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Abstract: A parameter identification inverse problem in the form of nonlinear least squares is considered.
In the lack of stability, the frozen iteratively regularized Gauss—Newton (FIRGN) algorithm is proposed and
its convergence is justified under what we call a generalized normal solvability condition. The penalty term
is constructed based on a semi-norm generated by a linear operator yielding a greater flexibility in the use
of qualitative and quantitative a priori information available for each particular model. Unlike previously
known theoretical results on the FIRGN method, our convergence analysis does not rely on any nonlinearity
conditions and it is applicable to a large class of nonlinear operators. In our study, we leverage the nature of
ill-posedness in order to establish convergence in the noise-free case. For noise contaminated data, we show
that, at least theoretically, the process does not require a stopping rule and is no longer semi-convergent.
Numerical simulations for a parameter estimation problem in epidemiology illustrate the efficiency of the
algorithm.
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1 Introduction

Consider an applied inverse problem of minimizing the functional
1
Q(q) := §||F(Q)—f||2, F: DpcH — Hy, (1.1)

where 3 and H; are Hilbert spaces, and the nonlinear operator, F, is fitted to some (generally limited) noise
contaminated data, fgs,

If - fsll < 6. (1.2)

Let g be a minimizer of Q(g) such that
IF(@) - fll = inf |[F(g) - fl = 0. (1.3)
qeDr

Suppose F is Fréchet differentiable in a neighborhood 0,(g) to be specified below. Throughout this paper we
assume that F’ is Lipschitz-continuous, i.e.,

IF'(u) - F' ()l < Lllu-vll forany u,v e 0y(q), (1.4)
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but not regular in a sense that neither F'(g) nor F'*(g)F'(g) is boundedly invertible. Hence, the problem of
minimizing (1.1) is ill-posed, and any algorithm used to solve this problem numerically has to be regularized.
To that end, we penalize Q(q) (see [28]):

Q:(q) := %"F(Q) ~ foll* + %IIT(Q =912, (1.5)

with T being a surjective linear operator between two Hilbert spaces, and H and H; satisfying, for any h € X,
the condition
(T*Th, h) > m|h|?>, m>O0. (1.6)

A much needed flexibility in our choice of T € L(H, H,), along with a suitable reference element, ¢ € Dr ¢ K,
allows to incorporate some problem-specific a priori information, which is not covered by the operator F or
the data, f5. In certain cases, T maps spline expansion coefficients to the physical space, where the unknown
solution is actually defined. In other cases, it scales the respective components of g when the solution consists
of multiple unknown parameters, some of which are on different levels of magnitude [26]. By linearizing the
fidelity term in (1.5) around the current iteration point, g, and setting T = 7, > 0, one gets a strongly convex
quadratic functional

0r, (a5 90) = 51F(@) ~ fs + (a0l - a0l + 217(q - I, (L.7)

whose unique global minimum yields what is known as the classical iteratively-regularized Gauss—Newton
(IRGN) method, introduced by Bakushinsky for T = I, see [2, 3, 6, 7, 11, 15-17, 29], and later extended to
T # I in [25, 26]. Its “frozen” version to be investigated in this paper is obtained by replacing F'(gy) with
F'(qo), which enables us to save time and storage on recomputing F’ at each iteration step. Thus, one arrives
at the following regularized numerical procedure:

Gir1 = Gk — [F*(q0)F'(qo) + Tk T* TIH{F"* (q0)(F(qi) - f5) + Tk T* T(qi — &)}, qo € Op(@). (1.8)

Note that condition (1.6) guarantees that iterations (1.8) are well defined even when F'*(qo)F'(qo) is not
positive definite, and

% B 1
ILF™ (qo)F'(qo) + Tk T* T | < ppend

Under various nonlinearity conditions, algorithms similar to (1.8) have been considered by many authors in
both Hilbert and Banach spaces (see, for example, [14, 19, 20]). In [19], convergence in a Banach space is
justified under the assumption that for some constant Cy > 0, and for each u, v in a neighborhood of g, there
exists a linear operator R},: {1 — H; such that

F'(v)=RyF'(w), IR}y -1I|< Co, (1.9)

which means that in some neighborhood of qq the operator F'(v) remains essentially the same for all v up to
a certain perturbation by R},. This assumption was first introduced in [13] in order to prove convergence rates
of the Landweber iteration method for nonlinear ill-posed problems. It was further used to study convergence
rates of other iterative solution methods (see [7, 17, 23] and references therein).

While the results based on nonlinearity conditions are important, they are not applicable to inverse prob-
lems with highly nonlinear operators, where these conditions are not satisfied or are hard to verify. In our
study, we take a different route. Rather than restricting the nonlinearity of the operator, we leverage the nature
of ill-posedness in order to establish convergence of iterative scheme (1.8) without using (1.9) or any other
condition of this kind. As such, our analysis does not in any way limit the nonlinearity of the parameter-to-
data map, F, and covers a large class of nonlinear least squares. It is based on what we call the generalized
normal solvability condition (GNSC), that is, for go € O,(q) and T € L(H, H>), introduced in (1.7), the image,
R(F'(qo)(T* T)~1/?), is a closed subspace in H;. Here for any A € L(H, H1), R(A) is defined as

R(A) :={v e H1, v=Au, u e H}.
Recall that minimization problems are still ill-posed under GNSC if we have N(F'(go)(T*T)"*/2) + 0 and/or
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R(F'(qo)(T*T)~1/2) + 1, and they need to be regularized. However, the spectrum of a normally solvable
operator has a remarkable property: even though 0 is still in the spectrum due to ill-posedness, there exists
1o > O such that

o((F'(qo)(T*T)"Y2)*F'(qo)(T* T)"/%) c {0} U [pd, IIF' (go)(T* T)M/21%]. (1.10)

This “hole” in the spectrum is a real game changer. Due to inclusion (1.10), the regularized pseudo-inverse
operator, [F'*(qo)F'(qo) + T T* T)"F'*(qo), remains bounded (which is not true for general ill-posed prob-
lems where the upper bound is 5 %). And that is the reason the nonlinearity of the operator F no longer
has to be restricted in the convergence analysis (see Section 2 for more details).

In the linear case, for T = I, normally solvable ill-posed operator equations have been thoroughly stud-
ied by Vainikko and Veretennikov [30]. And in [4, 18], Bakushinsky and Kokurin investigated convergence
rates of iteratively regularized Gauss—Newton-type algorithms under the assumption that R(F'(§)) is a closed
subspace in H;.

Our interest in regularized numerical algorithms based on normal solvability conditions is primarily moti-
vated by inverse problems in epidemiology, where infinite dimensional time dependent disease parameters
must be recovered from finite incidence data. However, unstable problems of recovering infinite solutions
from finite data sets occur in many other fields, including biomedical imaging, gravitational sounding, and
hydraulics. Clearly, the GNSC is fulfilled when one of the spaces, H or H1, is finite dimensional. The GNSC
also holds if F'(go)(T* T)~'/2 is a Fredholm operator [4, 18]. Further examples can also be found in [12].

The main result of this paper, presented in Theorem 2.2, is estimate (2.17), which shows that algo-
rithm (1.8) does not actually need a stopping rule, since (at least theoretically, if one does not account
for other sources of noise rather than noise in the data) the error on the solution goes down as k — co.
That is, unlike most iteratively regularized methods for nonlinear ill-posed problems, the process is not
semi-convergent and there is no danger to over-fit. This is a remarkable property that greatly simplifies the
numerical implementation of (1.8).

The paper is organized as follows. In Section 2, theoretical analysis of the new regularization algo-
rithm (1.8) is offered, and the stability of (1.8) with respect to noise in the input data is justified. Numerical
experiments aimed at parameter estimation from real epidemiological data are presented in Section 3,
followed by conclusions and future plans discussed in Section 4.

2 Convergence analysis of the regularization algorithm

In this section, we establish the regularizing properties of the iterative scheme (1.8) and show that, under
some natural assumptions on qg, ¢ € Dr € H,

limsupligx — qll < AS, A>O0.
k—o0

The following lemma is instrumental for our convergence analysis.
Lemma 2.1 ([30, p. 153]). Anoperator A € L(H, H;) has a closed range R(A) ¢ H; if and only if
= inf{|lAul : u € 3, u L N(A), |ull = 1} > 0,

where
N(A) :={u € H, Au = 0}.

According to Lemma 2.1,
Mo = Inf{|[F'(qo)(T* T)™"?ull : u € H, u L N(F'(qo)(T*T)""/?), |lu| = 1} > 0. .1)

Suppose [qo — gl < ltg + A for some 1, A > 0, see [5]. Let {1y} be a sequence of regularization parameters
satisfying the conditions

Tk > Tike1 > 0, sup =d<oco, limT1,=0, (2.2)
keNu{o} Tk+1 k—co

Authenticated | asmirnova@gsu.edu author's copy
Download Date | 2/26/20 1:04 PM



4 = A.Bakushinsky and A. Smirnova, FIRGN algorithm for nonlinear ill-posed problems DE GRUYTER

and assume, by induction, that forany 0 < j < k,
lg; — gl < ltj + AS.
Taking into consideration that

F"*(q0)(F(qi) ~ fs) = F"(qo)(F(q1) = F(@)) + F"* (q0)(f - fo),

one concludes, from (1.8) and (1.4),

Gk+1 — G = qx — 4 - [F"*(qo)F'(qo) + T« T* TI " H{F'* (q0)F'(§)(qk — q) + F'*(q0)B(q«k, q)
+ F'™*(qo)(f - f5) + Ta T* T(qi — @) + Tk T* T(q - &)}, (2.3)

where c
1B(qx, DI < E”‘]k - ql*.

Identity (2.3) yields

Gier — 4 = -[F"*(q0)F'(qo) + Tk T* TI ' F"* (qo){(F' (@) - F'(q0))(qk — @) + B(qx, @) + f - fs}
- 1k[F'*(qo)F'(qo) + Tk T*TI ' T*T(q - &). (2.4)
If one estimates [F'*(qo)F'(qo) + T T* T]"'F'*(qo) using the spectral theorem for the self-adjoint operator

(F'(qo)(T* T)~Y2)*F'(qo)(T* T)~'/? and polar decomposition for the bounded linear operator F' (go)(T* T)"/2,
then one obtains (see [3, 17, 26])

[F"*(q0)F'(q0) + T« T*T1 " F"*(q0)
= {(T* D)YV2(T* T)"V2F"* (qo)F'(qo)(T* T)™2 + 1, l)(T* D) Y/?} ' F'* (qo)
=(T*T) V2 [(F'(qo)(T*T)"/2)* F (qo)(T* T)™"/? + TiI) M (F'(qo)(T* T)"1/%)*. (2.5)
Introduce the notation
Go = F'(qo)(T*T)"*/2. (2.6)
Combining (2.5), (2.6) and (1.6), one derives

IF"™ (q0)F' (qo) + Tk T* T) 1 F'* (qo)ll = I(T* T)"M?[G§ Go + Ticd] 1 Gl
= [(T*T)"M2[G§ Go + Tid) 1 (U(G Go) /)" |
< I(T* T)Y2[GE Go + Tid] (G Go) 2|
1 VA

<— sup PN, PO :=

. 2.7
M 1e0(G;Go) A+ T

Here o(B) is the spectrum of B € L(3(, H), Go = U(G},Go)/2, and U is partial isometry:
IUqIl = ligll forany g € N(U)*.

From polar decomposition, Gg = U(G Go)Y'2, it follows that R(Gy) is closed if and only if RUGG Go)/?) is
closed [30]. Thus, yo in (2.1) is the least nonzero element in o((Gy Go)'/?) or, alternatively,

2 .
= min A, 2.8
H0 = Jeo(Gr oy, %0 2:8)

and 0(G;Go) < {0} U [y(z), [ Goll?]. Taking into account (2.7) and (2.8) and assuming that ¢ < y(z), one gets

1 2 1
I[F"*(qo)F'(qo) + T« T* TI ' F"* (qo)ll < — sup Y = o) all <

= < . (2.9
M Ae(0}ul12, 1Gol12] Vvmo m g+t - Vmpo

In order to compute the upper bound for the element [F'*(qo)F' (qo) + T4 T* T] 1 T* T(q - &) in (2.4), we impose
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a very weak source condition (weak in a sense that p can be less than 1/2):
(T*DY%(G - & = (G4 Go)’w, p >0, weH. (2.10)
Equalities (2.5) and (2.10) imply

[F'*(q0)F'(qo) + T& T* TI 1 T* T(g - & = (T* T)"Y2[(F'(qo)(T* T)™/?)* F'(qo)(T* )2 + 14 1] 2,
(T*DY2(g - & = (T*T) Y?[GGo + Tid] 7 (G Go)P w.

Thus, one arrives at the following estimate:

1 AP
ILF™*(q0)F'(qo) + Tk T*T) ' T*T(q - ) < —  sup (A, (A) := (2.11)
o e 9 VM Aeo(G: Go) ¢ ¢ A+ Tk
Suppose thatforO0 < p < 1,
DPTo
1op S e (2.12)
(this condition covers the case T < y(z) when p = 1/2). Then identity (2.8) together with (2.11) yield
> 1
¢(HO)ZT2p’ O<p<1l,
C(p, po) :== sup @A) = Ko (2.13)

Aea(G, Go) _
o ¢(IGol*) = 1Gol??2, p=1.

As aresult, from (1.2), (2.2), (2.4), (2.9), and (2.13), one obtains

lgk0s = < e (C1d0 - s =+ Sk = +8) + 2L iy
< %(lrk +A8) + vmsyo + C(Ij/’mm)llwllrk
< zjmﬁyo(lzrork +2IToAS + A%82) + \/ﬁayo + C(f/’m“")nwnrk
< %[3250“’ +Cp, yo)uwn]rk+1 + 2\?%10&62 + [3LIToA + 1] \/%uo.

In order to carry out the induction step, it is sufficient to prove that the right-hand side of the above estimate
does not exceed ITy,1 + Ad. Clearly, this will be the case if

L[“’ZTO +C(p )||w||] <l and —2 A28+ (3L1ToA + 1] <AS (2.14)
Vim L 2m, > HOHL| = 2o T e T '
Take [ := ;‘32@0 and suppose that 6d?£1oC(p, uo)|w| < mpuo. Then one derives
d 3£12T0 d 3LTO ].l()\/m 2
_ C ) w ] = _[ ( ) C ’ w ]
m[ 2 koW | = [ SU0( ST )+ O, ko)l
_ Hom+ 6d>L1oC(p, po)lwl
6d2LT1o\m
< Hom =L
~ 3dLT1y
The second inequality in (2.14) is equivalent to
30 1 3L1T,
A 6 + < A[l - —]a
2y/muo Vmpo Vmpo
or, given our choice of [ := £ 32@0,
36 j2p, L _A@-1) (2.15)

A6 <
2~/muo Vmpo d
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Recall that, by definition, d > 1. Evidently, inequality (2.15) holds if

1 Ald-1
max{ zjéyo A%, \/ﬁuo} < (id ). (2.16)
Estimate (2.16) implies
6< M and _2d <A.
3LAd (d - 1)vmuo
In particular, if one chooses A = m, then § < %. From the above, one concludes the following.

Theorem 2.2. Let F: Dp ¢ H — Hy, T € L(H, H>), and let H, H1, and H, be Hilbert spaces. Assume that
conditions (1.3), (1.4), (1.6), (2.2), (2.10), and (2.12) are fulfilled with po > O introduced in (2.1), and
R(F'(qo)(T* T)~'/?) is a closed subspace in H1. Suppose also that qq € On(g), where

On(@) :={g e DrcH, llg-ql <n}, n:=lro+AS,

and the constants [ and A are selected as follows:

l:= Hom and A:= L
3dLT1o (d- 1)\/%}10

Furthermore, let the noise level, 8§, do not exceed the threshold:

(d-1)’mug
6Ld?

Then for {qy} defined in (1.8) and for ¢ defined in (1.3), the following estimate holds:

6 <

lge - gl < Itk + A8, k=0,1,2,..., (2.17)
provided that T € L(H, H,), 7o, and d in (2.2) are chosen to satisfy the inequality
6d° LToC(p, Ho)lwll < muo,
with C(p, uo) and w introduced in (2.13) and (2.10), respectively.

Remark 2.3. Estimate (2.17) shows that algorithm (1.8) does not actually need a stopping rule, since (at
least theoretically, if one does not account for the rounding errors) ||qx — ¢l goes down as k — oco. However,
suppose Aé < I1y, and assume that algorithm (1.8) is terminated the moment It is less than A8 for the first
time:

Ity < A6 <lt, 0<k<XK(6).

Since A6 < I, conditions (2.2) imply that K(6) is correctly defined and
lim X(6) = co.
6—-0

Then it follows from (2.17) that
gscs) — qll < 246.

3 Numerical simulations and discussion

To validate the efficiency of algorithm (1.8), we conduct numerical experiments on stable parameter esti-
mation from real incidence data on cholera epidemic in Peru from 1991 to 1997, see [27]. Quantification of
various transmission pathways of cholera epidemics has been an important tool in control and intervention.

In our study, we adapted a dynamic model comprised of 4 equations and 8 parameters [1, 9, 21, 22].
According to this model, humans are born and die at the same rate, u (1/(60 - 52) weeks ™). Suscepti-
ble individuals can be infected through the environment with transmission rate S.(t) or through human
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Figure 1: Reconstructed parameter values and incidence curves for cholera epidemic.

contact with transmission rate S, (t). Therefore, they move from susceptible to infectious classes at rates
Be(t)B(t)/(B(t) + x) (where k is the 50% infectious dose in the environment, 10® mL™!, and B(¢) is the current
concentration of vibrios in the environment) and Bx(¢)I(t), respectively [27]. Vibrios are shed by infectious
individuals into the environment at the rate A (7O mL™" - weeks™ '), and then die at the rate ¢ (7/30 weeks ™).
Infected individuals are assumed to recover and acquire protective immunity for the entire duration of the
epidemic at the rate y (7/5 weeks 1) [27]. The overall transmission dynamics is therefore described by the
following nonlinear initial value problem:

O = N = (OO - Be0S(0) 0 2~ S0, G.1)
e = BOS(OIE) + Bo61S(0) 5 O~ (D) - yI(), (3.2)
R _ yio - ureo, (3.3)
%§=AKO—QU% (.4)
S0)=N-Cy, I(0)=Cy, R()=0, B(0)=B, (3.5)

where N is the population size for a given department in Peru, C; is the number of cases observed in the
first week in each department divided by a reporting rate, and B; is the initial concentration of vibrios in
the environment. We assume that reported data, f5(t), is available for weekly incidence cases subject to an
unknown reporting rate, 1. Based on (3.1)—(3.5), the cumulative number of human cases, C(t), satisfies the
following differential equation:

B(t)
B(t) + k'

dc
¢ = BrOSOI©) + Be(DS(D)

By fitting 1/)% to the reported incidence data, fs(t), we estimate four system parameters, two of which are
time dependent: Bx(t), Be(t), B1, and ¥. The reporting rate, 1, is a scaling factor used to adjust for possible
under- or over-reporting of cases, owing to, for instance, a large proportion of asymptomatic cholera cases or
false diagnostics.
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AMAZONAS REGION
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Figure 2: Reconstructed environmental and human-to-human transmission rates.

As proposed in [27], in order to estimate four unknown parameters, we replace the force of infection,
Br(t)S()I(t) + Be(t)S(t) BO_ " \ith fi—f in the first two equations of compartmental model (3.1)-(3.5) to get

B(t)+x?
linear nonhomogeneous ordinary differential equations (ODEs) for S(t) and I(t), respectively:
das dac
Jf = MO -+ uN, (3.6)
daI dac
o = IO+ B.7)

Given the initial conditions (3.5), one derives the following analytic solutions to (3.6) and (3.7):

t
S(t) = N —exp(—ut)C1 — Jexp(—y(t —-s))C'(s) ds, (3.8)
0

t
I(t) = exp(=(u + y)t)C1 + J exp(—(u +y)(t - 5))C'(s) ds. (3.9)
0

To obtain the expression for B(t) in terms of C’(t), one first solves the linear ODE (3.4), then substitutes (3.9)
for I(s), and finally integrates by parts to eliminate the inner integral. This yields

B(t) = exp(~{t)B; + %[exp(—(t) ~exp(~(u + )]
t
Ay =¢ +?, =7 J C'(s)[exp(={(t - 5)) — exp(~(p + y)(t - 5))] ds. (3.10)

The next step of the algorithm is to obtain discrete analogs of (3.8)—(3.10) at the grid points t1, t5, ..., tm,
where t;=i-1,i=1,2,...,m, and t; = O is the first week of the outbreak. To fit 1/)% to the reported
incidence data, fs(t), we replace C; with fs, /1 and C’'(s) with fs(s)/y under each integral in (3.8), (3.9),
and (3.10). Given the discrete data, f5 = [fs,, fs,, - - - » f5,,] ' » reported weekly, we interpolate f5 as follows:

fﬁ(o):fﬁ(tl):fﬁl and fé(t):f@url forte(tj’tj+1]aj:1, 2,...,m-1. (3-11)

Authenticated | asmirnova@gsu.edu author's copy
Download Date | 2/26/20 1:04 PM



DE GRUYTER A. Bakushinsky and A. Smirnova, FIRGN algorithm for nonlinear ill-posed problems =— 9

AREQUIPA REGION

30 25 100 20
® 20 80
20
15 60
15
10 40
10
5 5 20
0 0 0
2 4 6 8 0 0.005 001 0o 05 1 15 2 5
6 3 4
Bt 10 Bra B 10 B(0) x10

,=0-0048(95%Cl:0.0025,0.007); B(0)=4.3e+04(95%Cl:9e+03,9.2e+04); =0.24(95%Cl:0.12,0.37)

© Real Incidence Data
—o—Estimated Mean Value
——Estimated Epidemic Curves| —

Cholera cases

19915 1992 1992.5 1993 1993.5 1994 1994.5 1995 1995.5 1996 1996.5 1997
Time (years)

Figure 3: Reconstructed parameter values and incidence curves for cholera epidemic.

From (3.11), one concludes that

1Yl =N—fs, /9,

—u(i-1 i-1 (3.12)
Sily] ZN_M_ 3 S lexpoui=] - ) - expui =)

i=2,3,...,m.Likewise, identities (3.9) and (3.10) yield

Lyl =fs 19,
L) = exp(=(u +y)(i - 1))fs,

U (3.13)
i-1
7 +1y)l/, Zfa,ﬂ [exp(=(u +y)(i —j = 1)) — exp(=(u + )i = j))],
as well as the expression for B;[y, B1]:
A
Biltp Ba] = exp(~{(i = 1)By + o2 Texp(-fli = D) —exp(-(u+ = 1) G.14)
exp(={(i —j - 1)) — exp(={(i - J))
3.15

(uty- Olllzf‘”[ ¢ G019
_exp(-(u+y)i-j —;)j ; exp(=(u +y)(i - j)) ] (3.16)

i=2,3,...,m. This implies that the estimation of the unknown parameters, Bj(t), B¢(t), B1, i, can now be
cast as the following nonlinear least squares problem:

B[y, B1](9) }_f5||2

1
2 |¢s[lp](t){ﬁh(t)1[l/)](t) + ﬁe(t)B[lp, B1](t) + k

min |
Br(6).Be(),B1, 9 2

= 1 Bi[y, B1] 2
_ﬁ ), Be(t) By E ;(1/)5 [l/) {ﬁh Il[l/) BE,W} _f5i> .
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Figure 4: Reconstructed environmental and human-to-human transmission rates.

where f5 = [fs,, 5, - - - » f5,,] " are reported data sets for incident cases, and the expressions for S;[y], Ii[¥],
and B;[y, B1] are given by (3.12), (3.13), and (3.16), respectively. To discretize B(t), as suggested in [27],
we assume that the weekly temperature variation, T(t), directly influences the cholera transmission rate from
the environment. To reflect that, S.(t) is broken down into two components: S.(t) = Be1 + Be2 T(t), where T(t)
represents the mean temperature at time ¢ for the corresponding department. Regarding 5 (t), we assume an
exponential rate of decline following the implementation of control measures, i.e., Sx(t) = Brn1 exp(—Bn2t).
This yields the following unconstrained minimization problem

m
min S [F(q) - fol? == min = Y (Fy(@) — f5)?, F: R" - R™,
qa 2 qa 2 =
with m being the number of data points and n being the size of the solution space upon discretization. In our
case, nis equal to 6, since we adopt special function forms for 8 (t) and S.(t), with two unknown parameters
each. Hence, in the discretized solution space, we are looking to approximate q = [Br1, Bn2, Be1, Be1> B1, ¥].
After the six unknown parameters have been recovered from the corresponding epidemic data sets using the
above optimization algorithm, 100 additional incidence curves are generated via parametric bootstrap [8, 10]
in order to quantify uncertainty in the estimated parameters and derive 95% confidence intervals.

All data for this test (on cholera cases and temperature fluctuations) have been provided by Dr. Gerardo
Chowell from GSU School of Public Health. To avoid bias towards one particular data set, we include numer-
ical results for two different regions: Arequipa (with population of about 1 million), and Amazonas (with
population close to 370,000). To initialize the iterative process, we randomly select starting values for the
unknown parameters from a uniform distribution over a certain interval. For 81, the starting values are taken
from [5 - 107%, 107°], for By, the values are taken from [1074, 1072], for B.1, the interval is [1074, 1073], for
Be2, it is [107%, 1072], for 1, we assume the interval to be [0.1, 0.3], and for By, the values are taken from
[10%,10°].

Given very different levels of magnitude for the six components of the solution vector, in all our experi-
ments T* T is a diagonal matrix with entries selected to scale initial values of the unknowns.Without scaling
(that is, with T = I) the process turned out to be divergent for all initial approximations considered. The gen-
eral idea for choosing T* T as a diagonal matrix to enforce scaling is as follows (see [26]). Suppose that upon
discretization our solution vector consists of two subvectors, x and y, that s, g = ( § ), which are several orders
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of magnitude apart. Suppose also that X is our best guess for the mean value for the components of x, and y
is our best guess for the mean of y coordinates. Then one takes

T*T = (I" ? ) ,
0 wI,
where I, and I are identity blocks, corresponding to x and y, respectively, and w = X/j.

The numerical results presented in Figures 1-4 have been obtained after 5 iterations of algorithm (1.8).
The relative discrepancies are 0.33 and 0.77 for the city of Arequipa and for Amazonas region, respec-
tively. The problem is severely ill-posed. Even with the very aggressive disretization, the condition number
of F'*(qo)F'(qo) for different realizations of noisy data ranges from 1023 to 102°. To achieve the best conver-
gence rate and, at the same time, to ensure that the process remains stable until the desired level of accuracy
is reached, we choose 7o = 1 and then drive 7y to zero at the rate 7 = 7o exp(—k). Without regularization,
i.e., when regularization is limited to discretization only, the process turns out to be divergent. The step size
for each data set is 0.1. Any step smaller than that has also worked.

It is also important to mention that parameter values recovered by FIRGN are consistent with those recov-
ered by the Matlab built-in subfunction 1sqcurvefit, where minimization is carried out by the Levenberg—
Marquardt algorithm [24]. The elapsed time for 1sqcurvefit varies depending on the tolerance settings, but
it is considerably higher as compared to the FIRGN algorithm. On the flip side, the radius of convergence
for 1sqcurvefit is bigger than the one for FIRGN. This can probably be attributed to 1sqcurvefit using a
better-tuned line search.

4 Conclusions and discussion

A preconditioned version of a frozen iteratively regularized Gauss—Newton algorithm has been investigated.
The convergence analysis is carried out under the generalized normal solvability condition, which yields
convergence of the proposed scheme in the noise-free case. For noise contaminated data, estimate (2.17)
implies that, at least theoretically, for this particular type of noise the process does not require a stopping rule
and isnolonger semi-convergent. Numerical simulations for a parameter estimation problem in epidemiology
illustrate the efficiency of the algorithm. The numerical experiments have also suggested the direction of
further research, that needs to include the case of nonzero residual as well as the case of noise contaminated
operator.

Funding: Alexandra Smirnova is supported by NSF Grant 1818886. DMS Computational Mathematics.
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