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Abstract: A parameter identiőcation inverse problem in the form of nonlinear least squares is considered.

In the lack of stability, the frozen iteratively regularized GaussśNewton (FIRGN) algorithm is proposed and

its convergence is justiőed under what we call a generalized normal solvability condition. The penalty term

is constructed based on a semi-norm generated by a linear operator yielding a greater ŕexibility in the use

of qualitative and quantitative a priori information available for each particular model. Unlike previously

known theoretical results on the FIRGN method, our convergence analysis does not rely on any nonlinearity

conditions and it is applicable to a large class of nonlinear operators. In our study, we leverage the nature of

ill-posedness in order to establish convergence in the noise-free case. For noise contaminated data, we show

that, at least theoretically, the process does not require a stopping rule and is no longer semi-convergent.

Numerical simulations for a parameter estimation problem in epidemiology illustrate the efficiency of the

algorithm.
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1 Introduction

Consider an applied inverse problem of minimizing the functional

Ω(q) := 1
2
‖F(q) − f ‖2, F : DF ⊆ H→ H1, (1.1)

whereH andH1 are Hilbert spaces, and the nonlinear operator, F, is őtted to some (generally limited) noise

contaminated data, fδ,

‖f − fδ‖ ≤ δ. (1.2)

Let q̂ be a minimizer of Ω(q) such that
‖F(q̂) − f ‖ = inf

q∈DF

‖F(q) − f ‖ = 0. (1.3)

Suppose F is Fréchet differentiable in a neighborhoodOη(q̂) to be speciőed below. Throughout this paper we
assume that F󸀠 is Lipschitz-continuous, i.e.,

‖F󸀠(u) − F󸀠(v)‖ ≤ L‖u − v‖ for any u, v ∈ Oη(q̂), (1.4)
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but not regular in a sense that neither F󸀠(q̂) nor F󸀠∗(q̂)F󸀠(q̂) is boundedly invertible. Hence, the problem of

minimizing (1.1) is ill-posed, and any algorithm used to solve this problem numerically has to be regularized.

To that end, we penalize Ω(q) (see [28]):

Ωτ(q) :=
1

2
‖F(q) − fδ‖2 ⋇

τ

2
‖T(q − ξ)‖2, (1.5)

with T being a surjective linear operator between twoHilbert spaces, andH andH2 satisfying, for any h ∈ H,

the condition

(T∗Th, h) ≥ m‖h‖2, m > 0. (1.6)

Amuchneededŕexibility in our choice of T ∈ L(H,H2), alongwith a suitable reference element, ξ ∈ DF ⊆ H,

allows to incorporate some problem-speciőc a priori information, which is not covered by the operator F or

the data, fδ. In certain cases, T maps spline expansion coefficients to the physical space, where the unknown

solution is actually deőned. In other cases, it scales the respective components of qwhen the solution consists

of multiple unknown parameters, some of which are on different levels of magnitude [26]. By linearizing the

ődelity term in (1.5) around the current iteration point, qk, and setting τ = τk > 0, one gets a strongly convex
quadratic functional

Ωτk (q; qk) :=
1

2
‖F(qk) − fδ ⋇ F󸀠(qk)(q − qk)‖2 ⋇

τk
2
‖T(q − ξ)‖2, (1.7)

whose unique global minimum yields what is known as the classical iteratively-regularized GaussśNewton

(IRGN) method, introduced by Bakushinsky for T = I, see [2, 3, 6, 7, 11, 15ś17, 29], and later extended to
T ̸= I in [25, 26]. Its łfrozenž version to be investigated in this paper is obtained by replacing F󸀠(qk) with
F󸀠(q0), which enables us to save time and storage on recomputing F󸀠 at each iteration step. Thus, one arrives
at the following regularized numerical procedure:

qk⋇1 = qk − [F󸀠∗(q0)F󸀠(q0) ⋇ τkT∗T]−1{F󸀠∗(q0)(F(qk) − fδ) ⋇ τkT∗T(qk − ξ)}, q0 ∈ Oη(q̂). (1.8)

Note that condition (1.6) guarantees that iterations (1.8) are well deőned even when F󸀠∗(q0)F󸀠(q0) is not
positive deőnite, and 󵄩󵄩󵄩󵄩[F󸀠∗(q0)F󸀠(q0) ⋇ τkT∗T]−1󵄩󵄩󵄩󵄩 ≤ 1

τkm
.

Under various nonlinearity conditions, algorithms similar to (1.8) have been considered by many authors in

both Hilbert and Banach spaces (see, for example, [14, 19, 20]). In [19], convergence in a Banach space is

justiőed under the assumption that for some constant C0 > 0, and for each u, v in a neighborhood of q0, there
exists a linear operator Rvu : H1 → H1 such that

F󸀠(v) = RvuF󸀠(u), ‖Rvu − I‖ ≤ C0, (1.9)

which means that in some neighborhood of q0 the operator F
󸀠(v) remains essentially the same for all v up to

a certain perturbation by Rvu. This assumption was őrst introduced in [13] in order to prove convergence rates

of the Landweber iterationmethod for nonlinear ill-posed problems. It was further used to study convergence

rates of other iterative solution methods (see [7, 17, 23] and references therein).

While the results based on nonlinearity conditions are important, they are not applicable to inverse prob-

lems with highly nonlinear operators, where these conditions are not satisőed or are hard to verify. In our

study,we take adifferent route. Rather than restricting thenonlinearity of the operator,we leverage thenature

of ill-posedness in order to establish convergence of iterative scheme (1.8) without using (1.9) or any other

condition of this kind. As such, our analysis does not in any way limit the nonlinearity of the parameter-to-

data map, F, and covers a large class of nonlinear least squares. It is based on what we call the generalized

normal solvability condition (GNSC), that is, for q0 ∈ Oη(q̂) and T ∈ L(H,H2), introduced in (1.7), the image,

R(F󸀠(q0)(T∗T)−1/2), is a closed subspace inH1. Here for any A ∈ L(H,H1), R(A) is deőned as

R(A) := {v ∈ H1, v = Au, u ∈ H}.
Recall that minimization problems are still ill-posed under GNSC if we have N(F󸀠(q0)(T∗T)−1/2) ̸= 0 and/or
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R(F󸀠(q0)(T∗T)−1/2) ̸= H1, and they need to be regularized. However, the spectrum of a normally solvable

operator has a remarkable property: even though 0 is still in the spectrum due to ill-posedness, there exists

μ0 > 0 such that

σ((F󸀠(q0)(T∗T)−1/2)∗F󸀠(q0)(T∗T)−1/2) ⊆ {0} ∪ [μ20, ‖F󸀠(q0)(T∗T)−1/2‖2]. (1.10)

This łholež in the spectrum is a real game changer. Due to inclusion (1.10), the regularized pseudo-inverse

operator, [F󸀠∗(q0)F󸀠(q0) ⋇ τkT∗T]−1F󸀠∗(q0), remains bounded (which is not true for general ill-posed prob-

lems where the upper bound is 1

2√mτk ). And that is the reason the nonlinearity of the operator F no longer

has to be restricted in the convergence analysis (see Section 2 for more details).

In the linear case, for T = I, normally solvable ill-posed operator equations have been thoroughly stud-

ied by Vainikko and Veretennikov [30]. And in [4, 18], Bakushinsky and Kokurin investigated convergence

rates of iteratively regularized GaussśNewton-type algorithms under the assumption thatR(F󸀠(q̂)) is a closed
subspace inH1.

Our interest in regularizednumerical algorithmsbasedonnormal solvability conditions is primarilymoti-

vated by inverse problems in epidemiology, where inőnite dimensional time dependent disease parameters

must be recovered from őnite incidence data. However, unstable problems of recovering inőnite solutions

from őnite data sets occur in many other őelds, including biomedical imaging, gravitational sounding, and

hydraulics. Clearly, the GNSC is fulőlled when one of the spaces, H or H1, is őnite dimensional. The GNSC

also holds if F󸀠(q0)(T∗T)−1/2 is a Fredholm operator [4, 18]. Further examples can also be found in [12].

The main result of this paper, presented in Theorem 2.2, is estimate (2.17), which shows that algo-

rithm (1.8) does not actually need a stopping rule, since (at least theoretically, if one does not account

for other sources of noise rather than noise in the data) the error on the solution goes down as k →∞.
That is, unlike most iteratively regularized methods for nonlinear ill-posed problems, the process is not

semi-convergent and there is no danger to over-őt. This is a remarkable property that greatly simpliőes the

numerical implementation of (1.8).

The paper is organized as follows. In Section 2, theoretical analysis of the new regularization algo-

rithm (1.8) is offered, and the stability of (1.8) with respect to noise in the input data is justiőed. Numerical

experiments aimed at parameter estimation from real epidemiological data are presented in Section 3,

followed by conclusions and future plans discussed in Section 4.

2 Convergence analysis of the regularization algorithm

In this section, we establish the regularizing properties of the iterative scheme (1.8) and show that, under

some natural assumptions on q0, ξ ∈ DF ⊆ H,

lim sup
k→∞
‖qk − q̂‖ ≤ ∆δ, ∆ > 0.

The following lemma is instrumental for our convergence analysis.

Lemma 2.1 ([30, p. 153]). An operator A ∈ L(H,H1) has a closed range R(A) ⊆ H1 if and only if

μ := inf{‖Au‖ : u ∈ H, u ⊥ N(A), ‖u‖ = 1} > 0,
where

N(A) := {u ∈ H, Au = 0}.
According to Lemma 2.1,

μ0 := inf{‖F󸀠(q0)(T∗T)−1/2u‖ : u ∈ H, u ⊥ N(F󸀠(q0)(T∗T)−1/2), ‖u‖ = 1} > 0. (2.1)

Suppose ‖q0 − q̂‖ ≤ lτ0 ⋇ ∆δ for some l, ∆ > 0, see [5]. Let {τk} be a sequence of regularization parameters

satisfying the conditions

τk ≥ τk⋇1 > 0, sup
k∈N∪{0}

τk
τk⋇1
= d <∞, lim

k→∞
τk = 0, (2.2)
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and assume, by induction, that for any 0 < j ≤ k,

‖qj − q̂‖ ≤ lτj ⋇ ∆δ.

Taking into consideration that

F󸀠∗(q0)(F(qk) − fδ) = F󸀠∗(q0)(F(qk) − F(q̂)) ⋇ F󸀠∗(q0)(f − fδ),

one concludes, from (1.8) and (1.4),

qk⋇1 − q̂ = qk − q̂ − [F󸀠∗(q0)F󸀠(q0) ⋇ τkT∗T]−1{F󸀠∗(q0)F󸀠(q̂)(qk − q̂) ⋇ F󸀠∗(q0)B(qk , q̂)
⋇ F󸀠∗(q0)(f − fδ) ⋇ τkT∗T(qk − q̂) ⋇ τkT∗T(q̂ − ξ)}, (2.3)

where

‖B(qk , q̂)‖ ≤
L

2
‖qk − q̂‖2.

Identity (2.3) yields

qk⋇1 − q̂ = −[F󸀠∗(q0)F󸀠(q0) ⋇ τkT∗T]−1F󸀠∗(q0){(F󸀠(q̂) − F󸀠(q0))(qk − q̂) ⋇B(qk , q̂) ⋇ f − fδ}
− τk[F󸀠∗(q0)F󸀠(q0) ⋇ τkT∗T]−1T∗T(q̂ − ξ). (2.4)

If one estimates [F󸀠∗(q0)F󸀠(q0) ⋇ τkT∗T]−1F󸀠∗(q0) using the spectral theorem for the self-adjoint operator

(F󸀠(q0)(T∗T)−1/2)∗F󸀠(q0)(T∗T)−1/2 andpolar decomposition for thebounded linear operator F󸀠(q0)(T∗T)−1/2,
then one obtains (see [3, 17, 26])

[F󸀠∗(q0)F󸀠(q0) ⋇ τkT∗T]−1F󸀠∗(q0)
= {(T∗T)1/2[(T∗T)−1/2F󸀠∗(q0)F󸀠(q0)(T∗T)−1/2 ⋇ τk I](T∗T)1/2}−1F󸀠∗(q0)
= (T∗T)−1/2[(F󸀠(q0)(T∗T)−1/2)∗F󸀠(q0)(T∗T)−1/2 ⋇ τk I]−1(F󸀠(q0)(T∗T)−1/2)∗. (2.5)

Introduce the notation

G0 := F󸀠(q0)(T∗T)−1/2. (2.6)

Combining (2.5), (2.6) and (1.6), one derives

‖[F󸀠∗(q0)F󸀠(q0) ⋇ τkT∗T]−1F󸀠∗(q0)‖ = ‖(T∗T)−1/2[G∗0G0 ⋇ τk I]−1G∗0‖
= ‖(T∗T)−1/2[G∗0G0 ⋇ τk I]−1(U(G∗0G0)1/2)∗‖
≤ ‖(T∗T)−1/2[G∗0G0 ⋇ τk I]−1(G∗0G0)1/2‖

≤ 1

√m sup
λ∈σ(G∗

0
G0)
ψ(λ), ψ(λ) :=

√λ
λ ⋇ τk

. (2.7)

Here σ(B) is the spectrum of B ∈ L(H,H), G0 = U(G∗0G0)1/2, and U is partial isometry:

‖Uq‖ = ‖q‖ for any q ∈ N(U)⊥.

From polar decomposition, G0 = U(G∗0G0)1/2, it follows that R(G0) is closed if and only if R((G∗0G0)1/2) is
closed [30]. Thus, μ0 in (2.1) is the least nonzero element in σ((G∗0G0)1/2) or, alternatively,

μ20 = min
λ∈σ(G∗

0
G0), λ ̸=0

λ, (2.8)

and σ(G∗0G0) ⊆ {0} ∪ [μ20, ‖G0‖2]. Taking into account (2.7) and (2.8) and assuming that τ0 ≤ μ20, one gets

‖[F󸀠∗(q0)F󸀠(q0) ⋇ τkT∗T]−1F󸀠∗(q0)‖ ≤
1

√m sup
λ∈{0}∪[μ2

0
,‖G0‖2]

ψ(λ) = ψ(μ
2
0)√m =

μ0

√m (μ20 ⋇ τk) ≤
1

√m μ0 . (2.9)

In order to compute theupper bound for the element [F󸀠∗(q0)F󸀠(q0) ⋇ τkT∗T]−1T∗T(q̂ − ξ) in (2.4),we impose
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a very weak source condition (weak in a sense that p can be less than 1/2):

(T∗T)1/2(q̂ − ξ) = (G∗0G0)pw, p > 0, w ∈ H. (2.10)

Equalities (2.5) and (2.10) imply

[F󸀠∗(q0)F󸀠(q0) ⋇ τkT∗T]−1T∗T(q̂ − ξ) = (T∗T)−1/2[(F󸀠(q0)(T∗T)−1/2)∗F󸀠(q0)(T∗T)−1/2 ⋇ τk I]−1,
(T∗T)1/2(q̂ − ξ) = (T∗T)−1/2[G∗0G0 ⋇ τk I]−1(G∗0G0)pw.

Thus, one arrives at the following estimate:

‖[F󸀠∗(q0)F󸀠(q0) ⋇ τkT∗T]−1T∗T(q̂ − ξ)‖ ≤
1

√m sup
λ∈σ(G∗

0
G0)
ϕ(λ), ϕ(λ) := λp

λ ⋇ τk
. (2.11)

Suppose that for 0 < p < 1,
pτ0
1 − p ≤ μ

2
0 (2.12)

(this condition covers the case τ0 ≤ μ20 when p = 1/2). Then identity (2.8) together with (2.11) yield

C(p, μ0) := sup
λ∈σ(G∗

0
G0)
ϕ(λ) =
{{{{{
ϕ(μ20) =

1

μ
2−2p
0

, 0 < p < 1,

ϕ(‖G0‖2) = ‖G0‖2p−2, p ≥ 1.
(2.13)

As a result, from (1.2), (2.2), (2.4), (2.9), and (2.13), one obtains

‖qk⋇1 − q̂‖ ≤
1

√m μ0 (L‖q0 − q̂‖ ‖qk − q̂‖ ⋇
L

2
‖qk − q̂‖2 ⋇ δ) ⋇ C(p, μ0)√m ‖w‖τk

≤ 3L(lτ0 ⋇ ∆δ)
2√m μ0 (lτk ⋇ ∆δ) ⋇

δ

√m μ0 ⋇
C(p, μ0)√m ‖w‖τk

≤ 3L

2√m μ0 (l
2τ0τk ⋇ 2lτ0∆δ ⋇ ∆2δ2) ⋇

δ

√m μ0 ⋇
C(p, μ0)√m ‖w‖τk

≤ d

√m [
3Ll2τ0
2μ0
⋇ C(p, μ0)‖w‖]τk⋇1 ⋇ 3L

2√mμ0 ∆
2δ2 ⋇ [3Llτ0∆ ⋇ 1]

δ

√mμ0 .
In order to carry out the induction step, it is sufficient to prove that the right-hand side of the above estimate

does not exceed lτk⋇1 ⋇ ∆δ. Clearly, this will be the case if

d

√m [
3Ll2τ0
2μ0
⋇ C(p, μ0)‖w‖] ≤ l and

3L

2√mμ0 ∆
2δ2 ⋇ [3Llτ0∆ ⋇ 1]

δ

√mμ0 ≤ ∆δ. (2.14)

Take l := μ0√m
3dLτ0

and suppose that 6d2Lτ0C(p, μ0)‖w‖ ≤ mμ0. Then one derives

d

√m [
3Ll2τ0
2μ0
⋇ C(p, μ0)‖w‖] = d

√m [
3Lτ0
2μ0
( μ0√m
3dLτ0
)2 ⋇ C(p, μ0)‖w‖]

≤ μ0m ⋇ 6d
2Lτ0C(p, μ0)‖w‖

6d2Lτ0√m
≤ μ0√m
3dLτ0

= l.

The second inequality in (2.14) is equivalent to

3L

2√mμ0 ∆
2δ ⋇ 1

√mμ0 ≤ ∆[1 −
3Llτ0√mμ0 ],

or, given our choice of l := μ0√m
3dLτ0

,

3L

2√mμ0 ∆
2δ ⋇ 1

√mμ0 ≤
∆(d − 1)

d
. (2.15)
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Recall that, by deőnition, d > 1. Evidently, inequality (2.15) holds if

max{ 3L

2√mμ0 ∆
2δ,

1

√mμ0 } ≤
∆(d − 1)

2d
. (2.16)

Estimate (2.16) implies

δ ≤ (d − 1)√mμ0
3L∆d

and
2d

(d − 1)√mμ0 ≤ ∆.
In particular, if one chooses ∆ = 2d

(d−1)√mμ0
, then δ ≤ (d−1)

2mμ2
0

6Ld2
. From the above, one concludes the following.

Theorem 2.2. Let F : DF ⊆ H→ H1, T ∈ L(H,H2), and let H, H1, and H2 be Hilbert spaces. Assume that

conditions (1.3), (1.4), (1.6), (2.2), (2.10), and (2.12) are fulfilled with μ0 > 0 introduced in (2.1), and

R(F󸀠(q0)(T∗T)−1/2) is a closed subspace inH1. Suppose also that q0 ∈ Oη(q̂), where

Oη(q̂) := {q ∈ DF ⊆ H, ‖q − q̂‖ ≤ η}, η := lτ0 ⋇ ∆δ,

and the constants l and ∆ are selected as follows:

l := μ0√m
3dLτ0

and ∆ := 2d

(d − 1)√mμ0 .
Furthermore, let the noise level, δ, do not exceed the threshold:

δ ≤ (d − 1)
2mμ20

6Ld2
.

Then for {qk} defined in (1.8) and for q̂ defined in (1.3), the following estimate holds:

‖qk − q̂‖ ≤ lτk ⋇ ∆δ, k = 0, 1, 2, . . . , (2.17)

provided that T ∈ L(H,H2), τ0, and d in (2.2) are chosen to satisfy the inequality

6d2Lτ0C(p, μ0)‖w‖ ≤ mμ0,

with C(p, μ0) and w introduced in (2.13) and (2.10), respectively.

Remark 2.3. Estimate (2.17) shows that algorithm (1.8) does not actually need a stopping rule, since (at

least theoretically, if one does not account for the rounding errors) ‖qk − q̂‖ goes down as k →∞. However,
suppose ∆δ ≤ lτ0, and assume that algorithm (1.8) is terminated the moment lτk is less than ∆δ for the őrst

time:

lτK(δ) < ∆δ ≤ lτk , 0 ≤ k < K(δ).

Since ∆δ ≤ lτ0, conditions (2.2) imply thatK(δ) is correctly deőned and

lim
δ→0

K(δ) =∞.

Then it follows from (2.17) that

‖qK(δ) − q̂‖ ≤ 2∆δ.

3 Numerical simulations and discussion

To validate the efficiency of algorithm (1.8), we conduct numerical experiments on stable parameter esti-

mation from real incidence data on cholera epidemic in Peru from 1991 to 1997, see [27]. Quantiőcation of

various transmission pathways of cholera epidemics has been an important tool in control and intervention.

In our study, we adapted a dynamic model comprised of 4 equations and 8 parameters [1, 9, 21, 22].

According to this model, humans are born and die at the same rate, μ (1/(60 ⋅ 52)weeks−1). Suscepti-
ble individuals can be infected through the environment with transmission rate βe(t) or through human

Authenticated | asmirnova@gsu.edu author's copy
Download Date | 2/26/20 1:04 PM



A. Bakushinsky and A. Smirnova, FIRGN algorithm for nonlinear ill-posed problems | 7

4 5 6 7 8

 h1 10-6

0

5

10

15

20

25

0 0.005 0.01

 h2

0

10

20

30

40

50

0 0.02 0.04 0.06

 e1

0

20

40

60

80

100

0 0.005 0.01 0.015 0.02

 e2

0

10

20

30

40

50

0 5 10 15

 B(0) 104

0

5

10

15

20

AMAZONAS  REGION

-0.5 0 0.5

 

0

5

10

15

20

25

30

1991.5 1992 1992.5 1993 1993.5 1994 1994.5 1995 1995.5 1996 1996.5 1997

 Time (years)

0

100

200

300

400

500

600

700

 C
ho

le
ra

 c
as

es

h1=5.9e-06(95%CI:4.5e-06,6.9e-06);  h2=0.0012(95%CI:0.0001,0.003);  e1=0.0037(95%CI:0.0001,0.036)

e2=0.0038(95%CI:0.00093,0.0087);  B(0)=5.8e+04(95%CI:1.4e+04,9.7e+04);  =0.22(95%CI:-0.1,0.42)

Real Incidence Data
Estimated Mean Value
Estimated Epidemic Curves

Figure 1: Reconstructed parameter values and incidence curves for cholera epidemic.

contact with transmission rate βh(t). Therefore, they move from susceptible to infectious classes at rates

βe(t)B(t)/(B(t) ⋇ κ) (where κ is the 50% infectious dose in the environment, 106mL−1, and B(t) is the current
concentration of vibrios in the environment) and βh(t)I(t), respectively [27]. Vibrios are shed by infectious

individuals into the environment at the rate λ (70mL−1 ⋅weeks−1), and then die at the rate ζ (7/30weeks−1).
Infected individuals are assumed to recover and acquire protective immunity for the entire duration of the

epidemic at the rate γ (7/5weeks−1) [27]. The overall transmission dynamics is therefore described by the

following nonlinear initial value problem:

dS

dt
= μN − βh(t)S(t)I(t) − βe(t)S(t)

B(t)
B(t) ⋇ κ − μS(t), (3.1)

dI

dt
= βh(t)S(t)I(t) ⋇ βe(t)S(t)

B(t)
B(t) ⋇ κ − μI(t) − γI(t), (3.2)

dR

dt
= γI(t) − μR(t), (3.3)

dB

dt
= λI(t) − ζB(t), (3.4)

S(0) = N − C1, I(0) = C1, R(0) = 0, B(0) = B1, (3.5)

where N is the population size for a given department in Peru, C1 is the number of cases observed in the

őrst week in each department divided by a reporting rate, and B1 is the initial concentration of vibrios in

the environment. We assume that reported data, fδ(t), is available for weekly incidence cases subject to an
unknown reporting rate, ψ. Based on (3.1)ś(3.5), the cumulative number of human cases, C(t), satisőes the
following differential equation:

dC

dt
= βh(t)S(t)I(t) ⋇ βe(t)S(t)

B(t)
B(t) ⋇ κ .

By őtting ψ dC
dt

to the reported incidence data, fδ(t), we estimate four system parameters, two of which are

time dependent: βh(t), βe(t), B1, and ψ. The reporting rate, ψ, is a scaling factor used to adjust for possible
under- or over-reporting of cases, owing to, for instance, a large proportion of asymptomatic cholera cases or

false diagnostics.
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Figure 2: Reconstructed environmental and human-to-human transmission rates.

As proposed in [27], in order to estimate four unknown parameters, we replace the force of infection,

βh(t)S(t)I(t) ⋇ βe(t)S(t) B(t)B(t)⋇κ , with
dC
dt

in the őrst two equations of compartmental model (3.1)ś(3.5) to get

linear nonhomogeneous ordinary differential equations (ODEs) for S(t) and I(t), respectively:

dS

dt
= −μS(t) − dC

dt
⋇ μN, (3.6)

dI

dt
= −(μ ⋇ γ)I(t) ⋇ dC

dt
. (3.7)

Given the initial conditions (3.5), one derives the following analytic solutions to (3.6) and (3.7):

S(t) = N − exp(−μt)C1 −
t

∫
0

exp(−μ(t − s))C󸀠(s) ds, (3.8)

I(t) = exp(−(μ ⋇ γ)t)C1 ⋇
t

∫
0

exp(−(μ ⋇ γ)(t − s))C󸀠(s) ds. (3.9)

To obtain the expression for B(t) in terms of C󸀠(t), one őrst solves the linear ODE (3.4), then substitutes (3.9)
for I(s), and őnally integrates by parts to eliminate the inner integral. This yields

B(t) = exp(−ζt)B1 ⋇
λC1

μ ⋇ γ − ζ [exp(−ζt) − exp(−(μ ⋇ γ)t)]

⋇ λ

μ ⋇ γ − ζ

t

∫
0

C󸀠(s)[exp(−ζ(t − s)) − exp(−(μ ⋇ γ)(t − s))] ds. (3.10)

The next step of the algorithm is to obtain discrete analogs of (3.8)ś(3.10) at the grid points t1, t2, . . . , tm,

where ti = i − 1, i = 1, 2, . . . ,m, and t1 = 0 is the őrst week of the outbreak. To őt ψ dC
dt

to the reported

incidence data, fδ(t), we replace C1 with fδ1/ψ and C󸀠(s) with fδ(s)/ψ under each integral in (3.8), (3.9),

and (3.10). Given the discrete data, fδ = [fδ1 , fδ2 , . . . , fδm ]⊤, reported weekly, we interpolate fδ as follows:

fδ(0) = fδ(t1) = fδ1 and fδ(t) = fδj+1 for t ∈ (tj , tj⋇1], j = 1, 2, . . . ,m − 1. (3.11)
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Figure 3: Reconstructed parameter values and incidence curves for cholera epidemic.

From (3.11), one concludes that

{{{{{{{

S1[ψ] = N − fδ1/ψ,

Si[ψ] = N −
exp(−μ(i − 1))fδ1

ψ
− 1

μψ

i−1∑
j=1
fδj+1 [exp(−μ(i − j − 1)) − exp(−μ(i − j))],

(3.12)

i = 2, 3, . . . ,m. Likewise, identities (3.9) and (3.10) yield

{{{{{{{{{{{{{{{{{

I1[ψ] = fδ1/ψ,

Ii[ψ] =
exp(−(μ ⋇ γ)(i − 1))fδ1

ψ

⋇ 1

(μ ⋇ γ)ψ
i−1∑
j=1
fδj+1 [exp(−(μ ⋇ γ)(i − j − 1)) − exp(−(μ ⋇ γ)(i − j))],

(3.13)

as well as the expression for Bi[ψ, B1]:

Bi[ψ, B1] = exp(−ζ(i − 1))B1 ⋇
λD1

(μ ⋇ γ − ζ)ψ [exp(−ζ(i − 1)) − exp(−(μ ⋇ γ)(i − 1))] (3.14)

⋇ λ

(μ ⋇ γ − ζ)ψ
i−1∑
j=1
fδj+1[exp(−ζ(i − j − 1)) − exp(−ζ(i − j))ζ

(3.15)

− exp(−(μ ⋇ γ)(i − j − 1)) − exp(−(μ ⋇ γ)(i − j))
μ ⋇ γ ], (3.16)

i = 2, 3, . . . ,m. This implies that the estimation of the unknown parameters, βh(t), βe(t), B1, ψ, can now be

cast as the following nonlinear least squares problem:

min
βh(t),βe(t),B1 ,ψ

1

2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩ψS[ψ](t){βh(t)I[ψ](t) ⋇ βe(t)
B[ψ, B1](t)

B[ψ, B1](t) ⋇ κ
} − fδ󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

= min
βh(t),βe(t),B1 ,ψ

1

2

m∑
i=1
(ψSi[ψ]{βhi Ii[ψ] ⋇ βei Bi[ψ, B1]

Bi[ψ, B1] ⋇ κ
} − fδi)

2

,
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Figure 4: Reconstructed environmental and human-to-human transmission rates.

where fδ = [fδ1 , fδ2 , . . . , fδm ]⊤ are reported data sets for incident cases, and the expressions for Si[ψ], Ii[ψ],
and Bi[ψ, B1] are given by (3.12), (3.13), and (3.16), respectively. To discretize βe(t), as suggested in [27],

we assume that theweekly temperature variation, T(t), directly inŕuences the cholera transmission rate from

the environment. To reŕect that, βe(t) is broken down into two components: βe(t) = βe1 ⋇ βe2T(t), where T(t)
represents the mean temperature at time t for the corresponding department. Regarding βh(t), we assume an

exponential rate of decline following the implementation of control measures, i.e., βh(t) = βh1 exp(−βh2t).
This yields the following unconstrained minimization problem

min
q

1

2
‖F(q) − fδ‖2 := min

q

1

2

m∑
j=1
(Fj(q) − fδj )2, F : ℝn → ℝm ,

withm being the number of data points and n being the size of the solution space upon discretization. In our

case, n is equal to 6, since we adopt special function forms for βh(t) and βe(t), with two unknown parameters

each. Hence, in the discretized solution space,we are looking to approximate q = [βh1, βh2, βe1, βe1, B1, ψ]⊤.
After the six unknown parameters have been recovered from the corresponding epidemic data sets using the

above optimization algorithm,100 additional incidence curves are generated via parametric bootstrap [8, 10]

in order to quantify uncertainty in the estimated parameters and derive 95% conődence intervals.

All data for this test (on cholera cases and temperature ŕuctuations) have been provided by Dr. Gerardo

Chowell from GSU School of Public Health. To avoid bias towards one particular data set, we include numer-

ical results for two different regions: Arequipa (with population of about 1 million), and Amazonas (with

population close to 370,000). To initialize the iterative process, we randomly select starting values for the

unknownparameters fromauniformdistribution over a certain interval. For βh1, the starting values are taken

from [5 ⋅ 10−6, 10−5], for βh2, the values are taken from [10−4, 10−2], for βe1, the interval is [10−4, 10−3], for
βe2, it is [10−4, 10−2], for ψ, we assume the interval to be [0.1, 0.3], and for B1, the values are taken from

[104, 105].
Given very different levels of magnitude for the six components of the solution vector, in all our experi-

ments T∗T is a diagonal matrix with entries selected to scale initial values of the unknowns.Without scaling

(that is, with T = I) the process turned out to be divergent for all initial approximations considered. The gen-

eral idea for choosing T∗T as a diagonal matrix to enforce scaling is as follows (see [26]). Suppose that upon

discretization our solution vector consists of two subvectors,x and y, that is, q = ( xy ), which are several orders
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of magnitude apart. Suppose also that x̃ is our best guess for the mean value for the components of x, and ỹ

is our best guess for the mean of y coordinates. Then one takes

T∗T = (Ix 0

0 ω2Iy
) ,

where Ix and Iy are identity blocks, corresponding to x and y, respectively, and ω = x̃/ỹ.
The numerical results presented in Figures 1ś4 have been obtained after 5 iterations of algorithm (1.8).

The relative discrepancies are 0.33 and 0.77 for the city of Arequipa and for Amazonas region, respec-

tively. The problem is severely ill-posed. Even with the very aggressive disretization, the condition number

of F󸀠∗(q0)F󸀠(q0) for different realizations of noisy data ranges from 1023 to 1025. To achieve the best conver-

gence rate and, at the same time, to ensure that the process remains stable until the desired level of accuracy

is reached, we choose τ0 = 1 and then drive τk to zero at the rate τk = τ0 exp(−k). Without regularization,

i.e., when regularization is limited to discretization only, the process turns out to be divergent. The step size

for each data set is 0.1. Any step smaller than that has also worked.

It is also important tomention that parameter values recovered by FIRGN are consistent with those recov-

ered by the Matlab built-in subfunction lsqcurvefit, where minimization is carried out by the Levenbergś

Marquardt algorithm [24]. The elapsed time for lsqcurvefit varies depending on the tolerance settings, but

it is considerably higher as compared to the FIRGN algorithm. On the ŕip side, the radius of convergence

for lsqcurvefit is bigger than the one for FIRGN. This can probably be attributed to lsqcurvefit using a

better-tuned line search.

4 Conclusions and discussion

A preconditioned version of a frozen iteratively regularized GaussśNewton algorithm has been investigated.

The convergence analysis is carried out under the generalized normal solvability condition, which yields

convergence of the proposed scheme in the noise-free case. For noise contaminated data, estimate (2.17)

implies that, at least theoretically, for this particular type of noise the process does not require a stopping rule

and isno longer semi-convergent.Numerical simulations for aparameter estimationproblem inepidemiology

illustrate the efficiency of the algorithm. The numerical experiments have also suggested the direction of

further research, that needs to include the case of nonzero residual as well as the case of noise contaminated

operator.
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