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In the minimum constraint removal problem, we are given a set of overlapping geometric 

objects as obstacles in the plane, and we want to find the minimum number of obstacles 

that must be removed to reach a target point t from the source point s by an obstacle-free

path. The problem is known to be intractable and no sub-linear approximations are known 

even for simple obstacles such as rectangles and disks. The main result of our paper is an 

approximation framework that gives an O (
√
nα(n))-approximation for polygonal obstacles, 

where α(n) denotes the inverse Ackermann’s function. For pseudodisks and rectilinear 

polygons, the same technique achieves an O (
√
n)-approximation. The technique also gives 

O (
√
n)-approximation for the minimum color path problem in graphs. We also present some 

inapproximability results for the geometric constraint removal problem.

 2020 Elsevier B.V. All rights reserved.

1. Introduction

Given a set S of geometric objects as obstacles in the plane, a path is called obstacle-free if it does not intersect the 

interior of any obstacle. In the minimum constraint removal (MCR) problem, the goal is to remove a minimum-sized subset 

S ′ ⊆ S such that the remaining set S \ S ′ admits an obstacle-free path between a source point s and the target point t . 

The problem is known to be NP-complete even when the obstacles have very simple geometry such as rectangles or line 

segments. The MCR problem is also related to the minimum color path (MCP) problem where the goal is to find a path 

in a graph using the minimum number of colors. In the vertex-colored version of the problem, each vertex v of a graph 

G = (V , E) is associated with a set of colors χ(v) ⊆ C = {1, 2, . . . , |C|}, and the goal is to find a path between two fixed 

vertices s and t (s-t path) that minimizes the total number of colors along the path. Similarly, in the edge-colored version, 

each edge of G has an associated set of colors, and the s-t path must minimize the total number of colors along the path.

The geometric constraint removal problem can be cast as a minimum color path problem by constructing a graph on 

the arrangement formed by the obstacles. The arrangement A(S) of S is a partition induced by the obstacles, whose 
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Table 1

Table showing the best known approximation and inapproximability results after our work for 
different versions of MCP and MCR. Question mark denotes that result is unknown.

Problem Version/Objects Approximation Inapproximability

MCP Vertex-colored O (
√

|V |) (Theorem 2) o(log |V |) [3]

Edge-colored |C| (trivial)

MCR Polygons O (
√
nα(n)) (Corollary 5) 2− ε (Theorem 6)

Convex polygons O (
√
nα(n)) (Corollary 5) 2− ε (Lemma 7)

Rectilinear polygons O (
√
n) (Corollary 5) 2− ε (Theorem 6)

Rectangles O (
√
n) (Corollary 5) APX-hard (Theorem 7)

Pseudodisks O (
√
n) (Theorem 3) ?

Unit disks 2 [5] ?

faces are the two-dimensional connected regions, and whose edges are segments of the obstacle boundaries. We define a 

planar graph GA whose vertices are in one-to-one correspondence with the faces of the arrangement and whose edges 

join two neighboring faces. By associating each obstacle with a unique color, we obtain a version of the minimum color 

path problem—an s–t path has exactly as many colors along it as the number of obstacles it crosses. However, it is worth 

pointing out that the number of vertices in GA can be quadratic in the size of the geometric input: a set of n geometric 

obstacles, each with a constant number of boundary edges, can create an �(n2) size arrangement.

The minimum color path problem (both versions) is NP-complete and also NP-hard to approximate to a factor o(log |V |)
even if the graph is planar [1–3]. In [4], Hassin et al. present an O (

√
|V |)-approximation algorithm for the special case 

of the MCP problem where each edge has exactly one color. Indeed, their algorithm works for a more general weighted 

version. However, for the general MCP problem, no sub-linear approximation algorithm appears to be known.

The geometric minimum constraint removal problem has been studied under different names across multiple research 

communities, including sensor networks and robotics. In networks, the problem is called barrier resilience where obstacles 

represent coverage regions of sensors, and the network’s resilience is measured by the minimum number of sensors whose 

removal creates a sensor-avoiding s–t path. Circular disks are a commonly used model for sensor coverage. When all disks 

have the same (unit) radius, a 2-approximation is known due to Chan and Kirkpatrick [5], who build and improve upon the 

earlier work of Bereg and Kirkpatrick [6]. However, even for this simple case, the complexity of minimum constraint removal 

is an unsolved open problem [5]. In [5,7], constant factor approximations are proposed for restricted versions of arbitrary 

radii disks. However, when disks have arbitrary radii, no sub-linear approximation with provable guarantee is known. The 

problem has also been studied for other types of obstacles, mainly from the perspective of time complexity. The problem 

has been shown to be NP-complete for convex obstacles [8], for line segments [9], even in the bounded density case [10,11], 

and for axis-parallel rectangles with aspect ratio close to one [7].

In robotics, the minimum constraint removal problem models the motion planning problem of multi-articulated robot 

[2,8]. Suppose we have a physical environment constraining a disjoint set of impenetrable obstacles in the plane, and a 

robot with two degrees of freedom. Then the configuration space approach to motion planning shrinks the robot to a point 

while simultaneously expanding the obstacle by taking their Minkowski sum with the robot’s geometry. The result is our 

minimum constraint removal problem: a set of two-dimensional intersecting obstacles that may have no feasible path for 

the robot, and so some obstacles need to be removed.

Finally, the problem has also been studied through the lenses of parameterized complexity [11,7], and exact and heuristic 

algorithms [2,12]. It is also loosely related to a shortest path problem in the plane [13,14], where given a set of disjoint 

obstacles, the goal is to find an Euclidean shortest s-t path that intersects at most k obstacles.

1.1. Our results

In this work, we make progress on both the graph and the geometric versions of MCP and obtain improved polynomial-

time approximation bounds. In particular, we present the following results for the minimum constraint removal problem.

• An O (
√
nα(n))-approximation for polygonal objects, where α(n) is the inverse Ackermann’s function and n denotes the 

total number of vertices of the polygons. We also present an O (
√
n)-approximation for rectilinear polygons.

• An O (
√
n)-approximation for disks, where n denotes the number of disks. For arbitrary disks, the only approximation 

results known are in the restricted cases, where either the crossing patterns of the paths are limited or the aspect ratio 

and the density are bounded. Our result can be easily extended to pseudodisks.

Our approximation framework also leads to an O (
√

|V |)-approximation for MCP on vertex-colored graphs. Finally, we 

also present some results showing the hardness of approximating MCR. In particular, we show that the problem is NP-hard 

to approximate within a factor better than 2 for either rectilinear or convex polygons. We also prove the APX-hardness of 
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the problem in a more restricted case, where the obstacles are axis-parallel rectangles. Table 1 shows the state of the art 

results after our work on MCP and MCR.

We describe our approximation framework in Section 2. The application of the framework to the MCR problem is dis-

cussed in Section 3. Finally we describe the hardness results in Section 4.

2. An algorithmic framework

We begin our discussion by describing the generic framework for approximating the minimum color path problems 

on graphs. In the later sections, we apply this framework to achieve similar approximation bounds for the MCR problem. 

Roughly speaking, the framework comprises of two main steps. In the first step, a ‘small’ subset of the colors are removed, 

and in the second stage, an approximation of the minimum color path is computed using a shortest path algorithm. We 

start with some basic definitions.

We assume that we are given a graph G = (V , E), the source vertex s, the target vertex t , and a set of colors C , such 

that each vertex v ∈ V is assigned a subset χ(v) ⊆ C of colors. We will refer to such a graph as a colored graph and denote 

it by G = (V , E, C). We define the set of colors χ(π) used by π to be the union of the colors of vertices on this path. That 

is, χ(π) =
⋃

v∈π χ(v).

Definition 1. A path π in G is a k-color path if |χ(π)| = k.

An algorithm is called an r-approximation algorithm for computing a k-color path if it satisfies the following two condi-

tions: (1) if G has a k-color s-t path, then the algorithm returns a path π∗ with |χ(π∗)| ≤ rk, and (2) if G does not have a 

k-color s-t path, the algorithm returns an arbitrary s-t path. The following is straightforward.

Lemma 1. If there exists an r(k)-approximation algorithm to compute a k-color path from s to t, then there also exists an r(l)-

approximation algorithm for computing a minimum color path from s to t, where l is the number of colors used by a minimum color 

path.

Proof. We try all possible values k = 1, 2, . . . , |C| and let πk be the path returned by the approximation algorithm for 

computing a k-color path for a given value of k. Let j be the value such that χ(π j) has smallest cardinality over all χ(πk). 

Recalling that l is the number of colors used by a minimum color path, we have that |χ(πl)| is at most r(l)l. Clearly, 

|χ(π j)| ≤ |χ(πl)| ≤ r(l)l and therefore π j is an r(l)-approximation for computing a minimum color path. �

From Lemma 1 it follows that computing an approximation of a k-color path is sufficient, and therefore in the rest of 

our discussion, we work towards that goal. Next, we describe the details of our framework.

2.1. Approximation framework

We are given a colored graph G = (V , E, C) and an integer k, and our goal is to develop an approximation algorithm for 

computing a k-color path in G . The key idea behind our approximation framework is to define a notion of neighborhood for 

the colors in C , and ‘discard’ the colors that have dense neighborhoods.

Definition 2. Let P be an arbitrary set of objects and β be a parameter. We define neighborhood N : C → 2P to be a 

mapping from C to subsets of P that satisfies the following properties.

1. (Bounded-Size Property) The size of N , defined to be the sum of cardinalities of all neighborhoods, 
∑

C∈C |N (C)|, is 
O (kβ2)

2. (Bounded-Occurrence Property) If there exists a k-color path in G , then there also exists a k-color path π∗ in G such 

that, for any color C ∈ C , the number of times that C appears on π∗ is at most O (|N (C)|).

The set P in the above definition can be any set of objects. For example, in MCP problem P is the set of vertices of the 

graph. In the geometric MCR, P is a set of points in the plane. We now describe our approximation algorithm which we 

will refer to as Approx-Core.

Algorithm Approx-Core

1. Construct the neighborhood N (C) for each color C ∈ C .

2. For all C ∈ C , remove all occurrences of the color C from the graph G if |N (C)| ≥ β . Let G ′ be the modified graph after 

removing all such colors.

3. For every vertex v in G ′ , assign an integer weight |χ(v)| on v .

4. Compute a minimum weight path π from s to t in G ′ using Dijkstra’s Algorithm. Return π .
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Lemma 2. Given the set P and a parameter β , the algorithm APPROX-CORE gives an O (β)-approximation for the k-color path in G.

Proof. Assume that there exists a k-color path in G . Otherwise, the proof is trivial as the algorithm always returns a path. 

Let C1 be the set of colors removed during step 2 of the algorithm, and C2 be the set of colors in G ′ that appear on the 

path π returned by the algorithm. Then, the total number of colors in G that may appear on π is at most |C1| + |C2|.
First we compute a bound on the size of C1 . Observe that the neighborhood of each color C ∈ C1 has size at least β . 

Therefore, we have:

∑

C∈C1

|N (C)| ≤
∑

C∈C
|N (C)|

=⇒ |C1| · β ≤ O (kβ2) By the bounded-size property ofN

=⇒ |C1| ≤ ckβ for some constant c

Next, we compute a bound on size of C2 . Towards this end, observe that the neighborhood N (C) of every color C in G ′

has fewer than β colors. By the bounded-occurrence property of the neighborhood N , there exists a k-color path π∗ in G

such that for each C ∈ C , the number of times that C appears on π∗ is at most O (|N (C)|). Therefore, it follows that any 

color C in G ′ appears on π∗ at most O (β) times. In other words, there exists a path in G ′ that has weight at most c′kβ for 

another constant c′ . Therefore the number of colors used by the minimum weight path π is at most c′kβ .
Hence, the total number of colors in C that appear on π is at most |C1| + |C2| = (c + c′) · kβ , which is an O (β)-

approximation. �

We obtain the following theorem.

Theorem 1. Given a colored graph G = (V , E, C) and integer k, suppose a neighborhood N for G can be constructed in polynomial 

time that satisfies the bounded-size and bounded-occurrence property. Then there exists a polynomial time algorithm that achieves an 

O (β)-approximation for computing a k-color path in G.

Therefore, in order to achieve an approximation for the k-color path, it just suffices to construct a neighborhood N , that 

satisfies the bounded-size and bounded-occurrence properties. In the next section, we illustrate this construction for MCP 

on vertex-colored graphs.

2.2. Application to minimum color path

In this section, we will apply the above framework to achieve O (
√
n)-approximation for MCP on a vertex-colored graph 

G = (V , E, C) with n vertices. Our goal is to simply compute a neighborhood N for a k-color path in G such that N has 

bounded-size O (kn) and satisfies the bounded-occurrence property. Using Lemma 1 and β =
√
n in Theorem 1, an O (

√
n)-

approximation for MCP follows.

We define neighborhood N (C) of each color C to be the set {v ∈ V | C ∈ χ(v) and |χ(v)| ≤ k}. The bounded-occurrence 
property is easily satisfied because a k-color path πk will never visit vertices that contain more than k colors, and since πk is 

simple, each occurrence of a color C on the path can be uniquely charged to a vertex in N (C). To see that the bounded-size 

property is satisfied, we note the following.

∑

C∈C
|N (C)| =

∑

v∈V :|χ(v)|≤k

|χ(v)| ≤ kn.

Theorem 2. There exists an O (
√
n)-approximation algorithm for MCP on vertex-colored graphs.

Application to minimum label path As another example application for the framework, we consider a special case of MCP 

when each edge has exactly one color (called its label). This problem has been well studied [4,15,16] under the name min-

imum label path. Hassin et al. [4] gave an O (
√
n)-approximation for this problem on general graphs.2 Using our framework 

and the following simple definition of neighborhood, we can achieve an O (

√

n
OPT

)-approximation if the number of edges in 

G is O (n). Here OPT is the number of labels used by any minimum label s-t path.

For the sake of applying the framework, we transform the input edge-colored graph G = (V , E, C) into a vertex-colored 

graph H by adding a vertex corresponding to each edge that subdivides the edge. The color corresponding to an old edge 

is moved to the new vertex. Now, for each new vertex v that has color C , we include both neighbors (old vertices) of v in 

2 Indeed their algorithm works for a more general version, where each label has a non-negative cost and the goal is to find an s-t path minimizing the 
combined cost of its labels.
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H to the neighborhood of C . The bounded-occurrence property is straightforward. For the bound on size, observe that an 

old vertex v can be in at most degree(v) neighborhoods, so sum of cardinality of all neighborhoods is at most 2|E|. Since 
|E| = O (n), the size of N is O (n) = O (n

k
· k). With β =

√

n/k, Theorem 1 and Lemma 1 give an O (

√

n
OPT

)-approximation.

3. Application to geometric objects

We now show how to approximate the MCR problem when the obstacles are geometric objects such as constant-

complexity polygons or disks. We point out that we cannot directly apply Theorem 2 to the graph of the arrangement 

of obstacles since the latter can have size �(n2). Instead, we first construct a colored graph G such that an s–t path in the 

plane that removes the minimum number of obstacles corresponds to a path in G that uses the minimum number of col-

ors. We then construct the neighborhood N for colors in G such that it satisfies the bounded-size and bounded-occurrence 

properties. For technical reasons, the graph G we construct for the geometric instances has colors assigned on edges—one 

can easily transform it into a vertex-colored graph by adding a vertex corresponding to each edge.

Throughout this section, we assume that the obstacles are in general position, namely, no three obstacle boundaries 

intersect at a common point, and the boundaries of any two objects intersect transversally.

Any arrangement of obstacles in the plane can be partitioned into two distinct regions namely the obstacles, and free 

space, that is the region of the plane not occupied by obstacles. Without loss of generality, we assume that the points s and 

t lie in free space, as we must remove all the obstacles that are incident to either s or t in order to find an obstacle free 

s–t path. We say that a path π crosses an obstacle S if π intersects the interior of S . Note that, as s and t lie in free space, 

if π crosses S , π must intersect the boundary of S transversally.

Consider an optimal path π that removes the minimum number of obstacles. It is easy to see that π will cross an 

obstacle S if and only if S was removed from input. Therefore, removing an obstacle is equivalent to crossing it. In the 

following, we introduce the notion of a k-crossing path.

Definition 3. A path π in the plane is called a k-crossing path if it crosses exactly k obstacles.

It is easy to see that if each obstacle is assigned a unique color and we assign color to a path whenever it enters an 

obstacle, then a k-crossing path π uses exactly k colors. Observe that although the space of k-crossing paths is infinite, we 

want to establish a one to one correspondence between the path in the plane that crosses minimum number of obstacles 

and a path in G that uses the minimum number of colors.

Towards this end, we simply let G to be the “dual” graph of GA induced by the input arrangement A: each cell C i of GA

is associated with a vertex v i of G that is contained in C i , and any pair of neighboring cells C i, C j are joined by the edge 

v iv j that only intersects the shared boundary ∂C i j between the cells C i and C j . Note that the edge v i v j is not necessarily a 

straight line segment, it could be a curve segment in some cases. Due to the general position assumption, ∂C i j is part of the 

boundary of a unique obstacle in S . Therefore, we have that each edge of G intersects the boundary of a unique obstacle 

and no two obstacles share an edge. Additionally, we make G directed by replacing each edge {v i, v j} with two directed 

edges v i → v j and v j → v i . Next, we assign colors to edges of G . Each obstacle in S corresponds to a color in C , so for any 

edge e = v i → v j ∈ E , we assign to e the set of colors corresponding to all obstacles S such that v j lies in the interior of S

and v i does not lie in the interior of S . From our general position assumptions, it follows that |S| is either 1 or 0. Roughly 

speaking, we assign a color when the edge enters into the corresponding obstacle.

Note that the way G is defined, it is a plane graph and we consider its natural embedding which is also planar. Since we 

assign colors when an edge of G enters an obstacle, it is easy to see that a k-color path π in G corresponds to a k-crossing 

path π ′ in the plane. For the other direction, without loss of generality we can assume that there exists a k-crossing path 

π ′ that visits a cell in the arrangement at most once. This holds because if not, we can always find a shortcut between 

two consecutive visits to the same cell. Therefore given such a path π ′ we can easily construct a path π in G by simply 

concatenating the vertices corresponding to each arrangement cell intersected by π ′ in order. Thus, we have the following 

immediate observation.

Lemma 3. Given a set S of obstacles in the plane, we can build an edge colored graph G = (V , E, C) with two fixed vertices vs, vt such 

that:

1. if there is a k-color vs-vt path in G, then there is also a j-crossing s-t path in the plane for some j ≤ k, and

2. if there is a k-crossing s-t path in the plane, then there is also a j-color path from vs to vt in G for some j ≤ k.

We refer to such a graph G = (V , E, C) as a valid edge colored graph for the arrangement. From the above discussion 

and using Lemma 1 and Theorem 1, we have the following.

Lemma 4. Suppose we are given a valid edge colored graph G = (V , E, C) for an arrangement of the set S of input obstacles in the 

plane. Moreover, given integer k, suppose we can construct the neighborhoods N (S) for all obstacles S ∈ S in polynomial time such 
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that N has a total size of O (kβ2) and also satisfies the bounded-occurrence property, where β is independent of k. Then, there exists a 

polynomial time algorithm that achieves an O (β)-approximation.

In the following, given a set S of obstacles in the plane, we will show how to build a sparse neighborhoods N (S) for all 

S ∈ S , such that the term β2 in total size of the neighborhoods is close to linear in n.

3.1. Building a sparse neighborhood

Consider an edge e = v i → v j of G . We say that e enters the obstacle S if e intersects the boundary of S and the cell C j

corresponding to the destination vertex v j of e is contained in S . This suggests a natural way of defining the neighborhood 

N (S): we simply include all edges e that enter the obstacle S in the neighborhood N (S) of S . It is easy to see that every 

occurrence of the color corresponding to an obstacle S can be uniquely charged to an edge in N (S). Therefore N satisfies 

the bounded-occurrence property.

Note that every edge of the arrangement is part of the boundary of a cell and due to general position assumption, belongs 

to the boundary of exactly one obstacle. Therefore, every edge of our graph G intersects the boundary of exactly one obstacle, 

and thus we have the following observation.

Observation 1. Every edge of G is included in the neighborhood of at most one obstacle.

For the bounded-size property, by Observation 1, we have that the total neighborhood size is |E|. However, |E| can be 

�(n2), so this directly is not useful for us. Therefore, the primary challenge is to sparsify this neighborhood and in the rest 

of the discussion, we work towards this goal.

One approach is to only consider the “shallow” edges e = v i → v j such that the destination cells C j have depth at most 

k (that is, C j is contained in at most k obstacles). That is, we define the neighborhood N (S) of obstacle S to be the set 

of all shallow edges that enter S . The bounded-occurrence property still holds because a k-crossing path cannot enter cells 

of depth more than k. By planarity, the number of shallow edges is within a multiplicative constant of the number of cells 

with depth at most k. Indeed, if obstacles are simpler shapes such as disks or pseudodisks, the number of cells with depth 

at most k is known to be O (kn) [17]. Thus, the total neighborhood size is O (kn). Hence, by Lemma 4, with β =
√
n, we 

readily obtain an O (
√
n)-approximation for MCR when the obstacles are pseudodisks.

Theorem 3. There exists an O (
√
n)-approximation for MCR when the obstacles are pseudodisks.

However, if the obstacles are more general such as rectangles, similar bounds on the number of cells with depth at most 

k do not hold. Nevertheless, we will use a different notion, called the level of a cell, to obtain a more refined neighborhood 

for the obstacles.

3.2. Approximation for general objects

In this section, we obtain similar approximation bounds when obstacles are polygonal. We begin by formally defining 

level of a cell.

Definition 4. The level of a cell C in an arrangement, denoted by L(C), is the minimum number of objects one needs to cross 

to reach C from the source s by a path in the plane. For a collection of cells, we say they are at level at most k if the level 

of each cell in this collection is at most k.

With the above definition in place, we can use it to construct the neighborhood N . Recall that the neighborhood N (S)

of an object S (in our earlier definition) consists of all edges e = v i → v j of the graph G that enter the obstacle S into a 

“shallow” cell C j . We can now simply use the level of a cell to define its shallowness. Specifically, we include the edge e to 

the neighborhood N (S) if e enters S and the level of its source cell C i and destination cell C j are both at most k. Since a k-crossing 

path would never enter a cell that has level more than k, bounded occurrence property is easily satisfied. Next, we need to 

bound the total size of this neighborhood.

Towards that end, suppose we define the level of a vertex of the arrangement A(S) in the same way. That is, the level of 

a vertex of the arrangement A(S) is the minimum number of obstacles crossed by any path from s to the vertex. We define 

V l(n) to be the maximum number of level l vertices in an arrangement of polygons with input complexity n. Therefore, V0(n)

upper bounds the number of vertices in A(S) that can be reached from s without crossing any obstacle. It is important to 

note that n here is the input complexity (total number of polygon vertices) and not the number of edges of the arrangement, 

which could be quadratic in n. We now need a technical definition.

Definition 5. A function f : Z+ → R+ is well-behaved if for any n ≥ 1 and any random variable X with support 

{0, 1, 2, . . . , n} and expectation n/m, where m ≥ 1, we have
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E[ f (X)] ≤ f (n)/m.

We will require that V0(n) is upper bounded by some well-behaved function. Examples of well-behaved functions are n, 

n logn, and n2 . We now upper bound the number of cells with level at most k, using standard machinery [17].

Lemma 5. Suppose for a class T of objects, V0(n) ≤ f (n) for some well-behaved function f . Then for any k ≥ 1, the number of cells 

with level at most k in an arrangement of the objects from T with input complexity n is O (k · f (n)).

Proof. Let Uk be the set of vertices in the arrangement A(S) that are at level at most k. We will prove that |Uk| =
O (k · f (n)). Observe that for every cell that has level at most k, all vertices on its boundary must also be at level at most 

k. This holds because every point inside the cell is contained in the same set of obstacles, so if we can reach the cell by 

crossing at most k obstacles, we can also reach the boundary vertices by crossing no more than k obstacles. Therefore by 

planarity, the number of cells with level at most k will also be bounded by O (k · f (n)).

We will now bound the number of vertices in the set Uk . Our approach is based on the well-known probabilistic method 

due to Clarkson and Shor [17]. Specifically, we sample each object in S independently with a probability p = 1/m, where 

m = 2k. Let S ′ ⊆ S be the set of sampled objects. Fix one of the vertices v ∈ Uk , and assume its level is l ≤ k; fix a path 

from s to v that crosses l objects. There are two cases: either v is an intersection point of two obstacle polygons S i, S j or v

is a corner of some obstacle S i . In the first case, v will show up as a level 0 vertex in A(S ′) if S i, S j ∈ S ′ and none of the l

obstacles from S that ‘block’ the path from s to v are sampled in S ′ . This happens with a probability p2(1 − p)l ≥ p2(1 − p)k . 

In the second case, v is corner of some polygon S i . Similar to the earlier argument, v shows up as a level 0 vertex in A(S ′)
only if S i ∈ S ′ and none of the l blocking obstacles in S are chosen to be in S ′ . This happens with a probability at least 

p(1 − p)k . By linearity of expectation, the expected number of vertices of Uk that show up as a level 0 vertex in A(S ′) is 

at least |Uk|p2(1 − p)k = |Uk| 
(

1
m

)2 (

1− 1
m

)k ≥ α|Uk|/k2 , for some constant α > 0.

Now we will upper bound the expected number of level 0 vertices in A(S ′). Since each polygon is sampled with an 

independent probability of 1/m, if n was the number of vertices of polygons in S , the expected number of vertices of 

polygons in S ′ is n/m. As f is well-behaved, the expected number of level 0 vertices in A(S ′) is bounded above by 

f (n)/m = f (n)/2k.

It follows that α|Uk|/k2 ≤ f (n)/2k. This gives |Uk| = O (k · f (n)) and therefore we achieve the claimed bound. �

Combining Lemma 5 with Lemma 4, we get the following approximation for MCR.

Theorem 4. Suppose for a class of objects, the maximum number V0(n) of level 0 vertices is upper bounded by f (n) for some well-

behaved function f . Then, there exists an O (
√

f (n))-approximation for MCR with this class of objects.

From the work due to Edelsbrunner et al. [18] it follows that, for arbitrary n segments, V0(n) = O (nα(n)), where α(n) is 

the functional inverse of Ackermann’s function. Moreover, if the segments are axis-parallel, it follows that V0(n) = O (n) [18,

19]. It is easy to see that both upper bounds are in terms of well-behaved functions. For polygonal objects with input 

complexity n, the number of underlying segments is also O (n), so we obtain the same bounds. In particular, for general 

polygons V0(n) = O (nα(n)) and for rectilinear polygons, we have V0(n) = O (n). Hence, we have the following corollary.

Corollary 5. There exists an O (
√
nα(n))-approximation for MCR with polygonal obstacles. This improves to an O (

√
n)-approximation 

when the polygons are rectilinear.

4. Hardness of approximation

In this section, we describe the 2-inapproximability and the APX-hardness results for rectilinear polygons and axis-

parallel rectangles, respectively.

4.1. 2-inapproximability for rectilinear polygons

We reduce Vertex Cover to MCR with rectilinear polygons. Recall that as input to the Vertex Cover problem we are given 

a graph G = (V , E) with n vertices, and the goal is to find a minimum size subset V ′ ⊆ V such that for any (u, v) ∈ E , either 

u or v is in V ′ . Let e1, . . . , em be the edges of G . Now we describe the reduction. The constructed instance of MCR contains 

a region called barrier formed by a subset of the obstacles. Each point in the barrier is contained in at least 2n obstacles 

and thus if an s-t path intersects the barrier, it intersects at least 2n obstacles. We would ensure that any optimal path of 

the instance intersects at most n obstacles and thus no such path intersects the barrier region. Intuitively, the barrier region 

forces any optimal path to lie in a certain region, which we refer to as corridor.

The construction is the following. We place an obstacle corresponding to each vertex. For each edge (u, v) there is two 

possible pathlets (or subpaths of an s-t path) - one that intersects the obstacle corresponding to u and the other that 
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Fig. 1. An example of the construction. The barrier region is shown in gray.

intersects the obstacle corresponding to v . The start points of the two pathlets are same. The end points of the two pathlets 

are also same. Moreover, the m pairs of pathlets corresponding to the edges are placed one after the other in a series. This 

ensures that the endpoints of a pair are same as the start points of the next pair. Note that the selection of the pathlet 

corresponding to u (resp. v) for making an s-t path is equivalent to the selection of u (resp. v) for covering the edge (u, v). 

Thus, the s-t path formed by the chosen pathlets intersects only k obstacles if and only if all the edges can be covered by k

vertices.

Next, we give more details about the layout of the pathlets and the obstacles. One of a pair of pathlets corresponding to 

each edge lies above x-axis and the other lies below x-axis. To ensure this, all the start and the end points of the pathlets 

are placed on the x-axis. Let si and ti be the respective start and end points of the pathlets corresponding to the edge ei . 

These points are placed on x-axis in the order s1, t1, s2, t2, . . . , sm, tm . For each 1 ≤ i <m, we connect the point ti with si+1

using a segment that joins the ith and i + 1th pathlets. The point s is placed on x-axis before s1 and t is placed on x-axis 

after tm . s and s1 are connected by a segment. Similarly, tm and t are connected by a segment. Now to ensure that the 

pathlets cross the correct obstacles they are laid out in a fashion as shown in Fig. 1. Each pathlet contains exactly one point 

(tip) having the maximum x-coordinate. Moreover, all such tips corresponding to the pathlets are in convex position. Thus 

one can connect the tips of any subset of pathlets using segments to form a rectilinear polygon that does not intersect any 

other pathlets (see Fig. 1). Recall that each pathlet of an edge corresponds to a vertex incident on that edge. For each vertex 

u ∈ V , we connect the tips of the pathlets corresponding to u to form an obstacle whose shape is a rectilinear polygon. 

Note that the total number of possible s-t paths we constructed is 2m . Now to make sure that any optimal s-t path is one 

of these 2m paths we place the barrier around these paths. In other words, the barrier region forms a corridor for the paths. 

Any optimal path always stays inside the corridor, as it is expensive to cross the “wall” of the barrier. As the pathlets consist 

of a polynomial number of segments in total, a polynomial number of rectilinear polygons is sufficient to place avoiding 

the 2m s-t paths. We make 2n copies of each such polygon to ensure the density. Lastly, each obstacle corresponding to a 

vertex is expanded sufficiently to ensure that it blocks the respective portion of the corridor. Note that the barrier can be 

placed in a way so that the corridor is arbitrarily thin, and thus this expansion can be done such that the obstacle do not 

cross any additional pathlets. From the above discussion, we obtain the following lemma.

Lemma 6. For any 1 ≤ k ≤ n, there is a size k vertex cover for G iff there is an s-t path that intersects k obstacles.

As Vertex Cover is hard to approximate within a factor of 2 − ε for any constant ε > 0, assuming the Unique Games 

conjecture [20], we get the following theorem.

Theorem 6. Minimum constraint removal with rectilinear polygons is hard to approximate within a factor of 2 − ε for any constant 

ε > 0, assuming the Unique Games conjecture.

It is easy to see that the same idea can easily be extended for convex polygons. Basically, one can connect the tips of 

any subset of pathlets using segments to form a convex polygon that does not intersect any other pathlets.

Lemma 7. Minimum constraint removal with convex polygons is hard to approximate within a factor of 2 − ε for any constant ε > 0, 

assuming the Unique Games conjecture.
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Fig. 2. (a) The stack of the class 1 rectangles for m = 2. (b) The initial configuration of the class 2 rectangles (shown by squares) for m = 2. (c) Drawing of 
the pathlets for the class 1 edges.

4.2. APX-hardness for axis parallel rectangles

We reduce a restricted version of vertex cover, which is referred to as Special-3VC, to our problem. Chan et al. [21]

introduced this version for the sake of proving APX-hardness of several geometric optimization problems.

Definition 6. In a Special-3VC instance, we are given a graph G = (V , E), where V contains 5m vertices {v i j | 1 ≤ i ≤
m, 1 ≤ j ≤ 5}. E contains 4m + n edges - 4m of type 1 and n of type 2, where 2n = 3m. Type 1 edges are of the form 

{(v i j, v i, j+1) | 1 ≤ i ≤ m, 1 ≤ j ≤ 4}. Type 2 edges are of the form {(v pq, vxy) | 1 ≤ p < x ≤ m, and q, y are odd numbers}
such that any vertex v i j with odd index j appears in exactly one such edge.

As each vertex v i j with odd index j contributes exactly once in the type 2 edges, the number of type 2 edges is 

3m/2 = n. Chan et al. [21] proved that Special-3VC is APX-hard. Now we describe our reduction. The reduction is similar 

to the reduction for rectilinear polygons. We will have one obstacle corresponding to each vertex. Moreover, we construct 

two pathlets corresponding to each edge (u, v) such that one pathlet intersects the obstacle corresponding to u and the 

other intersects the obstacle corresponding to v . However, due to the simpler structure of the obstacles, here it is more 

complicated to ensure that the pathlets intersect the correct obstacles. The construction of the instance of MCR is as follows.

We denote the rectangles corresponding to v i j by R i j . First we place the rectangles corresponding to the vertices in 

{v i j | 1 ≤ i ≤ m and j is even} in a way so that they form a stack like structure (see Fig. 2(a)). Also the rectangles are 

placed from top to bottom in the lexicographic order of the indexes (i, j): Rab is considered before Rcd if a < c, and 

Ra2 is considered before Ra4 . We refer to these rectangles as the class 1 rectangles. Thereafter we place the rectangles 

corresponding to the remaining vertices. All these rectangles are placed in lexicographic order of the indexes (i, j). The first 

one is placed below Rm4 (the last rectangle of the stack) in a way so that its left side is aligned with the left side of Rm4 . 

Thereafter every rectangle is placed below the already placed ones and a little aligned towards the left w.r.t. the previous 

one (see Fig. 2(b)). We refer to these rectangles as the class 2 rectangles. We note that initially every class 2 rectangle is 

a square. Later each such rectangle might be expanded suitably towards right and below to ensure the correctness of the 

intersections with the pathlets.

Now let L be a vertical line such that all the rectangles are placed strictly to the right of it. All the endpoints of the 

pathlets we draw lie on L. Each pathlet is a curve consisting of rectilinear segments. The start (resp. end) points of the two 

pathlets corresponding to an edge are the same. We place s right above the topmost start point of the pathlets and connect 

s with this point by a vertical segment. Similarly, the point t is placed below the bottommost end point and joined with it 

by a vertical segment. At first we draw the pathlets for type 1 edges {(v i j , v i, j+1) | 1 ≤ i ≤ m, 1 ≤ j ≤ 4} in the dictionary 

order of the indexes (i, j, i, j + 1), i.e. at first (v11, v12), then (v12, v13) and so on. The pairs of start and end points of the 

pathlets corresponding to these edges appear in the same order on L from top to bottom. For each type 1 edge (v i j, v i, j+1), 

let s(i, j, j + 1) and t(i, j, j + 1) be the respective start and end points of the pathlets. Note that for a v i j with odd j, v i j

appears in two type 1 edges only if j is 3. Otherwise, it appears only once. Let P i j be the horizontal projection (an interval) 

of R i j on L. Then the start and endpoints of the pathlets of the type 1 edges with a vertex v i j lie on P i j . Now consider 

a type 1 edge (v i j, v i, j+1). Then either j or j + 1 is odd. WLOG let j is odd. We draw the two points s(i, j, j + 1) and 

t(i, j, j + 1) on P i j such that s(i, j, j + 1) lies above t(i, j, j + 1). One pathlet of (v i j, v i, j+1) lies on the right of L. It consists 

of three orthogonal segments and the only rectangle it intersects is R i j (see Fig. 2(c)). The other pathlet is also drawn in 

a way so that the only rectangle it intersects is R i, j+1 (see Fig. 2(c)). We repeat the process for all type 1 edges and each 

consecutive pairs of end and start points are joined with a vertical segment.
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Fig. 3. (a) Drawing of the pathlets for the edge (v pq, vm5) where m = 2, p = 1, q = 5. (b) Drawing of the pathlets for the type 2 edges 
(v15, v25), (v11, v23), (v13, v21) where m = 2.

Now we draw the pathlets corresponding to the type 2 edges {(v pq, vxy) | 1 ≤ p < x ≤ m, and q, y are odd numbers}. 
Note that, there are n such edges in G . We process all these edges in the reverse lexicographic order of the indexes (x, y)

of the vertices vxy . Thus at first we consider the edge that contains vm5 , then the edge that contains vm3 (if not considered 

already), then the edge that contains vm1 , then the edge that contains vm−1,5 (if not considered already), and so on. We take 

n + 1 vertical lines G1, . . . , Gn+1 such that Gn+1 intersects the right vertical side of R11 , Gn is on the right of Gn+1 , Gn−1

is on the right of Gn , and in general G i is on the right of G i+1 . Also let G i and G i+1 are unit distance apart for 1 ≤ i ≤ n. 

In every iteration 1 ≤ i ≤ n, we define a horizontal line H i . Denote by Q i the region that lies below H i and inside the strip 

defined by G i and G i+1 . The drawing procedure is the following. Consider the first edge (v pq, vm5) corresponding to the 

vertex vm5. Let H1 be a horizontal line such that all the class 1 rectangles lie above it and all the class 2 rectangles lie below 

it. At first we expand Rm5 sufficiently towards below such that one can place a pathlet with the following properties - the 

only rectangle it intersects is Rm5 , it consists of two horizontal segments and one vertical segment, and its start and end 

points lie on L. Note that the expansion of Rm5 do not create any new intersections with the existing pathlets. Thereafter 

R pq is expanded sufficiently towards below and right to ensure that it has non-empty intersection with Q 1 . Then the other 

pathlet can be drawn in a way so that it intersects the portion of R pq that is in Q 1 , and as Q 1 is empty the pathlet does 

not intersect any other rectangle (see Fig. 3(a)). Now consider the ith type 2 edge (v pq, vxy) in this order. Let all the edges 

before it in the ordering are already taken care of. It is easy to see that one can expand Rxy towards below for drawing a 

pathlet with the desired properties. Now to make sure that the other pathlet intersects only R pq , set H i to be a horizontal 

line such that the region Q i , as defined above, is empty of previously drawn pathlets and expanded rectangles. Then we 

can expand R pq towards below and right so that it has non-empty intersection with Q i . As Q i is empty one can draw the 

other pathlet as well with the desired properties (see Fig. 3(b)).

Lastly, we draw the barrier region around the paths. As the pathlets are orthogonal and consisting of a polynomial 

number of segments in total, the barrier region can be simulated using a polynomial number of rectangles and thus the 

construction can be realized in polynomial time. From the construction, it is straightforward to see the following lemma.

Lemma 8. For any 1 ≤ k ≤ |V |, there is a size k vertex cover for G iff there is an s-t path that intersects k rectangles.

As Special-3VC is APX-hard we obtain the following theorem.

Theorem 7. Minimum constraint removal with rectangles is APX-hard.

5. Conclusion

In this paper, we study the minimum constraint removal problem and achieve close to O (
√
n) approximation for both 

graph and geometric versions. These results apply to pseudodisks and any polygonal shape without any additional restric-

tions. A natural open question to consider is to see if these bounds can be improved for simpler shapes such as rectangles 

or squares.
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