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1. Introduction

In this paper we consider the incompressible Navier-Stokes equations in a bounded domain € in R¢
with analytic boundary 0f2, and homogeneous Dirichlet boundary conditions

Ou—Au+u-Vu+Vp=f, in Q,
V-u=0, in €2, (1.1)
u =0, on ).

The forcing f is assumed to be analytic in space and time, and the system (1.1) is supplemented with a
Sobolev smooth initial condition

u(z,0) = ug(x), in (2. (1.2)

For simplicity we assume d € {2, 3}; higher dimensions can be treated in the same way.

The main goal of this paper is to establish the immediate gain of space-time analyticity for solutions
to (1.1)—(1.2), using a direct energy-type method, in the case of a domain with curved boundary. Our
main result is Theorem 2.8 below, which shows that from a Sobolev smooth initial datum the solution
instantaneously becomes space-time analytic, with analyticity radius which is uniform up to the curved
analytic boundary. The direct energy-type approach utilized in this paper was presented in [33] for the
Stokes system and in [12] for the Navier-Stokes equations on the half space. This method is robust and
easily expendable to the case of non-analytic Gevrey-classes, jointly in space-time, provided the boundary
belongs to the same Gevrey class.

Analyticity and Gevrey-class regularity have proven to be important for studying the vanishing viscosity
problem for the Navier-Stokes equations in bounded domains [45, 46, 37, 30, 14, 50, 41, 19], and for
establishing nonlinear inviscid damping near the Couette flow [3, 4, 5]. Moreover, the analyticity radius
provides a measure of the minimal scale in a turbulent flow [24].

Analyticity and Gevrey-class regularity for the Navier-Stokes equation is a classical subject [13, 49].
Initially, interior analyticity for the Navier-Stokes system in d > 2 space dimensions was proven by Ka-
hane [25], using an iteration of high order Sobolev norms. The problem of interior space-time analyticity
was then addressed by Masuda [39], and then by Kato-Masuda [26], assuming that the external force is ana-
lytic. Analyticity up to the boundary of the domain was established by Komatsu in [28, 29], based on earlier
work by Kinderlehrer and Nirenberg [27] for parabolic type equations. Subsequently, Giga [20] developed
a semigroup approach for analyticity up to the boundary for the Navier-Stokes system.

On the other hand, in the absence of boundaries, Foias and Temam [18] introduced an alternative ap-
proach to analyticity and Gevrey-class regularity which is based on L? energy estimates and Fourier anal-
ysis (cf. [17, 13] for an earlier energy approach for the time analyticity). This method has proven to be
a powerful tool to establish analyticity as well as to estimate the analyticity or the Gevrey radius. The
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method of Foias and Temam [18], which was based on L? energy estimates was extended to LP by the
second author and Gruji¢ [22, 23], taking advantage of the mild formulation (cf. also [10] for the lo-
cal variant). An elegant Fourier variant of the approach using the mild formulation and Fourier analysis
was then introduced by Lemarié-Rieusset in [34]. For other results based on the Foias-Temam method,
see [6,7,8,9, 16, 15, 21, 31, 34, 36, 42, 43] and references therein.

The main motivation for the present work is to provide a direct energy approach to analyticity for the
Navier-Stokes and related systems for domains with boundary. As it is well-known the main difficulty is
the presence of normal derivatives in the diffusion term and its non-vanishing due to Dirichlet boundary
conditions. For a finite Sobolev regularity, this is typically overcome by the Agmon-Douglis-Nirenberg
approach to parabolic/elliptic regularity. For the analyticity, this requires a carefully designed iteration
based on this parabolic regularity and binomial inequalities (cf. [28] for instance).

Recently, there have been two works where a variant of this has been employed in the case of the half
space. In [50, 14], the authors provided an interior analyticity approach for the half space, using conormal,
rather than normal, derivatives (cf. [38]). Recently, in [12] the authors of the present paper have found
an alternative method based on a derivative reduction estimates and ellipticity; the main idea is to use the
elliptic regularity to find a Gronwall type inequality for a simple series consisting of Taylor coefficients.

The main difficulty for curved domains is the non-commutativity and possible vanishing of tangential
and normal derivatives (e.g. the singularity of the polar coordinates used for a disc). We overcome this by
Komatsu’s system of tangential vector fields, which was in turn inspired by an earlier work by Nelson [40].

As in the case of our previous paper which treated the half-space [12], the main idea is to use derivative
reductions by means of the global elliptic regularity. While the method is technical, it is also robust and
we believe it is going to be applicable in other settings. In particular, we hope that it will be useful for the
vanishing viscosity problem in a curved domain.

There are several difficulties when trying to extend the results from the half-space setting [12]. Since
there is no analytic partition of unity, the energy approach requires working with global tangential and
normal vector fields. However, there is a possibility of vanishing of the tangential or normal derivatives in
the interior. To overcome this problem, we use Komatsu’s system of tangential vector fields, which in turn
is based on earlier work by Nelson [40], with the main idea of allowing the number of tangential derivatives
to be higher than the space dimension d. The analytic vector field setting is recalled in Section 2 below. An
important aspect of this analytic theory is that the iterated tangential derivatives form high order tensors. To
deal with this, we use summation of all the norms (rather then, say, the Euclidean or the sup convention).
Regarding the Stokes problem in the case of half-space, it was not necessary to include the pressure in the
energy as we were able to recover the pressure from ellipticity. However, in the case of the curved domain,
three pressure commutator terms arise which thus require inclusion of the pressure space-time analyticity
norm. For the case of the Navier-Stokes equations, the main problem is the product estimate for the term
u - Vu. While the leading terms have been treated in [12], the Leibniz rule is more complicated here and the
high order commutators require special care.

In the case of Euler equations, one cannot expect instantaneous gain of analyticity; however, it is possible
to obtain a lower bound on the uniform radius. On the other hand, the difficulties arising from the Laplacian
are absent. Thus the above mentioned energy methods have already been employed to obtain rather precise
bounds on the analyticity decay (cf. [31]). In the case of Euler equation, it is actually possible to use
the partition of unity due to finite speed of Lagrangian trajectories [32]. Analyticity results for the Euler
equations are classical; see the work by Bardos-Benachour [2] and Bardos [1]. For other applications of
analyticity for the Euler equations, cf. [48, 11, 3].

The paper is structured as follows. In Section 2, we recall the analytic vector field setting for bounded
domains with an analytic boundary, and the necessary commutator estimates. The three main theorems
address separately the non-homogeneous heat equation, the non-homogeneous Stokes equation, and the
Navier-Stokes equations. The next two sections contain the derivative reduction estimates and the proof of
the analyticity for the heat operator. Section 5 contains the derivative reduction estimates for the Stokes
operator. Finally, Section 6 contains the proof of the space-time analyticity for the Navier-Stokes system.
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2. Analytic vector fields in a bounded domain and the main results
Assume throughout the paper that €2 is a bounded domain in R? with analytic boundary Of2.

2.1. Analytic vector fields. Denote by § = J(z) the distance function to the boundary OS2, taking
positive values inside €2 and negative outside 2. For §p > 0, we set

Qs, ={z e Q:6(x) <}, Q0 =0\Qs,.

A vector field X is said to be rangential to 02 if X§ = 0 on 0f). Such X may be restricted to 052 by
Xf= (Xf)‘ag2 for f € C°°(0N), where f € C*(Q) is an arbitrary extension of f.

Existence of global analytic vector fields in the following proposition is due to Komatsu [29]. For the
convenience of the reader, we state it next.

PROPOSITION 2.1 ([29, Section 2]). For any sufficiently small 6o > O there exists a finite number of an-
alytic vector fields Xo, Th, ..., Tn', TNt 41, - . ., Ty defined globally on §) having the following properties:

1. Ty,..., Ty are tangential to OS).
2. On () there are global expressions
P N

with analytic coefficients &, (x) and 11 ().
3. 0On Q%, we have

0 <
a—MZZgjk(x)Tj, k=1,....d,
j=1

where (;,(x) are analytic functions on Qdo,

REMARK 2.2. The vector field X is a non-tangential vector field to 92 in the sense that Xod # 0 on
the boundary.

EXAMPLE 2.3. For Q = B;(0) C R2?, an example of a system of the vector fields postulated in
Proposition 2.1 is as follows: Xg = 10, + 220, = -V, T} = 2104, — 220y, = 2+ -V, T =
(1-22—22)0,, = (1—|z|*)0s,, and T3 = (1—22—22)0y = (1—|2|?)0s,. Indeed, 9,, = x1 Xo—22T1+ T,
and 0,, = 1 X9 — 211 + T3.

REMARK 2.4. We use the letter T' to denote the endpoint of the time interval [0,T], and we use the
notation T = (T4, ..., Ty ) to denote the vector of tangential differential operators T} from Proposition 2.1.

REMARK 2.5. Denote by I = {1,..., N} the index set for the tangential vector fields 71,...,Tn
given by Proposition 2.1. We adopt the following agreement for the iterated derivatives &) and TF. The
symbol T, where k € N, is understood in tensorial sense, i.e., it denotes the list Qf all the possible operators
T, ---Tp,, where = (f1,...,B%) € I*, with an analogous agreement for 9%. On the other hand, when
the symbol occurs inside a norm, it has the following meaning. For j € Ny and k£ € N, we define

ik

03T w2, = D0 02T ul g2, (2.2)
aENg,|a|:j
perr

and
j ke
10T ul| e, = > 109T ul es,,
aeNd |a|=j
perk
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where 07 = 9g - -- 03¢ and TP =Tp, --- Tp, with 8 = (B1,..., Bk) € I*. In the same way, we define
04Tl a5y = 1047 T 2 @3)
and A A
12T ] 2 g2 = 1042 T | 2 . (2.4)
2.2. Main results. Fix 7" > 0 and let
0<e<e<e<l. 2.9

In order to explain the main ideas of the proof, it is convenient to first consider the inhomogeneous heat
equation

Oty —Au=f inQ (2.6)
u=0 onof) 2.7

with the initial condition
u(x,0) = ug(z) in Q. (2.8)

For r > 3, define the index sets
B={(i,j.k) i,k € No,i+j+k>r}, B° = N3\B. (2.9)
For the system (2.6)—(2.8), we define
S ”
P(u) = ZB: mEigjgkHtHHk_raiTkagu||L§7t(9x[o,T]) + ; Hagjc‘TkazuHL%t(Qx[O,T}) 2.10)
= ¢(u) + do(u).
We refer the reader to [33] for the same problem posed on the half space. Both on the half space and in a
curved domain, the sum ¢(u) is based on Taylor-like coefficients. We note that in general domains it is more

convenient to use the full gradient 0, instead of the normal derivative X in the analyticity norm (2.10) as
the former commutes with the Laplacian.

THEOREM 2.6 (Heat equation). Let 0 < T' < 1 and r > 3. Then there exist 0 < € < € <€ < 1,
which depend only on r, d, and the analyticity radius of the tangential vector field T such that for any
ug € HY(Q)NH?* ~L(Q) which satisfies the compatibility conditions, and f sufficiently smooth, the solution
u of (2.6)—(2.8) satisfies the estimate

d(u) < go(u) + Mp(f) + |Juol| grar—1

where

(i+7+k+2)eet2ek o i
Mr(f)= ) T T A ] [F RO NOE)
i+j+k>(r—2)+

i+ k+2) e o
+ > ke 1T i axo) 2.11)
i+k>(r—2)+

(i +1)rett
+ Z N [Gas "0z @x 01y
i>r—1

In an analogous way, we adapt our result to the case of the Stokes system with the Dirichlet boundary
condition
Ou—Au+Vp=f inQ
V-u=0 inQ (2.12)
u=0 ondf.
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Firstly, we need to adjust our analyticity norm for the Stokes system (2.12). For r > 3, define the index set
B={(i,j,k) eN3:i+j+k>r—1,j+k>1}

and

(t+j+Fk)" il k|pitith—r gik g
Wlp) =3 e eI T O Gl axorn)

B
G+ h+ D) itk or aj kg
+ S @ gt || g It L= eI TR gl | - o
> ESEw] | 2 TR0;pll 2 L (xpo,m) o)
+)° Hayjc'TkazuHLi’t(Qx[O,T]) + Y HaiTkaprL;J(Qx[o,T])
be Ben{j+k>1}

= ?E(U,p) + 1110(“7]9)7
where 1 (u, p) and 9o (u, p) consist of the first and the last two terms, respectively.

THEOREM 2.7 (Stokes equations). Let 0 < T < 1 and r > 3. Then there exist 0 < € < € < e < 1,
which depend on r, d, and the analyticity radius of the tangential vector field T such that for any divergence-
free ug € HY(Q) N H?"~Y(Q) which satisfies the compatibility conditions, and f sufficiently smooth, the
solution u of the Cauchy problem (2.12) satisfies the estimate

¢(Uap) S wO(uap> + MT(f) + HUOHHQT*h (214)
where M (f) is defined in (2.11).

The essential ingredients in the proof of Theorem 2.6 are the derivative reduction estimates in the nor-
mal, tangential, and time components, which are provided in the next section. The proof of Theorem 2.7
follows by the same method and we outline the modifications in Section 5.

Using the result on the Stokes system with the force —u - Vu, we may address the Navier-Stokes system
with the Dirichlet boundary conditions (1.1).

THEOREM 2.8 (Navier-Stokes equations). Let d € {2,3} and r = 3. Then there exist 0 < € < € < e <
1, which depend on the analyticity radius of the tangential vector field T, such that the following statement
holds: For any divergence-free ug € Hy () N H(SY) which satisfies suitable compatibility conditions, and
a space-time real-analytic f € L™(0,1; H3(Q)) N W12°(0,1; H(Q)) N W2>(0,1; L2(Q)), for which
M (f) < oo, there exists Ty € (0, 1] such that the solution u of the Cauchy problem for (1.1) satisfies the
estimate

Yr(u,p) S 1+ Mr(f) + [luol g,
forany T € (0,T], where My (f) is given in (2.11). The implicit constant depends only on Q.

The dimension is restricted to d € {2,3} for simplicity of computations. With this choice, we also
fix the index » = 3 in the definition of ¢(u) and v (u,p). In order to obtain boundedness for the lower
part of the energy norm 1o (u,p), we appeal to the local existence theory for the Navier-Stokes system,
cf. [47, 13, 49, 44] for instance. Since we need to set r = 3, we require the data to belong to H° (note that
then 27 — 1 = 5). However, due to the regularizing effect, we might also assume that the data lie in H.

3. Derivative reductions for the heat operator

Here, we state the normal, tangential, and time derivative reduction estimates for a smooth solution
u of (2.6)—(2.8) in terms of the vector fields introduced in Section 2. The same discussion on the half
space, splitting the gradient operator into tangential and normal components, was provided in detail in [33,
Section 3]. Here, we outline these ideas and deal with the additional commutator terms. Throughout this
section we require ¢ + j + k > 7.
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3.1. Normal derivative reduction. Here we consider (2.6)—(2.8).
LEMMA 3.1. For j > 2, we have
ey T P Ve L/ PN R st 1
AT | a gy + IO T Ol 2, B
([T (T, Al
Similarly, for j = 1 and k > 1 we have
||ti+1+k_rakaa§U”L;t < th‘+1+k—er—1aZ'+1uHLi}t + HtHHk_TTk_langLi,t
4 ||kl A]atz'uHL?M7 (3-2)
while for j = 1 and k = 0, we get

160, 05ull 2, S T Sul ) Ol + T T Ol + 1T 0N, B3)
’ x, x,t ’ ’

Before the proof, we recall the H? regularity for the Laplace equation which, combined with the trace
theorem (cf. [35]), yields the estimate

lull ) S AUl L2@) + 1wl msz@oo) S 1A L2@) + 1 Tull 17200y + [lull g1/200) (3.4)
from where
lull a2y S 1Aullz2i0) + I Tull g1 + [lull 2 (3.5)

If, in addition, u,, = 0, then we have

ullz20) S 1Aullp2(q)- (3.6)
Besides (3.5)—(3.6), we recall
IVull 20y S lull Yoo [02ull 1o ) + Il 3.7)
L2(9Q) ~ W29l L2 () T [1UIIL2(Q)- :

PROOF OF LEMMA 3.1. Using (2.6), we compute
A(t”ﬁk_ra{QTk@Zu) a8
_ ti+j+kfra%f2Tk8§+lu _ ti+j+k—ra£—2Tk8§f _ ti+j+k—ra%e2[Tk7 Aldiu :
for j > 2. By the H? regularity estimate (3.5), we get
[EH TR AIT O] 2 S 0 HE T LA T D 2
S TR TR | o 4 (¢RI TR £ 12

[T G+ ([T AT O 2
+ (IR SRR, Aldful| 2,

and (3.1) follows.
For (3.2), let £ > 1. We have

A(tH_H_k_TTk_laZU) — ti+1+k—er—18Z+lu - ti—l—l—l—k—TTk—la;'f _ ti—l—l—l—k—r[Tk:—l7 A]az,u

Since Tk_lﬁgu‘ 90 = 0, the H? regularity estimate (3.6) leads to (3.2). In order to prove (3.3), we use the
equation

A(t”l_’”afu) _ ti-i-l—ra;‘—i—lu - ti-i—l—razf.

Using the interpolation inequality (3.7) and the H? regularity estimate (3.6) we obtain (3.3) (cf. [33]). O
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3.2. Tangential derivative reduction. The following lemma allows us to reduce the number of tan-
gential derivatives.
LEMMA 3.2. For k > 2 we have
[T TRl o S TSR0 2+ R TT200f 2 o
[T, Az |

while for k = 1, we have
1" T0jull 2, < Bl 2 O A 6T Bz, + 60, 3110)

foralli > r — 1.

PROOF OF LEMMA 3.2. Setting 5 = 2 and replacing k with k£ — 2 in (3.8), we have
A(ti+k7TTk728zlu) — ti+kfer72azi+1u _ ti+k7TTk728tif _ ti+k*T[Tk727 A]atzu

fork > 2. As Tk_Qaf = 0, the rest of the proof is obtained following the arguments in [33]. U

“‘aQ

3.3. Time derivative reduction. In this part, we consider the expressions of the form ||t:~"9}u]| ;2 e

which do not involve spatial derivative operators. Therefore, the time derivative reduction estimate on the
half space [33] is still applicable here. For completeness, we recall the statement.

LEMMA 3.3. Fori > r, we have
[ Tﬁiﬂllm S@E—n)t o 1u||L2 + |t 1fIIL2 + Liey | VO] u(0) | 22 (3.11)

The proof follows from the energy inequality for the system (2.6); cf. [33]. In particular, for i = 7, we
apply 0 ~1 to (2.6) and test the resulting equation with ofu

3.4. A Leibniz type formula. Having a nice analytic expansion as in (2.1) comes with a cost of losing
the equality of mixed derivatives. Below, we recall the Leibniz formula for k-folded commutator terms
(cf. [40]). Given two linear operators Y, Z, the adjoint operator ad Y (Z) is defined as

adY(2)=[V,Z]=YZ - ZY.

LEMMA 3.4 ([29, 40]). Let k > 1. Given a differential operator Z, we have
k

[1%,2) =) (lel)((ad T)™(Z))TF™. (3.12)

m=1

In addition, when Z = Z1Zs, a similar formula is given by

k 2
=Y Y gy L@@y 313
j=1

m=1 aENg7\a|:m

PROOF OF LEMMA 3.4. Formulas (3.12) and (3.13) follow from an induction based commutator ex-

pansion fact. If Y7,...,Y,, and Z are linear differential operators, then
[ Yy, Z Z Z ad Y -ad YT(m)(Z))YT(erl) T YT(’C)?
m=1ren(k,m)
where 7(k, m) denotes the set of all ( ) permutations 7 of 1,...,k such that 7(1) < --- < 7(m) and
7(m 4+ 1) < --- < 7(k). Noting our notational convention on T"C given in Remark 2.5, we treat the

permutations of the same order equal and rewrite the above formula in the tensor form to deduce (3.12).
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Similarly, when Z = Z; Z5, the expansion given above becomes

Vi Y Z1Zs) = ) > t1rat2raYe(jalr) Yo
|o|=1,a€N 7€ (k)

where 7 is a permutation of {1,...,k} with 7(1) < -+ < 7(a1), 7(an +1) < -+ < 7(ag + 042)
and 7(a1 + ag + 1) < 7(k). We drop the respective monotonicity restrictions on 7 in case a3 = 0,
ag = 0, or aq + ag = k. The coefficients above read a1 - = ad Y, (1)---ad YT(al)(Zl) and ag ;o =
ad Y (q 41 -ad Yo (4, 40,)(Z2). When a1 = 0 or az = 0, the coefficients become aj . = Zi,
a2,7.o = 43, respectively. ]

If Y; and Z are vector fields, then so is (ad Y} - - -ad Y7)(Z). Regarding the analyticity properties of the
latter vector field, we recall the following result from [29].

LEMMA 3.5 ([29]). LetY:...,Y,, and Z be analytic vector fields defined on a domain in R? such that

d
}/j == ajai,
i=1
where

lm‘a}zwg‘aﬂikllff, i1=1,...,d, j=1,....,m
al=

for some K1 > 1. Then there exist K1, Ky > 1 such that
n
(ad Yoy -+ ad Y1)(Z) = _ b0,

where
masc 098] 5 (k + m)! KKy’
o=

fori=1,...,d.

Note that in the above formula the constants K and Ko give the radius of analyticity for the vector field
adY,, --ad Y;.

In the following two lemmas, we derive upper bounds for the commutators with the Laplacian. Formu-
las, which are close to these but different, were stated in [29] for the case of the double gradients.

LEMMA 3.6. Fori+ k > r — 2, we have
. , k k!
||tz+k+2—r[Tk’A]azu”LgJ 5 Z WKIC ”tz—i-k+2 7"82Tk K’ 8tu||L2

k'=1
L (3.14)

k' / /
+> T KX K[t 9,1 | 2
k'=1

for some K > max (Ko, f(g), where Ko and K are given by Lemma 3.5.

PROOF OF LEMMA 3.6. By Lemma 3.4, we have the expansion formula

k _ [e% . QU . k*kl
[T, A] = [T, 0] = kZ ZNJ T k 1 (@D (0))(ad T)*2(8)) T 3.15)
|a|= k’
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Using Lemma 3.5 with m € Ny, we obtain

(ad T)™ sz b (3.16)
where
max |05b), | < (k+m)! K5 K™ (3.17)

|8|=k

for some Ky, Ko > 1 depending on the vector field T.
The vector field expression in (3.15) gives

Zza;k k/[alja2jala Tkk/JFZZa.k k/|a1jalb212]aTkk

k'=1 qeNZ k'=1 aeN2
|a|= k’ o= k'

Using the analyticity bounds in (3.17), we then obtain
[ A]é’ZuIIL2

<y 2 a k. T e R et gl [T O G

k'=1 €N2
Ia\ ¥

+Z > - k ST R el ol (e £ DT D

k'= 1a€N2
la|= k'

Bounding the terms involving o and setting K > max (Ko, K2) we get (3.14). U

Next, we examine the operator (93; [Tk , Al for j, k > 1. We use the binomial formula for multi-indices in
order to sum up the coefficients that results from the Leibniz rule. Recall that for multi-indices 53, 5’ € Nj

with m = ||, we have
B\ _(m
E <5/> = <l> (3.18)

B'<B,|B'|=l
LEMMA 3.7. For (i, j, k) € N3 with j, k > 1, we have

[T, Alojull 2,

j+k—F J Kl ik k! ittt 2— 1 s 2!
S S R P e
=0j"+j3=j

for some K > Q.

PrROOF OF LEMMA 3.7. Differentiating both sides of the equation (3.15) and using the Leibniz rule,
we get

HTF A] = 8% [T, 9]
_ J >aj1(adT)a1(a )ajz az jzk—k'
Z > oo e )02 (ad T)°2 (9) 0T
K=1 aeN2 o k k/) 1427320 <31 J2

lor|= k’ J1+je+iz=j
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Analogously, the analyticity of the vector fields (ad T)*! (J,) and (ad T)**(9,) gives the upper bound
WW““WMWAWWH
A
< Z Z al k k’) Z (]1']2']3'01 +a1).(j2 —|—a2),
k'=1 aeNg J1,42,33>0
la|= k:’ Ji+j2+7z=j

J1tal 7 Jetae iti+k+2—r qjs+2mk—k 90
Ky MKy |t OPTTE " Opul| e

for Ko, K5 > 0.
Applying the binomial formula (3.18) for multi-indices 3 = (j1 + a1, jo+az) € N?and 5 = (j1,J2) €
N? we find that
Z Z (J1 + a1)!(j2 + a2)! <j1+j2+041+a2>:(j,+k,>
Jilaq! ja! ! J1+Jo 7'

a€N3 j1+j2—j
lo|=K' §'=7—173

for fixed integers &’ and 0 < j3 < j. This yields
[#47H2 T BITE, AJoful

K RN R K || itk 27 g+ 2=k g
I S L i A
k'=1j'+jz=j - ' | (3‘19)
k—1 . / y
S Ttk =) JRL peit b | itk 2 gt 2K i |
| ' ' ] ]S'k/' z,t
k'=0j'+js=j
U

for K > max(Ks, K»).
We use Lemmas 3.6 and 3.7 when estimating the commutator terms appearing in the derivative reduction

estimates (3.1), (3.2), and (3.9).
4. Proof of the analyticity result for the heat operator

We recall the analyticity norm as given in (2.10):

(C+7+K)" iy itith—r ajpk i ok i
d(u) = ;(iﬂwe et T 0l 12 (x o,y %; 102 T 0ull 2 (x(o,17)

= ¢(u) + do(u).

PROOF OF THEOREM 2.6. In order to apply the derivative reduction estimates, we split ¢(u)

6
— Z S,
=1

where
SZ = Z melgjek”tz+J+krag:TkaZuHL%N 0 — 1’ . ,6
14
and
By ={(i,j,k) € B:j=1k>1}

Bi={(i,j,k) € B:j>2},
Bs={(i,j,k) € B:j=1k=0},
Bs={(i,j,k) € B:j=0k=1},

Bs={(i,j,k) € B:j=0,k=0}.
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We start with the two main sums S; and S4, which are estimated using (3.1) and (3.9), respectively.

4.1. The S, term. First, we check the sum S; which consists of terms with only tangential and time
derivatives with j = 0 and k£ > 2. By (3.9),

i+ 7+ k) eteder ,
S4 < Z (Z +J+ ) eee th-i—k—er—2a§+1

~ . . Ul r2
Gamen,  TITRN Iz,
(i4+j+ k) et o

o3 S T,

(i.d.k)€ ’
k X )

> iy 45 (142, AJoju
(i,j,k)€B (47 +k) o
sJs 4

By relabeling, we get

gt
Sy < Z (i+j+k+1)"€e" th+k+1 rkg;

u
(i+j+k+1)! lzz,

(i—1,5,k+2)€ By
Z (’L +] + k+ 2)7‘ i =k+
(i+J5+Ek+2)!

+ th+k+2 eratfHLQ

(z+y+/~c+2)”’“ ko
+ Z (Z +] +k+2) ”tz—i-k-‘r2 T[Tk’

Alojullyz
(i,j,k+2)€ By
= Iq + Iy2 + Iys.

We utilize the shift in the indices to estimate I and 49, leading to

eT Z (i+7+k+1)ee

I+ 1 < - . . t’H—k—TTk
a2~ T (i+7+k+1)! |

%
atUHLg,t
(1717j7k+2)€B4

i+ 3§+ k4 2)reet? _ ,
by URIERERCCT ety g

- ,
g tithT2)
er (i+j+k+2)eet? | :
S 7¢( )+ Y [EFF2TTRO f g
Gikimes, (O HITEE2) !

For I,3, we use the bound (3.14) on ||t tF+2=7[TF A|9jul| 2 , and we obtain

. k 2rifk—|—2 ) )
Ly S UEKEERCET gk Ao,

1 |
i€Np,keN (Z tht 2>’
_ - 4.2)
(Z+k+2)r2k+2 k' ’ o
P> (i + Kk +2)! /.ka S R Oullpz,-

(i,0,k+2)€By
k>1

Note that we only kept the first term from the equation (3.14) as the coefficient k& in the second term is
compensated by the decrease in the total number of derivatives. Also, the terms in the sum with k£ = 0 are
excluded above as there is no commutator term appearing. Changing the order of summation, the sum I3
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can be further estimated as

[ee]
(i+ K +2)reeed ., '
< i+k"+2—r o2k’ i
oS 3 gppegr AT O,
i,k =
(i,k")#(0,0) (4.3)

X

@i+ k+2)" i+ K +2) k! ,
Z ;(ﬁr +2) (§+ +2) (Ket)— |
W E(i+k+2)(i+k+2)E!

Note that the sum in & in (4.3) is dominated by

2 = (i+k+272 kK (i4+K)
= 2

k—k'
TR 2GR RS (4.4)

k=k/+1
uniformly for all i > 0, whenever 7' < min(1/Ké€, 1) . From here on, we assume 0 < 7" < 1 and reduce

the range for € to 0 < € < 1/K to assure convergence.
Therefore,

Iis < KT 2¢( u) + KT& po(u)

for0 < e<1/K.
Adding the estimates for 11, 140, and I3, we obtain

G 4 eT
Sy S KTZQCf)(U) + KTe ¢go(u) + TQS(U)

(i+j+k+2) et o ki
t TF 9! .
+(, 'k%EB R [ ifllz,
2,7, 4

4.2. The S term. Next, we consider S7. By (3.1),

i+ +K)ETE by ni—2mhka
s, <Z o It 07T 0 f 12,

(4.5)

(4 +R) €& ik At
trtIthergi—2rkgit
+Z (i4+7+k)! | v t

UHLgyt

Z (i+j+k)ede ¢k gi =2k g

(i+j+Fk) i
B
Z H—] + k)"elele |t I =2 TR gl
By (i+J+Ek) ' S
2 7’+J+k O givirroi T, Alojulz
< (i4+7+Fk)! h

We then relabel to obtain
3 (i +7+k+2)reeit2ek

S, <
b (i+j+k+2)

[achnas TailkaszL?t
z,
(ij+2,k)EB1

i+j+k+1)etedte
T SRR A= AL 1R BT
o1 en (i+j+k+1) i
— ) 1
(i+ 7+ k+ D) reamt2eb=—t ik
+ ) [ TR O 2

— |
(142 b 1)EB, (t+j+k+1)



ANALYTICITY FOR THE NAVIER-STOKES SYSTEM 13

i+ itk retgitlgh—1 . .
+ > (itith) , [T QI TR O 2
(i,j+1,k—1)€B) (i+7+k)! o

Z (Z+]+k)7” i) ]+26k 2
(i4+7+k)

+ Ht”“’“”"aiT’“%UIIL;J

(4,7+2,k—2)€B1

Z (i +j + k + 2)reteit2er
(i+7+k+2)

+ e T O

(’L,j+2,k‘)EBl
Z (i+j+k+2)eeit?e

+ ——
(i+j+k+2)

z+]+k+2 rajrrk )

e O4(T*, Alojul 2,
(1,j+2,k)EB1

= I+ Lo+ L3+ [1a + I1s + 16 + I17.
Firstly, using the definition of the norm ¢(u) the non-commutator terms can be bounded from above

I+ Lo+ Lis+ Ly + Lis + Lis
=2 2 = =2

< (T6 +TS + 24+ 5+ T2€2) ()

€ €E € € (4.6)

+ ” 1+J+k+2 TakaaszLQ )

Z (i4j+k+2)reet2e

(2 mEB: (i+j+k+2)

Next, we estimate the sum ;7. In order to do this, we use the estimate (3.19), and then change the order
of summation. Note that k¥ > 1 as I;7 is a commutator term. That results in

i+ j+k+2)" o (i k=K jlE
his X Z 2 (z+g+k+2)eej ‘ ") sk

(4,5+2,k)EB1 k'=0 j'+jz= J

% Kj/+kfk’ ‘|ti+j+k+277’8{]p'3+2rrk’a§u”L?c t>

. ro . o L
z+]+k+2)! Gl K

(i,j3+2,k") € BiUBC k=k'+1 j=j3 J—J3

4.7

% Kj—j3+k—k’ ||ti+j+k+2_’”8i3+2Tk/8§u||Lz >
x,t

Next, we split up the first sum in the equation (4.7) into two parts—over B; and B€. Then, rearranging the
coefficients according to our analyticity norm we obtain

S ,

Lo S0 URBERED iag i 2 git 2k giy
- (i 473 + K +2)! @t
(27]3+27k,)€B1
) K i

Y AT Gl s
(i7j3+2>kl)€Bc
where the coefficients A1 and Ag enclose the second sums due to the Fubini Theorem. Explicitly,
Z Z (i+js+k +2) (i+j+k+2)" jlk! (j—j3+k—k’>
(t+j+E+2) (i+j3+ K +2) js! k! Jj—17J3

k=k'+1j=j3
x KI=Is k=K (Tg)i=is(Te)k—F (4.8)
(i+js+k +2-n) (G +js) (E+E) (G +Fk)!

oo
le (i+j+g3+k+E+2—1) J3l K gL E!

[e.9]

Z/\

(KT&) (KTe)*
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for (i, 73, k') € N3 withi + js + k > r — 2, and

Ao = i (itjt+k+2)" (j—gst+hk—k) gk KI—ds+k—K rpitjtht2—r izj+2k
e (i+7+k+2)! Jj—7Js g3l k!
itjHk>r—2

for (i, j3, k') € N3 with i + j3 + k' < r — 2. We omit the dependence on 4, j3, k', and T'. The coefficient in
front of (KT€)/(KTe)¥ in (4.8) is bounded above by

() ()

(i+js+k+2-r)  (G+i3) (F+E)(G+E) j

(i+j+is+k+k+2-1) ja! K1 k! (R

i+73) (k+KY . . . .

UV s+ 4211 (G+js+k+E)! 4.9)
TR (jz + K')! (i+j+j3+k+k+2—7)
<(z'+j3+k'+2—7“)! (J+izs+k+E)

(ja + k')! (i+j+gs+hk+k+2—7)

fori + j3 + k' + 2 > r. Note that when 7 + 2 > r, the far right side of (4.9) is bounded above by 1. On the
other hand, when 0 < i < r — 2, it is bounded by a constant multiple of (j 4 k)" ~*~2. Combining this with
our assumption 7' < 1, we arrive at

o0 o0
sup A1§ZZJ+/€T 2(KTe)Y (KTe)* < KTe,
(i,j3+2,k/)€Bl k=1 j=0

when max(é€,€) < 1/K.
Likewise, the coefficients appearing in the sum Ag obey

(G+j+k+2) UK [(§—js+k—kK (j+k)! G k! (j—js+k—FK)
<
(i +7+k+2)! g3l k! Jj— 73 (it jrk+2-r) (G FR) LR (5 —d3)! (B —K)!
G GG G4k
(i+j+k+2=m) (J0) s+ k)~ (@+j+k+2-7)
(4.10)

Similarly to (4.9), the right side of (4.10) is bounded by 1 when ¢ 42 > r. Otherwise, the bound is a constant
multiple of (j + k)"~¢~2. Thus, Ay is also summable whenever max(¢, €) < 1/K , and is bounded by

o0
sip Ao S (k2K (KF S
(3,53+2,k’)€B° 4,k=0
i+j+k>r—2
‘We then conclude that
I < E¢o(u) + KTep(u). 4.11)

Combining the estimates (4.6) and (4.11), we obtain

o - & e & & .,
S1 S €¢o(u) + KTep(u) + T7+TT+1+T2+T€ ¢(u)

4.12)

Z (i+j+k+2)reet2ek

(Z+j+k+2). ”tH—J-‘rk-&-Q rakaaZfHL2 )

+
(i»j+27k)€Bl
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4.3. The S5 term. Next, we estimate So. Using the tangential derivative reductions, given in (3.2), we
write

Z+1+k eeer o (i 414 k)"eleer . o
S < Z IR (Mg 18§+1“HL§¢ + Z G ¢+ 1Rk 18§fHL§,t

(Z+1+k’) E-ggk it1+k k—1 , 9
E . th T[I ’ ] ;uHL2
| x,
- (i4+1+k)! ¢

and then, by relabeling

(i+1+k)reteett o, ,
< § : i+14+k—rmpk 5i
s (i—1,1k+1)€B> (i+1+k)! It Totul.z,
=11,

(i+2+k)€ e i+2+k—rmk gi
E t T"0;
Jr(‘1&+1)e§ (i 42+ k) H ez,
l’ b

2+k ;
n Z (i+2+ k) ereert ||tz+2+k—r[Tk’

(Z+2—|—k) A]atuHLi’t

(i,1,k+1)€Bs
= Io1 + Iog + Ia3.
Once again, we start with the first two terms Io; and Io9. Fort < T', we get

Te (i + 2+ k)releer ; _ ;
T oy < 2= tz+2+k eraz ]
21+ I S —¢(u) + | > (i +2+ k) ” i fllz,
(Z,l,k+1)€BQ

Next, we treat the commutator term I53. Note that multiplying I3 with an €/€ prefactor yields a sum-
mation over By whose terms are identical to those of I43. Therefore,

3 (i +k+2)e 2 o
"o < tz+k+2 r Tk
P 23 Z || [ )

(Z+k+2) A]atuHLi’t

(4,1,k+1)€B2
k>1

-1
Z (Z+k+2)mk+zzk le— k' || yith+2—7 52k’ i
(i,1,k+1)€B (i +k+2)! i It T Guliz,
2,1, 2
>1

(4.13)

~

for K > 0 as determined in Lemma 3.6. Changing the order of summation as in (4.3)—(4.4), we arrive at
-2
Iy < KTS ¢(u) + KTeeo(u)
€

for T <1land0 < € < 1/K. Therefore,

=2
Sy < KTeepo(u) + KT <6~ + 6) dpu)+ >
€ €

(4,1,k+1)EB2

(i + 2+ k) eleer
(i+2+k)!

||ti+2+k_TTkagf”L;t ]

(4.14)
4.4. The S5 term. Using (3.3) for S3, we have
: : k)" =7
D SR e T e
(iiReB (i4+j+k)!
sJs 3
(i+7+k)eder i, (i+j+ k) e
+ > —— Ol e+ — [0 f N e -
| z, | z,
(imes, CHITR) " gmes, (UFITRN t

(4.15)
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We note that j = 1 and &k = 0 for (i,j,k) € Bs. Using the Cauchy-Schwarz inequality in (4.15) and
relabeling in one of the sums, we immediately get
1/2 ' 1/2
© —|— 1 € (A
SsS | Te > IItZ "Ojull 2, E > T Opull gz,
(i_lmj k})EBg

(4,3,k)€B3

Z—"_l i—rat Z—"_l 3 T 9
e 3 C gl +e S DL,

( ’]7 ( 7j7k)€B3
Therefore, we obtain
T1/2g R ) i1 Z )
S3 ,S < 61/2 +T€ qb(u)—i—e Z ((_|_:)l)||t +1— atf”LQ ) (416)
(Zvjvk)eB?)

4.5. The S5 term. For S5, we use (3.10) and write

. . k)" =7
Z (l _:ZJ_:']_})—Z; ek ||tz+1 Tat H1/2 ||tz+1 raz-i-l H1/2

S5 <
(i,5,k)€Bs

+ Z (Z +j + k)reigjgk Hti—&—l—razun ) + Z (7‘ +j + k.)reigjgk H i-l—l—raz'f” )
B (i+j+k) Lz, e (i+j+k) 8 LG

Note that j = 0 and k = 1 for (i, j, k) € Bs. By using Cauchy-Schwarz inequality on the first term and

then relabeling the indices on the right side, we get

_ i+ D)€ i 12 e 12
S5 < <T€ > m”tz "Oyullrz, > It ol e,
’ (i—1,j,k)€eBs

(szzk)EBS

A

_ GG+ 1) _ i+ 1) i1y
+Te Y |t "Oyullpz, +€ > WWH "0 2 -

1!
(irj:k)€B5 (Z+ ) (i,j,k)€B5
We deduce that
Te = (’L + 1) i+1—r
S5 S ( 7 +T6> P(u) + € Z m||t atfHLz . 4.17)
(Z,],k)€B5

4.6. The Sg term. Finally, for S we use (3.11) and obtain

(i—r)(i+j+k)yeae
S5 S O
(i.5,k)€Bs ‘
(i +j+k)yeee r’ _
+ Z Gtj+h) [t 0% 1fHL;t+g6T||V3§ "u(0)]] 2
(i,j.k)EBs ' '

1) (i — 1)ettl )
=y DD g,
(i+1..K)€Bs (i+1) "
; 1)reitl ) r
S T g, + DT u o) e
(i+1,5,k)€Bs (2 + 1)! o "
since for any triple (i, j, k) € Bg we have j = k = 0. Therefore,

Z+1 7 T 9
S S s, + ol

_.|_

(4.18)

Se S ep(u) + €
(Z+17J7k)€BG
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4.7. Conclusion of the proof. Combining all the estimates (4.5), (4.12), (4.14), (4.16), (4.17), and
(4.18), we write
. 8 ar 2 2 : 2
o(u) < <KT +—+KT6+T +T +7+ S+ 178
o T1/2 Ft e )
+ KT <(i + 6) % +T(e+€) +e)¢(U)
€

€ €
+ (KT& + 1+ KTée*)¢o(u)

(i+j+k+2) et o hai
+ Z (Z+J +k+2) ||tz+k+2 TTk@Zf”Lit
(i,4,k+2)€ By )
k 2\7 z j+2
D e -k 26) [+ 2o TR (4.19)
. i+ !
(i,j+2,k)€B1
(i+2+ k) eee 424 k—rrpk A
t T 0!
+('1k+zl)€B (Z+2+k) H tfHLgyt
l’ b
. (i4+1)"€ (i+1)"€
e D T Nl e S WIW“ "0z,
(4,9,k)E€B3 (4,5,k)EBs

(i+ 1)T6i i+1-rgi
te 3 T IO sy, + ol
(Z+1,],k)€BG
Denote by C the implicit constant associated with the symbol < in (4.19). Recall that we already fixed

0 < T < 1. Next, we set our radii of analyticity ¢, €, € in order to keep the coefficient of ¢(u) on the right
side of the equation (4.19) sufficiently small. Starting with € = ¢(C') > 0, we enforce

< 1
€ —.
- 8C
With this choice of €, we choose 0 < € = €(K, C) < min(e, +) such that

2 —
1/2_€_ <1
T —i—KTe—I—KT +T 1/z—i-Te Yok
Since T < 1, it suffices to take 0 < € < ¢/82K (. Next, we pick 0 < € = é(¢, ¢, K, C) < € such that
é e e & 22 12 €
i & _ E< — .
T +T + = + 3+ D&+ TP + Te< o

Once again, setting 0 < € < E/ 82C is enough. Finally, we require that

=3 =2 1
KT (; n Z) < (4.22)

(4.20)

4.21)

- 8C

Note that the conditions (4.20)—(4.22) hold with the choice ¢ = ¢/8*C%K, € = ¢/82CK, and ¢ = 1/83C?
without any extra requirement on the size of 7.

Using the selection (4.20)—(4.22) we made for 0 < € < € < € < 1, we rewrite (4.19) as
- 1 (i+j+k+ ) lgitle
< = C C tz+]+k+2 7‘8] Tkaz
) < o) + Oty w0 3 HIEEEDCATE, iz,

(1,5+2,k)€B1

e : S T
P e <( T [T )
(ijkt1)EBy  (ijkt2)EBs (i+k+2)! 2,
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Yoo Y+ > <(Z(7,++i) £+ Talf\H)
(i,j,k)GBg (i,j,k)€B5 (’i+1,j,]€)€Bg
> (i+j+k+2)reeit2e

¢(u) + Co(u) +2C (i+j+k+2)!

|| z+j+k+2 rakaatf”L2

itj+k>(r—2) 4

k 27“7,]6
IEYED DI e P

i+k>(r_2) (i+k+2)!
+3C Z ||t’+1 "0, fllzz, + Clluoll 2,
>(r—1)+
and the proof is concluded U]

5. Derivative reductions for the Stokes system

In this section, we adapt the derivative reduction estimates in Section 3 to the time-dependent Stokes
equations. Analogously to the heat equation, the method is based on the H? inequalities for the stationary
Stokes system

—Au+Vp=f inQ

V-u=0 in{,
which read
lull 2y + Pl Er @) S N1fll22) + 1Tullgro) + [ullL2@)- (5.1)
If also u 90 = 0 holds, then the above estimate becomes

lull g2y + 2l g @) S I llzz)- (5.2)

Next, we state the normal, tangential, and time reduction estimates for the Stokes operator. Assume 7 + 7 +
k>r.

5.1. Normal derivative reductions for the Stokes operator. For j > 2, we claim
e QI S 2 | A ([T AL T O 2
SEHITETOIETR G f | o, + RO TR0 2
IO ] gy + [ OL T Gl

([T, Aldful 2+ 63T, VI9gp] 2 .

5.3)

Similarly, for j = 1, we have
Hti+1+k_raer8§uHL§7t 4 HtHHk—eragp”Li,t
< Hti+1+k—er—1az‘+1uHL%t 4 Hti+1+k_er_laszLi,t (5.4)
I Al T 0 e
For j = 1 and k = 0, we obtain
1677 a0l 2, < 160l 160l 16Tl 6Oz (55)

The equations (5.3)—(5.5) constitute the analogues of (3.1)—(3.3).
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5.2. Tangential derivative reductions for the Stokes operator. We claim that, for £ > 2, the tangen-
tial derivatives may be reduced using

T T PN Tt el Iy
< T2 o TR0 (5.6)
a L N P T R LT
while for £k = 1, we have

641 0l , S I Ol 16Ol 61 Dz, + 160, 5

for all ¢ > r — 1. The equations (5.6)—(5.7) represent the analogues of (3.9)—(3.10).

5.3. Time derivative reductions for the Stokes operator. For i > r, we have
1" Oull 2, S (0= )l 70 Ml 2, + Limg VO] T a0 g2 + 1770 fll 2, (5.8)

In order to prove the inequalities (5.3)-(5.7), we follow the ideas in Section 3 by appealing to the H?
inequalities (5.1)—(5.2). Since the proofs are completely analogous, we omit further details. For the equation
(5.8), note that the energy inequality for Stokes equation is the same with (3.11), as the integral with the
pressure term vanishes due to V - u = 0.

PROOF OF THEOREM 2.7. Instead of considering v (u, p) in (2.13) directly, it is more convenient to
introduce an alternate norm 1)1 (u, p), which is larger than 1 (u, p), modulo a multiplicative constant. The
function ¢/; is defined as follows. Fix T" > O and let 0 < € < € < € < 1. Using the index sets B and B¢ as
in (2.9), we define

¢1(U,p) = 1;1(U,p) + wO(uvp)

where 91 (u, p) = 22:1 Sy with

: : k.ri~j—k
SgZZ<Z+]+ )GEERg, {=1,...,6

B (t+7+k)!
and
Ry = [0 T i T gl 2 |+ (|6 TRl G2
Ry = [0, T ull 2, k> 1
Rg = ||ti+1_T(9x8§u||Li?t
Ry = 5T T 0l 2, + 65T il e B2

Rs = ||ti+1_TTatiU||Lgvt

_ 1—T 9%
R = ||t Oyullr2 -

Recall that the sets B1—Bg were defined in (4.1). First, we sketch an argument showing that

¥(u,p) < P1(u, p).
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It is easy to verify that the terms containing u are the same, so we only need to check that

. . ]{7 1 r—1 .
> (it 7kt D™ it ghygieirhri= "OIT gl 2 ¢

(i+37+k)! +(@x[0.T])

(LT +K)" iy itk i1k i
<Z Gt iR C eI Tl (xpory (5.9)

(L7 +K)" iy itith—rmk—1 a0
ﬁ‘%:(i+j%kﬂgé€|ﬁlj TR0l L xfo,)-
4

The sum on the left side equals

. . k? 17‘_ .
S GEIHEE U gmgtpiritini—rgimeojp| 1o

s , L(Qx[0,T])
Briel) (i4+j+k)!
(+j+k+1)1, .
+ ] Z (tj+h) erei gk ||t th 8J'I‘k8tl’||L2 L(Qx[0,77)
Bn{j=0}n{k>1} e k)T_l (5.10)
tT)] i~j =k || pitjHk—T qj— i
= > T ETEN Fek||prtitherol 1Tk8tpHL§Yt(Q><[O,T})
{@G.5.k)i+j+k>r,j>2}
(+5+k)" iy, .
+ > T A O (PR

{(i,5,k):3=0,i+k>r k>2}

where we changed j to j — 1 in the first sum and k to k£ — 1 in the second; we also used that j + %k > 1 on B.
It is now easy to check that the right hand side in (5.10) is dominated by a constant multiple the right hand
side of (5.9) by using € < €.

The rest of the proof is identical to that of Theorem 2.6. Namely, we follow the arguments in Subsec-
tions 4.1-4.6 and appeal to the derivative reduction estimates (5.3)—(5.8). The only difference is due to the
pressure terms appearing as the last terms in (5.3), (5.4), and (5.6).

First, we estimate the term ||¢+*+2=7 [Tk, V]aprLg .- By Lemma 3.4, we have

k

, L .
[T%, 0gloip = > <m> (ad T)™(9,)TF™dip (5.11)

m=1

for k > 1. Using (3.16)—(3.17), we express the term (ad T)"™ () as

k
i ki —m qi
R S M L

m=1
with coefficients that obey
max |b§n7£| <m! K.

This yields

k
7 —r A k! [~
[ [Tkvv]atpHLit < Z sz

m=1

[tirRr2mralh—mgip|| 12, (5.12)
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Therefore, the last term in (5.4) is bounded as

k—1
' . k-1 ;
NN A DD M e L Y
. m=1 (5.13)

T _ ;.
Z i Ké: k 1Ht1+k+1 TE?IT'“ 8ZpHLi,t7

changing the variable k¥’ = k — 1 — m. Similarly, the last term in (5.6) is estimated as

k=3

itk—rpk—2 i <
|42, V10jlle S S
k'=0

(k—2)!

o KE=W=2) pith=rg, TF angLz : (5.14)

In order to bound ||t/ 58072 [TF V]dip]| 2 . appearing in (5.3), we differentiate the formula (5.11)
and apply the Leibniz rule, which gives 7

k j—2 .
j— i k J=2\ a0 m j—2—j1pk—m 50
0172 T", 070jp = ) <m> > ( i )a; (ad T)™(9y) &4 ~2=I1TF=mdip.
m=1 j1=0

Taking the L? norm and using (3.16) and (3.17), we get

[T =2 (T8, 00y 2,

k 72 .
k J—2 i r ! i
S b N ) e T e A Y

k j— 2 y P . o (5.15)
S (k B k/) <] j/ >(]/ +k— k/)!K] +k—k thJerrkfra%flfj Tk 8§p”L§7t
k'=03'=0

J

k-1 j-2 , , .

j + k - k‘ (] - 2)' l{f' -/ k—k/ ; : k— L B / .
< 7+ i+j+k—raj—1—5 k' qi

for K > max(Ks, K»).
Now we show that the pressure terms in (5.13), (5.14), and (5.15) may be absorbed in v, starting with
(5.15). For this purpose, we need to bound

(i+7+k)reee
Z (i4+7+k)

(i7j7k)eBl
172

k—

% < +k k) (]*2) k! Kj "+k— k’|’tz+j+k raj 1- ]Tk 81pHL2
— i (G—2-4)k

B Z (i4j+2+k) et

B (i+7+2+k)

(5.16)

(4,j+2,k)eB1

' ke K\ K K Ak
XZZ( )G o T
'=0
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Observe that the right side of (5.16) is the same as (4.7) except that 6%3” needs to be replaced by 6£3+1,
and v with p. Therefore, the right side of (5.16) is bounded, up to a constant, by

3 (i + js + K + 2)reieiat2et

KTe
(i +js + k' +2)! 2

(i1j3+27k/)€B1
o AP TE D SR o it Py oA
" (idst2k)eBe ’
S KTe((u,p) — ¢(w)) + € (to(u, p) — do(u))-

Note that the upper bound in (5.17) contains only the pressure terms in the norm ) (u, p).
Similarly, we point out a comparison between (5.14) and (4.2). We have

k—3
(i + k)reied 3k — , R
Z Z /‘ Kk k Qth-‘rk aTkatpHL2
(4,0,k)E€ By (i + k). k'=0 K

k>3

(Z—f—k‘—l—Q)T ) k+2 k! Y . ,
= K titk2=ry TV 9 .
('Ok+z2)€B (i+k+2)! Z k'l H il
2,U, 4
k>1

(5.18)

Changing the order of summation as done in (4.3), the right side of (5.18) may be bounded above by

i (i + K +2) e th-l—k-i—? ro, T

87/
(i + K +2)! ipllzz,

N (k2 (R A2VR (5.19)
- < 2 72(z+k’+2)"(i+k+2)!k'!(K€T)k k)
< KT 5 (0(up) - 6(u)) + KT (vo(u,p) — do(u),

where at the last line we recall the definition of the norm %) in (2.13) and note the bound in (4.4).
For the pressure term in (5.13), we check the sum

. et k—2
(i+ 1+ k)eleer (k=1 1. _ ' i
Z Z i Kk k 1||tz+k+1 Talec angL;t

(i,1,k)EBa (0 +1+k) k=0
= (5.20)
(i + 2+ B) e xR ks s
> . T KA o, O
LB (i4+2+k)! k:
k>1
Once again, noting the similarity between (5.20) and (4.13), we obtain
Ok P S P
iimes, UGT1+E) P e
1’7 i
2 (5.21)

<KT (@Z)( p) — d(u)) + KTEE (Yo (u, p) — po(u)).
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Finally, we combine the estimates (5.17), (5.19), and (5.21) and add them to those obtained in Section 4 for
¢(u). Selecting €, €, € € (0, 1] according to the conditions (4.20)—(4.22), we arrive at the estimate

=3 22
9(u,p) < i) < 30(wp) + Coolu,p) + Co(KTe + KT + KTS) (. p) — 6(w)

+ Ci(o(u, p) = do(u)) + CMz(f) + Clluol| g2r-1,

where C'; > 0 denotes the implicit constant associated with the symbol < throughout this section, and
My (f)is given in (2.11). By (4.21) and (4.22), we have

3 2 1
KT KT KT < —.
€+ 5 T+ TS

Dividing our choice of radii e, €, and € fixed in Subsectlon 4.7 by C' if necessary, we conclude that

$0,) < 33(u,) + Coho(u,p) + CM(f) + Cllu] -

which concludes the proof of Theorem 2.7. ([l

6. Analyticity for the Navier-Stokes equations

In this section, we apply Theorem 2.7 to the Navier-Stokes equations. Writing the equations (1.1) as a
forced Stokes system, we have
Oou —Au+Vp=—u-Vu+f, in Q

V-u=0, inQ, 6.1)

where (2 is a bounded domain 2 € R? with analytic boundary 952.

6.1. The Stokes estimate. Applying the estimate (2.14) in Theorem 2.7 to the Stokes system (6.1), we
obtain

w(uap) 5 ¢0(u7p) + MT(f) + HU[)”Hzr—l
T L casic

+ : : |’ti+j+k+2—raka8§(u . VU)HLQ
] z 2, (Q2x(0,7))
RS r—2), (i4+Jj+k+2) ‘
(+k+2)rlk i+k+2—rmpk i

+ > (z+k+2) 1t T°0;(u - Vu)llrz (x(0,1) (6.2)

i+k>(r—2)4

Z + 1 et i rai

+ ) Ht 0 (u- Va)llzz @x0m)

i>r—1

= Yo(u,p) + Mr(f) + |luol| g2r—1 + My + M + Ms,

where My (f) is given explicitly in (2.11). The parameters ¢, €, € are determined according to (2.5) and the
equations (4.20)—(4.22). As stated in Theorem 2.7, these parameters depend on the choices of  and d.

Before we start with the proof of Theorem 2.8 we recall that any smooth vector field X on a differential
manifold M satisfies

X(fg)=X(flg+ fX(9),  f.geC™(M). (6.3)
For the vector fields X and T on Q introduced in Section 2, the Leibniz rule (6.3) holds, i.e., forany g € I,
we have

Tg(u-v) =Tsu-v+u-Tgu.
We then check the product rule for || 7% (u - v)|| ;2 . with the notation given in (2.2)~(2.4).
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LEMMA 6.1. Foru € HY(0,T; H**2(Q)) and v € H*(0,T; H**1(Q)), where k € N, we have

1T o)z, < Z( )HT’”uHLw Tl

Similarly, for u,v € H'(0,T; H*(Q)), where k € N, we have

k
k
k fo—
T o)laz, £ 3 (0 )T w7 ol (6.4
m=0
The issue with this Leibniz rule, even in two space dimensions, is that the above norms are represented

by sums and thus the inequalities need to be checked directly.

PROOF OF LEMMA 6.1. First, we write

k
1T (u - 0)ll g2, = > T (u-v ez, = > ITs, - Tp,, (w02,
Belk (B1;-.-,Br)EI*

k
=> > > s, T, uTs T ol

gerk m=0 rex(k,m)

(6.5)

Using the Cauchy-Schwarz inequality, we arrive at the upper bound

k k
k L
S5 X sy Tl T, ool £ 30 (0 )17l 1T
m=0

gerk m=0rex(k,m)

Similarly, the inequality (6.4) follows from (6.5) and the Cauchy-Schwarz inequality. O

Lemma 6.1 is applied below on the sums Ml, Mg, and Mg with v = Vu.

The proof of Theorem 2.8 parallels the proof of Theorem 2.3 in [12] in which we considered the same
problem in the half space Q@ = {z = (21,...,24) € R? : x4 > 0}. In both cases, the bulk of the proof
comprises of bounds on the sums M1, Mo, and M appearing in (6.2) in terms of the analyticity norm. In
order to avoid repetition, we shall frequently refer to the proof of Theorem 2.3 in [12].

6.2. Space-time analytic estimates for the nonlinear term. We use the notation | (4, j, k)| = i+j +k,
which indicates the length of the multi-index, and denote

. {Niweieﬂ'ek|rti+j+k—ra£;T’fazu||Lg gk =
7.]k = ’

X . 6.6
AT 0jull 2 0< (i k) <71, ©©

with Niy ok = (4,4, k)" /14,5, k)|' = (¢ + j + k)" /(i + j + k)!. From here on, we set = 3, which is a
suitable choice for the space dimensions 2 and 3. Using the definition of ¢ (u, p) in (2.13), we obtain

Plu,p) > Y Uijr and to(u,p)> > Ugjs
i+jk>r 0<i+j+k<r—1

6.3. Gagliardo-Nirenberg inequalities. We recall the space-time Gagliardo-Nirenberg inequalities
from [12] that are frequently used below in order to bound the nonlinear term appearing on the right side of
(6.1). For u € H%(2), we utilize the following estimates:

1-d/4
loll ooty S el el iy + Nl 220 ue H¥(Q), (67)
H2(Q)
d/4 1— d4 .
loll ety S Il oy Nl 2 we H(S), withuly =0,
1— d4
lull sy S Nl el / o+l 2o we H'(Q), (638)
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d/4 1-d/4 .
P A S we HYQ), withul,, =0, (69)
For v € H'(0,T) such that v|;—¢ = 0, we use Agmon’s inequality
1/2 1/2
loll oy S 10l ot 1 10e0 11 ot 7y (6.10)

while in the case v|;—¢ # 0, a lower order term is needed in the above estimate, namely,
1/2 1/2
ol L0y S 10l 550 10001 g 7y + 101 20,1)- (6.11)
Together, the estimates (6.7)—(6.11) imply that for u € H'(0,T; H%(Q2)), we have

1/2 1/2
lullzzs, < 10l gl s + lull iz + 10kl 2, + llull 2, (6.12)

Similarly, for u € H(0,T; H(Q)), we may bound

1/2 1/2

Vol e S 190l Il + el g + N0kl + Il 2, 6.13)

Next, we rewrite (6.10) and (6.11) for a function of the form t’f+n+mangafu. The inequality (6.11)
becomes

Ht@-ﬁ-n—i—mangafu”Lg?t _ Z Htﬁ-}-n-ﬁ-magT’BBfU H Ly
aeNd [a|=n,Belm
< Y (It L I a0t 2 )
N t w2 g et Lz

aEN%Ja\:n,BEI’"

b (IO afull g + OO B | R T O]z )

a€NG,|al=npel™

1/2
Htﬂ—l—n-‘rmangatéuH 1/2

o (#emmormafu)) i

LYH3
+ [T Ol oy + 10 (T O )| 2, + IEF O T O 2

With the notation (2.4) and (6.6), we simply write

é~n+2€m “t€+n+m—1aZTmat€

Ué,n+2,m = N€+n+m+2€ € uHL?H%

for |(¢,n,m)| > 1. This allows us to express [12, Lemma 4.2] as follows.
LEMMA 6.2. Foru € HY(0,T; H*(Q)) and all multi-indices |(¢,n, m)| > 1, we have
Negnyme &€t OT™ 0| Lex,
S UL miomUtisomT 2160 m) P2 4+ Up /2|6, m) /2
+ Ur1nm (TLogntm=1 + T*Lgnim>2) |(€,n,m)]
o Usgn (T g imes + Tz ) [(6 )|

Analogously, the equation (4.13) in [12] is preserved when using the notation (2.2)-(2.4). We then
rewrite [12, Lemma 4.3] as follows.

LEMMA 6.3. Foru € H'(0,T; H'(Q)) and all multi-indices |(£,n, m)| > 2, we have

~ry _ 1/2 1/2
NE-&-n—&-meeﬁnﬁm ||t€+n+m 18£1m8téu“Lf°L;§ S U5117n+1,mU£7{1+17mT1/2 ‘ (év n, m) |3/2
+ Usni1.m T2, m) P2 + Upy 1 o TN (0, 0, m))|

+ UZ,n,m (ﬂ€+n+m:2 + Tﬂ€+n+m23) |(£7 n, m)‘
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6.4. Terms with only time derivatives. In this section, we estimate Ms in (6.2). Since we do not have
any tangential or normal derivatives in this case, the arguments in [12, Subsection 4.2] apply without much
change. The only difference arises from the treatment of the term Vu. Instead of splitting the gradient
V = (0, 9;) into normal and tangential components as in [12], we keep it as a gradient, i.e., 3., and switch
the order with 0;. Then, applying the Leibniz rule, we have

M <Y Z (Z) Nepré 6200 - 910 ull 3 .
i>2 £=0
Next, we show that the estimate for M3 in [12, (4.15)] stays valid for Mg as well.
LEMMA 6.4. For solution u of the Cauchy problem (6.1), we have
M; S ¢o(u)¢(u)*? + T2 p(u)? (6.14)
for0<T < 1.

PROOF OF LEMMA 6.4. Analogously to the proof of Lemma 4.4 in [12], we split M into sums Ms;
and Mss corresponding to ¢ = 2 or ¢ > 3, respectively. By applying the product rule and switching the
order of V and 0;, we have

Mz1 S llull e 10,07l 2, + |10cull e 24 1020pull 2 13 + 107 ull 2 £ 1Ozl o 1

Noting the similarity of the estimates above with those in [12], we point out that the upper bounds on the
expression 9 Oqu in [12] may be used on 919/ u exactly with the same norms. Therefore, following the
same strategy in [12] we apply (6.12) and (6.13) on M3; to conclude that

M1 < do(w)® + do(w) 26 (u)*/?.
Using the notation |z | = [z] and [z] = [z] + 1, we get

i/2] .
~ 1 1l Al o ) . . .
W < 5 () Meorcle0fulz 20200 s, + 3 Nonre sz, I *020ulz,
>3 (=1 >3

i—1 .
v i || 10—2 50 i—0 91 oi—¢
£ 3 (§) Nercoulgugle 0300wl
>3 0=[i/2]

+ ZNi+1€i||ti_25fu||L§Lg||6:}:U||L§°Lg
i>3
= M321 + M322 + M323 + M324-
(6.15)

First, we check the boundary terms M99 and Mio,. Using (6.12), we see that we get the same upper bound
as on the term M3o9 in [12]. Therefore,

Wiz S 7 Nogre' (100l i + Il gz + 190l 2, + gz, ) 1620805l 2,
>3

< (do(w) + do(w) PH(u)'/?) Nigr€'|[t20;0ull 2,
i>3
< o (w)d(w) + do(u)/2p(u)*2.
Likewise, we proceed with the Gagliardo-Nirenberg inequalities (6.8)—(6.13) for M. 394 and write

) T
Mot S 3 Niae® (16 200ull ), 16-205u) 13"
i>3 e ot
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1/2 1/2
 (1080nul iy V0bul y + 108ul i + 020wl + 0kl e, ).

Expressing the estimates in terms of U; ; ;. and recalling the notation (2.3)—(2.4), we note the slight change
|t 20¢ul| ;21 = Usn,0 and write
tTx

~ ‘ d/4 prl-d/4, 7, \1/2 1/2 (¢4 1)! )d/4<i!T>1_d/4
M3y S ;NzHE Uz 1 OU10 0 (d(u) ™ “po(u)™* + ¢o(u)) ((z + 1)362‘ 3¢t
< T4 (G (u) 20 (u) V2 + o (u))d(u)
ST Mo (u)g(u) + T o (u) /2o (w)*?,

where we haveused 0 < e < e <e < 1.

For M3;, we express ||t~ ¢~2010!~ KUHLz = U;_y4,1,0 and write
i/2) : 2 ¢
- +1)%€
Ny < 0l e @17
321 S ; ; 160y ull Lge, Ui LG 1)

Following the steps used in [12], we utilize Lemma 6.2 to bound Mss;, where we express 1t 10| L2h2 =

Uy 2,0 by the notational agreement (2.4). Despite this notational difference, the essence of the inequality stays
the same and we still obtain the same estimate with the term M3o; in [12, Equation (4.21)]:

Mg S go(u)(u) + T 2(u)?.
Lastly, we estimate Msos. By appealing to (6.9), we obtain
' _ d/4 1—d/4\ |j,i— i
IS ( ) o (1208l 8 18208l 5 1440305 ul s
i3 (=1i/2]
Applying Lemma 6.3 on ||t/ ‘919! *u| LeoL4, We have

d/4 1 d/4;,1/2 1/2 1/2 d/4 1 d/4 1/2
M323 S Z Z 2,1,0 zoo Ui—€+1,20 i— z,2,0T / + Z Z 2,1,0 eoo Uit20T /
i>3 (= 1/2 123 1=[1/2]

N d/4 ;71—d/4
+ Z Z Ue,{,oUz 0 0/ Ui—&LO(ﬂi—Z:l +T1i—¢>2).
i>3 (=[i/2]
Once again, applying the discrete Young’s inequality and selecting the maximal prefactors in 7', we get
Msas S go(u)(u) + TH2p(u)?.

Combining all the estimates on the terms given in (6.15) and selecting the maximal prefactors in 7" and
¢o(u), we get the desired bound (6.14). O

6.5. Terms with no normal derivatives. In this section we estimate Mg.
LEMMA 6.5. For solutions u of the Cauchy problem (6.2), we get
Ny S do(w)*2p(u)!/? + T(u)* + T2~ (u)? (6.16)
forO<T <1

For MQ, we use the estimates obtained in [12, Subsection 4.3].
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PROOF OF LEMMA 6.5. Separating the terms with ¢ + & = 1, we split the estimate of M> sum into
three parts as

i+k

ne Y Y ()( ) 26 T O TV

i+k>2|(¢,m)|=0

(6.17)
- 118u(u - V)2, + [T (- Va2
= Moy + Mo + Mag.
We use the Holder’s inequality on the lower order terms and write
Moo + Mg < 19yl e 1| Verll 310 + [l e, 10030 12
I Tullgepa IVull 2 pa + lullzee ITVull g2 -
Recalling the definition of ¢(u) and ¢o(u), we obtain
Myy + Moz S d(u) o (u)*? + o (u)?. (6.18)

Now, we split My into two parts as

L(i+Fk)/2]

s 2 8 () (2

i+k>2 |(£,m)]|=0
« Ht (i+k)—(£4+m)—1pk— maz_euHLfoLﬁ||tz+meatequLfL%

i+k .
k , (6.19)
PR S () (e

i+k>2 |(€,m)|>[(i+k)/2]
« Ht (i+k) (Zer)kamaZ—éuHL;?t ”t@rmfleafvu”Li’t

= Mzn + lez.

Note that the inequality (6.19) is similar to the estimate (4.27) in [12]. In order to keep the commutator
terms simpler, we took advantage of the symmetry in the binomial coefficients and switched the indices
(¢,m,0) and (i — £, k — m, 0) of the operators on u and Vu (cf. compare (6.17) and (6.19)). Therefore, the
term MQ]_]_ corresponds to the term Ma12 and Mglg here corresponds to Moy;.

First, we start with the second term M 212. Switching the order of V with the tangential vector field T™,
we obtain an upper bound with a commutator sum

i+k

Y i k i—f-k—m |1 (3 —(l4+m —m gi—
My $ ) > <€> <m)Ni+k+26 ehm| |~ m)phmgi—ty | o

i+k>2 |(€,m)|> [(i+k)/2]
x eem|tttm 1alea€u||L2

i+k

l k 1—0-k—m || (% —(l+m —m 9i—
VI S 0 () e A

i+k>2|(6,m)|>[(i+k)/2]
m2>1

x | T, Vol 2

= Ma121 + Mojan.
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In order to have a nontrivial commutator, we take m > 1 for the seg:ond term. For legl, we follow the
same steps in [12] for the term M>s;;. By applying Lemma 6.2 on Ht(”k)_(“m)Tk_m@;%uHLgot, we get

eifégkfm Hti+k—(€+m)T’€*m8§_£uH L

1/2 1/2 12l(i = £,0,k —m)[>/?
5 Ui7€+1,2,k7mUif€,2,k7mT / Ni—ﬁ-‘,—k—m
| — 0,0,k —m)[?/?

U._ B T1/2 |(Z s Uy

+ U £,2,k—m Ni—ﬁ+k—m (620)
1—0,0,k—m
+ Uit41.0k-m(TLicosb—me1 + T?Li_p1k—m>2) I N )
i—l+k—m
(i —£,0,k —m)|

—tph—m—1 2
+ Ui—t,0-m(T" T pkem<e + T k—m>3) N :
i—l+k—m

Also, expressing Ng+m+1€e£€’"||t€+m_18;TmaquLgt = TUp1m for [(£,0,m)] > 2, we see that the

binomial coefficients coming from the two norms in M2121 obey the bound

NariallLhoml () (1) O ¢
Nepma1(i — 0+ k—m)/2\¢) \m) ~ (z+k) Sl (6.21)

for |(¢,m)| > [(i + k)/2]. Using the bound (6.21) on the binomial coefficients and applying the discrete
Young’s inequality on the upper bounds for Ms12; as performed in [12] for Ms11, we obtain that the estimate
for M511 dominates the term Ms191. As a result, we get

Maio1 < Tho(u)p(u) + To(u)/2p(u)>/? + T3 2p(u)?. (6.22)

We utilize the same strategy for Maj29. Denoting by Ai_¢ —m the right side of (6.20), we get

i+k .

- 7 k\ N; _

Myor S ) > <€) (m) 7Nl+k+2 Ai—phm Negmar € @™t HT™, V]anHLg,t-
i+k>2 |(6;m) | [(i+k) /2] frmt

(6.23)

In the same way, we first bound the binomial coefficients using (6.21) and then apply the discrete Young’s
inequality on (6.23). Using the definition of A;_; ;_,, and the norm ¢(u), we obtain

B % (9o(u) + TV20(w) Y Newmard @[T, Viofull 2. (624)
[(6;m)|=2,m>1

We are now reduced to estimating the commutator sum on the right side of (6.24).
Using the estimate (5.12) derived for the commutator term in Section 5 with » = 3, we get

m—1
! / ’
HtZerfl[Tm’ v]atéu”L%’t 5 Z %Kmfm Ht@+mfla‘%Tm af“”LiJ (6.25)

m'=0
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for K > 1. The estimate (6.25) yields a bound on the commutator term on the right side of (6.24) . Applying
the Fubini Theorem on the double sums, we obtain

m—1
' ’ /
Z N€+m+1€€€m Z ﬂ/"Kmfm HtZerflaiTm 85““@ t
[(£,m)|=2 m/=0 me ’
m>1
’ E +m + 1)3 m' _ !
< ale 88 ( " gmpm 1Km m
- I(Zmz':)KlH ' tUHL%’t m%—i—l (t+m+1) 't (6.26)
oo
+T Y Nepmpre @™ [t 20,17 0ful| 12
|(¢,1,m")|=3
— € .
o (L+m'+1)3 (L+m+ 1) m
m=m

For the two geometric sums in m, we note that

(€+m+1) '—m m—1 g-m—m’ m
2 Cxmseiimtt 1K <Zm (K" S 1

m=m’'-+1 m=1

for |(¢,m")| < 1, and similarly for |(¢,m")| > 2,

(eTK)™™™ <eK <1

Z ((+m+1)% (C4+m'+1)! m!
L+m' +1)2 (L+m+1)! m/

m=m’+1
provided 0 < € < 1/2K, as 0 < T" < 1. Therefore, the right side of (6.26) is bounded above by ¢o(u) +
T'¢(u). Using this bound in (6.24), we get
Moror S (do(w) + T2¢(u)) (¢o(u) + Td(w)) < do(w)? + Té(u)?.
Next, we treat the term Mgn in (6.19). Starting with a commutator argument, we have

[E T OVl 2 g S IEH 0T Opul| 2 + [ (T, V)07l 2.4 627

Using (6.27), we write Mgll as

L(i+k)/2]

k ek i
T D D (1 R e S P LR L
i+k>2 |(£,m)|=0

[(i+k)/2]
> D ()( ) A G GOl o N Tl iR o 2 [

i+k>2 |(¢,m)]|=1
m>1

= Ma11 + Moo, (6.28)

The first term Mglll may be estimated in the same way with the term Mbs199 in [12]. Following the same
arguments as in [12], we conclude that

M2111 < ¢0(U)2 + T1/2¢0(U)¢(U) + T3/2¢0(U)1_d/4¢(u)1+d/4

+ T¢o(u)2fd/4¢(u)d/4 + T3/27d/4¢(u)2. (6.29)
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For M. 2112, we first use the Gagliardo-Nirenberg estimates and write

d/4 1-d/4
[, V10ful s < 16 T, VI0ful o, 1 (™, V10 ull 5

Tl T ol e

(6.30)
d/4 1-d/4
S e oy, Viogull ! (¢, Vioful 5
+ [T, V)0l 2 -
Recall that by (5.15), we have
[t 0, [T, Vol 2, < Z ( ) m’ + DU o T Ol 2
- (6.31)

+ Z( > m/ LK™ [ 2T Ofu| 2

By the discrete Young’s inequality, we note that the bound given above controls both of the terms on the
right side of (6.30). By changing the summation index to 1 = m — m’/, we get

£ (T, V10ful 2 S Z m) K™ mut“’naleaquLg
m=0 ™ (6.32)
— | _ _
+ Z %Km-mut“mangafuuLi’t.
m=0
Going back to (6.28), we apply Lemma 6.3 on the first factor. Fori + k — ¢ — m > 2, we get
Eifﬁgkfm "t(i+k)f(f+m)flkamai—funLOOL4
1/2 1/2 (i+k—L—m) .,
< U —L+1,1,k— mUz —£,1,k— m(l + k: Y m)g/zT /
Ui—¢1 k- T U; T
+ Uik m(+k 7= m)3/2 + Viet41,0k— "Gtk —C—m)?
i+k—0—m
+ Uz‘—é,(],k—m(( iy )) (Ligh—t—m=2 + TLitk—t—m>3)-
Denote
B =~ i, ot
G (0 m)! ViGlinaLs-

By separating the term ¢ 4+ k = 2 from the rest of the sum and using the notation By ,,, we rewrite M>i15 as

Mona € (ITullens + 100l ) LT, Vel 20

L(i+k)/2]

+ Z Z <2> <:L> Niyry2(€+m)! (6.34)

i+k>3 | (£,m)|=1
% €~ Zek m‘|t(i+k)7(€+m)flkam8§—€uHL?OLZ% Bé,m,
where the binomial coefficients are bounded above by

i\ [k i+k—0—m! _ ()
(E) <m>Ni+k+2(€+m)!(i+k—E—m)3/2 S (Egi:l) <1.
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Bounding the binomial coefficients from above by 1, we then apply Young’s inequality on (6.34). Noting
(6.33), we deduce

Monz £ (d0(u) + 60(w)*6(w)'/?) Too(w) + (o(w) + T26(w) Y. Brwm-  (639)
|(€;m)[=1

Next, we deal with bounding the sum on the right side of (6.35). We recall the definition of By ,,, and appeal
to the formulas (6.31)—(6.32). We have

o0 [e's) m—1
Z B < Z ﬁ'ﬂ(m o m)Km—antf—i-maleaZuH 9
Lm S . —'(g_i_m)' T t Lz,t
|(€:m)|=1 [(£,m)|=1 m=0
o] m—1
+ Z Jeele—mHtf—&-maQTmaqu )
- m' (E + m)' z t Lz,t‘

Next, we separate the case m = 1, and then apply the Fubini Theorem to change the order of the summation.
We get,

Z Bom S ¢o(u) <Z m(TEK)m> + 177 Z BoUpijm +T Z By U2,m,

|(¢;m)|=1 m=1 [(6;m)|>2 |(¢,m)|>2

where the coefficients By and B; are given respectively as

+m)! (m—m)m!, o
Bo= mzﬁz:-i-l ((ﬁ + m))2 ((6 + m)? i (LEE)

and
o0

{+m)! ml
Bi= ) (£+(m)(€—|)—m)!m!(T€K) :

m=m+1

Note that the factorial terms for By are bounded from above by

m! (€ 4+ m)! _ _
@y < (m )
and likewise for B1 we have
| 7))
m! (£ +m)! -1
m! (+m)! —

Using the bounds above we obtain that the two geometric sums in m above are finite for 0 < 7' < 1 and
0 < € < 1/2K. Therefore,

Y Bew S Too(u) +TP4(u) + T?¢(u),
|(¢,m)|=1

which implies
Moirz < Too(u)? + Th(u)?. (6.36)

Finally adding the estimates (6.18), (6.22), (6.29), (6.36), and selecting the maximal coefficients in 7" and
¢o(u), we obtain (6.16). O
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6.6. Terms with mixed derivatives. In this section we estimate M- 1.
LEMMA 6.6. For solutions u of the Cauchy problem (6.2), we have
My S po(u)*?p(u)'/2 + T 260 (w)o(w) + T2 p(u)’
forall0 <T < 1.

PROOF OF LEMMA 6.6. By the Leibniz rule we have

i J k . .
~ 17 7 k e T . _ -
Ml < Z Z Z Z (6) <n) (m) Ni+j+k+2616J€kHtl+]+k lagjc nTk ma; Eu . 8£TmafquL§,t

i+j+k>1 =0 n=0 m=0

Following the program in Subsection 4.4, [12], we separate the case |(¢ + j + k)| = 1 from the sum and
split the rest into two parts

MmOy <HUHL§;3HaiTkatiVuHLg,t+Ha%TkaZUHLgOLgHVUHLgL;Q
itj+k=1
i+j+k

AVWEAVE"
P NNED SN 1169
i+j+k>2|(6n,m)|=[(i+j+k)/2]

« Ni+j+k+2€i€j Ek Ht(i+j+k)—(Z-i-n-i—m)agjc‘—nTk—maZ—ZuHLZ% ”tf-i-n-i-m—langathu”L%t

[(i+5+k) /2]

“ 2.2, D06

X Nijipac@e [t TR~ (Ermbm) L g mnphomaicty|| o |1 m 9T Q|
= My + M2 + M;is.
The estimate above on Ml is similar to the one on M7 in Subsection 4.4, [12]. Note that we switched
the indices (¢, m,n) and (i — ¢,k — m,n — j) of the operators acting on u and Vu to in order to keep
the commutator terms simpler. Due to the symmetry in the binomial coefficients, we may still follow the

corresponding estimates given in [12].
Analogously to [12], the contribution from |(, j, k)| = 1 stays bounded by

M1 S ¢o(u)? + do(u)®2p(u)/? (6.37)

since the number of derivatives on u and on Vu does not exceed three.

For M, we start with switching the order of V with the tangential vector field T™ and obtain an upper
bound with a commutator sum

MpS Y +Z+k (e) (;1) <:1)

i+j+k>2 |(Ln,m)|=[(i+j+k)/2]

% Ni+j+k+2€i€j Ek ||t(i-i—j-‘rk)—(E-‘rn—‘rm)ag;—nTk:—maszuHLg?t Ht“”*m_l@;}“Tmaf

i+j+k i ,] k
i+ j4+k>2 | (6n,m)|=[(i+j+k)/2]

X Nipji o€ @& [0 HHR = (Crmbm) gimnphomizty|| o | ¢Emsm=1gnpm, G]ofu] 2
x, €,

UHL;ZM

= Mm + J\Zf122-
(6.38)



34 GUHER CAMLIYURT, I. KUKAVICA, AND V. VICOL

Noting the symmetry of the coefficients once again, we see that the sum M1 above corresponds to the term
M5 in [12]. Therefore, following the same steps in [12] to bound M2 we arrive at the conclusion that

Mz S ¢o(w)® + T 2¢o(w)d(u) + T2 p(u)?. (6.39)
Next, we treat the term M 122 in (6.38). By the equation (5.15), we get

||t£+n+m—18n [Tm V]an”L2

n —|—m m'\ nlm! __, / '
+m—m' || +n+m—1 qnz+1pm’ of
23> () e S T o

ng! m/!
m/=0n'+n3z=n

for K > 1. Applying Lemma 6.2 on the factor [|¢(t+7+k)=(trntm) gl=nph—mgi=t, | L2,, we obtain, with
a=(i+j+k)— (£+m—+n), that
ei—fgj—ngk—m||ta8£—nTk—maz—£uHL:?t

1/2 1/2 1/2 a®/? 1/2 ad/?
S U jontok-mUiltjoni2p-mT N, + Uit j-nt2k-mT N, (6.40)

a _ a
+Ui—p41 j-np—m(TLla=1 + TQﬂazz)ﬁ + Uit jnp—m(T* o< + T2ﬂa23)ﬁ'
a a

We write M99 as

itk N
Wiy < Z Zi: i\ I\ [ Fk\ Nitjrrr2 (i—lei—ngh—m
~ £)\n/)\m

N,
i+ E>2 |(n,m) =] (i+j+k)/2] fntm+l

o A . elenem
X [t ) gk gty et T, VIoful 2,

ot N2+n+m+1

and note that the factorial terms obey

<Z> (]) <k) Nigjireo |0 =0, —nk —m)[>/?

) \n)\m) Notnim1 Ni—t4j—ntk—m
<(z>(]>(kz> itk (C+ntm) (i—C+j-ntk-m! _,
~\l)\n (i+7+kNUl+n+m)2GE—L+j—n+k—m)/2 ~

as |(¢,n,m)| > [(i+ j + k)/2]. This gives

i+j+k
~ 5.k ¥ V4 1 4
Mgs S Z Z Agim €& N [t ORI, Vidpull gz,
i+ +k>2|(6n,m)|=[(i+5+k)/2]

where A@’{l’km denotes the right side of (6.40) multiplied by /2 /N,. Applying Young’s inequality we bound
the sum on Azjn’jn by

o0

i 5 (o000 + T2600) (30 O st [T, Vol ).
[(;n,m)|=2
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Next, we estimate the second factor above. Using the bounds on the commutator sum, we have

o0
0on ¢ 1 ¢
S Ny [T, VIO 2
[(€:n,m)|=2
n,m>1
o0
n+m m"\ n!m! P (6.41)
S DINCOTRNTD SED DI (Al ECCn S
ng! m'!
|(L;n,m)|=2 m/=0n'+n3=n
nm>1

x e T o)

Changing the order of summation by the Fubini Theorem, the right side of (6.41) becomes

Z Z Z n—n3+m m)! ntm! (0+n+m+1)>

(n—mng)! (m—m)ng!m! ({+n+m+1)!
(¢,n3+1,m’)e BcUB; m=m’'+1n=n3 3 ) 3 ( tnAmt )

« annngmfm Ht@+n+mfla;3+1rrm/8fu”Li,t

3
g Z (E +m/ + n3 + 1) 6£€n3+1€m,A1Hte-'_n3+m/_2623+1Tml8£

ull g2
(¢,n3+1,m')EBy (€+m,+n3 + 1)' ! @t

/
+ Z AgllageriTm an”Lgyt
(¢,n3+1,m’)eBe

where
Z Z n—ng-l-m m ) nlm! (L+n+m+1)3 ((+ng+m +1)!
vy 0 Pl n—ng)! (m—mH)ng!m'!(l+ns+m' +1)3 l+n+m+1)!
X C(TER)™"s(TeK )" ™
and

o0 / 3
n—nz3+m-—m) nlm! l+n+m+1
A Z ( ) ( )

l+n+m—1 -n—ng+m—m' £-n-m
(n—ng)!(m—m’)!n3!m’!(€+n+m+1)[T K eetem.

n,m=1
We recall the computations in Section 4.2 and note that
sup Ao ST and sup A S T2
(£,n3+2,m’)eB° (¢,n3+2,m")EB

We recall the definition of ¢ and qz§ and using the bounds above for Ay and A; we conclude that

Mz 5 (¢o(u) + T2 (w)) (T o (u) + T*(u)). (6.42)
Next, we estimate Mis. Recalling the change of indices in the operators acting on u and Vu, we note
that M3 corresponds to M;3. We follow the same program we applied in the previous section to bound
Ms511, and write
LG+itR/2) i\ [k ‘
Miss 2 2 <€> <n> <m> Niyjskroc @ e[t HR—Ermtm =l mnph=m ity | oo 4
i+j+k>2 |(6,n,m)|=0

> “t€+n+m8;+1Tmatéu“L?Lg

L(i+i+k) /2] :
v J k 1~j = i+J —(l+n+m)— j—nmk—m 5i—
SIDIEEDY @( )(m)mwe e R P

n
i+j+k>4 |(6n,m)|=2
n,m>1
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X |[EE ORI, V10gul| 2 s

= Mz1 + Miss.
Analogously to Mglll, the first term M 131 is dominated by the estimates on M3 in [12]. Therefore,

Miz1 S ¢o(u)? + To(u)?~ ¥ e(w)¥* + TV o (u)p(w)

B B (6.43)
+T3/2¢0(’U,)1 d/4¢(u)1+d/4+T5/2 d/4¢(u)2'
For Miso, using the Gagliardo-Nirenberg estimates we first write the commutator term in L%t norm
[ (T, V1ofull paps S 60T, VIOfully ¢ T, Vol
+ [[tErmtman T, V]aquLg . (6.44)

S [T V] tull 2, + [T ORI, V)0l 2 -

Also, we estimate Ht(”j*k)_(””*m)_l8:%_”Tk*m0§_€u||LgoLg by Lemma 6.3. Puttinga = i + j + k —
{—n—m > 2, we get

ei—Egj—nEkz—m ||ta_18%_nTk_m8ti_£u”L?oL%

al

1/2 1/2 al 1/ 1/2
< Ui—€+17j—n+1,k—mUi—é,j—n—i—l,k—miag/gT P4 Uigjnsth-m ag/QT / (6.45)
al al
+ Uz’—ﬁ—}—l,j—n,k—mﬁT + Ui—e,j—n,k—maﬁ(]laﬁ + T1,>3).
Denote
= ﬂut“nmanﬁm V]0ful| 2 (6.46)
Lm0 4 m)! A ’

Then, we rewrite M{32 in this notation as

L(i+7+k)/2]

~ i i\ [k
M3 S Z Z <€> <iL> <m> Ni+j+k+2 (f +n+ m)' Bg’m

i+j+k>4 |(n,m)|=1
« Ei—fgj—ngk—m "t(i+j+k)_(€+n+m)_18%_nTk_m8§_€

(6.47)
UHL;»L;%-

Similarly, the factorial and the binomial terms appearing on (6.47) and on the right side of (6.45) are bounded

from above by
i\ (7 k) (t+j+k—0—n—m)!
Niiitiro (L 4+n+m)! <1
<€><n)<m w2 { )(i—l—j—{—k:—E—n—m)?’/2

With the estimate for ¢!~ {&/—ngh—m||¢(i+i+k) = (thntm)—1 gl =nph—mgi=t | Lsor4 given in the equation (6.45),
we bound the factorial terms in (6.47) from above by 1, and then apply Young’s inequality on the resulting
double sum. This yields

Mg < (¢o(u) + Y 2&5(u)) S Buam (6.48)

|(Z,n,m)|:2,n,m2 1
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Before we bound the sum in (6.48), we recall the expansion (5.15) for the commutator term and combine it
with the estimate (6.44)

[t R T, V]anHLng

m—1 n+1
5 Z (n/ +m — m/> ( (’rL =+ 1)' m! Kn/_,’_m_m/||te+n+m6;+2_n/Tm/6£

Ul 72
m'=0n'=0 n n+1—n/)lm/ rullez,
L tm— n!m! / ' _—
+ E : < ) > v /'Kn +m—m ||t€+n+mag+1—n Tm aquLit
ova/ S n (n —n/)! m/! ;

Recalling the definition of By, ,, in (6.46) and using the inequality above, and changing the indices to
n=n+1,n =n+1—n"and ny =n —n', we obtain

L-n—1-m n — —+ —m/\ alm!
€€ € n ni m m n:m! s —m/
< 7Kvn ni+m-—m
E BZ,n,mN § : (E 7 m 1 | Z Z ( 77L—7’Ll )nllm/!

|(€,n,m)|=2 (€,7,m)|=3 m'=0n1=0

n,m>1 n>2,m>1
~ _ ’
% ”tﬁJrner 18n1+1Tm 8ZUHL2 t
elengm n—ng+m-—m"\ nlm!
5> S e

+n+m)! n—n ng)! m'!

|(Ln,m)|= 2( m/=0n2=0 2 ( 2)

nm>1

% ||t€+n+ma;lz+1Tm/at€uHL?M )

(6.49)
We then change the order of the sums on the right side of (6.49) by the Fubini Theorem, and obtain
Z i i <’FL — N +m — m’) ’FL‘ m' Kﬁ—n1+m—m/
n — n —1)! I'm/!
(s iV EBLUB® e 1 feh2 n—ny (L+n+m—1)n!m!
> efen 1 mHté—i-n—i-m 18n1+1Tm 85““L2 t
I/ - (6.50)
n—mne+m-—m n!m! _ -
D SIS S ol ( ) o
— | I m/!
(4,n2,m')EB1UB¢ m=m/+1n=n2 n=n2 (6 Tn m) 2=
x elenem|gttntm e oy o
Using the notation Uy ;, ,,, we further bound the first sum in (6.50) by
Yo T Tl Ac+T Y Uy 6.51)
(¢,;n1,m’)eB¢ (&,n1,m')EBy
where
1 & & /7 alm! _
> Z (TeK)™(TeK)™
(n+m—1)!
m=1 n=2
and
oe] ~ ! ~ /
n—ni+m—m"\ alm! ({+n+m)! 1 N _ _
A = TeEK)" ™ (TeK)™™ ™
! ZH( n—mny )nllm’!(€+ﬁ+m—1)!(5+n1+m/)2( €K) (Tek)
m=m

n=n1
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After the cancellation of factorial terms, we see that Ay is summable and it is bounded above by

o0
Ay STeK > (n+m)(TeK)(TeK)™ ST (6.52)
m,n=0
for0<éSe<1/K.
Similarly, we first simplify the factorial terms for A;. Recalling the hypergeometric inequality (cf. (4.9)),
the first factor below is bounded above by 1, and we have

(TZ)(,ZL/) {4+n+m < {+n+m
+ntm L4+ng+mH2 "~ (U+n+m
(_tram R 7

n—ni+m—m'

which in turn yields

o

{+n /

sup A< sup _EEREM ey (Tekymm
(£m1,m")EB (e, L= (E+n1+m) 6.53)

n=niy
STeK <T
for0 < e <1/2K.
In the same fashion, the second sum in (6.50) is bounded above by

Yoo 1R T Ol Ao+ TP Y Uppra s (6.54)

(Z,TIQJ'N/)EBC (£7n27m/)EBl

with the coefficients Ag and A, obeying the same estimates with Ag and 4.

Back to (6.50), we bound the two sums as given in (6.51) and (6.54) and apply the estimates (6.52) and
(6.53) on the coefficients Ag, Ag and A;, A;. With the final application of discrete Young’s inequality on
the sums (6.51), (6.54), we reach the estimate

Z Bé,n,m ,S T¢0 + T2(E<U) + T(b()(u) + TS&(U’)

[(€,n,m)|=2
n,m>1

and putting this estimate on (6.48), we get

Mizy < To(u)? 4+ T2 ¢ (u)?. (6.55)
Combining (6.43) and (6.55) and selecting the maximal prefactors in 7', we conclude that
Mz < ¢o(u)® + To(u)’. (6.56)
Adding the estimates (6.37), (6.39), (6.42), and (6.56), we conclude the proof of Lemma 6.4. ]
Acknowledgments

IK was supported in part by the NSF grants DMS-1615239 and DMS-1907992, while VV was supported
in part by the NSF grant DMS-1911413.

References

[1] C.Bardos. Analycité de la solution de 1’équation d’Euler dans un ouvert de R". C. R. Acad. Sci. Paris, 283:255-258, 1976.

[2] C. Bardos and S. Benachour. Domaine d’analycité des solutions de I’équation d’Euler dans un ouvert de R". Ann. Scuola
Norm. Sup. Pisa CL. Sci., 4:647-687, 1977.

[3] J. Bedrossian and N. Masmoudi. Inviscid damping and the asymptotic stability of planar shear flows in the 2D Euler
equations. Publications mathématiques de I'IHES, 1-106, 2013.

[4] J. Bedrossian, P. Germain, and N. Masmoudi. Stability of the Couette flow at high Reynolds numbers in two dimensions
and three dimensions Bull. Amer. Math. Soc. (N.S.), 56(3):373-414, 2019.



ANALYTICITY FOR THE NAVIER-STOKES SYSTEM 39

[5] J. Bedrossian, N. Masmoudi, and V. Vicol. Enhanced dissipation and inviscid damping in the inviscid limit of the Navier-
Stokes equations near the 2D Couette flow. Arch. Rat. Mech. Anal., 216(3):1087-1159, 2016.
[6] A.Biswas. Local existence and Gevrey regularity of 3-D Navier-Stokes equations with [, initial data. J. Differential Equa-
tions, 215(2):429-447, 2005.
[7]1 A. Biswas and C. Foias. On the maximal space analyticity radius for the 3D Navier-Stokes equations and energy cascades.
Ann. Mat. Pura Appl. (4), 193(3):739-777, 2014.
[8] A.Biswas and D. Swanson. Gevrey regularity of solutions to the 3-D Navier-Stokes equations with weighted [, initial data.
Indiana Univ. Math. J., 56(3):1157-1188, 2007.
[9] A.Biswas and E. Tadmor. Dissipation versus quadratic nonlinearity: from a priori energy bound to higher order regularizing
effect. Nonlinearity, 27(3):545-562, 2014.
[10] Z. Bradshaw, Z. Grujié, and I. Kukavica. Local analyticity radii of solutions to the 3D Navier-Stokes equations with locally
analytic forcing. J. Differential Equations, 259(8):3955-3975, 2015.
[11] R.E. Caflisch and M. Sammartino. Vortex layers in the small viscosity limit. WASCOM 2005—13th Conference on Waves
and Stability in Continuous Media, 59—70, World Sci. Publ., Hackensack, NJ, 2006.
[12] G. Camliyurt, I. Kukavica and V. Vicol. Gevrey regularity of the Navier-Stokes equations in a half space. J. Diff. Egn.,
265(9):4052-4075, 2018.
[13] P. Constantin and C. Foias. Navier-Stokes equations. Chicago Lectures in Mathematics. University of Chicago Press,
Chicago, IL, 1988.
[14] M. Fei, T. Tao, and Z. Zhang. On the zero-viscosity limit of the Navier—Stokes equations in R%. without analyticity. J. Math.
Pures Appl., 112:170-229, 2018.
[15] A.B. Ferrari and E.S. Titi. Gevrey regularity for nonlinear analytic parabolic equations. Comm. Partial Differential Equa-
tions, 23(1-2):1-16, 1998.
[16] C. Foias, M.S. Jolly, R. Lan, R. Rupam, Y. Yang, and B. Zhang. Time analyticity with higher norm estimates for the 2D
Navier-Stokes equations. IMA J. Appl. Math., 80(3):766-810, 2015.
[17] C. Foias and R. Temam. Some analytic and geometric properties of the solutions of the evolution Navier-Stokes equations.
J. Math. Pures Appl., 58(3):339-368, 1979.
[18] C.Foias and R. Temam. Gevrey class regularity for the solutions of the Navier-Stokes equations. J. Funct. Anal., 87(2):359—
369, 1989.
[19] D. Gérard-Varet, Y. Maekawa, and N. Masmoudi. Gevrey stability of Prandtl expansions for 2-dimensional Navier-Stokes
flows. Duke Math. J., 167(13):2531-2631, 2018.
[20] Y. Giga. Time and spatial analyticity of solutions of the Navier-Stokes equations. Comm. Partial Differential Equations,
8(8):929-948, 1983.
[21] Z. Gruji¢ and H. Kalisch. Local well-posedness of the generalized Korteweg-de Vries equation in spaces of analytic func-
tions. Differential Integral Equations, 15(11):1325-1334, 2002.
[22] Z. Gruji¢ and I. Kukavica. Space analyticity for the Navier-Stokes and related equations with initial data in L”. J. Funct.
Anal., 152(2):447-466, 1998.
[23] Z. Gruji¢ and I. Kukavica. Space analyticity for the nonlinear heat equation in a bounded domain. J. Differential Equations,
154(1):42-54, 1999.
[24] W.D. Henshaw, H.-O. Kreiss, and L.G. Reyna. Smallest scale estimates for the Navier-Stokes equations for incompressible
fluids. Arch. Rational Mech. Anal., 112(1): 21-44, 1990.
[25] C. Kahane. On the spatial analyticity of solutions of the Navier-Stokes equations. Arch. Rational Mech. Anal., 33(5): 386-
405, 1969.
[26] T. Kato and K. Masuda. Nonlinear evolution equations and analyticity. I. Ann. Inst. H. Poincaré Anal. Non Linéaire,
3(6):455-467, 1986.
[27] D. Kinderlehrer and L. Nirenberg. Analyticity at the boundary of solutions of nonlinear second-order parabolic equations.
Comm. Pure Appl. Math., 31(3):283-338, 1978.
[28] G. Komatsu. Analyticity up to the boundary of solutions of nonlinear parabolic equations. Comm. Pure Appl. Math.,
32(5):669-720, 1979.
[29] G. Komatsu. Global analyticity up to the boundary of solutions of the Navier-Stokes equation. Comm. Pure Appl. Math.,
33(4):545-566, 1980.
[30] I. Kukavica, M.C. Lombardo, and M. Sammartino. Zero viscosity limit for analytic solutions of the primitive equations.
Arch. Ration. Mech. Anal. 222(1):15-45, 2016.
[31] I. Kukavica and V. Vicol. On the radius of analyticity of solutions to the three-dimensional Euler equations. Proc. Amer.
Math. Soc., 137(2):669-677, 2009.
[32] I. Kukavica and V. Vicol. On the analyticity and Gevrey-class regularity up to the boundary for the Euler equations. Non-
linearity, 24(3):765-796, 2011.
[33] I. Kukavica and V. Vicol. Direct approach to Gevrey regularity on the half-space. Partial differential equations in fluid
mechanics, edited by C. L. Fefferman, J. C. Robinson, and J. L. Rodrigo, 2018.



40

GUHER CAMLIYURT, I. KUKAVICA, AND V. VICOL

[34] P.G. Lemarié-Rieusset. Une remarque sur I’analyticité des solutions milds des équations de Navier-Stokes dans R3. C. R.
Acad. Sci. Paris Sér. I Math., 330(3):183-186, 2000.

[35] J.-L. Lions and E. Magenes. Non-homogeneous boundary value problems and applications. Vol. 1. Springer-Verlag, New
York, 1972. Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 181.

[36] C.D. Levermore and M. Oliver. Analyticity of solutions for a generalized Euler equation. J. Differential Equations,
133(2):321-339, 1997.

[37] Y. Maekawa. On the inviscid limit problem of the vorticity equations for viscous incompressible flows in the half-plane.
Comm. Pure Appl. Math., 67(7):1045-1128, 2014.

[38] N. Masmoudi and F. Rousset. Uniform regularity for the Navier-Stokes equation with Navier boundary condition. Arch. Ra-
tion. Mech. Anal., 203(2):529-575, 2012.

[39] K. Masuda. On the analyticity and the unique continuation theorem for solutions of the Navier-Stokes equation. Proc.
Japan Acad., 43:827-832, 1967.

[40] E. Nelson. Analytic Vectors Ann. Mat., 70(3):572-615, 1959.

[41] T.T. Nguyen and T.T. Nguyen. The inviscid limit of Navier-Stokes equations for analytic data on the half-space. Arch.
Ration. Mech. Anal., 230(3):1103-1129, 2018.

[42] M. Oliver and E.S. Titi. On the domain of analyticity of solutions of second order analytic nonlinear differential equations.
J. Differential Equations, 174(1):55-74, 2001.

[43] M. Oliver and E.S. Titi. Remark on the rate of decay of higher order derivatives for solutions to the Navier-Stokes equations
in R". J. Funct. Anal., 172(1):1-18, 2000.

[44] J.C. Robinson, J. L. Rodrigo, and W. Sadowski. The three-dimensional Navier-Stokes equations, volume 157 of Cambridge
Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2016. Classical theory.

[45] M. Sammartino and R.E. Caflisch. Zero viscosity limit for analytic solutions, of the Navier-Stokes equation on a half-space.
I. Existence for Euler and Prandtl equations. Comm. Math. Phys., 192(2):433-461, 1998.

[46] M. Sammartino and R.E. Caflisch. Zero viscosity limit for analytic solutions of the Navier-Stokes equation on a half-space.
II. Construction of the Navier-Stokes solution. Comm. Math. Phys., 192(2):463-491, 1998.

[47] V. A. Solonnikov. Estimates for solutions of nonstationary Navier-Stokes equations. Journal of Mathematical Sciences,
8(4): 467-529, 1977.

[48] C. Sulem, P.-L. Sulem, C. Bardos, and U. Frisch. Finite time analyticity for the two- and three-dimensional Kelvin-
Helmbholtz instability. Comm. Math. Phys. 80(4):485-516, 1981.

[49] R. Temam. Navier-Stokes equations. AMS Chelsea Publishing, Providence, RI, 2001. Theory and numerical analysis,
Reprint of the 1984 edition.

[50] C. Wang, Y. Wang, and Z. Zhang. Zero-viscosity limit of the Navier-Stokes equations in the analytic setting. Arch. Ration.
Mech. Anal. 224(2):555-595,2017.

INSTITUTE FOR ADVANCED STUDY, 1 EINSTEIN DR., PRINCETON, NJ 08540
Email address: camliyurt@math.ias.edu

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF SOUTHERN CALIFORNIA, LOS ANGELES, CA 90089
Email address: kukavica@usc.edu

DEPARTMENT OF MATHEMATICS, COURANT INSTITUTE OF MATHEMATICAL SCIENCES, NEW YORK, NY 10012
Email address: vicol@cims.nyu.edu



	1. Introduction
	2. Analytic vector fields in a bounded domain and the main results
	3. Derivative reductions for the heat operator
	4. Proof of the analyticity result for the heat operator
	5. Derivative reductions for the Stokes system
	6. Analyticity for the Navier-Stokes equations
	Acknowledgments
	References

