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Persistent insulating state at megabar pressures in strongly spin-orbit coupled Sr2IrO4
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It is commonly anticipated that an insulating state will collapse in favor of an emergent metallic state at
high pressures: The average electron density must increase with pressure, while the electronic bandwidth is
expected to broaden and fill the insulating energy band gap. Here we report an unusually stable insulating state
that persists up to at least 185 GPa in Sr2IrO4, the archetypical spin-orbit-driven Jeff = 1/2 insulator. This study
shows that the electrical resistance R of single-crystal Sr2IrO4 initially decreases with applied pressure P, reaches
a minimum in the range 32–38 GPa, then abruptly rises to recover the insulating state with increasing P up to
185 GPa. However, evidence of a saturation of R below 80 K for P � 124GPa GPa raises the possibility of a
low-temperature exotic state. Our synchrotron x-ray diffraction and Raman scattering data show the emergence
of the rapid increase in R is accompanied by a structural phase transition from the native tetragonal I41/acd
phase to an orthorhombic Pbca phase (with much reduced symmetry) at 40.6 GPa. The clear correspondence of
the onset pressures of these two anomalies is key to understanding the stability of the insulating state at megabar
pressures: Pressure-induced, structural distortions prevent the expected onset of metallization, despite the sizable
volume compression attained at the highest pressure accessed in this study.
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I. INTRODUCTION

It is well established that a rare interplay of on-site
Coulomb repulsion, U , and strong spin-orbit interactions
(SOI) has unique, intriguing consequences in 4d and 5d
transition-metal oxides [1–15]. The SOI-driven Jeff = 1/2 Mott
insulating state in the 5d-transition-metal oxide Sr2IrO4 is
a profound manifestation of this interplay [1,2]. Sr2IrO4

adopts a canted antiferromagnetic (AFM) state [16] with a
Néel temperature TN = 240K [17–20] and an energy gap
� � 0.62 eV [21–23]. It exhibits key structural, electronic,
and magnetic features similar to those of La2CuO4, which
has inspired expectations that novel superconductivity could
emerge in Sr2IrO4 via electron doping [9]. However, there
has been no experimental confirmation of superconductivity
despite intensive experimental efforts [5].

It has become increasingly clear that the conspicuous ab-
sence of superconductivity in Sr2IrO4 is due, in part, to struc-
tural distortions; in particular, IrO6 octahedral rotations play a
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crucial role in determining the ground state [5,16,24,25]. The
inherently strong SOI in Sr2IrO4 locks the canted Ir moments
to the IrO6 octahedra in a manner that is not seen in other
materials, such as the cuprates [5,16,25,26].

Although a great deal of attention has been devoted to
the possible existence of superconductivity [14], the present
high-pressure study demonstrates an intriguing, relevant be-
havior of Sr2IrO4 that has thus far escaped notice: Prevous
high-pressure studies [26,27] indicated that Sr2IrO4 does not
metallize up to 55 GPa, which sharply contrasts with the
conventional view that a metallic state must either emerge
or persist at high pressures as the electron density increases
and the electronic bandwidth broadens [28]. One of the most
dramatic results that supports traditional expectations is the
recently discovered superconductivity in hydrogen sulfide
above 200 K at megabar pressures [29]. Moreover, a recent
high-pressure study of Sr2IrO4 using x-ray resonant scattering
reveals a suppression of long-range magnetic order by 17–
20 GPa, and the possible existence of quantum paramagnetic
phase at higher pressures [30]. The persistent question of a
possible superconducting state for a metallic phase of Sr2IrO4

remains open.
Here we report electrical resistance, synchrotron x-

ray diffraction (XRD), and Raman scattering data for
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single-crystal Sr2IrO4 over a much more extended range
of pressures compared to previous experiments. We find a
direct correlation between a structural phase transition from
the native tetragonal I41/acd phase to a lower-symmetry
orthorhombic Pbca phase at a critical pressure Pc = 40.6GPa,
and a nearly concurrent strengthening of an insulating ground
state of Sr2IrO4 that persists up to at least 185 GPa.

Specifically, our data show the electrical resistance R of
Sr2IrO4 initially decreases with pressure, reaching a minimum
in the pressure interval, 32–38 GPa [31]. However, R then
takes a remarkable turn near 38 GPa, rapidly increasing to-
ward the value observed for the ambient insulating state. The
resulting U-shaped pressure dependence of R is in qualitative
agreement with earlier studies for applied pressures up to
55 GPa [26,27]. A possible onset of saturation of R emerges
at P � 124GPa and T < 80K, which presents an intriguing
deviation from the behavior below 124 GPa. In any case, the
data show that an insulating state persists to 185 GPa for
Sr2IrO4, which sharply contrasts with the known behavior
of most materials. We have correlated the anomalous high-
pressure behavior of R with our high-pressure XRD data that
document the appearance of a pressure-induced orthorhombic
Pbca phase. The reduction of symmetry that accompanies
the orthorhombic phase is of primary significance, since it
should further weaken electron hopping, and possibly under-
pin the peculiar avoidance of metallization by Sr2IrO4. These
observations highlight the critical roles of lattice degrees of
freedom and possible spin-orbit effects in the iridates, and
shed light on the absence of superconductivity observed in
doped Sr2IrO4 [9].

II. EXPERIMENTAL DETAILS

Sr2IrO4 single crystals were grown by the self-flux method
described [5,17]. Given the large magnitude of resistance,
a two-probe method was employed to perform the high-
pressure electrical transport measurements for a temperature
range of 4.5–300 K in a Be-Cu diamond anvil cell (DAC)
with a rhenium gasket. We would like to emphasize that our
high-pressure techniques are comparable to those employed
by other groups [26,27,32–39]. Most importantly, we report
on resistance measurements on single-crystal Sr2IrO4 for
P> 55GPa. Our measurements of Rwere conducted on single
crystals of Sr2IrO4 in two separate runs: Run 1 and run 2 used
different pressure media, and covered overlapping pressure
ranges of 0.6–54 GPa and 24–185.0 GPa, respectively, which
provides an assessment of the reproducibility and validity of
the results [31]. For run 1, a freshly cleaved Sr2IrO4 single
crystal was loaded with sodium chloride (NaCl) powder as
the pressure transmitting medium and the electrical current
was applied within the ab plane. This pressure transmitting
medium is commonly used for pressures below 60 GPa [32].
For run 2, the same sample was squeezed between the dia-
mond anvil and insulation layer directly without a pressure
transmitting medium. This approach is also consistent with
that commonly used for measurements at megabar pressures
[33–36]. The culet sizes of diamond were of 300μm and
100μm for run 1 and run 2, respectively.

A Mao-Bell-type symmetric DAC and Daphne 7373 pres-
sure-transmitting medium were used for the measurements

of high-pressure synchrotron powder XRD and Raman scat-
tering. A pair of diamonds with a culet of 300-μm di-
ameter and rhenium gasket were also used for the XRD
measurements. The high-pressure XRD (λ = 0.6199Å) mea-
surements were performed at room temperature using the
beamline BL15U1 at the Shanghai Synchrotron Radiation
Facility. The DIOPTAS program [40] was employed for image
integrations. The Le Bail method was used to fit the XRD
patterns via the RIETICA program [41]. The Raman mea-
surements were performed at room temperature on a freshly
cleaved Sr2IrO4 single crystal using 633-nm He-Ne laser for
excitation with the power below 10 mW to avoid sample
damage and any heating effect. Pressure at room tempera-
ture was calibrated by the ruby fluorescence scale below 80
GPa [42] and the diamond Raman scale above 80 GPa [43],
respectively.

A more detailed description of our experimental methods
is given in the Supplemental Material [31].

III. RESULTS AND DISCUSSION

We first focus on the basal-plane resistance R from the
run-1 data in Fig. 1(a1) for 0.6–32.1 GPa, and Fig. 1(a2) for
37.4–54.2 GPa. R increases monotonically with decreasing
temperature for P = 0.6GPa, consistent with the known be-
havior at ambient pressure [5]. With increasing P up to 32.1
GPa, R decreases by more than two orders of magnitude at
low temperatures, but retains insulating behavior [Fig. 1(a1)].
This trend reverses for P > 32GPa, as shown in Fig. 1(a2):
R rapidly rises and almost fully recovers its initial, ambient-
pressure value. A corresponding T-P contour plot in Fig. 1(b)
illustrates a U-shaped pressure dependence of R with a mini-
mum near 32 GPa, consistent with previous results [26,27].

Data from run 2 overlap those of run 1 over a significant
pressure range, 24–54 GPa; but run 2 spans a wider, much
higher pressure range of 24 to 185.0 GPa [see Figs. 1(c)–
1(d)]. The run-2 data confirm the results obtained in run 1,
although the lowest R occurs near 38 GPa for run 2, which is
somewhat higher than 32 GPa observed in run 1. (Given the
inherent imperfections of high-pressure measurements, this
difference is acceptable.) It is emphasized that this rapid rise
of R near 38 GPa is followed/accompanied by a structural
phase transition at 40 GPa. Nearly simultaneous changes in R
and the crystal structure reveal a direct correlation between the
retention of an insulating state and the structural distortions.

However, below 80 K and at P � 124GPa, R decreases
by more than 67%, compared to R at 81 GPa, and exhibits
an apparent approach to saturation [Fig. 1(e)]. The tendancy
toward saturation is both significant and intriguing (note the
finite variation of R in the saturating regime shows that the
sample retains enough integrity to respond to changes in
applied pressure). Indeed, our data may indicate a possible
topological insulating state, in which a saturated resistance
at low temperatures could be a result of a pressure-induced
surface state [44,45]. This result is interestingly relevant to
a recent high-pressure study in which a possible quantum
paramagnetism or a topological state in compressed Sr2IrO4

is suggested [30]. It is nevertheless clear that the electronic
structure of Sr2IrO4 undergoes a significant change in the
megabar range.
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FIG. 1. The temperature dependence of the basal-plane resistance R over pressures ranging from (a1) 0.6–32.1 GPa and (a2) 36.7–54.2 GPa
for run 1, and (c) 24.7–185 GPa for run 2. Note the gray arrows that indicate the increase or decrease in R with increasing P. Corresponding
contour plots are shown in (b) for the pressure range 0.6–54.2 GPa for run 1 and in (d) for the pressure range 24.7–185 GPa for run 2. The
colors red and blue represent the highest and lowest resistance R, respectively, and other colors indicate intermediate resistance values. The
white dashed lines mark the pressure regime of 32.1−37.9 where R reaches its minimum. (e) Data marked by the green oval circle in (c) is
shown in an expanded plot of the near-saturated regime for R (i.e., P ≈ 185GPa and T < 80K). Inset: A snapshot of the diamond anvil cell
with a sample at 27 GPa.

Our demonstration that the insulating state of Sr2IrO4 is
retained to megabar pressures is extraordinary, and demands
careful examination of structural properties using both XRD
and Raman scattering experiments that can access pressures
up to 74 GPa and 65.6 GPa, respectively. Results of our
in situ synchrotron XRD measurements at 300 K under
pressure are shown in Fig. 2(a). At P < 40.6GPa, Sr2IrO4

retains the same structure as that at ambient pressure; i.e.,
the tetragonal space group I41/acd . As expected, all peaks
progressively shift to higher angles, reflecting the shrinkage
of the unit cell as P increases. The structural phase transition
to a lower-symmetry phase is detected at a critical pressure
Pc = 40.6GPa: The (112) peak intensity begins to become
asymmetric at 40.6 GPa, and then gradually splits into two
peaks upon further compression, signaling the occurrence of
a structural transition [Fig. 2(b)]. This conclusion is corrobo-
rated by the splitting of both (116) and (220) peaks, as well as
the emergence of a new peak on the right shoulder of the (004)
peak as the pressure reaches 51 GPa [Figs. 2(c)–2(d)]. These

emergent peaks become more pronounced with increasing P
and are well-indexed by an orthorhombic structure with space
group Pbca, as shown in Fig. 3. We note this lower-symmetry
structure requires both a rotation and tilt of the IrO6 octahedra
of Sr2IrO4 [31].

It is important to note the crystal structure of the sample
recovers its ambient tetragonal phase when the pressure is
reduced from 73.7 GPa to 0.1 GPa [see the green arrow in
Fig. 2(a)]. This confirms the observed pressure-driven struc-
tural transition at 40.6 GPa is intrinsic. Indeed, the volume
data are fitted well by the third-order Birch-Murnaghan equa-
tion of state [46], which yields the ambient pressure volume
V0 = 97.2(0.3), bulk modulus B0 = 218.2(10.4), and its first-
order derivative B0

′ = 3.1(0.3) for the low-pressure tetragonal
phase (see Fig. 3(c)). Data for the high-pressure Pbca phase
yield values V0 = 81.3(0.6)Å3, B0 = 340.0(17.2) GPa, and
B0

′ = 13.1(0.2) (see Fig. 3(c)). The standard Le Bail method
was used for the structural refinement (see Ref. [31] for more
details). We note that a pressure-induced phase transition in
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FIG. 2. (a) Representative synchrotron x-ray diffraction patterns
at room temperature spanning P = 0.9 to 73.7 GPa. The black
curves represent the native I41/acd phase (Z = 8), red patterns the
pressure-induced Pbca phase (Z = 4). Note that the green XRD
spectrum in the top of (a) marked by a green arrow indicates that
the crystal structure of the sample recovers its ambient structure after
decompression (marked dp). (b)–(d) The structural transition at 40.6
GPa is marked by red rhombi. The refinement results for 0.9 GPa
are shown in (a). The experimental data are the solid circles, and the
calculated data are red lines. Bragg peaks are represented by black
vertical sticks.

Sr2IrO4 was reported in an early study, but broad, overlapping
XRD peaks observed at high pressures prevented a further
refinement of the pressure-induced space group and subtle
changes in octahedral tilt [47].

Raman scattering is an alternative, powerful tool for de-
tecting small or local lattice distortions, as well as structural
transitions. We conducted Raman scattering experiments at
300 K and pressures up to 65.6 GPa for comparison with the
XRD data (Fig. 3). Figure 4(a) shows the selective Raman
spectra at various pressures up to 65.6 GPa. At 1.0 GPa,
there are four phonon peaks marked by M1 (the merging of
A1g and B2g modes), M2(A1g), M3(B2g), and M4(A1g), which
are located at 177, 252, 388, and 561 cm−1, respectively,
in agreement with a previous report [47]. The mode M1

represents a rotation of the IrO6 octahedra about the c axis,
combined with a Sr displacement along the caxis, while M2

denotes a pure rotation of the IrO6 octahedra about the caxis.
Mode M3 is an in-plane bending of the IrO6 octahedra, and

Δ

FIG. 3. Pressure dependence of the lattice parameters of (a) the
a axis and b axis, (b) the c axis, and (c) the unit cell volume. The
black squares and red circles represent the lattice parameters of
the native I41/acd phase (Z = 8) and the pressure-induced Pbca
phase (Z = 4), respectively. Note that the gray dashed lines mark
the critical pressure Pc = 40.6GPa. For comparison and contrast,
the lattice parameters for the native phase marked by the faint gray
squares are plotted above Pc. The black and red solid lines represent
the fits for the phases with the Birch-Murnaghan equation of states.
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FIG. 4. (a) Selected room-temperature Raman spectra of Sr2IrO4

for applied pressures extending from 1.5 to 65.6 GPa. The black
patterns include M1-4; the red curves cover a series of new peaks
marked P1-4 after the structural transition. The uppermost green line
is the spectrum after decompression. (b) Raman frequencies as a
function of pressure for phonon modes. Note that the red solid line
marks the critical pressure of 40.6 GPa, consistent with that obtained
in the XRD measurements. Insets: The rotation of IrO6 below Pc
and the rotation and tilt of IrO6 above Pc. Note that the spectrum
marked by a green arrow in (a) recovers its low-pressure form after
decompression back to 3.6 GPa, suggesting that the sample integrity
is preserved at 65.6 GPa.
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M4 is a stretching mode involving a modulation of the Ir-O
(apical) distance. With increasing P, the Raman shift of all
four modes first increases linearly, then shows clear slope
changes near 15 GPa; this is particularly true for the M2 mode
that measures the octahedral rotation. Moreover, the M1, M2,
and M3 modes display distinctly abnormal red-shifts above
22.9 GPa, which gradually evolve into a blueshift upon further
compression; this behavior is consistent with a second-order
phase transition: Indeed, for P � Pc = 40.6GPa, a series of
new peaks labeled by P1−4 appear, and can be attributed to the
structural transition detected in the XRD measurements. It is
important to note the Raman spectrum [marked by a green
arrow in Fig. 4(a)] recovers its low-pressure behavior after
decompression back to 3.6 GPa, which confirms the intrinsic
sample behavior for pressures up to 65.6 GPa.

Both the XRD and Raman scattering data provide a direct,
crucial correlation of the lattice dynamics with the transport
properties at high pressures, and demonstrate that the per-
sistent insulating state at megabar pressures is related to the
significant reduction in symmetry incurred in the transition
from the I41/acd phase (32 symmetry group elements) to
the lower-symmetry Pbca phase (eight symmetry group el-
ements). This structural change involves not only rotations,
but also titling of IrO6 octahedra at P � Pc. The striking
stability of the insulating state over such a broad pressure
interval of 38 to 185 GPa suggests two competing forces are
at work: (1) There is a tendency for band broadening that
must accompany a sizable volume compression and favors
metallic behavior. (2) There is a pressure-induced crystal
distortion that generally weakens electron hopping and can
lead to localization, which eventually prevails in the present
case, given the recovered insulating state for P > 38GPa.

Nevertheless, Sr2IrO4 appears to defy conventional Mott
physics in that the insulating state and long-range AFM order
do not always precisely accompany each other [5]. An early
study indicates weak ferromagnetism vanishes near 18 GPa
[26], which is in the vicinity of 15 GPa, where our Raman
data clearly indicate a change in the IrO6 rotation. The weak
ferromagnetism is due to magnetic canting [16], which closely
tracks the IrO6 rotation [16,25]. It is recognized that an
elongation (compression) of the caxis weakens (enhances) the
magnetic canting, or the weak ferromagnetism, and facilitates
either a collinear AFM or a paramagnetic state [24]. Our XRD
data show that the lattice c/a ratio increases significantly with
rising pressure in both the tetragonal phase below Pc(= 40.6)
and the orthorhombic phase above Pc (see Fig. 5). These ob-
servations offer a reasonable explanation of the disappearance
of weak ferromagnetism above 18 GPa, as reported previously
[26], since the enhanced c/a ratio suggests that Sr2IrO4 be-
comes more two-dimensional, which is generally unfavorable
for long-range magnetic order. Our data also bear upon recent
results [30] that suggest that a possible paramagnetic state
exists above 18 GPa [30,48].

IV. CONCLUSION

In conclusion, our extended high-pressure study clearly
documents a rare, persistent insulating state at megabar pres-
sures and its close correlation with a pressure-induced struc-
tural phase transition in Sr2IrO4. We present strong evidence

FIG. 5. The pressure dependence of the lattice parameter ratio of
the c axis to the a axis,c/a, for the tetragonal phase (blue), and c/a
and c/b for the orthorhombic phase (red).

for the unique, crucial role the lattice symmetry and dynam-
ics play in determining ground states in spin-orbit-coupled
materials. These results offer a perspective for understanding
the discrepancies between recent theoretical proposals and
experimental results in iridates, including the absence of
superconductivity in Sr2IrO4.

More generally, a persistent insulating state at megabar
pressures raises an intriguing, fundamental issue: The strong
exchange-correlation effects supported by a high, narrow peak
in the density of states near the Fermi level may not lead
to traditional (metallic/delocalized) Fermi liquid screening
interactions in Sr2IrO4, as anticipated from Mott physics.
We speculate that very large volume reductions and strong
Coulomb correlations alternatively can stabilize highly di-
rectional bonds. This contrasts with Hartree-Fock mean-field
theories that treat breaking of spherical symmetry by electron-
electron interactions via spherical averaging of self-consistent
Coulomb fields. Our observation of persistent insulating be-
havior in Sr2IrO4 indicates that the Hartree-Fock methodol-
ogy is not well-suited for treating situations where strong SOI
and anisotropic correlations dictate that electron localization
is dominant at very high densities.
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