating

Under PC updating (see Figure 3), the probability of replacement event (R, α) is

p(R,α) (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1
N piα(i)

Fα(i)(x)
Fi(x)+Fα(i)(x)

R = {i} for some i ∈ {1, . . . , N} , α (i) ̸= i,

1
N ∑N

j=1 pij
Fi(x)

Fi(x)+Fj(x)
R = {i} for some i ∈ {1, . . . , N} , α (i) = i,

0 otherwise.

(SI.44)

For i, j = 1, . . . , N, the marginal probability that i transmits its offspring to j ̸= i is

eij (x) =
1
N

pji
Fi (x)

Fi (x) + Fj (x)
, (SI.45)

which gives a marginal effect of k on i replacing j of

mij
k =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
4N pji k = i,

− 1
4N pji k = j,

0 k ̸= i, j.

(SI.46)
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It follows that

N

∑
i,j,k,ℓ=1

πim
ji
k

(
−xjkCkℓ + xjℓBℓk

)
=

N

∑
i,j=1

πi

[
1

4N
pij

N

∑
ℓ=1

(
−xjjCjℓ + xjℓBℓj

)
− 1

4N
pij

N

∑
ℓ=1

(
−xjiCiℓ + xjℓBℓi

) ]
; (SI.47a)

N

∑
i,j,k,ℓ=1

πim
ji
k (−xikCkℓ + xiℓBℓk) =

N

∑
i,j=1

πi

[
1

4N
pij

N

∑
ℓ=1

(
−xijCjℓ + xiℓBℓj

)
− 1

4N
pij

N

∑
ℓ=1

(−xiiCiℓ + xiℓBℓi)

]
. (SI.47b)

The reproductive value of i under PC updating is πi = wi/ ∑N
k=1 wk. Since πi pij = πj pji for

every i and j, it follows that ρA > ρB for small δ > 0 if and only if

N

∑
i=1

πi

N

∑
ℓ=1

(−xiiCiℓ + xiℓBℓi) >
N

∑
i,j=1

πi pij

N

∑
ℓ=1

(
−xijCjℓ + xiℓBℓj

)
, (SI.48)

which gives Equation 7 in the main text. To evaluate this condition, recall that we can replace
1 − xij by τij, where, by Equation SI.13,

τij =
1
N

+
1

2N

N

∑
k=1

pikτkj +
1

2N

N

∑
k=1

pjkτik +

(
1 − 1

N

)
τij, (SI.49)

which implies that τij = 1+(1/2)∑N
k=1 pikτkj +(1/2)∑N

k=1 pjkτik whenever i ̸= j. (For i = j,
we have τii = 0 for i = 1, . . . , N). Using this substitution, we obtain Equation 9 in the main
text.

SI.2.2 Death-birth (DB) updating

Under DB updating (see Figure 3), the probability of replacement event (R, α) is

p(R,α) (x) =

⎧⎪⎪⎨⎪⎪⎩
1
N

wiα(i)Fα(i)(x)

∑N
k=1 wikFk(x)

R = {i} for some i ∈ {1, . . . , N} ,

0 otherwise.

(SI.50)

For i, j = 1, . . . , N, the marginal probability that i transmits its offspring to j is

eij (x) =
1
N

wjiFi (x)

∑N
k=1 wjkFk (x)

. (SI.51)
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Therefore, the marginal effect of k on i replacing j is

mij
k =

⎧⎪⎨⎪⎩
1
N pji

(
1 − pji

)
k = i,

− 1
N pji pjk k ̸= i.

(SI.52)

Again, the reproductive value of i is πi = wi/ ∑N
k=1 wk. Since πi pij = πj pji for every i and j,

N

∑
i,j,k,ℓ=1

πim
ji
k

(
−xjkCkℓ + xjℓBℓk

)
=

N

∑
i=1

πi
1
N

N

∑
ℓ=1

(−xiiCiℓ + xiℓBℓi)

−
N

∑
i=1

πi

N

∑
k=1

1
N

p(2)ik

N

∑
ℓ=1

(−xikCkℓ + xiℓBℓk) ; (SI.53a)

N

∑
i,j,k,ℓ=1

πim
ji
k (−xikCkℓ + xiℓBℓk) = 0. (SI.53b)

Consequently, we see that ρA > ρB for small δ > 0 if and only if

N

∑
i=1

πi

N

∑
ℓ=1

(−xiiCiℓ + xiℓBℓi) >
N

∑
i,j=1

πi p
(2)
ij

N

∑
ℓ=1

(
−xijCjℓ + xiℓBℓj

)
, (SI.54)

which gives Equation 10 in the main text. To evaluate this condition, for i ̸= j we can replace
1 − xij by τij, where, by Equation SI.13,

τij =
1
N

+
1
N

N

∑
k=1

pikτkj +
1
N

N

∑
k=1

pjkτik +

(
1 − 2

N

)
τij, (SI.55)

which implies that τij = 1/2+ (1/2)∑N
k=1 pikτkj + (1/2)∑N

k=1 pjkτik whenever i ̸= j. (Again,
we have τii = 0 for i = 1, . . . , N.) Since we can evaluate Equation 11 using any non-zero
multiple of τ, it suffices to replace τ by 2τ and use the recurrence τij = 1+(1/2)∑N

k=1 pikτkj +

(1/2)∑N
k=1 pjkτik when i ̸= j, the same as that of PC updating (and also of Allen et al., 2017,

Fotouhi et al., 2018, Allen and McAvoy, 2019). This substitution leads to Equation 11 in the
main text.
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SI.2.3 Imitation (IM) updating

Under IM updating (see Figure 3), the probability of replacement event (R, α) is

p(R,α) (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
N

wiα(i)Fα(i)(x)

Fi(x)+∑N
k=1 wikFk(x)

R = {i} for some i ∈ {1, . . . , N} , α (i) ̸= i,

1
N

Fi(x)
Fi(x)+∑N

k=1 wikFk(x)
R = {i} for some i ∈ {1, . . . , N} , α (i) = i,

0 otherwise.

(SI.56)

For i, j = 1, . . . , N, the probability that i transmits its offspring to j ̸= i is

eij (x) =
1
N

wjiFi (x)

Fj (x) + ∑N
k=1 wjkFk (x)

, (SI.57)

and the marginal effect of k on i replacing j ̸= i is

mij
k =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
N

wji
wj+1

(
1 − wji

wj+1

)
k = i,

− 1
N

(
wji

wj+1

)2
k = j,

− 1
N

wji
wj+1

wjk
wj+1 k ̸= i, j.

(SI.58)

Let
(
w̃ij
)N

i,j=1 be the matrix defined by w̃ii = 1 and w̃ij = wij for i ̸= j. We also define an
analogue of pij = wij/wi, namely p̃ij := w̃ij/w̃i. Under IM updating, reproductive value is
now πi = w̃i/ ∑N

k=1 w̃k. Since πi p̃ij = πj p̃ji for every i and j, a straightforward calculation
gives

N

∑
i,j,k,ℓ=1

πim
ji
k

(
−xjkCkℓ + xjℓBℓk

)
−

N

∑
i,j,k,ℓ=1

πim
ji
k (−xikCkℓ + xiℓBℓk)

=
1
N

N

∑
i,ℓ=1

πi (−xiiCiℓ + xiℓBℓi)−
1
N

N

∑
i,j,ℓ=1

πi p̃
(2)
ij
(
−xijCjℓ + xiℓBℓj

)
(SI.59)

Therefore, ρA > ρB for small δ > 0 if and only if

N

∑
i=1

πi

N

∑
ℓ=1

(−xiiCiℓ + xiℓBℓi) >
N

∑
i,j=1

πi p̃
(2)
ij

N

∑
ℓ=1

(
−xijCjℓ + xiℓBℓj

)
, (SI.60)
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which gives Equation 12 in the main text. To evaluate this condition, we replace 1 − xij by τij,
where τii = 0 for i = 1, . . . , N and, for i ̸= j,

τij =
1
N

+
1
N

N

∑
k=1

p̃ikτkj +
1
N

N

∑
k=1

p̃jkτik +

(
1 − 2

N

)
τij, (SI.61)

which gives the recurrence τij = 1/2 + (1/2)∑N
k=1 p̃ikτkj + (1/2)∑N

k=1 p̃jkτik. Again, we can
replace τ by 2τ (since Equation 14 can be evaluated using any non-zero multiple of τ) and use
τij = 1 + (1/2)∑N

k=1 p̃ikτkj + (1/2)∑N
k=1 p̃jkτik when i ̸= j. We therefore obtain Equation 14

in the main text. We note that Equation 14, as well as τ, can be obtained from the corresponding
results for DB updating by replacing w with w̃ and p with p̃.

SI.3 Specific social goods

For the three main kinds of social goods we consider, we have Bij = bβij and Cij = cγij, where

(
βij, γij

)
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(
wij, wij

)
pp,

(
wij/wi, wij/wi

)
ff,

(
wij, wij/wi

)
pf.

(SI.62)

When considering the differences between fixed and proportional benefits and costs, there is one
more case: fp (fixed benefits and proportional costs), i.e.

(
βij, γij

)
=
(
wij/wi, wij

)
. However,

this kind of good is somewhat less natural than the others because it involves the production of a
good with fixed total benefit whose cost rises with the number of recipients. A good of this form
could model a situation in which the cost is tied to the transmission of the good rather than its
production. For example, consider a rival, divisible good that is either costless to produce (or else
is readily available to a donor, who does not need to “produce” it). Then, if there are k neighbors,
each one gets b/k, where b is the benefit of the good. But if the process of transmitting or
delivering the good costs c per recipient, then the total benefit is b and the total cost is kc. While
our general theory can account for this kind of good, we focus primarily on the other three.

SI.3.1 PC updating

On regular graphs of degree d, all individuals have exactly d neighbors, and there is a sim-
ple correspondence between different kinds of donations. For pp-goods, a producer pays dc
in total in order to donate b to each and every neighbor (for a total of db). Thus, ff-goods
can be obtained from pp-goods by scaling both b and c by 1/d. pf-goods can be obtained
from pp-goods by scaling c (but not b) by 1/d. But we can say more: from the recurrence
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τij = 1 + (1/2)∑N
k=1 pikτkj + (1/2)∑N

k=1 pjkτik, we see that

N

∑
i,j,ℓ=1

πi pij pℓjτiℓ =
N

∑
i,j=1

πi pijτij − 1. (SI.63)

Therefore,

N

∑
i,j=1

πi pij

N

∑
ℓ=1

(
τiℓ − τjℓ

)
pℓj = −1. (SI.64)

It follows that the denominator of (b/c)∗ in Equation 9 is negative for pp-, ff-, pf-, and fp-goods
on regular graphs. Thus, regular graphs can never support producers over non-producers under
PC updating.

We now turn to a couple of examples of PC updating on heterogeneous graphs:

Example 1 (Cluster of stars). On heterogeneous graphs, the results are much more interesting.
Consider, for example, a cluster of stars conjoined by a complete graph at their hubs (Extended
Data Figure 9). Let i ∼ j indicate that i and j reside on the same star, and let H and L be the set
of hubs and leaves of the structure, respectively. If there are m stars in total, each of size n, then

τij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m3+4m2n−3m2+4mn2−6mn−2m+2n2−9n+8
2m2+4mn−6m+2n2−5n+4 i ∈ H, j ∈ L, i ∼ j,

2m3+9m2n−10m2+12mn2−28mn+16m+4n3−14n2+16n−8
2m2+4mn−6m+2n2−5n+4 i ∈ H, j ∈ L, i ̸∼ j,

2m3+9m2n−13m2+12mn2−34mn+25m+4n3−16n2+21n−10
2m2+4mn−6m+2n2−5n+4 i ∈ H, j ∈ H, i ̸= j,

m3+4m2n−m2+4mn2−2mn−8m+4n2−14n+12
2m2+4mn−6m+2n2−5n+4 i ∈ L, j ∈ L, i ∼ j, i ̸= j,

2m3+9m2n−8m2+12mn2−24mn+10m+4n3−12n2+11n−4
2m2+4mn−6m+2n2−5n+4 i ∈ L, j ∈ L, i ̸∼ j,

0 i = j
(SI.65)

by Equation SI.13. These quantities give all of the times τ by symmetry.
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Using Equation 9, we find that

(
b
c

)∗
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
2m2+4mn−6m
+2n2−5n+4

)(
m3+4m2n−7m2+4mn2

−14mn+13m−n2+3n−3

)
(

m4n−3m4+5m3n2−21m3n+22m3+8m2n3−47m2n2+85m2n
−53m2+4mn4−34mn3+88mn2−96mn+42m−2n4+7n3−5n2−n

) pp,

(
2m5+13m4n−21m4+31m3n2−96m3n+78m3

+32m2n3−145m2n2+221m2n−119m2+12mn4

−72mn3+153mn2−144mn+56m−6n3+25n2−32n+12

)
(

m5n−m5+6m4n2−17m4n+9m4+13m3n3−61m3n2+83m3n−29m3

+12m2n4−81m2n3+180m2n2−157m2n+39m2+4mn5−38mn4

+120mn3−167mn2+103mn−18m−2n5+11n4−21n3+18n2−7n

) ff,

(
2m4+11m3n−17m3+20m2n2−57m2n+44m2

+12mn3−48mn2+63mn−31m−6n2+13n−6

)
(

m4n−3m4+5m3n2−21m3n+22m3+8m2n3−47m2n2+85m2n
−53m2+4mn4−34mn3+88mn2−96mn+42m−2n4+7n3−5n2−n

) pf.

(SI.66)

As n grows, this critical ratio approaches (4m − 1) / (2m − 1) for pp-goods. For pf-goods and
ff-goods, this ratio is asymptotic to (6m/ (2m − 1)) /n as n → ∞; in particular, it approaches
0. Therefore, for any b, c > 0, there exists n such that producers are favored over non-producers.

Example 2 (Rich club). The “rich club” (Fotouhi et al., 2018) is a structure consisting of a well-
connected group of m individuals, together with n individuals at the periphery (see Figure 4).
Each peripheral individual is connected to all m members of the central rich club and nobody
else. Every member of the rich club is connected to all other individuals in the population. An
example of such a structure is shown in Figure 4. A straightforward calculation shows that the
unique solution to Equation SI.13 with τii = 0 for i = 1, . . . , N is

τij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m3+4m2n−m2+4mn2−4mn−n2+2n−1
m2+3mn+n2−n i ∈ R, j ∈ P,

m3+4m2n+4mn2−mn+n−1
m2+3mn+n2−n i ∈ P, j ∈ P, i ̸= j,

m(m2+4mn−m+4n2−4n)
m2+3mn+n2−n i ∈ R, j ∈ R, i ̸= j,

0 i = j.

(SI.67)

Again, these quantities give all of the times τ by symmetry.
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By Equation 9, it follows that

(
b
c

)∗
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(m2+3mn+n2−n)(m3+4m2n−3m2+4mn2−7mn+3m−n2+2n−1)
−m4−6m3n+2m3−11m2n2+9m2n−m2−5mn3+9mn2−4mn+n4−3n2+2n pp,

m(m+n−1)
(

m4+6m3n−2m3+12m2n2−10m2n+m2

+8mn3−12mn2+4mn−2n3+4n2−2n

)
(

−m5−6m4n+2m4−12m3n2+10m3n−m3−8m2n3

+12m2n2−4m2n+2mn3−4mn2+2mn+n5−2n4+2n2−n

) ff,

m4+6m3n−2m3+12m2n2−10m2n+m2+8mn3−12mn2+4mn−2n3+4n2−2n
−m4−6m3n+2m3−11m2n2+9m2n−m2−5mn3+9mn2−4mn+n4−3n2+2n pf.

(SI.68)

As n grows, this ratio approaches 4m− 1 for pp-goods. This ratio is asymptotic to (2m (4m − 1)) /n
for ff-goods and (2 (4m − 1)) /n for pf-goods.

SI.3.2 DB updating

For pp-goods on a d-regular graph, (b/c)∗ = d (N − 2) / (N − 2d) (Chen, 2013, Chen et al.,
2016, McAvoy and Allen, 2019), which therefore gives (b/c)∗ for ff-goods as well. For pf-
goods, (b/c)∗ = (N − 2) / (N − 2d). For all three kinds of donation, it is clear that selection
can favor producers over non-producers on a d-regular graph only if b > c. However, we can
find heterogeneous graphs on which producers are favored over non-producers even when b < c.

Example 3 (Cluster of stars). By Equations SI.65 and 11, under DB updating we have

(
b
c

)∗
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
2m5+11m4n−21m4+21m3n2−80m3n+78m3

+16m2n3−93m2n2+186m2n−127m2+4mn4−34mn3

+114mn2−171mn+96m−4n4+26n3−70n2+82n−36

)

(m−1)
(

m3n−3m3+5m2n2−17m2n+18m2+8mn3

−34mn2+58mn−37m+4n4−22n3+52n2−62n+30

) pp,

(
2m3+6m2n−10m2+6mn2

−19mn+16m+2n3−9n2+14n−8

)( 2m4+11m3n−19m3+20m2n2

−65m2n+56m2+12mn3−58mn2

+92mn−53m−4n3+10n2−10n+6

)

(m−1)
(

2m2+4mn−6m
+2n2−5n+4

)( m4n−m4+6m3n2−16m3n+8m3+13m2n3

−55m2n2+75m2n−27m2+12mn4−70mn3+155mn2

−150mn+48m+4n5−30n4+92n3−144n2+116n−36

) ff,

(
2m4+11m3n−19m3+20m2n2−65m2n+56m2

+12mn3−58mn2+92mn−53m−4n3+10n2−10n+6

)
(m−1)

(
m3n−3m3+5m2n2−17m2n+18m2+8mn3

−34mn2+58mn−37m+4n4−22n3+52n2−62n+30

) pf.

(SI.69)

As n → ∞, this ratio approaches 1 under pp. For both pf-goods and ff-goods, this ratio is
asymptotic to ((3m − 1) / (m − 1)) /n as n → ∞. Thus, for any m > 1, there exists n for
which this population structure can support producers over non-producers even when 0 < b < c.
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Example 4 (Rich club). For the rich club evolving according to DB updating,

(
b
c

)∗
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
−m5−7m4n+4m4−17m3n2+23m3n−5m3−16m2n3+40m2n2

−23m2n+2m2−4mn4+21mn3−29mn2+12mn+4n4−9n3+6n2−n

)
(m−1)(m+3n−2)(m2+3mn+n2−n) pp,

m(m+n−1)
(
−m4−6m3n+3m3−12m2n2+15m2n−2m2

−8mn3+19mn2−8mn+4n3−7n2+3n

)
(m−1)

(
m4+6m3n−2m3+11m2n2−8m2n

+5mn3−6mn2+mn−n4+n3+n2−n

) ff,

(
−m4−6m3n+3m3−12m2n2+15m2n−2m2

−8mn3+19mn2−8mn+4n3−7n2+3n

)
(m−1)(m+3n−2)(m2+3mn+n2−n) pf.

(SI.70)

For fixed m > 1, we see that

lim
n→∞

(
b
c

)∗
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−∞ pp,

4m(2m−1)
m−1 ff,

−4(2m−1)
3(m−1) pf.

(SI.71)

SI.3.3 On the necessity of b > c for pp-goods

When 0 < b ⩽ c, pp-goods have the property that no producer can have a payoff of more than 0.
Since every non-producer has a payoff of at least 0, it follows that every non-producer has at least
the payoff of the best-performing producer in the population. Informally speaking, when higher
payoffs result in more reproductive success, it should follow that producers of pp-goods cannot
be favored over non-producers when 0 < b ⩽ c. Here, we make this claim more formally.

Recall that the expected change RV-weighted abundance of A due to selection is

∆̂sel (x) =
N

∑
i,j=1

πi
(
xj − xi

)
eji (x)

=
N

∑
i,j=1

πi
(
(1 − xi) xj − xi

(
1 − xj

))
eji (x)

=
N

∑
i=1

πi

[
(1 − xi)

N

∑
j=1

xjeji (x)− xi

N

∑
j=1

(
1 − xj

)
eji (x)

]
. (SI.72)

The term ∑N
j=1 xjeji (x) is the probability that a producer replaces i, while ∑N

j=1
(
1 − xj

)
eji (x)

is the probability that a non-producer replaces i. When i is a non-producer the former should
be reduced by selection; when i is a producer, the latter should be increased by selection. This
property, of course, is not guaranteed to hold for any replacement rule, but it is reasonable to
expect it to hold in models for which higher payoffs result in greater competitive abilities.
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For example, this property is easily seen to hold for PC, DB, and IM updating for pp-goods
when b ⩽ c. We do not include all of the details here, but it is straightforward to verify this
claim using Equations SI.45, SI.51, and SI.57. Since then ∆̂′

sel (x) ⩽ 0 for every x ∈ {0, 1}N,
producers cannot be favored over non-producers; such behavior would require b > c.

The same argument works for fp-goods as well. However, we have already seen numerous
examples of when selection favors producers of ff- and pf-goods even when 0 < b ⩽ c. The
reason the argument presented here does not apply to ff- and pf-goods is that there can still be
states in which some producers have higher payoffs than non-producers when 0 < b ⩽ c.

SI.3.4 Monomorphic states and prosocial inequality

Let A and B denote the all-A and all-B states, respectively. As a simple example of what the
monomorphic states look like in a heterogeneous population, consider the star graph (Figure 4 or
Extended Data Figure 9 with m = 1). For all three kinds of donation, uhub (B) = uleaf (B) = 0.
We look at the other monomorphic state, A, separately:

For pp-goods, we have uhub (A) = (N − 1) (b − c) and uleaf (A) = b − c, which gives

u (A) = 2
(

1 − 1
N

)
(b − c) ; (SI.73a)

uhub (A)− uleaf (A) = (N − 2) (b − c) ; (SI.73b)

max {uhub (A) , uleaf (A)} =

⎧⎪⎨⎪⎩
(N − 1) (b − c) b ⩾ c,

b − c b < c;
(SI.73c)

min {uhub (A) , uleaf (A)} =

⎧⎪⎨⎪⎩
b − c b ⩾ c,

(N − 1) (b − c) b < c.
(SI.73d)

For ff-goods, uhub (A) = (N − 1) b − c and uleaf (A) = b/ (N − 1)− c, giving

u (A) = b − c; (SI.74a)

uhub (A)− uleaf (A) =
N (N − 2)

N − 1
b; (SI.74b)

max {uhub (A) , uleaf (A)} = (N − 1) b − c; (SI.74c)

min {uhub (A) , uleaf (A)} =
1

N − 1
b − c. (SI.74d)

54



Finally, for pf-goods, uhub (A) = (N − 1) b − c and uleaf (A) = b − c, so we have

u (A) = 2
(

1 − 1
N

)
b − c; (SI.75a)

uhub (A)− uleaf (A) = (N − 2) b; (SI.75b)
max {uhub (A) , uleaf (A)} = (N − 1) b − c; (SI.75c)
min {uhub (A) , uleaf (A)} = b − c. (SI.75d)

SI.3.5 Accumulated versus averaged payoffs

For each kind of social good considered thus far, we have used accumulation to determine overall
payoff in a population. An alternative method, which is popular for pp-goods (Maciejewski et al.,
2014, Allen et al., 2017, Szabó and Fáth, 2007, Tomassini et al., 2007, Antonioni and Tomassini,
2012, Allen et al., 2013a, Wu et al., 2013b), involves averaging these payoffs instead of adding
them. In other words, if, under accumulated payoffs, Bij is the benefit to j due to the donation of
i and Cij is the corresponding cost (to i), then, under averaged payoffs, these terms undergo the
transformation

Bij =
Bij

wj
; (SI.76a)

Cij =
Cij

wi
. (SI.76b)

Using averaged payoffs, we obtain ρ′A > ρ′B under PC updating if and only if γb > βc, where

β ; γ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∑N
i,j=1 πi pijτij ; −1 pp,

∑N
i,j=1 πi pijτij

1
wj

; ∑N
i,j,ℓ=1 πi pij

(
τiℓ − τjℓ

) pjℓ
wℓ

ff,

∑N
i,j=1 πi pijτij

1
wj

; −1 pf.

(SI.77)

For both pp-goods and pf-goods with payoff averaging, we have γ < 0, which means that
producers can never be favored over non-producers in the limit of weak selection. In contrast, for
ff-goods with averaging, there do exist structures on which γ > 0. For example, on the star of
size N, we have (b/c)∗ =

(
3N2 − 4N

)
/
(

N2 − 8N + 8
)
, which converges to 3 as N → ∞.

Coincidentally, this ratio is the same as that of pp-goods with accumulated payoffs on the star
(c.f. Equation SI.66). In general, however, the conditions for ρA > ρB are distinct in these two
cases (pp-goods with accumulation and ff-goods with averaging).

SI.3.6 Additional contribution to a public pool

Consider ff-goods on a star. Suppose that for some θ ∈ [0, 1], each producer contributes
(1 − θ) b to their neighborhood and θb to a common pool. The overall cost is c, and the common
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pool gets divided among all members of the population. This scenario is depicted in Extended
Data Figure 14. If θ is the contribution rate to the common pool, then, under PC updating,
selection favors producers over non-producers on a star of size N when

b
c
>

(
b
c

)∗

θ

:=
1

1 − θ

6N2 − 14N + 8
N3 − 6N2 + 6N

. (SI.78)

In the all-non-producer state, everyone has a payoff of 0. In the all-producer state, the payoff to
the hub is (N − 1) (1 − θ) b − c + θb and the payoff each leaf is (1 − θ) b/ (N − 1)− c + θb.
The payoff to each leaf individual is at least zero if and only if b > c and

θ > θ∗ =
(N − 1) c − b

b (N − 2)
. (SI.79)

Note that 0 < θ∗ < 1 if and only if c < b < (N − 1) c. At the contribution level θ = θ∗, the
hub gets N (b − c) and the leaves all get 0 in the all-producer state.

For example, suppose that b = 2 and c = 1. Then,

θ∗ =
N − 3

2 (N − 2)
, (SI.80)

which approaches c/b = 1/2 as N → ∞. Therefore, everyone is at least as well off as in the
all-non-producer state, and moreover producers can evolve whenever N is not too small, since

b
c
= 2 >

(
b
c

)∗
=

2 (N − 2)
N − 1

6N2 − 14N + 8
N3 − 6N2 + 6N

≍ 12
N

. (SI.81)

Note that for pp-goods without contribution to a common pool, we require b/c > 3 on the star.

SI.4 Reciprocity

We now consider more complex behavioral types as outlined in the model of reciprocity de-
scribed in the main text. Let A denote the strategy “tit-for-tat” (TFT) and let B denote the
strategy “always defect” (ALLD). The payoff to player i in the tth round of the game is

ut
i (x) =

⎧⎪⎨⎪⎩
∑N

j=1
(
−xiCij + xjBji

)
t = 1,

∑N
j=1 xixj

(
−Cij + Bji

)
t > 1.

(SI.82)
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If the discounting factor (continuation probability) is λ ∈ [0, 1), then the overall payoff is

ui (x) = (1 − λ)

(
N

∑
j=1

(
−xiCij + xjBji

)
+

∞

∑
t=1

λt
N

∑
j=1

xixj
(
−Cij + Bji

))

= (1 − λ)
N

∑
j=1

(
−xiCij + xjBji

)
+ λ

N

∑
j=1

xixj
(
−Cij + Bji

)
. (SI.83)

The case λ = 0 recovers the standard setup of social goods, where A is a producer and B
is a non-producer. Since intermediate λ can be captured by a linear combination of λ = 0 and
λ = 1, we now focus on the condition for λ = 1. When λ = 1, the δ-derivative of the change in
the RV-weighted abundance of A due to selection at δ = 0 is

∆̂′
sel (x) =

N

∑
i,j,k=1

πim
ji
k

(
xj − xi

)
uk (x)

=
N

∑
i,j,k=1

πim
ji
k

(
xj − xi

) N

∑
ℓ=1

xkxℓ (−Ckℓ + Bℓk)

=
N

∑
i,j,k,ℓ=1

πim
ji
k (−Ckℓ + Bℓk)

(
xjxkxℓ − xixkxℓ

)
. (SI.84)

Using the identity (Allen and McAvoy, 2019)

E◦
RMC

[
xixjxk

]
=

1
2
(
E◦

RMC
[
xixj

]
+ E◦

RMC [xixk] + E◦
RMC

[
xjxk

])
− 1

4
, (SI.85)

we see that

E◦
RMC

[
xjxkxℓ − xixkxℓ

]
=

1
2

(
E◦

RMC
[
xjxk

]
+ E◦

RMC
[
xjxℓ

]
− E◦

RMC [xixk]− E◦
RMC [xixℓ]

)
. (SI.86)

With xij = 2E◦
RMC

[
xixj

]
, it follows that

E◦
RMC

[
∆̂′

sel

]
=

1
4

N

∑
i,j,k,ℓ=1

πim
ji
k (−Ckℓ + Bℓk)

(
xjk + xjℓ − xik − xiℓ

)
. (SI.87)

Therefore, for λ = 1, we see that E◦
RMC

[
∆̂′

sel

]
> 0 if and only if

N

∑
i,j,k,ℓ=1

πim
ji
k (−Ckℓ + Bℓk)

(
xjk + xjℓ

)
>

N

∑
i,j,k,ℓ=1

πim
ji
k (−Ckℓ + Bℓk) (xik + xiℓ) . (SI.88)
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Consequently, for any λ ∈ [0, 1], we have E◦
RMC

[
∆̂′

sel

]
> 0 (and thus ρA > ρB) if and only if

N

∑
i,j,k,ℓ=1

πim
ji
k

(
−
(
xjk + λxjℓ

)
Ckℓ +

(
xjℓ + λxjk

)
Bℓk
)

>
N

∑
i,j,k,ℓ=1

πim
ji
k (− (xik + λxiℓ)Ckℓ + (xiℓ + λxik) Bℓk) , (SI.89)

which is Equation 2 in the main text.
We now turn to specific update rules. In each case, the terms πi, mji

k , xij, and τij are exactly
the same as they were when there was no reciprocity involved (i.e. λ = 0). Therefore, in each
case we take these quantities to be the same as they were previously and instead focus on the
selection condition.

SI.4.1 PC updating

Using the approach in §SI.2.1, for PC updating we find that ρ′A > ρ′B if and only if

N

∑
i=1

πi

N

∑
ℓ=1

(− (xii + λxiℓ)Ciℓ + (xiℓ + λxii) Bℓi)

>
N

∑
i,j=1

πi pij

N

∑
ℓ=1

(
−
(
xij + λxiℓ

)
Cjℓ +

(
xiℓ + λxij

)
Bℓj
)

. (SI.90)

SI.4.2 DB updating

Using the approach in §SI.2.2, for DB updating we find that ρ′A > ρ′B if and only if

N

∑
i,ℓ=1

πi (− (xii + λxiℓ)Ciℓ + (xiℓ + λxii) Bℓi)

>
N

∑
i,j,ℓ=1

πi p
(2)
ij
(
−
(
xij + λxiℓ

)
Cjℓ +

(
xiℓ + λxij

)
Bℓj
)

. (SI.91)

SI.4.3 IM updating

Using the approach in §SI.2.3, for IM updating we find that ρ′A > ρ′B if and only if

N

∑
i,ℓ=1

πi (− (xii + λxiℓ)Ciℓ + (xiℓ + λxii) Bℓi)

>
N

∑
i,j,ℓ=1

πi p̃
(2)
ij
(
−
(
xij + λxiℓ

)
Cjℓ +

(
xiℓ + λxij

)
Bℓj
)

. (SI.92)
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SI.4.4 Undiscounted games (λ = 1)

When λ = 1, the conditions stated above for PC, DB, and IM updating each have the form

N

∑
i,ℓ=1

πi (− (xii + xiℓ)Ciℓ + (xiℓ + xii) Bℓi)

>
N

∑
i,j,ℓ=1

πiPij
(
−
(
xij + xiℓ

)
Cjℓ +

(
xiℓ + xij

)
Bℓj
)

(SI.93)

for some N × N stochastic matrix
(

Pij
)N

i,j=1 with πiPij = πjPji for every i and j. Replacing
1 − xij by τij and rearranging gives an equivalent condition for ρA > ρB, namely

N

∑
i,j,ℓ=1

πiPij
(
τij + τjℓ − τiℓ

)
(Bℓi − Ciℓ) > 0. (SI.94)

Lemma 2. If N ⩾ 3, then ∑N
j=1 πiPij

(
τij + τjℓ − τiℓ

)
> 0 for every i and ℓ.

Proof. We first show that 1 − xij − xjℓ + xiℓ ⩾ 0. Note that

1 − xij − xjℓ + xiℓ = E◦
RMC

[
xi(1−xj)+(1−xi)xj

−xjxℓ−(1−xj)(1−xℓ)
+xixℓ+(1−xi)(1−xℓ)

]
= 2E◦

RMC
[
xj − xixj + xixℓ − xjxℓ

]
. (SI.95)

The term xj − xixj + xixℓ − xjxℓ is 1 if and only if xi = xℓ and xj ̸= xi, xℓ; otherwise, it is
0. Therefore, its expectation (with respect to any distribution) is non-negative. Furthermore, for
any j, the state ej with

(
ej
)

j = 1 and
(
ej
)

k = 0 for k ̸= j satisfies π◦
RMC

(
ej
)
> 0 since it arises

from state B after a mutation to A in location j. Thus, τij + τjℓ > τiℓ whenever j ̸= i, ℓ.
Now, fix i and ℓ, and let j ̸= i, ℓ be such that Pij > 0. Since Pij is the probability of

transitioning from i to j in either a one- or two-step random walk, such a choice of j is possible
as long as N ⩾ 3. We also have τij + τjℓ > τiℓ, hence πiPij

(
τij + τjℓ − τiℓ

)
> 0, as desired.

As a consequence of Lemma 2, we see that PMB goods (those with Bji ⩾ Cij for every i and
j, with strict inequality for at least one pair (i, j)) are always favored by selection when λ = 1.
Furthermore, for Bij = bβij and Cij = cγij (not necessarily PMB), the denominator of

(
b
c

)∗

λ=1
=

∑N
i,j,ℓ=1 πiPij

(
τij + τjℓ − τiℓ

)
γiℓ

∑N
i,j,ℓ=1 πiPij

(
τij + τjℓ − τiℓ

)
βℓi

(SI.96)

is positive (provided β is not identically zero). Thus, the critical ratio gives a lower bound on
b/c for the evolution of TFT relative to ALLD (as opposed to an upper bound, which occurs
when the denominator of the critical ratio is negative). In particular, for any social good with
Bij = bβij and Cij = cγij for every i and j, where β and γ are independent of b and c, producers
of this social good can evolve in the undiscounted game whenever b/c is sufficiently large.
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SI.5 Relationship to prior literature

Broadly speaking, our contribution is twofold: (i) a general theory of the evolutionary success of
producers and (ii) applications of this theory that uncover surprising results about producers of
certain social goods. Our framework and results are general in two distinct ways. First, each type
(A and B) can be producers of arbitrary social goods. If i has type A, then he or she provides Bij
to j at a cost of Cij. If i has type B, then he or she gives bij to j at a cost of cij. Second, we do not
assume that evolution proceeds according to a specific update rule (e.g. PC, DB, or IM). We treat
specific update rules in the examples, but our conditions for evolutionary success hold in a much
more general context, namely for distributions over replacement events,

{
p(R,α) (x)

}
(R,α)

.

Here, we review prior related literature for evolutionary games in structured populations and
highlight how our work relates to these previous results.

SI.5.1 Pairwise games in structured populations

There is an extensive literature on 2 × 2 matrix games in graph-structured populations (Hauert
and Doebeli, 2004, Nowak and May, 1992, Ohtsuki et al., 2006, Débarre et al., 2014, Santos and
Pacheco, 2005, Gómez-Gardenes et al., 2007, Allen et al., 2017, Nowak et al., 2009, Szabó and
Fáth, 2007, Blume, 1993, Tarnita et al., 2009b). Such a matrix game can be written in general
form as

( A B

A R S
B T P

)
, (SI.97)

For T > R > P > S, this game is a prisoner’s dilemma, with strategy A representing co-
operation. When a player has many neighbors, as is the case in graph-structured populations,
a total payoff is obtained by either accumulating or averaging the payoffs from many pairwise
interactions. This kind of model corresponds to our notion of pp-goods (see also §SI.3.5).

A specific instance of the prisoner’s dilemma known as the donation game is often used since
it provides a simple description of an altruistic act: a cooperator (A) pays a cost of c to donate b
to the opponent; defectors (B) pay no costs and provide no donations. In terms of Equation SI.97,
the donation game satisfies R = b − c, S = −c, T = b, and P = 0. This donation game is typ-
ically easier to analyze than the general matrix game Equation SI.97. However, once conditions
for ρA > ρB have been obtained for the donation game, these conditions can be generalized to
an arbitrary game of the form Equation SI.97 by means of the Structure Coefficient Theorem
(Nowak et al., 2009, Tarnita et al., 2009b).

Whereas these studies focus on pairwise interactions described by a fixed matrix game, we
consider dilemmas of social goods, in which the goods produced by an individual are distributed
to his or her neighbors in a manner that depends on the population structure. If i and j are
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neighbors, then, instead of their interaction being described by a symmetric payoff matrix

( A B

A b − c, b − c −c, b
B b, −c 0, 0

)
, (SI.98)

in a social goods dilemma it is described by an asymmetric payoff matrix,

Mij =

( A B

A Bji − Cij, Bij − Cji −Cij, Bij

B Bji, −Cji 0, 0

)
. (SI.99)

In other words, type A (producer) at location i pays Cij to donate Bij to j. Type B (non-producer)
at this same location pays nothing and gives nothing. Our theory applies to more general bimatrix
games (Ohtsuki, 2010, Sekiguchi and Ohtsuki, 2015, McAvoy and Hauert, 2015a,b), although
we are particularly focused on asymmetric games arising from the production of social goods.

Below, we give a brief summary of work on symmetric games in structured populations.

SI.5.1.1 Regular and homogeneous graphs

A regular graph is one in which all individuals share the same number of neighbors, i.e. wi = d
for every i = 1, . . . , N and some fixed d. Using the pair-approximation method on regular
graphs, Ohtsuki et al. (2006) showed that weak selection favors the evolution of cooperation if
b/c > d. Moreover, the difference between accumulated and averaged payoffs on a regular
graph amounts to a simple rescaling of both b and c, so this critical threshold, namely (b/c)∗ =
d, is the same for both methods of obtaining a net payoff from many interactions. This result has
also been refined to capture finite-population effects on weighted vertex-transitive graphs (Taylor
et al., 2007, Débarre et al., 2014, Allen and Nowak, 2014) and unweighted regular graphs (Chen,
2013).

SI.5.1.2 Heterogeneous graphs

Although there are many simulation-based investigations of pairwise games on heterogeneous
graphs Abramson and Kuperman, 2001, Santos and Pacheco, 2005, Gómez-Gardenes et al., 2007,
Maciejewski et al., 2014, Szabó and Fáth, 2007, an analytic solution for weak selection was not
found until the work of Allen et al. (2017). Conditions for a strategy to be favored under weak
selection were found for DB and BD updating, using either averaged or accumulated payoffs, in
terms of coalescence times. The properties of this solution were further explored in follow-up
works by Fotouhi et al. (2018, 2019).

The results of Allen et al. (2017), in the case of the donation game with averaged payoffs,
can be recovered from our results by setting Bij = bwij/wj and Cij = cwij/wi for each i
and j. Equation SI.13 is equivalent, under DB or BD updating, to the systems of equations for
coalescence times used by Allen et al. (2017).

61



SI.5.2 Public goods games in structured populations

Numerous works (Peña et al., 2016a, Santos et al., 2008, Rong and Wu, 2009, Szolnoki and
Perc, 2011, Perc et al., 2013, Peña et al., 2016b) have considered public goods games on graphs.
In additional to classical public goods, one may also consider public goods that travel through
the network by diffusion. This framework can be used to model the production of diffusible
chemical goods in microbes (Le Gac and Doebeli, 2010, Julou et al., 2013, Kümmerli et al.,
2014). Conditions for the production of such goods on weighted vertex-transitive graphs were
obtained by Allen et al. (2013b).

Since our focus is on social goods donated to immediate neighbors with no self-donation,
we do not give a complete analysis of public goods games. However, there is one study of
public goods games, carried out by Santos et al. (2008), that is particularly relevant to our model
since it involves a numerical comparison of fixed- and proportional-cost goods in multiplayer
interactions.

Santos et al. (2008) considered a model of public goods games in heterogeneous populations
in which every individual is involved in multiple games. Each individual initiates an interac-
tion with neighbors, and everyone involved benefits from the public good. An individual with
k neighbors therefore participates in k + 1 interactions, one initiated by themselves and k initi-
ated by neighbors. In their model, a cooperator contributes either c per game or c in total (i.e.
c/ (k + 1) per game); non-producers do nothing. The total contribution is then multiplied by an
enhancement factor, r, and divided among all individuals involved in the game.

If γi denotes the per-game contribution when i cooperates, this model satisfies

Bij =
N

∑
k=1

w̃ikw̃kj

(
r

γi

w̃k

)
; (SI.100a)

Cij =
N

∑
k=1

w̃ikw̃kj

(
γi

w̃k

)
, (SI.100b)

where, again, w̃ii = 1 for i = 1, . . . , N and w̃ij = wij if i ̸= j. Therefore, this model can be
seen as a special case of ours.

For both PC and DB updating, let τii = 0 for i = 1, . . . , N and τij = 1+(1/2)∑N
k=1 pikτkj +

(1/2)∑N
k=1 pjkτik for i ̸= j. Under PC updating, for example, we have

ρ′A > ρ′B ⇐⇒ r
N

∑
i,j=1

πi pij

N

∑
ℓ=1

xiℓ
(
Cℓi − Cℓj

)
>

N

∑
i,j=1

πi pij

N

∑
ℓ=1

(
xiiCiℓ − xijCjℓ

)
⇐⇒ r

N

∑
i,j=1

πi pij

N

∑
ℓ=1

τiℓ
(
Cℓj − Cℓi

)
>

N

∑
i,j=1

πi pij

N

∑
ℓ=1

τijCjℓ. (SI.101)
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Under DB updating,

ρ′A > ρ′B ⇐⇒ r
N

∑
i,j=1

πi p
(2)
ij

N

∑
ℓ=1

xiℓ
(
Cℓi − Cℓj

)
>

N

∑
i,j=1

πi p
(2)
ij

N

∑
ℓ=1

(
xiiCiℓ − xijCjℓ

)
⇐⇒ r

N

∑
i,j=1

πi p
(2)
ij

N

∑
ℓ=1

τiℓ
(
Cℓj − Cℓi

)
>

N

∑
i,j=1

πi p
(2)
ij

N

∑
ℓ=1

τijCjℓ. (SI.102)

Finally, we note that there is nearly always wealth inequality in heterogeneous populations,
even for pp-goods with accumulated payoffs. Santos et al. (2008) observed that the nature of how
players participate in public goods games in heterogeneous populations can amplify inequality.
Our notion of “prosocial inequality” is somewhat different, however. Whereas inequality can be
present even when selection improves the payoffs of all players in the population, we show that
selection can actually decrease the payoff of some while improving the payoff of others. Thus,
prosocial inequality is not a measure of relative inequality within the all-A state; it is a measure
of inequality in the all-A state as compared to the all-B state.

SI.5.3 Deterministic versus stochastic payoffs

One final way in which our model and results differ from those of prior studies is that we allow
for stochastic payoffs in addition to deterministic payoffs. In fact, we show in §SI.1.5 that a
model with stochastic payoffs can be replaced by one with deterministic payoffs under weak
selection. This result is particularly relevant for goods with concentrated, stochastic benefits
(Figure 15), in which case the critical threshold for producers to evolve is identical to that of
ff-goods.

References

K. Sigmund. The calculus of selfishness. Princeton University Press, 2010.

A. L. Radzvilavicius, A. J. Stewart, and J. B. Plotkin. Evolution of empathetic moral evaluation.
eLife, 8, Apr 2019. doi: 10.7554/elife.44269.

R. Axelrod. The Evolution of Cooperation. Basic Books, 1984.
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M. Broom and J. Rychtář. Game-Theoretical Models in Biology. Taylor & Francis, 2013.

J. Maynard Smith. Evolution and the Theory of Games. Cambridge University Press, 1982. doi:
10.1017/cbo9780511806292.

63



C. Hauert and M. Doebeli. Spatial structure often inhibits the evolution of cooperation in the
snowdrift game. Nature, 428(6983):643–646, Apr 2004. doi: 10.1038/nature02360.

M. Doebeli, C. Hauert, and T. Killingback. The Evolutionary Origin of Cooperators and Defec-
tors. Science, 306(5697):859–862, Oct 2004. doi: 10.1126/science.1101456.

W. F. Lloyd. Two Lectures on the Checks to Population. Oxford University Press, 1833.

G. Hardin. The Tragedy of the Commons. Science, 162(3859):1243–1248, Dec 1968. doi:
10.1126/science.162.3859.1243.
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