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Abstract

Social networks have gained tremendous popularity recently. Millions of people use social network apps to share precious
moments with friends and family. Users are often asked to provide personal information such as name, gender, and address
when using social networks. However, as the social network data are collected, analyzed, and re-published at a large scale,
personal information might be misused by unauthorized third parties and even attackers. Therefore, extensive research
has been carried out to protect the data from privacy violations in social networks. The most popular technique is graph
perturbation, which modifies the local topological structure of a social network user (a vertex) via various randomization
techniques before the social graph data is published. Nevertheless, graph anonymization may affect the usability of the data
as random noises are introduced, decreasing user experience. Therefore, a trade-off between privacy protection and data
usability must be sought. In this paper, we employ various graph and application utility metrics to investigate this trade-
off. More specifically, we conduct an empirical study by implementing five state-of-the-art anonymization algorithms to
analyze the graph and application utilities on a Facebook and a Twitter dataset. Our results indicate that most anonymization
algorithms can partially or conditionally preserve the graph and application utilities and any single anonymization algorithm
may not always perform well on different datasets. Finally, drawing on the reviewed graph anonymization techniques, we
provide a brief overview on future research directions and challenges involved therein.

Keywords Online social networks - Data utility - Data anonymization

1 Introduction

As one type of the technological products of Web 2.0, online
social networks (OSNs) have become the main platforms
for people to share information and communicate with each
other on the Internet, which significantly revolutionizes the
way people interact. When using OSNs, users are asked to
provide personal information such as name, gender, date
of birth, address, marital status, and e-mail. Meanwhile,
geographical information, photos, videos, and interactions
among friends are also stored by OSN service providers.
The collection of the above information leads to the gen-
eration of massive nonlinear, large-capacity, scale-free, and
high-dimensional data that can be modeled as social graphs
and published to third parties for different purposes such
as business analysis and academic research. Since a social

< Feng Zhao
zhaofeng @guet.edu.cn

Extended author information available on the last page of the article.

Published online: 07 August 2019

graph often consists of private information of the users, the
data owners typically employ graph anonymization tech-
niques to break the linkage between an identity and its asso-
ciated sensitive information via pseudonyms and various
structure perturbation methods to disturb the original social
graphs before publishing.

Typically, graph perturbation is performed by adding ran-
dom noises to edges of a social graph, and the stronger the
noise, the stronger the privacy protection strength. Never-
theless, the more noises added to a social graph, the less
usable the graph data to the end users. Therefore, a trade-
off between privacy preservation and data usability in
anonymized social graphs must be sought. On the other
hand, different anonymization algorithms employ different
mechanisms to perturb social graphs; thus, it is necessary to
analyze the impact of different anonymization algorithms on
data usability, as this analysis can help understand how an
anonymization algorithm affects social graph usability and
make contributions to designing new anonymization algo-
rithms that can better trade-off privacy protection and graph
data usability. Moreover, most existing research focuses
on a single anonymization technique; thus, a comparison
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study on the trade-off level exploited by popular anonymiza-
tion algorithms over the same social network datasets is
desperately needed.

In this paper, we provide an empirical study to
investigate the trade-off between privacy protection and
data usability of a few popular anonymization algorithms.
More specifically, we implement five structure-based
anonymization algorithms, namely Random Add/Del [42],
Random Switch [42], Clustering [36], K-Degree [3], and
Random Walk [25], with different privacy parameters, to
anonymize two real-world social graphs that have different
scales and social structures and perform a comparison study.
Note that pseudonyms are also employed in the anonymized
graphs. To quantify the trade-off between privacy protection
and data usability preservation, we employ utility as a
performance metric and consider a few graph utility and
application utility metrics. Our evaluation results indicate
that most anonymization algorithms can partially preserve
the utility metrics under our consideration with small noise
ratios. Some anonymization algorithms have the ability to
preserve a specific structural property but it may destroy
other structural properties, and the topological structure of
a social graph is able to affect the utility preservation of an
anonymized graph. We also present a few open problems
and outstanding challenges on graph anonymization.

The rest of the paper is organized as follows. In Section 3,
we detail our social network model and present the popular
utility measurement metrics. In Section 4, we implement
different anonymization algorithms on two real-world
social graphs and analyze our experimental results over
different utility metrics. Open problems and future research
challenge are reported in Section 5. Section 6 concludes this

paper.

2 Graph anonymization techniques

In this section, we briefly summarize the major existing
graph anonymization techniques, which are divided into six
categories according to [17], namely, naive identity removal
(pseudonyms), edge randomization [42], K-anonymity [3,
5,14, 23, 33, 44, 45], clustering [12, 36], differential privacy
[8, 18, 22, 39], and Random Walk [24].

Naive identity removal is the simplest method to
anonymize network data, but it cannot provide sufficient
effective protection over privacy. It has been proven to
be vulnerable to structure-based de-anonymization attacks
which can map a vertex from the anonymized social graph to
a vertex in the original social graph (a.k.a., reference graph)
based on the local structure similarity of these two vertices
in their corresponding social graphs [20, 26, 27, 32, 37, 41].

Edge randomization can be realized via Random
Add/Del or Random Switch [42]. Random Add/Del is an
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approach to remove a random subset of edges from the
original graph and then add the same amount of random
edges into the modified one. Random Switch first randomly
chooses two distinct existing edges e;, ; and ey, then switch
their endpoints, forming two new edges ¢; x and ¢; , that
are not present in the original graph. One of the advantages
of edge randomization is that it can resist de-anonymization
attacks under probabilistic conditions [42]. However, both
approaches could disconnect a graph and introduce a mass
of noise that can significantly decrease the data usability.

Random Walk-based anonymization protects edge pri-
vacy by replacing the edge e; ; between vertices v; and v;
with an edge between v; and the endpoint of a random walk
which starts from v;.

K-Anonymity was first presented in [34] in 1998. It
requires that the published data contains a certain number
(at least K) of indistinguishable records so that an attacker
cannot distinguish one record belonging to any individual
from others, thus protecting individuals’ privacy. Many vari-
ants of K-anonymity have been proposed to protect graph
data in the past years, including K-degree Anonymiza-
tion [3, 23], K-neighborhood Anonymization [44], K-
isomorphism Anonymization [5], and K-automorphism
Anonymization [45], just to name a few. K-Degree
Anonymization was proposed to defend against degree
attacks [23]. It first modifies the degree sequence of a
graph to generate a K-anonymous degree sequence in
which each degree appears at least K times, then con-
structs an anonymized graph based on the newly generated
K -anonymous sequence. K-Neighborhood Anonymization
was designed to protect privacy against neighborhood
attacks [44] by first grouping vertices with similar neighbor-
hoods together, then anonymizing the neighborhoods to be
isomorphic in the same group. This process can be done in
two steps. In the first step, the neighborhoods of all vertices
in a graph are extracted and a coding technique is employed
to label and index the neighborhoods for improving the per-
formance of calculating the structure similarity between two
neighborhoods and identifying isomorphic neighborhoods.
In the second step, at least K vertices with high neigh-
borhood similarity are greedily organized into a group and
then each group is anonymized so that any neighborhood
has at least K-1 isomorphic neighborhoods in the same
group. In order to defend against structural attacks such as
degree attacks, subgraph attacks, 1-neighbor-graph attacks,
and hub-fingerprint attacks [13, 23, 44], K-isomorphism
Anonymization was proposed in [5], in which a social graph
is first partitioned into K disjoint subgraphs with the same
number of vertices, then these K subgraphs are modified
by adding or deleting edges to make all K subgraphs iso-
morphic. Similarly, K-automorphism Anonymization [45]
can also protect privacy against various structural attacks.
This anonymization method guarantees that, for any vertex
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in a graph, there are always other K-1 symmetric vertices
with respect to K-1 automorphic functions. From the com-
parison study carried out by [17], it can be seen that K-
neighborhood, K-isomorphism, and K -automorphism are
all with high time complexities which drastically reduce
their anonymization efficiency. In this study, we implement
K -degree [3] only for its simplicity for our utility analysis.

Clustering/class-based techniques [2, 36] are used to
anonymize users into clusters (equivalently, groups or
classes). They partition vertices into different classes
according to various similarity criteria such as Euclidean
distance. To achieve privacy protection, the commonality
and similarity of the data within a cluster and the
differences of characteristics among different clusters
are exploited. Therefore, within each cluster, users’
distinguishing features need to be hidden. The idea of
reducing/eliminating individuals’ characteristics difference
is a commonly used method of data hiding nowadays. In [2],
Bhagat et al. presented a label list anonymization, which
groups the vertices into classes based on their “labels” (i.e.,
attributes). In [36], a bounded #-means clustering algorithm
and a union-split clustering scheme were first presented to
effectively cluster similar vertices into groups, then an inter-
cluster matching method was employed to anonymize the
social networks by strategically adding and removing edges
based on vertices’ inter-cluster connectivity. In this paper,
we adopt the bounded 7-means clustering algorithm in [36]
to implement our clustering anonymization.

Differential privacy was first introduced by Dwork and
McSherry [9] in 2005. It was initially developed for
traditional databases, and has been widely used in various
traditional data analysis tasks before being applied to
social network data. By adding carefully calculated random
noises to query results, differential privacy ensures that
changes to any individual record in the database do not
statistically distinguish between query results. This model
has two advantages. On one hand, it does not need to take
into account the background knowledge possessed by any
attacker; on the other hand, it relies on a sound mathematical
foundation. The key parameter of differential privacy is
the privacy budget, which determines the crucial trade-off
between the privacy preservation level and the data utility
of social network data. How to choose the budget value to
maximize the preservation of private data while protecting
data usability is a great challenge. For social networks, two
main definitions of “neighbor” for differential privacy were
introduced, namely edge differential privacy [11, 31] and
node differential privacy [4, 7]. Differential privacy was
applied to not only the simple statistical analysis of attribute
information such as vertex degree distribution and attribute
value distribution [19, 40], but also the more complicated
analysis on social network structure information [29]. In this
empirical study, we choose not to implement any differential

privacy algorithm as it applies to query results while our
focus is the anonymization of the social network data via
perturbation that can change the data itself.

In practice, naive identity removal is typically combined
with one or more of the other graph anonymization
techniques to protect privacy in social networks. As a matter
of fact, edge randomization, K-anonymity, clustering, and
random walk all provide privacy protection via adding
noises to perturb the social network graph topological
structures. More importantly, the more noises added to the
original graph, the stronger the protection of the social
graph. Nevertheless, the perturbation may negatively affect
the usability of the published social network data, providing
bad user experience. Therefore, it is important to study the
trade-off between privacy protection and anonymized data
usability. In this paper, we provide an empirical study to
investigate this trade-off by implementing and applying five
graph anonymization techniques on two large-scale real-
world social network datasets and analyze their graph and
application utilities.

3 Network model and utility metrics

The main objective of social network anonymization
is to maximize users’ privacy protection level while
making the network data usable as much as possible. A
popular parameter to quantify the trade-off between privacy
protection and data usability for an anonymized graph is
utility; the higher the utility, the better the data usability; the
lower the utility, the better the privacy protection. A number
of utility metrics have been discussed by the existing
research. In this section, we first present our social network
model and then review a few common utility metrics that
can be applied to anonymized social graphs.

3.1 Social network model

Generally, a social network can be modeled as a simple
undirected graph G = (V, E), with a set of vertices denoted
as V. = {vg, v, ..., v}, and a set of unlabeled edges as
E ={ej = (vi,v)lvi,v; € V,i # j}. Avertexv; € V
represents a single unique user in the social network. An
edge (v;,v;) € E signifies a social relationship between
two social users v; and v;.

Figure la shows an example original social graph
G,(V., E,) with real identities, a.k.a. reference graph.
Figure 1b represents the corresponding anonymized social
graph G,(V,, E;) obtained by perturbing G,(V,, E,) via
pseudonyms and Random Add/Del: the identities in V, (like
the name) that can be used to uniquely identify vertices
are replaced by random characters (pseudonyms), and E,
is generated by removing some existing edges (red dashed
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Fig.1 An example original
social network graph (a) and the
corresponding anonymized one
(b) via pseudonyms and the
Random Add/Del
anonymization technique

(a) C;’l“ (V’I“7 ET’)

lines) from E, and adding new edges (red solid lines) into it
(Random Add/Del).

3.2 Utility metrics

Measurements of the topology of a complex and large-scale
social network are essential for characterizing, analyzing,
and modeling the network. An anonymization scheme
can be evaluated from two aspects: anonymization level
(privacy-preserving level) and data usability level, which
are quantified with a single parameter “utility.” The utilities
of the social graph can be categorized as graph utilities
and application utilities. Different graph utilities indicate
distinct preservation levels of the fundamental structural
characteristics of the anonymized graph relative to the
original graph, and application utilities are used to measure
the usability of the anonymized graph for real applications.
In this section, we discuss a few graph utility and application
utility metrics.

3.2.1 Graph utility metrics
The following graph utility metrics are employed in our
empirical study.

— Degree (deg). The degree of a vertex v in a graph
G = (V, E) is the total number of vertices adjacent to
v, which is the most fundamental attribute of a vertex.

deg(v) = [{u|(u,v) € E}| 6]

— Global transitivity (GT'). The global transitivity (global
clustering coefficient) measures the degree on which
two neighbors of a vertex tend to be connected. The
global clustering coefficient is the ratio of all the
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triangles and connected triplets in the graph. A triplet
includes three vertices that are connected by two (or
three) edges. Here, we present the following definition
based on undirected unweighed graphs which is known
as transitivity.

_ 3NA

C= N3 @

where N is the number of triangles and N3 is the
number of triplets in the graph.

Shortest path (S P). The shortest path is a fundamental
characteristic of a graph. It refers to the path between
any two vertices that has the minimum sum of the edge
weights. When the edges are unweighted, the shortest
path refers to one with a minimum number of hops.
Closeness centrality (CC). Closeness centrality of
vertex v € V is calculated as the reciprocal of the sum
of the shortest path length p(v, ) from v to any other
vertex u € V with (# # v). It measures how long
it takes to spread information from v to all the other
reachable vertices in the graph.

Betweenness centrality (BC). The betweenness central-
ity BC, of a vertex v € V is defined as the number of
times all the shortest paths going through v in the graph.
If a vertex v has a high betweenness centrality, obvi-
ously v holds an important position and has a significant
influence over the graph.

Eigenvector centrality (EC) [28]. Eigenvector central-
ity calculates the centrality for a vertex based on the
centrality of its neighbors. It measures the transitive
influence or connectivity of the vertices. The EC of the
ith node in a graph is the ith value of the eigenvector
calculated from the largest eigenvalue of the adjacency
matrix of the graph.
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Table 1 Structural properties of the social graphs

Dataset Vertices Edges Average degree
Facebook 4039 88,234 43.69
Twitter 899,403 1,786,583 3.97

3.2.2 Application utility metrics

There exist a number of application utility metrics such as
Community Detection [10], Sybil Detection [38], Structural
Role Extraction [15], and Epidemic Simulation (ES) [43].
Since the anonymization algorithms under our consideration
introduce noises into the graph data and perturb the graph
structures, most structure features could be changed, which
can be clearly reflected by the epidemic simulation results.
Therefore, in this empirical study, we implement only
the epidemic simulation metric to measure the application
utility of the anonymized social graphs.

A social network can be a snapshot of different social
relationships between human beings in the real world, and
a spreading of an epidemic has a close connection to
human social relationships. The modeling of the epidemics
on social networks has been studied in recent years [43].
Epidemic simulations are structure-sensitive, which means
that the structural features of a social network, such as
communities, triangles, high-degree vertices, and shortest
paths, can greatly affect the simulation results.

The susceptible-infected-susceptible (SIS) model [1, 6]
has been applied to an anonymized social graph to simulate
the spreading of an infection (like the total number of
infected or the duration of an epidemic). The anonymized
social graph, which has similar epidemic simulation results
as the original one, is deemed to preserve more application
utility. The equations of the model with dynamics are shown
as follows:
SU+AD _ g0

VR AN A 3)

Fig.2 Visualizations of the two
social graphs

(a) Facebook

I(t+At) _ I(t)
At

where S is the group of susceptible users who are not
infected but may be infected after they meet with contagious
individuals; I refers to the group of infected users; S®
and I® are the numbers of users in § and / at time
step t, respectively; B is the infection rate; and y is the
recovery rate. An individual in S can be infected and
become a member of /; meanwhile, an individual in / can
be recovered to become a member in group S.

=BSOID —y 1! ©)

4 Experiments and evaluation results

In this section, we provide a comprehensive empirical study
to analyze the utility performance of five anonymization
algorithms over two real-world social network datasets. We
first present our experimental setup, then we report our
simulation results.

4.1 Experimental setup

In our evaluations, five anonymization algorithms (Random
Add/Delete, Random Switch, Clustering, K-degree and
Random Walk) are implemented to analyze the preservation
levels of the graph and application utilities on Twitter and
Facebook datasets. Table 1 shows the structural properties
of the networks derived from the datasets. The smaller
Facebook dataset is downloaded from SNAP [21] while the
larger dataset is collected from Twitter through the Twitter
REST API. Figure 2 shows the visualizations of these two
social graphs, which indicate that most vertices in the Face-
book dataset have larger degrees but, in the Twitter dataset,
79.4% of the vertices (out of 713,805 in total) only have
a single edge. This is because Breadth-first search (BFS)
was used in the data crawling process, which starts from
a single vertex (user) as the root and keeps on traversing
all the connected “followers.” After finishing crawling the

(b) Twitter

@ Springer



Pers Ubiquit Comput

root, these collected “followers” become the roots in the  32-G RAM running Ubuntu 18.04 LTS. All the reported
following crawling iterations which collect a large portion  results are the average of 20 runs to eliminate randomnesses.
of vertices with a single edge. Since the graph structure of The naive identity removal method only removes the
the Twitter dataset is too large for exhaustively computing  identifiers and it does not change the graph structure; there-
the graph utilities of SP, CC, BC, and EC, we randomly fore, we implement it to obtain the baseline experimental

sample 10,000 vertices from the Twitter dataset to form a  results. The parameters for the other five anonymization

smaller sized induced network for our utility evaluations. algorithms are set as follows:

All algorithm implementations and utility evaluations - The noise ratio of Random Add/Del and Random
are run on an Intel i7-8750(H) at a 2.2-GHz machine with Switch is defined to be the ratio of the number of edges
Fig.3 Utility analysis of Facebook: Degree Distribution of Add/Del » Twitter: degree distribution of Add/Del
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Fig.3 (continued)

Facebook: Betweenness Centrality of Add/Del

Twitter: Betweenness Centrality of Add/Del
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added/removed over the total number of edges in a
social graph. It ranges from 0.1 to 0.6 with an interval of
0.1 in our experimental studies.

— The parameter of K denotes the cluster size of the
Clustering and the group size of the K-degree. It is set
to 10, 20, 40, 60, 80, 100, 200, 300, and 400 in our
studies.

— In Random Walk, w represents the step length which is
set to 2, 5, and 10 in our studies.

— In Epidemic Simulation, the rate of infection g = 0.2;
the rate of recovery y = 0.1; and N is the total number
of individuals with S© + 1" = N.

4.2 Evaluation results

In this section, we report the utility evaluation results
of each social graph by applying different anonymization
algorithms to the Facebook and Twitter datasets.

For each anonymization algorithm, we plot seven pairs of
figures to illustrate the utility analysis results, and each pair
reports the results of one utility metric over two datasets.

The first pair of figures depicts the degree distributions of
the social graphs, with the x-axis being the vertex degrees
in an ascending order and the y-axis being the number of
vertices (note that the y-axis for the Twitter dataset is in
logscale for better illustration); the second pair presents
the global transitivity of the social graphs, with the x-axis
being the noise ratio, cluster (group) size, or random walk
length, and the y-axis being the value of global transitivity;
the third pair illustrates the frequency distribution of the
shortest path length, with the x-axis being the shortest path
lengths in an ascending order and the y-axis showing the
frequency of each value of the shortest path length; the
fourth pair reports the frequency distribution of closeness
centrality, with the x-axis being closeness centrality and
the y-axis being frequency; the fifth and sixth pairs depict
the cumulative distributions of the betweenness centrality
and eigenvector centrality, respectively, with x-axis being
the corresponding centrality value and the y-axis being
the frequency; while the last pair reports the epidemics
simulation results, with the x-axis being the time step and
the y-axis being the ratio of the number of infected users
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over the total number of users at each time step. In the
following subsection, we detail the empirical results of each
anonymization algorithm.

4.2.1 Random Add/Del
Random Add/Del randomly removes some edges and then

randomly add the same amount of new edges to the graph.
However, the network could get disconnected from the rest

Fig.4 Utility analysis of

Facebook: Degree Distribution of Switch

of the whole graph if some critical edges are removed. In
order to prevent this, whenever the degree of a vertex drops
to zero, we randomly add a new edge to that vertex; we also
check the connectivity of the modified graph to ensure that
the graph is still connected after Random Add/Del. Figure 3
presents the utility analysis results. One can see that the
utilities such as deg, CC, and E S can be partially preserved
by Random Add/Del when few edges are modified. Note
that we plot the logarithm of deg for the Twitter dataset for a
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Fig.4 (continued)

Facebook: Betweenness Centrality of Switch
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better presentation. We also observe that Random Add/Del
can also well-preserved EC, but has a negative impact on
BC. The GT of the Facebook dataset decreases with an
increasing noise ratio since Random Add/Del can destroy
the triangular structures that exist in the social graph.
However, the GT in the Twitter dataset increases with an
increasing noise ratio. This is because in the Twitter dataset,
a large number of vertices with a single degree may gener-
ate more new triangles after adding new edges to them.
The S P of the Facebook dataset can be partially preserved
when a small number of edges are changed, but that of
the Twitter dataset is affected dramatically by these edge
changes.

4.2.2 Random switch

Random switch randomly chooses two distinct existing
edges and by switching their endpoints to create new edges
that are not present in the original graph. As shown in Fig. 4,
this algorithm can totally preserve the degree distribution
of the vertices in a social graph, and conditionally preserve
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GT,SP,CC, and BC. Although Random Switch creates
new edges between distinct vertices without changing their
degrees, the internal structure is disturbed and the high-
degree vertices are more likely to connect to the vertices
with low degrees; this kind of changes has a great impact
on EC and ES. From the perspective of privacy protection,
Random Add/Del and Random Switch are vulnerable to
several existing structure-based de-anonymization attacks,
as reported in [16, 30, 35].

4.2.3 Clustering

The goal of Clustering anonymization is to divide vertices
into clusters, and make the vertices in a cluster have similar
structures to prevent a single vertex from being uniquely

identified. In our simulations,

the bounded ¢-means

clustering algorithm [36] is first applied to partition vertices
into groups, then within each group we add or remove edges
for each vertex to match the degree of the cluster center.
We also remove edges between high-degree vertices and
add new ones between low-degree vertices to perturb the
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inter cluster edges. From Fig. 5, one can see that with the  are seriously distorted, even when a small cluster size is
increase of the group size, GT decreases on both datasets. applied.

Moreover, the algorithm can preserve EC well since the

structures among the vertices with medium degrees are not  4.2.4 K-degree

severely disturbed. On the other hand, SP, CC, BC, and

ES on both datasets are not preserved well as the  The K-degree algorithm [3, 23] requires a vertex to have the
structures within a cluster and among high-degree vertices  same degree with at least K — 1 other vertices in the social
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Fig.5 (continued)

Facebook: Betweenness Centrality of Clustering
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graph. When K is large, the K-degree algorithm needs to
add or delete more edges in order to satisfy this requirement.
Figure 6 presents the utility results. One can see that K-
degree has the greatest impact on degree distribution with an
increasing K. The GT of the Facebook dataset rises at first
and then starts to decline after K = 60. We also observe
that GT is inversely proportional to the number of triplets
in the Facebook dataset. Since the K-degree anonymiza-
tion algorithm reduces the number of vertices with small
degrees, the number of triplets goes down, resulting in a
rising global transitivity trend. However, when K becomes
larger than 100, the number of vertices with larger degrees
becomes substantially larger, i.e., many non-existing edges
are being added into these vertices; thus, the number of
triplets goes up, resulting in a declining global transitivity
trend. Other graph utilities such as SP, CC, BC, and EC
can be partially preserved if K is chosen to be small.

Furthermore, the application utility £.S is not well preserved
on both datasets since the K-degree algorithm introduces
a lot of noises into the anonymized graph, severely dis-
turbing the graph structure of the anonymized graph.

4.2.5 Random Walk

Random Walk-based perturbation algorithm can protect
link privacy by replacing the edge between a vertex and its
neighbor with an edge between the destination of a random
walk starting from the neighbor node and the vertex. As
shown in Fig. 7, Random Walk can totally preserve the
degree utility, but has negative effects on GT since the
internal structure is affected during anonymization. Other
utilities like PL, CC, EC, and E S depend on the random
walk length w and the social graph structure; a small w may
lose more utilities than a large w.
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4.2.6 Summary

In the previous subsections, we evaluate and analyze the
graph utility and application utility performance of five
graph anonymization algorithms on a Facebook dataset
and a Twitter dataset. On the basis of the analyses above,

Fig.6 Utility analysis of

Facebook: Degree Distribution of K— degree

we notice that most anonymization algorithms can par-
tially preserve graph utility with a small noise ratio. Some
anonymization algorithms such as Random Switch and
Random Walk have the ability to preserve local graph util-
ity (e.g., vertex degree), but they may also have negative
impacts on global utility (e.g., global transitivity, shortest
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Fig.6 (continued)

Facebook: Betweenness Centrality of k-degree

Twitter: Betweenness Centrality of k-degree
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path length). On the other hand, one can see that the struc-
ture of a social graph is able to affect the utility preservation
of an anonymized graph. From the perspective of de-
anonymization, an attacker can measure the similarity of
vertices in the anonymized graph and the reference graph
which includes users’ true identities. It can then design a
multi-dimensional measurement of vertex similarity consid-
ering both local structures and global structures to improve
the de-anonymization accuracy.

5 Open problems and future work

In the previous section, we present an empirical study to
comprehensively analyze the utilities of the state-of-the-art
structure-based anonymization techniques in online social
networks and report a few interesting facts. In this section,
we outline the potential challenges regarding future research
directions.

5.1 The trade-off between privacy preservation
and data utility

Preserving the usability of social network data while guar-
anteeing privacy preservation is the main objective of many
social network service providers. Nevertheless, these two
aspects are in fact contradictory to some extent. In order to
achieve these two paradoxical objectives, we need to find an
accurate trade-off, i.e., to effectively anonymize the graph
data with data usability preservation to ensure that adversaries
cannot manipulate the data for privacy breach and network
users can still utilize the data without sacrificing quality.
On the other hand, based on the above analysis, one can
see that current anonymization techniques can only make
the social network vertices indistinguishable with respect to
one or a few structural properties. It is difficult to make the
vertices structurally indistinguishable with respect to all the
structural properties of a graph. In fact, when such an ideal
objective is achieved, data usability would be completely
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Fig.7 Utility analysis of
Random Walk: each row
represents results of one utility
on two datasets

destroyed so that the graph data becomes meaningless to the

end users.

5.2 The efficiency and complexity of anonymization

techniques

Since a social network is typically large scale with a
big volume of data, some graph anonymization algorithms

@ Springer
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which are appropriate for a simple network may not be

suitable. The big complexity and humongous size make
the problem more challenging. Moreover, to guarantee the

privacy preservation level, noises need to be added to the

graph for perturbation operations. Therefore, it is possible
for the network data to be useless due to the large scale of

the network and the large magnitude of the added noise even
for a low level of privacy preservation.
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Fig.7 (continued)

Facebook: Betweenness Centrality of Random Walk
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6 Conclusion

In this paper, we implement five state-of-the-art structure-
based anonymization algorithms and analyze their perfor-
mance in preserving the popular graph and application
utilities on a Twitter and a Facebook dataset. We conclude
that the structure of the datasets can significantly affect the
performances of anonymization algorithms. More specifi-
cally, in our study, the Facebook dataset has a high average
degree while the Twitter dataset with a large amount of
single-degree vertices has a low average degree. As a result,
Random Add/Del increases the shortest path length in the
Twitter dataset but decreases the shortest path length in the
Facebook dataset. Clustering and K-degree also perform
better in the Twitter dataset than in the Facebook dataset.
Random Walk performs better than the other algorithms on
graph utilities. Meanwhile, the change in the number of
high-degree vertices has a great impact on graph utilities and
the application utility. Finally, we provide a brief overview
on future research directions and summarize the challenges
involved therein.
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