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ABSTRACT

In the absence of frequent binary collisions to isotropize the plasma, the fulfillment of the magnetohydrodynamic (MHD)
Rankine–Hugoniot jump conditions by collisionless shocks is not trivial. In particular, the presence of an external magnetic field can allow
for stable anisotropies, implying some departures from the isotropic MHD jumps. The functional dependence of such anisotropies in terms
of the field is yet to be determined. By hypothesizing a kinetic history of the plasma through the shock front, we recently devised a theory of
the downstream anisotropy, hence of the density jump, in terms of the field strength for a parallel shock [A. Bret and R. Narayan, J. Plasma
Phys. 84, 905840604 (2018)]. Here, we extend the analysis to the case of a perpendicular shock. We still find that the field reduces the density
jump, but the effect is less pronounced than in the parallel case.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5099000

I. INTRODUCTION

In a fluid shock, dissipation at the shock front is provided by
binary collisions. As a result, the shock front is a few mean-free-
path thick.1 Yet, in a plasma, shockwaves can propagate with a
front far smaller than the mean-free-path. For example, the front of
the earth bow shock is about 100 km thick, whereas the proton
mean-free-path at the same location is of the order of the
Sun–Earth distance.2,3 Here, dissipation is provided by collective
plasma effects.4 Because spatial distances involved in the physics of
such shockwaves are smaller than the mean-free-path, these shocks
have been called “collisionless shocks”.

Since the mechanism sustaining these shocks is different from
fluid shocks, one could ask to which extent they fulfill the
Rankine–Hugoniot (RH) relations for fluid or magnetohydrodynamic
(MHD) shocks. These relations eventually rely on two assumptions:
(1) All the matter upstream goes downstream and (2) binary collisions
isotropize the distribution function on short time scales. If both
assumptions are fulfilled, conservation equations can be written
between the upstream and the downstream, and an isotropic equation
of state can be used, ensuing RH. In the case of collisionless shocks, (1)
is no longer obvious as some upstream particles may get reflected at
the front, while others may travel from the downstream to the

upstream. Studies conducted so far in this respect found a few percent
deviation from RH for the density jump5 and up to a few tens percent
for the downstream temperature.6

Regarding assumption (2), namely, that the distribution function
is isotropized on short time scales, it has been known for long that the
presence of an external magnetic field can jeopardize it.7 Particle-In-
Cell (PIC) simulations recently conducted8 found a significant reduc-
tion of the density jump for the case of a flow-aligned magnetic field,
as the field tends to guide the particles downstream,9 preventing them
from isotropizing. Indeed, in the presence of an external field, the
Vlasov equation does not impose an isotropic distribution function.
It simply limits the range of stable anisotropies instead, through the
mirror or the firehose instabilities, for example, Ref. 10. Notably, the
kinetic theory sustaining these results has been beautifully verified in
the solar wind.11,12

Several authors already studied how an anisotropic pressure in
the downstream affects the RH jump conditions.13–16 However, the
downstream anisotropy is considered a free parameter in these studies.
Our objective is precisely to compute it in terms of the field strength.

In order to devise a theory of the density jump in terms of the
field, we recently implemented a model for the case of a magnetic field
parallel to the flow.17 We considered a pair plasma, for simplicity in
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such an exploratory work. Electron/ion plasma could add a layer of
complexity to the problem, be it because both species might be heated
differently at the front.18–20 The firehose and the mirror instabilities in
pair plasmas have been found similar to the ones in electron/ion plas-
mas,21 allowing us to use the same stability criteria.

Since the Vlasov equation alone does not impose a unique value
of the downstream anisotropy, we made some hypothesis on the ther-
mal history of the plasma through the front. In our previous work on
parallel shocks, we assumed the following:17

• The upstream is isotropic.
• As it passes through the front, the plasma conserves its temperature
perpendicular to the motion. This assumption stems from the double
adiabatic theory of Chew–Goldberger-law.7 The additional entropy
generated at the front goes into the direction parallel to the motion
since this is the direction of the compression. We labeled “Stage 1”
this first stage of the plasma history.

• If Stage 1 is stable, then this is the final state of the downstream.
• If Stage 1 is unstable, then the plasma migrates to the stability thresh-
old (firehose). This is “Stage 2,” which is therefore reached only if
Stage 1 is unstable.

• In each case, the conservation equations entirely determine the
downstream parameters, density jump included.

The goal of this work is to extend the analysis to the perpendicu-
lar case. The model was nonrelativistic. We found that for an adiabatic
index c ¼ 5/3, the density jump in the strong field limit reaches 2,
whereas the corresponding MHD value is 4. Notably, for a flow-
aligned field, the fluid disconnects from the field in MHD so that the
shock properties are independent of the field.22 Any change in the sys-
tem when varying the field can therefore be related to a deviation from
the MHD behavior.

The system considered in the present work is shown in Fig. 1.
The plasma comes from the right and goes leftward. Upstream quanti-
ties all bear the subscript “1,” and downstream quantities the subscript
“2”. In order to avoid confusion, we shall not qualify pressures or tem-
peratures with the adjectives “parallel” or “perpendicular” but will
refer to the axes x, y, and z instead.

Stage 1 is still defined by a downstream plasma having the same
perpendicular (to the motion) temperature as the upstream, that is,
T2y ¼ T1. We still assume that the excess entropy generated at the
front crossing goes into the x, z directions. Notably, the Vlasov equa-
tion imposes a gyrotropic distribution around the field so that T2x
¼T2z (see, for example, Ref. 23, Sec. 53). As will be shown in the

sequel, Stage 1 can be mirror unstable. In case it is, the downstream
plasma therefore migrates toward the mirror instability threshold, that
is, Stage 2. Whether we deal with Stage 1 or Stage 2, the conservation
equations fully determine the state of the downstream, hence the den-
sity jump.

This article is structured as follows. We start reminding the
results of the isotropic MHD theory in Sec. II. The properties and mir-
ror stability of Stage 1 are assessed in Sec. III. Section IV then charac-
terizes the state of the downstream in case it has to move to Stage 2,
on the mirror instability threshold. A global picture of the density
jump in terms of the field is finally presented in Sec. V, before we reach
our conclusions.

II. FORMALISM AND MHD RESULTS

In contrast to the parallel case, the field is not conserved across the
shock in MHD and enters the nonrelativistic conservation equations24

n1V1 ¼ n2V2; (1)

n1V
2
1 þ P1 þ

B2
1

8p
¼ n2V

2
2 þ P2x þ

B2
2

8p
; (2)

V1B1 ¼ V2B2; (3)

V2
1

2
þ P1

n1
þ U1 þ

B2
1

4pn1
¼ V2

2

2
þ U2 þ

P2x
n2
þ B2

2

4pn2
; (4)

where U is the internal energy of the fluid. As in the parallel case, the
downstream pressure entering the equations is the one along the x
axis, which is the direction of the fluid motion (see Ref. 25, Sec. 40-3).
Here, the direction of motion and the field are perpendicular.

We now introduce the dimensionless parameters

r ¼ n2
n1
; A2 ¼

T2x;z

T2y
; v21 ¼

V2
1

P1=n1
; M2

A1 ¼
n1V2

1

B2
1=4p

; (5)

where the downstream anisotropy reads A2 ¼ T2x=T2y ¼ T2z=T2y .
The v1 parameter looks like a Mach number, but since we force the
degrees of freedom of the plasma, it is preferable to deter such an
interpretation to the end of the analysis.

In order to make the junction with PIC simulations (see Ref. 26
and references therein) and with our previous treatment of the parallel
case, we also introduce the dimensionless parameter

r ¼ B2
1=4p
n1V2

1
¼ 1

M2
A1
: (6)

We now remind the MHD results for a perpendicular shock.

A. MHD results

We here set Ui ¼ Pi=niðc� 1Þ. From Eq. (2), one can express
P2x in terms of n2 and the upstream quantities [also using Eqs. (1) and
(3)]. We then do the same with Eq. (4) and equate the 2 expressions of
P2x. The resulting equation for n2 is a 3rd degree polynomial in r. It
can be factored by (r – 1) since the conservation equations obviously
admit plasma continuity as a solution. The remaining 2nd order poly-
nomial has one negative root. The positive one is27

r ¼
cM2

1 þM2
A1 2þ ðc� 1ÞM2

1

� �
�

ffiffiffiffi
D
p

2ðc� 2ÞM2
1

; with

D ¼ 4ðc� c2 þ 2ÞM4
1M

2
A1 þ cM2

1 þM1
A1 2þ ðc� 1ÞM2

1

� �� �2
; (7)

FIG. 1. System considered. The upstream is isotropic. The downstream is aniso-
tropic with T2y 6¼ T2x;z . Due to the orientation of the field, the Vlasov equation
imposes T2x ¼ T2z .
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where we defined the upstream Mach number M2
1 ¼ n1V2

1=cP1
� V2

1=C
2
s1 ðCs1 is the upstream speed of sound).

The density jump is larger than unity for

M2
1 >

M2
A1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
A1 � 1

p ) V2
1 > C2

s1 þ V2
A1 (8)

with V2
A1 ¼ V2

1=B
2
1=4pn1. Figure 2-left plots Eq. (7) over the domain

defined by Eq. (8).
In terms of the parameters v1; r defined by Eqs. (5) and (6), we

find

r < 1 for r >
v21 � c

v21
(9)

so that the shock solutions are limited by the strength of the field. In
other words, too strong a field switches off the MHD shock. Figure 2-
right pictures the portion of the ðv1;rÞ phase space, yielding shock
solutions for c ¼ 5/3. The requirement r> 1 imposes v21 > c, that is,
M1> 1.

III. STAGE 1: DOWNSTREAM WITH T2y ¼ T1y ¼ T1

Since the upstream is considered isotropic, we simply set U1

¼ P1=n1ðc� 1Þ in Eq. (4). In addition, we consider c ¼ 5/3 in the
sequel.

As specified earlier, our ansatz is that Ty is conserved when cross-
ing the front, while the entropy increase goes in the Tx;z directions. In
order to expressU2 accounting for this ansatz, we start from

U2 ¼
1
2n2
ðP2y þ P2x þ P2zÞ ¼

1
2
ðkBT2y þ 2kBT2xÞ: (10)

Using T2y ¼ T1, we get

U2 ¼
1
2
ðkBT1 þ 2kBT2xÞ ¼

1
2

P1
n1
þ 2

P2x
n2

� �
: (11)

We now substitute this expression into Eq. (4) and apply the resolu-
tion method described for the simple MHD case. We find only 2 solu-
tions for the jump. One is r¼ 1, and the other is

r ¼ 3M2
A1v

2
1

M2
A1 v21 þ 4
� �

þ 2v21
;

¼ 3v21
ð2rþ 1Þv21 þ 4

: (12)

At low B1 (high MA1), the corresponding strong shock has r¼ 3,
which corresponds to a strong 2D shock. Then, increasing B1 lowers r.
This jump is larger than unity for

v21 >
2M2

A1

M2
A1 � 1

) V2
1 > V2

A1 þ 2C2
s : (13)

A notable consequence of Eq. (12) for the density jump is that

r < 1 for r >
v21 � 2

v21
(14)

clearly reminiscent of Eq. (9), the corresponding relation for the MHD
case. Our ansatz for Stage 1 eventually leaves the downstream plasma
with 2 degrees of freedom, hence an effective adiabatic index of 2.
Equation (14) is therefore coherent with Eq. (9), and the strong shock
limit of Stage 1, namely, r¼ 3, is also coherent with the effective c.

We now need to compute the Stage 1 anisotropy in order to
assess its stability. Some algebra shows that

A2 ¼
T2x;z

T2y
¼ P2x=n2

P1=n1
¼ 1

r
P2x
P1
; (15)

where P2x is computed from Eq. (2). The result is

A2 ¼
1
r
� ðr � 1Þv21ðr2 þ r � 2M2

A1Þ
2M2

A1r
2

: (16)

Clearly, r¼ 1 gives A2 ¼ 1 so that A2 ¼ 1 on the frontier defined
by (13). Figure 3 plots the anisotropy A2 given in Eq. (16) over the
domain defined by (13). We have A2 > 1. As a consequence, Stage 1
could be mirror unstable.

A. Mirror stability of Stage 1

The threshold for the mirror instability is defined by10

FIG. 2. Left: Plot of the MHD density jump [Eq. (7)] in terms of the upstream Mach number M1 and Alfv�en Mach number MA1 for c ¼ 5/3 and over the domain defined by (8).
Right: Domain of the (v1, r) phase space yielding shock solutions according to Eq. (8) and for c ¼ 5/3.
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T2?
T2k
¼ A2 ¼

T2xz

T2y
¼ 1þ 1

b2k
; (17)

where the subscripts k and? refer to parallel and perpendicular to the
field. The parameter b2k can be expressed from

b2k ¼
n2T2k
B2
2=8p

¼ n2T2y

B2
2=8p

¼ 2
rrv21

: (18)

Equations (17) and (18) yield a stability condition for Stage 1 defined
by the following 3rd degree equation in r:

A2 ¼ 1þ rrv21
2
()

X3
k¼0

akr
k ¼ 0; (19)

where

a0 ¼ 4 v21 � 2
� �

v21 þ 1
� �

v21 þ 4
� �

;

a1 ¼ �3v21 13v41 � 4v21 þ 16
� �

;

a2 ¼ 12v41 v21 � 2
� �

;

a3 ¼ �4v61: (20)

WithMathematica, this equation can be solved exactly. Two roots are
imaginary, and only one is real. The threshold rðv1Þ thus defined is
plotted in Fig. 4, and its full expression is reported in the Appendix,
Eq. (A1). In the strong shock limit v1 ¼ 1, the stability frontier
reaches the asymptotic value ra

ra ¼ 1� 3
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
p
þ 1

3

q
þ 3

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
p
þ 13

p � 0:106: (21)

The stability threshold attains r ¼ 0 for v1 ¼
ffiffiffi
2
p

. A Taylor expansion
near v1 ¼

ffiffiffi
2
p

gives

r ¼ 23=2

5
v1 �

ffiffiffi
2
p� �
þOðv1 �

ffiffiffi
2
p
Þ2: (22)

The frontier reaches a maximum for v1¼ 2.42 and rc¼ 0.14.
We also picture in Fig. 4 the limit (14) beyond which r< 1. Stage

1 has stable solutions only in the shaded region.

We therefore find that Stage 1 (T2y ¼ T1) always has A2 > 1 and
can be stabilized with a magnetic field, as shown by the shaded region
in Fig. 4. If it is mirror unstable, then the downstream plasma will
migrate toward the mirror stability threshold. We shall now see that in
this case, the conservation equations determine uniquely all the down-
stream properties.

IV. STAGE 2

In case Stage 1 is unstable, it has A2 > 1 (see Fig. 3), and so the
downstream plasma moves toward the mirror threshold. We therefore
impose now

A2 ¼ 1þ 1
b2k

: (23)

In order to compute the density jump, we start again from

U2 ¼
1
2
ðkBT2y þ 2kBT2xÞ:

Being in the mirror threshold, Eq. (23) imposes T2y ¼ T2x � B2
2=

8pn2, so that

U2 ¼
1
2

kBT2x �
B2
2=8p
n2
þ 2kBT2x

� �
¼ 1

2n2
3P2x �

B2
2

8p

� �
: (24)

We then apply the same method as before, replacing U2 in Eq. (4) by
the above expression. We find the following 3rd degree polynomial
equation for the density jump r

PðrÞ ¼ 2v21 r
3 þ 10

r
þ 2v21

r
� 4v21

� �
r2

� 10
r
þ 10v21

r
þ 5v21

� �
r þ 8v21

r
¼ 0: (25)

We now determine upon which conditions on (r, v1), this equation
offers real solutions for the density jump r.

As an even degree polynomial, it has always at least one real root.
Indeed, we shall see that there are either 1 or 3 real roots. In case there
are 3 roots, 2 of them are >0 and one is <0. Figure 5 plots the 2 posi-
tive roots in terms of (v1, r). They join on a frontier studied below,

FIG. 3. Plot of the anisotropy A2 given in Eq. (16) over the range defined by (13).
c¼ 5/3.

FIG. 4. Domain of the (v1, r) phase space where Stage 1 defines a shock and is
stable. Below the lower frontier, defined by Eq. (17), the field is too weak to stabilize
the anisotropy. Above the upper frontier, defined by Eq. (14), the field switches off
the shock.
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and the physical one is the upper one as it merges with the MHD solu-
tion for r¼ 0.

In order to make sense of the result, it is useful to further study
the polynomial (25). Let us symbolically write it as

PðrÞ ¼ ar3 þ br2 þ cr þ d

and denote its 3 roots r1, r2, and r3. They fulfill the identitiesY
i

ri ¼ �d=a ¼ �4=r < 0; (26)

X
i

ri ¼ �b=a ¼ �2�
1
r

1þ 5
v21

� �
< 0: (27)

In addition, one can compute @P/@r and show that it always has 2
purely real roots. Because a< 0, the shape of P(r) is typically like the
one pictured in Fig. 5-right. As long as we have 3 real roots, 2 of them
are positive and the third has to be negative to fulfill (26). When the
value of the right extremum falls below 0, the 2 corresponding real
roots become imaginary conjugate and the third one remains negative.

Stage 2 therefore offers solutions as long as this right extremum
on Fig. 5-right is larger than 0. Since @P=@r is of 2nd order, it can be
solved exactly, giving the values of r6 so that @P=@rðr6Þ ¼ 0. The
largest extremum of P(r) is found at

rþ ¼
ð4rþ 2Þv21 þ 10þ

ffiffiffiffi
D
p

6rv21
; with

D ¼ 46r2 þ 76rþ 4ð Þv41 þ 20ð7rþ 2Þv21 þ 100: (28)

The equation PðrþÞ ¼ 0 then gives the region of the (v1, r) phase
space where Stage 2 offers solutions. This region is plotted in Fig. 6
together with the stability region of Stage 1. There is a significant over-
lap between the two domains. Namely, there is a (v1, r) domain where
Stage 1 is stable, while Stage 2 already offers solutions. In such a case
and according to the kinetic history, we hypothesized that the down-
stream should settle in Stage 1 since it first goes through this stage.

V. PUTTING THE 2 STAGES TOGETHER

We can now put the 2 stages together and plot the jump in terms
of r. This is done in Fig. 7. It is interesting to compare with the result

(7) of “isotropic” MHD. The dashed lines in Fig. 7 picture the isotropic
MHD result (7).

At low r, the field is too weak to stabilize Stage 1 so that the sys-
tem ends in Stage 2. Then, the field becomes strong enough to stabilize
Stage 1, even though Stage 2 still offers solutions. In that case, the sys-
tem settles in Stage 1 since this is the first stage of its kinetic history.
As a result, the corresponding part of the jump for Stage 2 is in thin
lines in the figure. Then, for even larger fields, Stage 2 no longer has
solutions, while Stage 1 is stable. There, the jump is unambiguously
given by Stage 1.

As a consequence of the downstream anisotropy allowed by the
field, the density jump is smaller than that in isotropic MHD. Yet,
unlike the jump reduction in the parallel case which can reach 50%,
the difference here is minor for at least two reasons. To start with, the
isotropic MHD jump decreases with the field, whereas it is indepen-
dent of the field in the parallel case. Then, the microphysical explana-
tion highlighted in the parallel case could also play a role. More
precisely, the downstream anisotropy in the parallel case is related to
the effect of the flow aligned field which guides the particles in the

FIG. 5. Left: Plot of the 2 real roots of Eq. (25). The physical one is the upper one, which merges with the MHD solution for r ¼ 0. Right: Typical shape of P(r), here with r
¼ 0.2 and v1 ¼ 2.

FIG. 6. Stage 1 is stable and defines a shock between the two blue lines. Stage 2
offers solutions below the orange line. The orange curve is always above the lower
blue one, even at low v1, where they are exactly tangent (at least numerically) to
each other for v1 ¼ 1.6.
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downstream, preventing isotropization.8,9 In the present perpendicular
case, the field rather helps the shock formation instead of hindering it
in the parallel case (see the conclusion).

VI. CONCLUSION

We have investigated the departure from MHD of the density
jump of a nonrelativistic perpendicular shock. Such a departure comes
from a pressure anisotropy in the downstream (the upstream is
assumed isotropic). Vlasov theory alone cannot pinpoint any definite
downstream anisotropy. It only allows for a range of stable anisotropic
plasmas instead. In order to derive a theory of the downstream anisot-
ropy in terms of the field, we made an ansatz on the kinetic history of
the plasma as it crosses the shock front.

The departure from MHD is less pronounced than in the parallel
case, consistent with what is expected from collisionless shock forma-
tion theory. Indeed, when two collisionless plasma shells collide, they
overlap and the overlying region becomes unstable to competing
streaming instabilities.28,29 The shock starts forming when the turbu-
lence arising from the growth of instabilities becomes capable of block-
ing the incoming flow.30–34 Yet, a parallel magnetic field will tend to
guide the particles in the overlapping region, hindering the density
build up. In contrast, a perpendicular field will help the particles to
remain in the overlapping region, contributing to the density build up.

Our model requires v21 > 2. Since the upstream Mach number

M1 verifiesM2
1 ¼ v21=c, choosing c¼ 5/3 imposesM1 >

ffiffiffiffiffiffiffiffi
2= 5

3

q
¼ 1:1.

Indeed, the assumed kinetic history yields no shock solution for
1<M1 < 1.1. As evidenced in Eq. (9) and Fig. 2-right, this stands in
contrast to the MHD case where solutions are available from M1 > 1.
This difference is only notable for weak fields as both models share the
same shock existence criteria for r � 1, i.e., v1 � 1, as can be seen
comparing Eqs. (9) and (14). Our analysis shows that in the weak
shock limit, the conservation equations forbid the conservation of the
temperature parallel to the field.

Future studies contemplate the extension to the relativistic
regime, the exploration of oblique field orientations, or PIC simula-
tions aiming at assessing the assumed kinetic history of the plasma. To
our knowledge, no PIC simulations have been performed in the strong

field regime, namely, r � 1. While our scenario should hold in the
limit r ¼1, PIC simulations will be needed to assess how instabilities
in the shock transition, for example, could affect the result for r � 1
for the present perpendicular case and for r� 1 in the parallel case.
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APPENDIX: STABILITY THRESHOLD FOR STAGE 1

Stage 1 discussed in Sec. III is stable for a strong enough field.
It turns mirror unstable for r lower than

rðv1Þ ¼
A � B þ 2 v21 � 2

� �
2v21

(A1)

with

A ¼
32=3v1 3v21 þ 4

� �
C ;

B ¼ 31=3v1C;

C ¼ 9v1ðv21 � 2Þ þ
ffiffiffi
6
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

27v61 þ 126v21 þ 32
q	 
1=3

:
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