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1. Introduction

In this paper we consider the incompressible Navier-Stokes equations in a bounded domain Ω in Rd
with analytic boundary ∂Ω, and homogeneous Dirichlet boundary conditions

∂tu−∆u+ u · ∇u+∇p = f, in Ω,

∇ · u = 0, in Ω,

u = 0, on ∂Ω.

(1.1)

The forcing f is assumed to be analytic in space and time, and the system (1.1) is supplemented with a
Sobolev smooth initial condition

u(x, 0) = u0(x), in Ω. (1.2)

For simplicity we assume d ∈ {2, 3}; higher dimensions can be treated in the same way.
The main goal of this paper is to establish the immediate gain of space-time analyticity for solutions

to (1.1)–(1.2), using a direct energy-type method, in the case of a domain with curved boundary. Our
main result is Theorem 2.8 below, which shows that from a Sobolev smooth initial datum the solution
instantaneously becomes space-time analytic, with analyticity radius which is uniform up to the curved
analytic boundary. The direct energy-type approach utilized in this paper was presented in [33] for the
Stokes system and in [12] for the Navier-Stokes equations on the half space. This method is robust and
easily expendable to the case of non-analytic Gevrey-classes, jointly in space-time, provided the boundary
belongs to the same Gevrey class.

Analyticity and Gevrey-class regularity have proven to be important for studying the vanishing viscosity
problem for the Navier-Stokes equations in bounded domains [45, 46, 37, 30, 14, 50, 41, 19], and for
establishing nonlinear inviscid damping near the Couette flow [3, 4, 5]. Moreover, the analyticity radius
provides a measure of the minimal scale in a turbulent flow [24].

Analyticity and Gevrey-class regularity for the Navier-Stokes equation is a classical subject [13, 49].
Initially, interior analyticity for the Navier-Stokes system in d ≥ 2 space dimensions was proven by Ka-
hane [25], using an iteration of high order Sobolev norms. The problem of interior space-time analyticity
was then addressed by Masuda [39], and then by Kato-Masuda [26], assuming that the external force is ana-
lytic. Analyticity up to the boundary of the domain was established by Komatsu in [28, 29], based on earlier
work by Kinderlehrer and Nirenberg [27] for parabolic type equations. Subsequently, Giga [20] developed
a semigroup approach for analyticity up to the boundary for the Navier-Stokes system.

On the other hand, in the absence of boundaries, Foias and Temam [18] introduced an alternative ap-
proach to analyticity and Gevrey-class regularity which is based on L2 energy estimates and Fourier anal-
ysis (cf. [17, 13] for an earlier energy approach for the time analyticity). This method has proven to be
a powerful tool to establish analyticity as well as to estimate the analyticity or the Gevrey radius. The
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method of Foias and Temam [18], which was based on L2 energy estimates was extended to Lp by the
second author and Grujić [22, 23], taking advantage of the mild formulation (cf. also [10] for the lo-
cal variant). An elegant Fourier variant of the approach using the mild formulation and Fourier analysis
was then introduced by Lemarié-Rieusset in [34]. For other results based on the Foias-Temam method,
see [6, 7, 8, 9, 16, 15, 21, 31, 34, 36, 42, 43] and references therein.

The main motivation for the present work is to provide a direct energy approach to analyticity for the
Navier-Stokes and related systems for domains with boundary. As it is well-known the main difficulty is
the presence of normal derivatives in the diffusion term and its non-vanishing due to Dirichlet boundary
conditions. For a finite Sobolev regularity, this is typically overcome by the Agmon-Douglis-Nirenberg
approach to parabolic/elliptic regularity. For the analyticity, this requires a carefully designed iteration
based on this parabolic regularity and binomial inequalities (cf. [28] for instance).

Recently, there have been two works where a variant of this has been employed in the case of the half
space. In [50, 14], the authors provided an interior analyticity approach for the half space, using conormal,
rather than normal, derivatives (cf. [38]). Recently, in [12] the authors of the present paper have found
an alternative method based on a derivative reduction estimates and ellipticity; the main idea is to use the
elliptic regularity to find a Grönwall type inequality for a simple series consisting of Taylor coefficients.

The main difficulty for curved domains is the non-commutativity and possible vanishing of tangential
and normal derivatives (e.g. the singularity of the polar coordinates used for a disc). We overcome this by
Komatsu’s system of tangential vector fields, which was in turn inspired by an earlier work by Nelson [40].

As in the case of our previous paper which treated the half-space [12], the main idea is to use derivative
reductions by means of the global elliptic regularity. While the method is technical, it is also robust and
we believe it is going to be applicable in other settings. In particular, we hope that it will be useful for the
vanishing viscosity problem in a curved domain.

There are several difficulties when trying to extend the results from the half-space setting [12]. Since
there is no analytic partition of unity, the energy approach requires working with global tangential and
normal vector fields. However, there is a possibility of vanishing of the tangential or normal derivatives in
the interior. To overcome this problem, we use Komatsu’s system of tangential vector fields, which in turn
is based on earlier work by Nelson [40], with the main idea of allowing the number of tangential derivatives
to be higher than the space dimension d. The analytic vector field setting is recalled in Section 2 below. An
important aspect of this analytic theory is that the iterated tangential derivatives form high order tensors. To
deal with this, we use summation of all the norms (rather then, say, the Euclidean or the sup convention).
Regarding the Stokes problem in the case of half-space, it was not necessary to include the pressure in the
energy as we were able to recover the pressure from ellipticity. However, in the case of the curved domain,
three pressure commutator terms arise which thus require inclusion of the pressure space-time analyticity
norm. For the case of the Navier-Stokes equations, the main problem is the product estimate for the term
u ·∇u. While the leading terms have been treated in [12], the Leibniz rule is more complicated here and the
high order commutators require special care.

In the case of Euler equations, one cannot expect instantaneous gain of analyticity; however, it is possible
to obtain a lower bound on the uniform radius. On the other hand, the difficulties arising from the Laplacian
are absent. Thus the above mentioned energy methods have already been employed to obtain rather precise
bounds on the analyticity decay (cf. [31]). In the case of Euler equation, it is actually possible to use
the partition of unity due to finite speed of Lagrangian trajectories [32]. Analyticity results for the Euler
equations are classical; see the work by Bardos-Benachour [2] and Bardos [1]. For other applications of
analyticity for the Euler equations, cf. [48, 11, 3].

The paper is structured as follows. In Section 2, we recall the analytic vector field setting for bounded
domains with an analytic boundary, and the necessary commutator estimates. The three main theorems
address separately the non-homogeneous heat equation, the non-homogeneous Stokes equation, and the
Navier-Stokes equations. The next two sections contain the derivative reduction estimates and the proof of
the analyticity for the heat operator. Section 5 contains the derivative reduction estimates for the Stokes
operator. Finally, Section 6 contains the proof of the space-time analyticity for the Navier-Stokes system.
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2. Analytic vector fields in a bounded domain and the main results

Assume throughout the paper that Ω is a bounded domain in Rd with analytic boundary ∂Ω.

2.1. Analytic vector fields. Denote by δ = δ(x) the distance function to the boundary ∂Ω, taking
positive values inside Ω and negative outside Ω. For δ0 > 0, we set

Ωδ0 = {x ∈ Ω : δ(x) < δ0}, Ωδ0 = Ω \ Ω̄δ0 .

A vector field X is said to be tangential to ∂Ω if Xδ = 0 on ∂Ω. Such X may be restricted to ∂Ω by
Xf = (Xf̃)

∣∣
∂Ω

for f ∈ C∞(∂Ω), where f̃ ∈ C∞(Ω̄) is an arbitrary extension of f .
Existence of global analytic vector fields in the following proposition is due to Komatsu [29]. For the

convenience of the reader, we state it next.

PROPOSITION 2.1 ([29, Section 2]). For any sufficiently small δ0 > 0 there exists a finite number of an-
alytic vector fields X0, T1, . . . , TN ′ , TN ′+1, . . . , TN defined globally on Ω̄ having the following properties:

1. T1, . . . , TN are tangential to ∂Ω.
2. On Ω̄ there are global expressions

∂

∂xk
= ξk(x)X0 +

N∑
j=1

ηjk(x)Tj , k = 1, . . . , d, (2.1)

with analytic coefficients ξk(x) and ηjk(x).
3. On Ω̄δ0 , we have

∂

∂xk
=

N ′∑
j=1

ζjk(x)Tj , k = 1, . . . , d,

where ζjk(x) are analytic functions on Ω̄δ0 .

REMARK 2.2. The vector field X0 is a non-tangential vector field to ∂Ω in the sense that X0δ 6= 0 on
the boundary.

EXAMPLE 2.3. For Ω = B1(0) ⊂ R2, an example of a system of the vector fields postulated in
Proposition 2.1 is as follows: X0 = x1∂x1 + x2∂x2 = x · ∇, T1 = x1∂x2 − x2∂x1 = x⊥ · ∇, T2 =
(1−x2

1−x2
2)∂x1 = (1−|x|2)∂x1 , and T3 = (1−x2

1−x2
2)∂2 = (1−|x|2)∂x2 . Indeed, ∂x1 = x1X0−x2T1+T2,

and ∂x2 = x1X0 − x2T1 + T3.

REMARK 2.4. We use the letter T to denote the endpoint of the time interval [0, T ], and we use the
notation T = (T1, . . . , TN ) to denote the vector of tangential differential operators Tj from Proposition 2.1.

REMARK 2.5. Denote by I = {1, . . . , N} the index set for the tangential vector fields T1, . . . , TN
given by Proposition 2.1. We adopt the following agreement for the iterated derivatives ∂jx and Tk. The
symbol Tk, where k ∈ N, is understood in tensorial sense, i.e., it denotes the list of all the possible operators
Tβ1 · · ·Tβk , where β = (β1, . . . , βk) ∈ Ik, with an analogous agreement for ∂jx. On the other hand, when
the symbol occurs inside a norm, it has the following meaning. For j ∈ N0 and k ∈ N, we define

‖∂jxTku‖L2
x,t

=
∑

α∈Nd0,|α|=j
β∈Ik

‖∂αxTβu‖L2
x,t

(2.2)

and
‖∂jxTku‖L∞x,t =

∑
α∈Nd0,|α|=j

β∈Ik

‖∂αxTβu‖L∞x,t ,
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where ∂αx = ∂α1
x1 · · · ∂

αd
xd

and Tβ = Tβ1 · · ·Tβk with β = (β1, . . . , βk) ∈ Ik. In the same way, we define

‖∂jxTku‖L2
t Ḣ

1
x

= ‖∂j+1
x Tku‖L2

x,t
(2.3)

and
‖∂jxTku‖L2

t Ḣ
2
x

= ‖∂j+2
x Tku‖L2

x,t
. (2.4)

2.2. Main results. Fix T > 0 and let

0 < ε̃ ≤ ε̄ ≤ ε ≤ 1. (2.5)

In order to explain the main ideas of the proof, it is convenient to first consider the inhomogeneous heat
equation

∂tu−∆u = f in Ω (2.6)
u = 0 on ∂Ω (2.7)

with the initial condition

u(x, 0) = u0(x) in Ω. (2.8)

For r ≥ 3, define the index sets

B =
{

(i, j, k) : i, j, k ∈ N0, i+ j + k ≥ r
}
, Bc = N3

0\B. (2.9)

For the system (2.6)–(2.8), we define

φ(u) =
∑
B

(i+ j + k)r

(i+ j + k)!
εiε̃j ε̄k‖ti+j+k−r∂jxTk∂itu‖L2

x,t(Ω×[0,T ]) +
∑
Bc

‖∂jxTk∂itu‖L2
x,t(Ω×[0,T ])

= φ̄(u) + φ0(u).

(2.10)

We refer the reader to [33] for the same problem posed on the half space. Both on the half space and in a
curved domain, the sum φ(u) is based on Taylor-like coefficients. We note that in general domains it is more
convenient to use the full gradient ∂x instead of the normal derivative X0 in the analyticity norm (2.10) as
the former commutes with the Laplacian.

THEOREM 2.6 (Heat equation). Let 0 < T < 1 and r ≥ 3. Then there exist 0 < ε̃ ≤ ε̄ ≤ ε ≤ 1,
which depend only on r, d, and the analyticity radius of the tangential vector field T such that for any
u0 ∈ H1

0 (Ω)∩H2r−1(Ω) which satisfies the compatibility conditions, and f sufficiently smooth, the solution
u of (2.6)–(2.8) satisfies the estimate

φ(u) . φ0(u) +MT (f) + ‖u0‖H2r−1

where

MT (f) =
∑

i+j+k≥(r−2)+

(i+ j + k + 2)rεiε̃j+2ε̄k

(i+ j + k + 2)!
‖ti+j+k+2−r∂jxTk∂itf‖L2

x,t(Ω×(0,T ))

+
∑

i+k≥(r−2)+

(i+ k + 2)rεiε̄k+2

(i+ k + 2)!
‖ti+k+2−rTk∂itf‖L2

x,t(Ω×(0,T ))

+
∑
i≥r−1

(i+ 1)rεi+1

(i+ 1)!
‖ti+1−r∂itf‖L2

x,t(Ω×(0,T )).

(2.11)

In an analogous way, we adapt our result to the case of the Stokes system with the Dirichlet boundary
condition

∂tu−∆u+∇p = f in Ω

∇ · u = 0 in Ω

u = 0 on ∂Ω.

(2.12)
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Firstly, we need to adjust our analyticity norm for the Stokes system (2.12). For r ≥ 3, define the index set

B̃ = {(i, j, k) ∈ N3
0 : i+ j + k ≥ r − 1, j + k ≥ 1}

and

ψ(u, p) =
∑
B

(i+ j + k)r

(i+ j + k)!
εiε̃j ε̄k‖ti+j+k−r∂jxTk∂itu‖L2

x,t(Ω×[0,T ])

+
∑
B̃

(i+ j + k + 1)r−1

(i+ j + k)!
εiε̃j+1ε̄k‖ti+j+k+1−r∂jxTk∂itp‖L2

x,t(Ω×[0,T ])

+
∑
Bc

‖∂jxTk∂itu‖L2
x,t(Ω×[0,T ]) +

∑
B̃c∩{j+k≥1}

‖∂jxTk∂itp‖L2
x,t(Ω×[0,T ])

= ψ̄(u, p) + ψ0(u, p),

(2.13)

where ψ̄(u, p) and ψ0(u, p) consist of the first and the last two terms, respectively.

THEOREM 2.7 (Stokes equations). Let 0 < T < 1 and r ≥ 3. Then there exist 0 < ε̃ ≤ ε̄ ≤ ε ≤ 1,
which depend on r, d, and the analyticity radius of the tangential vector field T such that for any divergence-
free u0 ∈ H1

0 (Ω) ∩ H2r−1(Ω) which satisfies the compatibility conditions, and f sufficiently smooth, the
solution u of the Cauchy problem (2.12) satisfies the estimate

ψ(u, p) . ψ0(u, p) +MT (f) + ‖u0‖H2r−1 , (2.14)

where MT (f) is defined in (2.11).

The essential ingredients in the proof of Theorem 2.6 are the derivative reduction estimates in the nor-
mal, tangential, and time components, which are provided in the next section. The proof of Theorem 2.7
follows by the same method and we outline the modifications in Section 5.

Using the result on the Stokes system with the force−u ·∇u, we may address the Navier-Stokes system
with the Dirichlet boundary conditions (1.1).

THEOREM 2.8 (Navier-Stokes equations). Let d ∈ {2, 3} and r = 3. Then there exist 0 < ε̃ ≤ ε̄ ≤ ε ≤
1, which depend on the analyticity radius of the tangential vector field T, such that the following statement
holds: For any divergence-free u0 ∈ H1

0 (Ω)∩H5(Ω) which satisfies suitable compatibility conditions, and
a space-time real-analytic f ∈ L∞(0, 1;H3(Ω)) ∩ Ẇ 1,∞(0, 1;H1(Ω)) ∩ Ẇ 2,∞(0, 1;L2(Ω)), for which
M1(f) < ∞, there exists T∗ ∈ (0, 1] such that the solution u of the Cauchy problem for (1.1) satisfies the
estimate

ψT (u, p) . 1 +MT (f) + ‖u0‖H5 ,

for any T ∈ (0, T∗], where MT (f) is given in (2.11). The implicit constant depends only on Ω.

The dimension is restricted to d ∈ {2, 3} for simplicity of computations. With this choice, we also
fix the index r = 3 in the definition of φ(u) and ψ(u, p). In order to obtain boundedness for the lower
part of the energy norm ψ0(u, p), we appeal to the local existence theory for the Navier-Stokes system,
cf. [47, 13, 49, 44] for instance. Since we need to set r = 3, we require the data to belong to H5 (note that
then 2r − 1 = 5). However, due to the regularizing effect, we might also assume that the data lie in H1

0 .

3. Derivative reductions for the heat operator

Here, we state the normal, tangential, and time derivative reduction estimates for a smooth solution
u of (2.6)–(2.8) in terms of the vector fields introduced in Section 2. The same discussion on the half
space, splitting the gradient operator into tangential and normal components, was provided in detail in [33,
Section 3]. Here, we outline these ideas and deal with the additional commutator terms. Throughout this
section we require i+ j + k ≥ r.
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3.1. Normal derivative reduction. Here we consider (2.6)–(2.8).

LEMMA 3.1. For j ≥ 2, we have

‖ti+j+k−r∂jxTk∂itu‖L2
x,t
. ‖ti+j+k−r∂j−2

x Tk∂itf‖L2
x,t

+ ‖ti+j+k−r∂j−2
x Tk∂i+1

t u‖L2
x,t

+ ‖ti+j+k−r∂j−2
x Tk+1∂itu‖L2

tH
1
x

+ ‖ti+j+k−r∂j−2
x Tk∂itu‖L2

x,t

+ ‖ti+j+k−r∂j−2
x [Tk,∆]∂itu‖L2

x,t
.

(3.1)

Similarly, for j = 1 and k ≥ 1 we have

‖ti+1+k−r∂xTk∂itu‖L2
x,t
. ‖ti+1+k−rTk−1∂i+1

t u‖L2
x,t

+ ‖ti+1+k−rTk−1∂itf‖L2
x,t

+ ‖ti+1+k−r[Tk−1,∆]∂itu‖L2
x,t
,

(3.2)

while for j = 1 and k = 0, we get

‖ti+1−r∂x∂
i
tu‖L2

x,t
. ‖ti+1−r∂itu‖

1/2

L2
x,t
‖ti+1−r∂i+1

t u‖1/2
L2
x,t

+ ‖ti+1−r∂itu‖L2
x,t

+ ‖ti+1−r∂itf‖L2
x,t
. (3.3)

Before the proof, we recall the H2 regularity for the Laplace equation which, combined with the trace
theorem (cf. [35]), yields the estimate

‖u‖H2(Ω) . ‖∆u‖L2(Ω) + ‖u‖H3/2(∂Ω) . ‖∆u‖L2(Ω) + ‖Tu‖H1/2(∂Ω) + ‖u‖H1/2(∂Ω) (3.4)

from where

‖u‖H2(Ω) . ‖∆u‖L2(Ω) + ‖Tu‖H1 + ‖u‖L2 . (3.5)

If, in addition, u
∣∣
∂Ω

= 0, then we have

‖u‖H2(Ω) . ‖∆u‖L2(Ω). (3.6)

Besides (3.5)–(3.6), we recall

‖∇u‖L2(Ω) . ‖u‖
1/2
L2(Ω)

‖∂2
xu‖

1/2
L2(Ω)

+ ‖u‖L2(Ω). (3.7)

PROOF OF LEMMA 3.1. Using (2.6), we compute

∆(ti+j+k−r∂j−2
x Tk∂itu)

= ti+j+k−r∂j−2
x Tk∂i+1

t u− ti+j+k−r∂j−2
x Tk∂itf − ti+j+k−r∂j−2

x [Tk,∆]∂itu
(3.8)

for j ≥ 2. By the H2 regularity estimate (3.5), we get

‖ti+j+k−r∂jxTk∂itu‖L2 . ‖ti+j+k−r∂j−2
x Tk∂itu‖H2

. ‖ti+j+k−r∂j−2
x Tk∂i+1

t u‖L2 + ‖ti+j+k−r∂j−2
x Tk∂itf‖L2

+ ‖ti+j+k−r∂j−2
x Tk+1∂itu‖H1 + ‖ti+j+k−r∂j−2

x Tk∂itu‖L2

+ ‖ti+j+k−r∂j−2
x [Tk,∆]∂itu‖L2 ,

and (3.1) follows.
For (3.2), let k ≥ 1. We have

∆(ti+1+k−rTk−1∂itu) = ti+1+k−rTk−1∂i+1
t u− ti+1+k−rTk−1∂itf − ti+1+k−r[Tk−1,∆]∂itu.

Since Tk−1∂itu
∣∣
∂Ω

= 0, the H2 regularity estimate (3.6) leads to (3.2). In order to prove (3.3), we use the
equation

∆(ti+1−r∂itu) = ti+1−r∂i+1
t u− ti+1−r∂itf.

Using the interpolation inequality (3.7) and the H2 regularity estimate (3.6) we obtain (3.3) (cf. [33]). �
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3.2. Tangential derivative reduction. The following lemma allows us to reduce the number of tan-
gential derivatives.

LEMMA 3.2. For k ≥ 2 we have

‖ti+k−rTk∂itu‖L2
x,t
. ‖ti+k−rTk−2∂i+1

t u‖L2
x,t

+ ‖ti+k−rTk−2∂itf‖L2
x,t

+ ‖ti+k−r[Tk−2,∆]∂itu‖L2
x,t
,

(3.9)

while for k = 1, we have

‖ti+1−rT∂itu‖L2
x,t
. ‖ti+1−r∂itu‖

1/2

L2
x,t
‖ti+1−r∂i+1

t u‖1/2
L2
x,t

+ ‖ti+1−r∂itu‖L2
x,t

+ ‖ti+1−r∂itf‖L2
x,t

(3.10)

for all i ≥ r − 1.

PROOF OF LEMMA 3.2. Setting j = 2 and replacing k with k − 2 in (3.8), we have

∆(ti+k−rTk−2∂itu) = ti+k−rTk−2∂i+1
t u− ti+k−rTk−2∂itf − ti+k−r[Tk−2,∆]∂itu

for k ≥ 2. As Tk−2∂itu
∣∣
∂Ω

= 0, the rest of the proof is obtained following the arguments in [33]. �

3.3. Time derivative reduction. In this part, we consider the expressions of the form ‖ti−r∂itu‖L2
x,t

,
which do not involve spatial derivative operators. Therefore, the time derivative reduction estimate on the
half space [33] is still applicable here. For completeness, we recall the statement.

LEMMA 3.3. For i ≥ r, we have

‖ti−r∂itu‖L2
x,t
. (i− r)‖ti−1−r∂i−1

t u‖L2
x,t

+ ‖ti−r∂i−1
t f‖L2

x,t
+ 1i=r‖∇∂r−1

t u(0)‖L2 . (3.11)

The proof follows from the energy inequality for the system (2.6); cf. [33]. In particular, for i = r, we
apply ∂r−1

t to (2.6) and test the resulting equation with ∂rt u.

3.4. A Leibniz type formula. Having a nice analytic expansion as in (2.1) comes with a cost of losing
the equality of mixed derivatives. Below, we recall the Leibniz formula for k-folded commutator terms
(cf. [40]). Given two linear operators Y , Z, the adjoint operator ad Y (Z) is defined as

ad Y (Z) = [Y,Z] = Y Z − ZY.

LEMMA 3.4 ([29, 40]). Let k ≥ 1. Given a differential operator Z, we have

[Tk, Z] =
k∑

m=1

(
k

m

)
((ad T)m(Z))Tk−m. (3.12)

In addition, when Z = Z1Z2, a similar formula is given by

[Tk, Z] =

k∑
m=1

∑
α∈N2

0,|α|=m

k!

α!(k −m)!

2∏
j=1

((ad T)αj (Zj))Tk−m. (3.13)

PROOF OF LEMMA 3.4. Formulas (3.12) and (3.13) follow from an induction based commutator ex-
pansion fact. If Y1, . . . , Ym and Z are linear differential operators, then

[Y1 · · ·Yk, Z] =
k∑

m=1

∑
τ∈π(k,m)

(ad Yτ(1) · · · ad Yτ(m)(Z))Yτ(m+1) · · ·Yτ(k),

where π(k,m) denotes the set of all
(
k
m

)
permutations τ of 1, . . . , k such that τ(1) < · · · < τ(m) and

τ(m + 1) < · · · < τ(k). Noting our notational convention on Tk given in Remark 2.5, we treat the
permutations of the same order equal and rewrite the above formula in the tensor form to deduce (3.12).
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Similarly, when Z = Z1Z2, the expansion given above becomes

[Y1 · · ·Yk, Z1Z2] =
k∑

|α|=1,α∈N2
0

∑
τ∈π(k,α)

a1,τ,αa2,τ,αYτ(|α|+1) · · ·Yτ(k)

where τ is a permutation of {1, . . . , k} with τ(1) < · · · < τ(α1), τ(α1 + 1) < · · · < τ(α1 + α2),
and τ(α1 + α2 + 1) < τ(k). We drop the respective monotonicity restrictions on τ in case α1 = 0,
α2 = 0, or α1 + α2 = k. The coefficients above read a1,τ,α = ad Yτ(1) · · · ad Yτ(α1)(Z1) and a2,τ,α =
ad Yτ(α1+1 · · · ad Yτ(α1+α2)(Z2). When α1 = 0 or α2 = 0, the coefficients become a1,τ,α = Z1,
a2,τ,α = Z2, respectively. �

If Yj and Z are vector fields, then so is (ad Yk · · · ad Y1)(Z). Regarding the analyticity properties of the
latter vector field, we recall the following result from [29].

LEMMA 3.5 ([29]). Let Y1 . . . , Ym and Z be analytic vector fields defined on a domain in Rd such that

Yj =
d∑
i=1

aij∂i,

where

max
|α|=k

|∂αx aij | . k! Kk
1 , i = 1, . . . , d, j = 1, . . . ,m

for some K1 ≥ 1. Then there exist K̄1, K̄2 ≥ 1 such that

(ad Ym · · · ad Y1)(Z) =
n∑
i=1

bim∂i,

where
max
|α|=k

|∂αx bim| . (k +m)! K̄k
1 K̄

m
2

for i = 1, . . . , d.

Note that in the above formula the constants K̄1 and K̄2 give the radius of analyticity for the vector field
ad Ym · · · ad Y1.

In the following two lemmas, we derive upper bounds for the commutators with the Laplacian. Formu-
las, which are close to these but different, were stated in [29] for the case of the double gradients.

LEMMA 3.6. For i+ k ≥ r − 2, we have

‖ti+k+2−r[Tk,∆]∂itu‖L2
x,t
.

k∑
k′=1

k!

(k − k′)!
Kk′‖ti+k+2−r∂2

xTk−k
′
∂itu‖L2

x,t

+

k∑
k′=1

k!

(k − k′)!
Kk′k′‖ti+k+2−r∂xTk−k

′
∂itu‖L2

x,t

(3.14)

for some K ≥ max(K2, K̄2), where K2 and K̄2 are given by Lemma 3.5.

PROOF OF LEMMA 3.6. By Lemma 3.4, we have the expansion formula

[Tk,∆] = [Tk, ∂jj ] =

k∑
k′=1

∑
α∈N2

0
|α|=k′

k!

α! (k − k′)!
(ad T)α1(∂j)(ad T)α2(∂j)Tk−k

′
. (3.15)
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Using Lemma 3.5 with m ∈ N0, we obtain

(ad T)m(∂j) =
n∑
i=1

bim,j∂i (3.16)

where

max
|β|=k

|∂βx bim,j | ≤ (k +m)! Kk
2 K̄2

m (3.17)

for some K2, K̄2 ≥ 1 depending on the vector field T.
The vector field expression in (3.15) gives

[Tk,∆] =
k∑

k′=1

∑
α∈N2

0
|α|=k′

k!

α! (k − k′)!
blα1,jb

m
α2,j ∂l∂mTk−k

′
+

k∑
k′=1

∑
α∈N2

0
|α|=k′

k!

α! (k − k′)!
blα1,j ∂lb

m
α2,j ∂mTk−k

′
.

Using the analyticity bounds in (3.17), we then obtain

‖ti+k+2−r[Tk,∆]∂itu‖L2
x,t

≤
k∑

k′=1

∑
α∈N2

0
|α|=k′

k!

α! (k − k′)!
Kα1

2 K̄2
α2α1! α2! ‖ti+k+2−r∂2

xTk−k
′
∂itu‖L2

x,t

+

k∑
k′=1

∑
α∈N2

0
|α|=k′

k!

α! (k − k′)!
Kα1

2 K̄2
α2α1! α2! (α2 + 1)‖ti+k+2−r∂xTk−k

′
∂itu‖L2

x,t
.

Bounding the terms involving α and setting K ≥ max(K2, K̄2) we get (3.14). �

Next, we examine the operator ∂jx[Tk,∆] for j, k ≥ 1. We use the binomial formula for multi-indices in
order to sum up the coefficients that results from the Leibniz rule. Recall that for multi-indices β, β′ ∈ Nn0
with m = |β|, we have ∑

β′≤β,|β′|=l

(
β

β′

)
=

(
m

l

)
. (3.18)

LEMMA 3.7. For (i, j, k) ∈ N3
0 with j, k ≥ 1, we have

‖ti+j+k+2−r∂jx[Tk,∆]∂itu‖L2
x,t

.
k−1∑
k′=0

∑
j′+j3=j

(
j′ + k − k′

j′

)
j! k!

j3! k′!
Kj′+k−k′‖ti+j+k+2−r∂j3+2

x Tk
′
∂itu‖L2

x,t

for some K > 0.

PROOF OF LEMMA 3.7. Differentiating both sides of the equation (3.15) and using the Leibniz rule,
we get

∂jx[Tk,∆] = ∂jx[Tk, ∂``]

=

k∑
k′=1

∑
α∈N2

0
|α|=k′

k!

α! (k − k′)!
∑

j1,j2,j3≥0
j1+j2+j3=j

(
j

j1 j2

)
∂j1x (ad T)α1(∂`)∂

j2
x (ad T)α2(∂`)∂

j3
x Tk−k

′
.
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Analogously, the analyticity of the vector fields (ad T)α1(∂`) and (ad T)α2(∂`) gives the upper bound

‖ti+j+k+2−r∂jx[Tk,∆]∂itu‖L2
x,t

.
k∑

k′=1

∑
α∈N2

0
|α|=k′

k!

α! (k − k′)!
∑

j1,j2,j3≥0
j1+j2+j3=j

(
j!

j1! j2! j3!
(j1 + α1)!(j2 + α2)!

× Kj1+α1
2 K̄2

j2+α2‖ti+j+k+2−r∂j3+2
x Tk−k

′
∂itu‖L2

x,t

)
for K2, K̄2 > 0.

Applying the binomial formula (3.18) for multi-indices β = (j1 +α1, j2 +α2) ∈ N2 and β′ = (j1, j2) ∈
N2 we find that ∑

α∈N2
0

|α|=k′

∑
j1+j2=j′

j′=j−j3

(j1 + α1)!(j2 + α2)!

j1!α1! j2! α2!
=

(
j1 + j2 + α1 + α2

j1 + j2

)
=

(
j′ + k′

j′

)

for fixed integers k′ and 0 ≤ j3 ≤ j. This yields

‖ti+j+k+2−r∂jx[Tk,∆]∂itu‖L2
x,t

.
k∑

k′=1

∑
j′+j3=j

(
j′ + k′

j′

)
j! k!

j3! (k − k′)!
Kj′+k′‖ti+j+k+2−r∂j3+2

x Tk−k
′
∂itu‖L2

x,t

.
k−1∑
k′=0

∑
j′+j3=j

(
j′ + k − k′

j′

)
j! k!

j3! k′!
Kj′+k−k′‖ti+j+k+2−r∂j3+2

x Tk
′
∂itu‖L2

x,t

(3.19)

for K ≥ max(K2, K̄2). �

We use Lemmas 3.6 and 3.7 when estimating the commutator terms appearing in the derivative reduction
estimates (3.1), (3.2), and (3.9).

4. Proof of the analyticity result for the heat operator

We recall the analyticity norm as given in (2.10):

φ(u) =
∑
B

(i+ j + k)r

(i+ j + k)!
εiε̃j ε̄k‖ti+j+k−r∂jxTk∂itu‖L2

x,t(Ω×[0,T ]) +
∑
Bc

‖∂jxTk∂itu‖L2
x,t(Ω×[0,T ])

= φ̄(u) + φ0(u).

PROOF OF THEOREM 2.6. In order to apply the derivative reduction estimates, we split φ̄(u) as

φ̄(u) =

6∑
`=1

S`

where

S` =
∑
B`

(i+ j + k)r

(i+ j + k)!
εiε̃j ε̄k‖ti+j+k−r∂jxTk∂itu‖L2

x,t
, ` = 1, . . . , 6

and
B1 = {(i, j, k) ∈ B : j ≥ 2}, B2 = {(i, j, k) ∈ B : j = 1, k ≥ 1}
B3 = {(i, j, k) ∈ B : j = 1, k = 0}, B4 = {(i, j, k) ∈ B : j = 0, k ≥ 2}
B5 = {(i, j, k) ∈ B : j = 0, k = 1}, B6 = {(i, j, k) ∈ B : j = 0, k = 0}.

(4.1)
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We start with the two main sums S1 and S4, which are estimated using (3.1) and (3.9), respectively.

4.1. The S4 term. First, we check the sum S4 which consists of terms with only tangential and time
derivatives with j = 0 and k ≥ 2. By (3.9),

S4 .
∑

(i,j,k)∈B4

(i+ j + k)rεiε̃j ε̄k

(i+ j + k)!
‖ti+k−rTk−2∂i+1

t u‖L2
x,t

+
∑

(i,j,k)∈B4

(i+ j + k)rεiε̃j ε̄k

(i+ j + k)!
‖ti+k−rTk−2∂itf‖L2

x,t

+
∑

(i,j,k)∈B4

(i+ j + k)rεiε̃j ε̄k

(i+ j + k)!
‖ti+k−r[Tk−2,∆]∂itu‖L2

x,t
.

By relabeling, we get

S4 .
∑

(i−1,j,k+2)∈B4

(i+ j + k + 1)rεi−1ε̄k+2

(i+ j + k + 1)!
‖ti+k+1−rTk∂itu‖L2

x,t

+
∑

(i,j,k+2)∈B4

(i+ j + k + 2)rεiε̄k+2

(i+ j + k + 2)!
‖ti+k+2−rTk∂itf‖L2

x,t

+
∑

(i,j,k+2)∈B4

(i+ j + k + 2)rεiε̄k+2

(i+ j + k + 2)!
‖ti+k+2−r[Tk,∆]∂itu‖L2

x,t

= I41 + I42 + I43.

We utilize the shift in the indices to estimate I41 and I42, leading to

I41 + I42 .
ε̄2T

ε

∑
(i−1,j,k+2)∈B4

(i+ j + k + 1)rεiε̄k

(i+ j + k + 1)!
‖ti+k−rTk∂itu‖L2

x,t

+
∑

(i,j,k+2)∈B4

(i+ j + k + 2)rεiε̄k+2

(i+ j + k + 2)!
‖ti+k+2−rTk∂itf‖L2

x,t

.
ε̄2T

ε
φ(u) +

∑
(i,j,k+2)∈B4

(i+ j + k + 2)rεiε̄k+2

(i+ j + k + 2)!
‖ti+k+2−rTk∂itf‖L2

x,t
.

For I43, we use the bound (3.14) on ‖ti+k+2−r[Tk,∆]∂itu‖L2
x,t

and we obtain

I43 .
∑

i∈N0,k∈N

(i+ k + 2)rεiε̄k+2

(i+ k + 2)!
‖ti+k+2−r[Tk,∆]∂itu‖L2

x,t

.
∑

(i,0,k+2)∈B4

k≥1

(i+ k + 2)rεiε̄k+2

(i+ k + 2)!

k−1∑
k′=0

k!

k′!
Kk−k′‖ti+k+2−r∂2

xTk
′
∂itu‖L2

x,t
.

(4.2)

Note that we only kept the first term from the equation (3.14) as the coefficient k in the second term is
compensated by the decrease in the total number of derivatives. Also, the terms in the sum with k = 0 are
excluded above as there is no commutator term appearing. Changing the order of summation, the sum I43
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can be further estimated as

I43 .
∞∑

i,k′=0
(i,k′)6=(0,0)

(i+ k′ + 2)rεiε̃2ε̄k
′

(i+ k′ + 2)!
‖ti+k′+2−r∂2

xTk
′
∂itu‖L2

x,t

×

( ∞∑
k=k′+1

ε̄2

ε̃2
(i+ k + 2)r

(i+ k′ + 2)r
(i+ k′ + 2)! k!

(i+ k + 2)! k′!
(Kε̄t)k−k

′

)
.

(4.3)

Note that the sum in k in (4.3) is dominated by

ε̄2

ε̃2

∞∑
k=k′+1

(i+ k + 2)r−2

(i+ k′ + 2)r−2

k!

(i+ k)!

(i+ k′)!

k′!
(Kε̄T )k−k

′
. 1 (4.4)

uniformly for all i ≥ 0, whenever T ≤ min(1/Kε̄, 1) . From here on, we assume 0 < T ≤ 1 and reduce
the range for ε̄ to 0 < ε̄ < 1/K to assure convergence.

Therefore,

I43 . KT
ε̄3

ε̃2
φ̄(u) +KT ε̄3φ0(u)

for 0 < ε̄ < 1/K.
Adding the estimates for I41, I42, and I43, we obtain

S4 . KT
ε̄3

ε̃2
φ̄(u) +KT ε̄3φ0(u) +

ε̄2T

ε
φ(u)

+
∑

(i,j,k+2)∈B4

(i+ j + k + 2)rεiε̄k+2

(i+ j + k + 2)!
‖ti+k+2−rTk∂itf‖L2

x,t
.

(4.5)

4.2. The S1 term. Next, we consider S1. By (3.1),

S1 .
∑
B1

(i+ j + k)rεiε̃j ε̄k

(i+ j + k)!
‖ti+j+k−r∂j−2

x Tk∂itf‖L2
x,t

+
∑
B1

(i+ j + k)rεiε̃j ε̄k

(i+ j + k)!
‖ti+j+k−r∂j−2

x Tk∂i+1
t u‖L2

x,t

+
∑
B1

(i+ j + k)rεiε̃j ε̄k

(i+ j + k)!
‖ti+j+k−r∂j−2

x Tk+1∂itu‖L2
tH

1
x

+
∑
B1

(i+ j + k)rεiε̃j ε̄k

(i+ j + k)!
‖ti+j+k−r∂j−2

x Tk∂itu‖L2
x,t

+
∑
B1

(i+ j + k)rεiε̃j ε̄k

(i+ j + k)!
‖ti+j+k−r∂j−2

x [Tk,∆]∂itu‖L2
x,t
.

We then relabel to obtain

S1 .
∑

(i,j+2,k)∈B1

(i+ j + k + 2)rεiε̃j+2ε̄k

(i+ j + k + 2)!
‖ti+j+k+2−r∂jxTk∂itf‖L2

x,t

+
∑

(i−1,j+2,k)∈B1

(i+ j + k + 1)rεi−1ε̃j+2ε̄k

(i+ j + k + 1)!
‖ti+j+k+1−r∂jxTk∂itu‖L2

x,t

+
∑

(i,j+2,k−1)∈B1

(i+ j + k + 1)rεiε̃j+2ε̄k−1

(i+ j + k + 1)!
‖ti+j+k+1−r∂jxTk∂itu‖L2

x,t
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+
∑

(i,j+1,k−1)∈B1

(i+ j + k)rεiε̃j+1ε̄k−1

(i+ j + k)!
‖ti+j+k−r∂jxTk∂itu‖L2

x,t

+
∑

(i,j+2,k−2)∈B1

(i+ j + k)rεiε̃j+2ε̄k−2

(i+ j + k)!
‖ti+j+k−r∂jxTk∂itu‖L2

x,t

+
∑

(i,j+2,k)∈B1

(i+ j + k + 2)rεiε̃j+2ε̄k

(i+ j + k + 2)!
‖ti+j+k+2−r∂jxTk∂itu‖L2

x,t

+
∑

(i,j+2,k)∈B1

(i+ j + k + 2)rεiε̃j+2ε̄k

(i+ j + k + 2)!
‖ti+j+k+2−r∂jx[Tk,∆]∂itu‖L2

x,t

= I11 + I12 + I13 + I14 + I15 + I16 + I17.

Firstly, using the definition of the norm φ(u) the non-commutator terms can be bounded from above
I11 + I12 + I13 + I14 + I15 + I16

≤
(
T
ε̃2

ε
+ T

ε̃2

ε̄
+
ε̃

ε̄
+
ε̃2

ε̄2
+ T 2ε̃2

)
φ(u)

+
∑

(i,j+2,k)∈B1

(i+ j + k + 2)rεiε̃j+2ε̄k

(i+ j + k + 2)!
‖ti+j+k+2−r∂jxTk∂itf‖L2

x,t
.

(4.6)

Next, we estimate the sum I17. In order to do this, we use the estimate (3.19), and then change the order
of summation. Note that k ≥ 1 as I17 is a commutator term. That results in

I17 .
∑

(i,j+2,k)∈B1

k−1∑
k′=0

∑
j′+j3=j

(
(i+ j + k + 2)r

(i+ j + k + 2)!
εiε̃j+2ε̄k

(
j′ + k − k′

j′

)
j! k!

j3! k′!

×Kj′+k−k′‖ti+j+k+2−r∂j3+2
x Tk

′
∂itu‖L2

x,t

)
.

∑
(i,j3+2,k′)∈B1∪Bc

∞∑
k=k′+1

∞∑
j=j3

(
(i+ j + k + 2)r

(i+ j + k + 2)!
εiε̃j+2ε̄k

(
j − j3 + k − k′

j − j3

)
j! k!

j3! k′!

×Kj−j3+k−k′‖ti+j+k+2−r∂j3+2
x Tk

′
∂itu‖L2

x,t

)
.

(4.7)

Next, we split up the first sum in the equation (4.7) into two parts–over B1 and Bc. Then, rearranging the
coefficients according to our analyticity norm we obtain

I17 .
∑

(i,j3+2,k′)∈B1

(i+ j3 + k′ + 2)r

(i+ j3 + k′ + 2)!
εiε̃j3+2ε̄k

′
A1‖ti+j3+k′+2−r∂j3+2

x Tk
′
∂itu‖L2

x,t

+
∑

(i,j3+2,k′)∈Bc
A0‖∂j3+2

x Tk
′
∂itu‖L2

x,t
,

where the coefficients A1 and A0 enclose the second sums due to the Fubini Theorem. Explicitly,

A1 =
∞∑

k=k′+1

∞∑
j=j3

(i+ j3 + k′ + 2)!

(i+ j + k + 2)!

(i+ j + k + 2)r

(i+ j3 + k′ + 2)r
j!k!

j3! k′!

(
j − j3 + k − k′

j − j3

)
×Kj−j3+k−k′(T ε̃)j−j3(T ε̄)k−k

′

.
∞∑
k=1

∞∑
j=0

(i+ j3 + k′ + 2− r)!
(i+ j + j3 + k + k′ + 2− r)!

(j + j3)! (k + k′)! (j + k)!

j3! k′! j! k!
(KT ε̃)j(KT ε̄)k

(4.8)
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for (i, j3, k
′) ∈ N3

0 with i+ j3 + k ≥ r − 2, and

A0 =
∞∑

j,k=0
i+j+k≥r−2

(i+ j + k + 2)r

(i+ j + k + 2)!

(
j − j3 + k − k′

j − j3

)
j! k!

j3! k′!
Kj−j3+k−k′T i+j+k+2−rεiε̃j+2ε̄k

for (i, j3, k
′) ∈ N3

0 with i+ j3 + k′ < r − 2. We omit the dependence on i, j3, k′, and T . The coefficient in
front of (KT ε̃)j(KT ε̄)k in (4.8) is bounded above by

(i+ j3 + k′ + 2− r)!
(i+ j + j3 + k + k′ + 2− r)!

(j + j3)! (k + k′)!(j + k)!

j3! k′! j! k!
=

(
j+j3
j

)(
k+k′

k

)(
i+j+j3+k+k′+2−r

j+k

)
≤
(
j+j3
j

)(
k+k′

k

)(
j+j3+k+k′

j+k

) (i+ j3 + k′ + 2− r)!
(j3 + k′)!

(j + j3 + k + k′)!

(i+ j + j3 + k + k′ + 2− r)!

≤ (i+ j3 + k′ + 2− r)!
(j3 + k′)!

(j + j3 + k + k′)!

(i+ j + j3 + k + k′ + 2− r)!

(4.9)

for i+ j3 + k′ + 2 ≥ r. Note that when i+ 2 ≥ r, the far right side of (4.9) is bounded above by 1. On the
other hand, when 0 ≤ i < r− 2, it is bounded by a constant multiple of (j + k)r−i−2. Combining this with
our assumption T ≤ 1, we arrive at

sup
(i,j3+2,k′)∈B1

A1 .
∞∑
k=1

∞∑
j=0

(j + k)r−2(KT ε̃)j(KT ε̄)k . KT ε̄,

when max(ε̃, ε̄) < 1/K.
Likewise, the coefficients appearing in the sum A0 obey

(i+ j + k + 2)r

(i+ j + k + 2)!

j! k!

j3! k′!

(
j − j3 + k − k′

j − j3

)
.

(j + k)!

(i+ j + k + 2− r)!
j! k!

(j + k)!

(j − j3 + k − k′)!
j3! k′! (j − j3)! (k − k′)!

=
(j + k)!

(i+ j + k + 2− r)!

(
j
j3

) (
k
k′

)(
j+k
j3+k′

) 1

(j3 + k′)!
≤ (j + k)!

(i+ j + k + 2− r)!
.

(4.10)

Similarly to (4.9), the right side of (4.10) is bounded by 1 when i+2 ≥ r. Otherwise, the bound is a constant
multiple of (j + k)r−i−2. Thus, A0 is also summable whenever max(ε̃, ε̄) < 1/K , and is bounded by

sup
(i,j3+2,k′)∈Bc

A0 ≤
∞∑

j,k=0
i+j+k≥r−2

(j + k)r−2 ε̃2(Kε̃)j(Kε̄)k . ε̃2.

We then conclude that

I17 . ε̃
2φ0(u) +KT ε̄φ̄(u). (4.11)

Combining the estimates (4.6) and (4.11), we obtain

S1 . ε̃
2φ0(u) +KT ε̄φ̄(u) +

(
T
ε̃2

ε
+ T

ε̃2

ε̄
+
ε̃

ε̄
+
ε̃2

ε̄2
+ T 2ε̃2

)
φ(u)

+
∑

(i,j+2,k)∈B1

(i+ j + k + 2)rεiε̃j+2ε̄k

(i+ j + k + 2)!
‖ti+j+k+2−r∂jxTk∂itf‖L2

x,t
.

(4.12)
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4.3. The S2 term. Next, we estimate S2. Using the tangential derivative reductions, given in (3.2), we
write

S2 .
∑
B2

(i+ 1 + k)rεiε̃ε̄k

(i+ 1 + k)!
‖ti+1+k−rTk−1∂i+1

t u‖L2
x,t

+
∑
B2

(i+ 1 + k)rεiε̃ε̄k

(i+ 1 + k)!
‖ti+1+k−rTk−1∂itf‖L2

x,t

+
∑
B2

(i+ 1 + k)rεiε̃ε̄k

(i+ 1 + k)!
‖ti+1+k−r[Tk−1,∆]∂itu‖L2

x,t

and then, by relabeling

S2 .
∑

(i−1,1,k+1)∈B2

(i+ 1 + k)rεi−1ε̃ε̄k+1

(i+ 1 + k)!
‖ti+1+k−rTk∂itu‖L2

x,t

+
∑

(i,1,k+1)∈B2

(i+ 2 + k)rεiε̃ε̄k+1

(i+ 2 + k)!
‖ti+2+k−rTk∂itf‖L2

x,t

+
∑

(i,1,k+1)∈B2

(i+ 2 + k)rεiε̃ε̄k+1

(i+ 2 + k)!
‖ti+2+k−r[Tk,∆]∂itu‖L2

x,t

= I21 + I22 + I23.

Once again, we start with the first two terms I21 and I22. For t ≤ T , we get

I21 + I22 .
T ε̄

ε
φ(u) +

∑
(i,1,k+1)∈B2

(i+ 2 + k)rεiε̃ε̄k+1

(i+ 2 + k)!
‖ti+2+k−rTk∂itf‖L2

x,t
.

Next, we treat the commutator term I23. Note that multiplying I23 with an ε̄/ε̃ prefactor yields a sum-
mation over B2 whose terms are identical to those of I43. Therefore,

ε̄

ε̃
I23 .

∑
(i,1,k+1)∈B2

k≥1

(i+ k + 2)rεiε̄k+2

(i+ k + 2)!
‖ti+k+2−r[Tk,∆]∂itu‖L2

x,t

.
∑

(i,1,k+1)∈B2

k≥1

(i+ k + 2)rεiε̄k+2

(i+ k + 2)!

k−1∑
k′=0

k!

k′!
Kk−k′‖ti+k+2−r∂2

xTk
′
∂itu‖L2

x,t

(4.13)

for K > 0 as determined in Lemma 3.6. Changing the order of summation as in (4.3)–(4.4), we arrive at

I23 . KT
ε̄2

ε̃
φ̄(u) +KT ε̃ε̄2φ0(u)

for T ≤ 1 and 0 < ε̄ < 1/K. Therefore,

S2 . KT ε̃ε̄
2φ0(u) +KT

(
ε̄2

ε̃
+
ε̄

ε

)
φ(u) +

∑
(i,1,k+1)∈B2

(i+ 2 + k)rεiε̃ε̄k+1

(i+ 2 + k)!
‖ti+2+k−rTk∂itf‖L2

x,t
.

(4.14)

4.4. The S3 term. Using (3.3) for S3, we have

S3 .
∑

(i,j,k)∈B3

(i+ j + k)rεiε̃j ε̄k

(i+ j + k)!
‖ti+1−r∂itu‖

1/2

L2
x,t
‖ti+1−r∂i+1

t u‖1/2
L2
x,t

+
∑

(i,j,k)∈B3

(i+ j + k)rεiε̃j ε̄k

(i+ j + k)!
‖ti+1−r∂itu‖L2

x,t
+

∑
(i,j,k)∈B3

(i+ j + k)rεiε̃j ε̄k

(i+ j + k)!
‖ti+1−r∂itf‖L2

x,t
.

(4.15)
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We note that j = 1 and k = 0 for (i, j, k) ∈ B3. Using the Cauchy-Schwarz inequality in (4.15) and
relabeling in one of the sums, we immediately get

S3 .

T ε̃ ∑
(i,j,k)∈B3

(i+ 1)rεi

(i+ 1)!
‖ti−r∂itu‖L2

x,t

1/2 ε̃
ε

∑
(i−1,j,k)∈B3

irεi

i!
‖ti−r∂itu‖L2

x,t

1/2

+ T ε̃
∑

(i,j,k)∈B3

(i+ 1)rεi

(i+ 1)!
‖ti−r∂itu‖L2

x,t
+ ε̃

∑
(i,j,k)∈B3

(i+ 1)rεi

(i+ 1)!
‖ti+1−r∂itf‖L2

x,t
.

Therefore, we obtain

S3 .

(
T 1/2ε̃

ε1/2
+ T ε̃

)
φ(u) + ε̃

∑
(i,j,k)∈B3

(i+ 1)rεi

(i+ 1)!
‖ti+1−r∂itf‖L2

x,t
. (4.16)

4.5. The S5 term. For S5, we use (3.10) and write

S5 .
∑

(i,j,k)∈B5

(i+ j + k)rεiε̃j ε̄k

(i+ j + k)!
‖ti+1−r∂itu‖

1/2

L2
x,t
‖ti+1−r∂i+1

t u‖1/2
L2
x,t

+
∑

(i,j,k)∈B5

(i+ j + k)rεiε̃j ε̄k

(i+ j + k)!
‖ti+1−r∂itu‖L2

x,t
+

∑
(i,j,k)∈B5

(i+ j + k)rεiε̃j ε̄k

(i+ j + k)!
‖ti+1−r∂itf‖L2

x,t
.

Note that j = 0 and k = 1 for (i, j, k) ∈ B5. By using Cauchy-Schwarz inequality on the first term and
then relabeling the indices on the right side, we get

S5 .

(
T ε̄

∑
(i,j,k)∈B5

(i+ 1)rεi

(i+ 1)!
‖ti−r∂itu‖L2

x,t

)1/2( ε̄
ε

∑
(i−1,j,k)∈B5

irεi

i!
‖ti−r∂itu‖L2

x,t

)1/2

+ T ε̄
∑

(i,j,k)∈B5

(i+ 1)rεi

(i+ 1)!
‖ti−r∂itu‖L2

x,t
+ ε̄

∑
(i,j,k)∈B5

(i+ 1)rεi

(i+ 1)!
‖ti+1−r∂itf‖L2

x,t
.

We deduce that

S5 .

(
T ε̄

ε1/2
+ T ε̄

)
φ(u) + ε̄

∑
(i,j,k)∈B5

(i+ 1)rεi

(i+ 1)!
‖ti+1−r∂itf‖L2

x,t
. (4.17)

4.6. The S6 term. Finally, for S6 we use (3.11) and obtain

S6 .
∑

(i,j,k)∈B6

(i− r)(i+ j + k)rεiε̃j ε̄k

(i+ j + k)!
‖ti−1−r∂i−1

t u‖L2
x,t

+
∑

(i,j,k)∈B6

(i+ j + k)rεiε̃j ε̄k

(i+ j + k)!
‖ti−r∂i−1

t f‖L2
x,t

+
rr

r!
εr‖∇∂r−1

t u(0)‖L2

=
∑

(i+1,j,k)∈B6

(i+ 1)r(i− r + 1)εi+1

(i+ 1)!
‖ti−r∂itu‖L2

x,t

+
∑

(i+1,j,k)∈B6

(i+ 1)rεi+1

(i+ 1)!
‖ti+1−r∂itf‖L2

x,t
+
rr

r!
εr‖∇∂r−1

t u(0)‖L2

since for any triple (i, j, k) ∈ B6 we have j = k = 0. Therefore,

S6 . εφ(u) + ε
∑

(i+1,j,k)∈B6

(i+ 1)rεi

(i+ 1)!
‖ti+1−r∂itf‖L2

x,t
+ ‖u0‖H2r−1 . (4.18)
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4.7. Conclusion of the proof. Combining all the estimates (4.5), (4.12), (4.14), (4.16), (4.17), and
(4.18), we write

φ̄(u) .

(
KT

ε̄3

ε̃2
+
ε̄2T

ε
+KT ε̄+ T

ε̃2

ε
+ T

ε̃2

ε̄
+
ε̃

ε̄
+
ε̃2

ε̄2
+ T 2ε̃2

+KT

(
ε̄2

ε̃
+
ε̄

ε

)
+
T 1/2(ε̃+ ε̄)

ε1/2
+ T (ε̃+ ε̄) + ε

)
φ(u)

+ (KT ε̄3 + 1 +KT ε̃ε̄2)φ0(u)

+
∑

(i,j,k+2)∈B4

(i+ j + k + 2)rεiε̄k+2

(i+ j + k + 2)!
‖ti+k+2−rTk∂itf‖L2

x,t

+
∑

(i,j+2,k)∈B1

(i+ j + k + 2)rεiε̃j+2ε̄k

(i+ j + k + 2)!
‖ti+j+k+2−r∂jxTk∂itf‖L2

x,t

+
∑

(i,1,k+1)∈B2

(i+ 2 + k)rεiε̃ε̄k+1

(i+ 2 + k)!
‖ti+2+k−rTk∂itf‖L2

x,t

+ ε̃
∑

(i,j,k)∈B3

(i+ 1)rεi

(i+ 1)!
‖ti+1−r∂itf‖L2

x,t
+ ε̄

∑
(i,j,k)∈B5

(i+ 1)rεi

(i+ 1)!
‖ti+1−r∂itf‖L2

x,t

+ ε
∑

(i+1,j,k)∈B6

(i+ 1)rεi

(i+ 1)!
‖ti+1−r∂itf‖L2

x,t
+ ‖u0‖H2r−1 .

(4.19)

Denote by C the implicit constant associated with the symbol . in (4.19). Recall that we already fixed
0 < T ≤ 1. Next, we set our radii of analyticity ε, ε̃, ε̄ in order to keep the coefficient of φ(u) on the right
side of the equation (4.19) sufficiently small. Starting with ε = ε(C) > 0, we enforce

ε ≤ 1

8C
. (4.20)

With this choice of ε, we choose 0 < ε̄ = ε̄(K,C) ≤ min(ε, 1
K ) such that

T
ε̄2

ε
+KT ε̄+KT

ε̄

ε
+ T 1/2 ε̄

ε1/2
+ T ε̄ ≤ 1

8C
. (4.21)

Since T ≤ 1, it suffices to take 0 < ε̄ ≤ ε/82KC. Next, we pick 0 < ε̃ = ε̃(ε̄, ε,K,C) ≤ ε̄ such that

T
ε̃2

ε
+ T

ε̃2

ε̄
+
ε̃

ε̄
+
ε̃2

ε̄2
+ T 2ε̃2 + T 1/2 ε̃

ε1/2
+ T ε̃ ≤ 1

8C
.

Once again, setting 0 < ε̃ < ε̄/82C is enough. Finally, we require that

KT

(
ε̄3

ε̃2
+
ε̄2

ε̃

)
≤ 1

8C
. (4.22)

Note that the conditions (4.20)–(4.22) hold with the choice ε̃ = ε/84C2K, ε̄ = ε/82CK, and ε = 1/83C2

without any extra requirement on the size of T .
Using the selection (4.20)–(4.22) we made for 0 < ε̃ ≤ ε̄ ≤ ε ≤ 1, we rewrite (4.19) as

φ̄(u) ≤ 1

2
φ(u) + Cφ0(u) + C

∑
(i,j+2,k)∈B1

(i+ j + k + 2)rεiε̃j+2ε̄k

(i+ j + k + 2)!
‖ti+j+k+2−r∂jxTk∂itf‖L2

x,t

+ C

ε̃ε̄ ∑
(i,j,k+1)∈B2

+ε̄2
∑

(i,j,k+2)∈B4

((i+ k + 2)rεiε̄k

(i+ k + 2)!
‖ti+2+k−rTk∂itf‖L2

x,t

)
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+ C

ε̃ ∑
(i,j,k)∈B3

+ε̄
∑

(i,j,k)∈B5

+ε
∑

(i+1,j,k)∈B6

((i+ 1)rεi

(i+ 1)!
‖ti+1−r∂itf‖L2

x,t

)

≤ 1

2
φ(u) + Cφ0(u) + 2C

∑
i+j+k≥(r−2)+

(i+ j + k + 2)rεiε̃j+2ε̄k

(i+ j + k + 2)!
‖ti+j+k+2−r∂jxTk∂itf‖L2

x,t

+ 2C
∑

i+k≥(r−2)+

(i+ k + 2)rεiε̄k+2

(i+ k + 2)!
‖ti+k+2−rTk∂itf‖L2

x,t

+ 3C
∑

i≥(r−1)+

(i+ 1)rεi+1

(i+ 1)!
‖ti+1−r∂itf‖L2

x,t
+ C‖u0‖H2r−1 ,

and the proof is concluded �

5. Derivative reductions for the Stokes system

In this section, we adapt the derivative reduction estimates in Section 3 to the time-dependent Stokes
equations. Analogously to the heat equation, the method is based on the H2 inequalities for the stationary
Stokes system

−∆u+∇p = f in Ω

∇ · u = 0 in Ω,

which read

‖u‖H2(Ω) + ‖p‖H1(Ω) . ‖f‖L2(Ω) + ‖Tu‖H1(Ω) + ‖u‖L2(Ω). (5.1)

If also u
∣∣
∂Ω

= 0 holds, then the above estimate becomes

‖u‖H2(Ω) + ‖p‖H1(Ω) . ‖f‖L2(Ω). (5.2)

Next, we state the normal, tangential, and time reduction estimates for the Stokes operator. Assume i+ j +
k ≥ r.

5.1. Normal derivative reductions for the Stokes operator. For j ≥ 2, we claim

‖ti+j+k−r∂jxTk∂itu‖L2
x,t

+ ‖ti+j+k−r∂j−1
x Tk∂itp‖L2

x,t

. ‖ti+j+k−r∂j−2
x Tk∂itf‖L2

x,t
+ ‖ti+j+k−r∂j−2

x Tk∂i+1
t u‖L2

x,t

+ ‖ti+j+k−r∂j−2
x Tk+1∂itu‖L2

tH
1
x

+ ‖ti+j+k−r∂j−2
x Tk∂itu‖L2

x,t

+ ‖ti+j+k−r∂j−2
x [Tk,∆]∂itu‖L2

x,t
+ ‖ti+j+k−r∂j−2

x [Tk,∇]∂itp‖L2
x,t
.

(5.3)

Similarly, for j = 1, we have

‖ti+1+k−r∂xTk∂itu‖L2
x,t

+ ‖ti+1+k−rTk∂itp‖L2
x,t

. ‖ti+1+k−rTk−1∂i+1
t u‖L2

x,t
+ ‖ti+1+k−rTk−1∂itf‖L2

x,t

+ ‖ti+1+k−r[Tk−1,∆]∂itu‖L2
x,t

+ ‖ti+1+k−r[Tk−1,∇]∂itp‖L2
x,t
.

(5.4)

For j = 1 and k = 0, we obtain

‖ti+1−r∂x∂
i
tu‖L2

x,t
. ‖ti+1−r∂itu‖

1/2

L2
x,t
‖ti+1−r∂i+1

t u‖1/2
L2
x,t

+ ‖ti+1−r∂itu‖L2
x,t

+ ‖ti+1−r∂itf‖L2
x,t
. (5.5)

The equations (5.3)–(5.5) constitute the analogues of (3.1)–(3.3).
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5.2. Tangential derivative reductions for the Stokes operator. We claim that, for k ≥ 2, the tangen-
tial derivatives may be reduced using

‖ti+k−rTk∂itu‖L2
x,t

+ ‖ti+k−rTk−1∂itp‖L2
x,t

. ‖ti+k−rTk−2∂i+1
t u‖L2

x,t
+ ‖ti+k−rTk−2∂itf‖L2

x,t

+ ‖ti+k−r[Tk−2,∆]∂itu‖L2
x,t

+ ‖ti+k−r[Tk−2,∇]∂itp‖L2
x,t
,

(5.6)

while for k = 1, we have

‖ti+1−rT∂itu‖L2
x,t
. ‖ti+1−r∂itu‖

1/2

L2
x,t
‖ti+1−r∂i+1

t u‖1/2
L2
x,t

+ ‖ti+1−r∂itu‖L2
x,t

+ ‖ti+1−r∂itf‖L2
x,t

(5.7)

for all i ≥ r − 1. The equations (5.6)–(5.7) represent the analogues of (3.9)–(3.10).

5.3. Time derivative reductions for the Stokes operator. For i ≥ r, we have

‖ti−r∂itu‖L2
x,t
. (i− r)‖ti−1−r∂i−1

t u‖L2
x,t

+ 1i=r‖∇∂r−1
t u(0)‖L2 + ‖ti−r∂i−1

t f‖L2
x,t
. (5.8)

In order to prove the inequalities (5.3)–(5.7), we follow the ideas in Section 3 by appealing to the H2

inequalities (5.1)–(5.2). Since the proofs are completely analogous, we omit further details. For the equation
(5.8), note that the energy inequality for Stokes equation is the same with (3.11), as the integral with the
pressure term vanishes due to∇ · u = 0.

PROOF OF THEOREM 2.7. Instead of considering ψ(u, p) in (2.13) directly, it is more convenient to
introduce an alternate norm ψ1(u, p), which is larger than ψ(u, p), modulo a multiplicative constant. The
function ψ1 is defined as follows. Fix T > 0 and let 0 < ε̃ ≤ ε̄ ≤ ε ≤ 1. Using the index sets B and Bc as
in (2.9), we define

ψ1(u, p) = ψ̄1(u, p) + ψ0(u, p)

where ψ̄1(u, p) =
∑6

`=1 S` with

S` =
∑
B`

(i+ j + k)rεiε̃j ε̄k

(i+ j + k)!
R`, ` = 1, . . . , 6

and

R1 = ‖ti+j+k−r∂jxTk∂itu‖L2
x,t

+ ‖ti+j+k−r∂j−1
x Tk∂itp‖L2

x,t
, j ≥ 2

R2 = ‖ti+1+k−r∂xTk∂itu‖L2
x,t
, k ≥ 1

R3 = ‖ti+1−r∂x∂
i
tu‖L2

x,t

R4 = ‖ti+k−rTk∂itu‖L2
x,t

+ ‖ti+k−rTk−1∂itp‖L2
x,t
, k ≥ 2

R5 = ‖ti+1−rT∂itu‖L2
x,t

R6 = ‖ti−r∂itu‖L2
x,t
.

Recall that the sets B1–B6 were defined in (4.1). First, we sketch an argument showing that

ψ̄(u, p) ≤ ψ̄1(u, p).
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It is easy to verify that the terms containing u are the same, so we only need to check that

∑
B̃

(i+ j + k + 1)r−1

(i+ j + k)!
εiε̃j+1ε̄k‖ti+j+k+1−r∂jxTk∂itp‖L2

x,t(Ω×[0,T ])

.
∑
B1

(i+ j + k)r

(i+ j + k)!
εiε̃j ε̄k‖ti+j+k−r∂j−1

x Tk∂itp‖L2
x,t(Ω×[0,T ])

+
∑
B4

(i+ j + k)r

(i+ j + k)!
εiε̃j ε̄k‖ti+j+k−rTk−1∂itp‖L2

x,t(Ω×[0,T ]).

(5.9)

The sum on the left side equals

∑
B̃∩{j≥1}

(i+ j + k + 1)r−1

(i+ j + k)!
εiε̃j+1ε̄k‖ti+j+k+1−r∂jxTk∂itp‖L2

x,t(Ω×[0,T ])

+
∑

B̃∩{j=0}∩{k≥1}

(i+ j + k + 1)r−1

(i+ j + k)!
εiε̃j+1ε̄k‖ti+j+k+1−r∂jxTk∂itp‖L2

x,t(Ω×[0,T ])

=
∑

{(i,j,k):i+j+k≥r,j≥2}

(i+ j + k)r−1

(i+ j + k − 1)!
εiε̃j ε̄k‖ti+j+k−r∂j−1

x Tk∂itp‖L2
x,t(Ω×[0,T ])

+
∑

{(i,j,k):j=0,i+k≥r,k≥2}

(i+ j + k)r−1

(i+ j + k − 1)!
εiε̃j+1ε̄k−1‖ti+j+k−rTk−1∂itp‖L2

x,t(Ω×[0,T ]),

(5.10)

where we changed j to j− 1 in the first sum and k to k− 1 in the second; we also used that j+ k ≥ 1 on B̃.
It is now easy to check that the right hand side in (5.10) is dominated by a constant multiple the right hand
side of (5.9) by using ε̃ ≤ ε̄.

The rest of the proof is identical to that of Theorem 2.6. Namely, we follow the arguments in Subsec-
tions 4.1–4.6 and appeal to the derivative reduction estimates (5.3)–(5.8). The only difference is due to the
pressure terms appearing as the last terms in (5.3), (5.4), and (5.6).

First, we estimate the term ‖ti+k+2−r[Tk,∇]∂itp‖L2
x,t

. By Lemma 3.4, we have

[Tk, ∂`]∂itp =
k∑

m=1

(
k

m

)
(ad T)m(∂`)Tk−m∂itp (5.11)

for k ≥ 1. Using (3.16)–(3.17), we express the term (ad T)m(∂`) as

[Tk, ∂`]∂itp =

k∑
m=1

(
k

m

)
bim,`∂iT

k−m∂itp

with coefficients that obey

max |bim,`| . m! K̄m
2 .

This yields

‖ti+k+2−r[Tk,∇]∂itp‖L2
x,t
.

k∑
m=1

k!

(k −m)!
K̄m

2 ‖ti+k+2−r∂1
xTk−m∂itp‖L2

x,t
. (5.12)
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Therefore, the last term in (5.4) is bounded as

‖ti+k+1−r[Tk−1,∇]∂itp‖L2
x,t
.

k−1∑
m=1

(k − 1)!

(k − 1−m)!
K̄m

2 ‖ti+k+1−r∂xTk−1−m∂itp‖L2
x,t

.
k−2∑
k′=0

(k − 1)!

k′!
K̄k−k′−1

2 ‖ti+k+1−r∂xTk
′
∂itp‖L2

x,t
,

(5.13)

changing the variable k′ = k − 1−m. Similarly, the last term in (5.6) is estimated as

‖ti+k−r[Tk−2,∇]∂itp‖L2
x,t
.

k−3∑
k′=0

(k − 2)!

k′!
K̄k−k′−2

2 ‖ti+k−r∂xTk
′
∂itp‖L2

x,t
. (5.14)

In order to bound ‖ti+j+k−r∂j−2
x [Tk,∇]∂itp‖L2

x,t
appearing in (5.3), we differentiate the formula (5.11)

and apply the Leibniz rule, which gives

∂j−2
x [Tk, ∂`]∂itp =

k∑
m=1

(
k

m

) j−2∑
j1=0

(
j − 2

j1

)
∂j1x (ad T)m(∂`) ∂

j−2−j1
x Tk−m∂itp.

Taking the L2 norm and using (3.16) and (3.17), we get

‖ti+j+k−r∂j−2
x [Tk, ∂`]∂itp‖L2

x,t

.
k∑

k′=1

j−2∑
j′=0

(
k

k′

)(
j − 2

j′

)
(k′ + j′)!Kj′

2 K̄2
k′‖ti+j+k−r∂j−2−j′+1

x T k−k
′
∂itp‖L2

x,t

.
k−1∑
k′=0

j−2∑
j′=0

(
k

k − k′

)(
j − 2

j′

)
(j′ + k − k′)!Kj′+k−k′‖ti+j+k−r∂j−1−j′

x T k
′
∂itp‖L2

x,t

.
k−1∑
k′=0

j−2∑
j′=0

(
j′ + k − k′

j′

)
(j − 2)! k!

(j − 2− j′)! k′!
Kj′+k−k′‖ti+j+k−r∂j−1−j′

x T k
′
∂itp‖L2

x,t

(5.15)

for K ≥ max(K2, K̄2).
Now we show that the pressure terms in (5.13), (5.14), and (5.15) may be absorbed in ψ, starting with

(5.15). For this purpose, we need to bound

∑
(i,j,k)∈B1

(i+ j + k)rεiε̃j ε̄k

(i+ j + k)!

×
k−1∑
k′=0

j−2∑
j′=0

(
j′ + k − k′

j′

)
(j − 2)! k!

(j − 2− j′)! k′!
Kj′+k−k′‖ti+j+k−r∂j−1−j′

x T k
′
∂itp‖L2

x,t

=
∑

(i,j+2,k)∈B1

(i+ j + 2 + k)rεiε̃j+2ε̄k

(i+ j + 2 + k)!

×
k−1∑
k′=0

j∑
j′=0

(
j′ + k − k′

j′

)
j! k!

(j − j′)! k′!
Kj′+k−k′‖ti+j+2+k−r∂j+1−j′

x T k
′
∂itp‖L2

x,t
.

(5.16)



22 GUHER CAMLIYURT, I. KUKAVICA, AND V. VICOL

Observe that the right side of (5.16) is the same as (4.7) except that ∂j3+2
x needs to be replaced by ∂j3+1

x ,
and u with p. Therefore, the right side of (5.16) is bounded, up to a constant, by

∑
(i,j3+2,k′)∈B1

(i+ j3 + k′ + 2)rεiε̃j3+2ε̄k
′

(i+ j3 + k′ + 2)!
(KT ε̄)

× ‖ti+j3+k′+2−r∂j3+1
x T k

′
∂itp‖L2

x,t
+

∑
(i,j3+2,k′)∈Bc

ε̃2‖∂j3+1
x T k

′
∂itp‖L2

x,t

. KT ε̄(ψ̄(u, p)− φ̄(u)) + ε̃2(ψ0(u, p)− φ0(u)).

(5.17)

Note that the upper bound in (5.17) contains only the pressure terms in the norm ψ(u, p).
Similarly, we point out a comparison between (5.14) and (4.2). We have

∑
(i,0,k)∈B4

k≥3

(i+ k)rεiε̄k

(i+ k)!

k−3∑
k′=0

k − 2!

k′!
Kk−k′−2‖ti+k−r∂xTk

′
∂itp‖L2

x,t

=
∑

(i,0,k+2)∈B4

k≥1

(i+ k + 2)rεiε̄k+2

(i+ k + 2)!

k−1∑
k′=0

k!

k′!
Kk−k′‖ti+k+2−r∂xTk

′
∂itp‖L2

x,t
.

(5.18)

Changing the order of summation as done in (4.3), the right side of (5.18) may be bounded above by

∞∑
i,k′=0

(i,k′)6=(0,0)

(i+ k′ + 2)rεiε̃2ε̄k
′

(i+ k′ + 2)!
‖ti+k′+2−r∂xTk

′
∂itp‖L2

x,t

×

( ∞∑
k=k′+1

ε̄2

ε̃2
(i+ k + 2)r

(i+ k′ + 2)r
(i+ k′ + 2)! k!

(i+ k + 2)! k′!
(Kε̄T )k−k

′

)

. KT
ε̄3

ε̃2
(ψ̄(u, p)− φ̄(u)) +KT ε̄3(ψ0(u, p)− φ0(u)),

(5.19)

where at the last line we recall the definition of the norm ψ in (2.13) and note the bound in (4.4).
For the pressure term in (5.13), we check the sum

∑
(i,1,k)∈B2

k≥2

(i+ 1 + k)rεiε̃ε̄k

(i+ 1 + k)!

k−2∑
k′=0

(k − 1)!

k′!
Kk−k′−1‖ti+k+1−r∂xTk

′
∂itp‖L2

x,t

=
∑

(i,1,k+1)∈B2

k≥1

(i+ 2 + k)rεiε̃ε̄k+1

(i+ 2 + k)!

k−1∑
k′=0

k!

k′!
Kk−k′‖ti+k+2−r∂xTk

′
∂itp‖L2

x,t
.

(5.20)

Once again, noting the similarity between (5.20) and (4.13), we obtain∑
(i,1,k)∈B2

k≥2

(i+ 1 + k)rεiε̃ε̄k

(i+ 1 + k)!
‖ti+k+1−r[Tk−1,∇]∂itp‖L2

x,t

. KT
ε̄2

ε̃
(ψ̄(u, p)− φ̄(u)) +KT ε̃ε̄2(ψ0(u, p)− φ0(u)).

(5.21)
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Finally, we combine the estimates (5.17), (5.19), and (5.21) and add them to those obtained in Section 4 for
φ(u). Selecting ε, ε̃, ε̄ ∈ (0, 1] according to the conditions (4.20)–(4.22), we arrive at the estimate

ψ̄(u, p) ≤ ψ̄1(u, p) ≤ 1

2
φ(u, p) + Cφ0(u, p) + C1(KT ε̄+KT

ε̄3

ε̃2
+KT

ε̄2

ε̃
)(ψ̄(u, p)− φ̄(u))

+ C1(ψ0(u, p)− φ0(u)) + CMT (f) + C‖u0‖H2r−1 ,

where C1 > 0 denotes the implicit constant associated with the symbol . throughout this section, and
MT (f) is given in (2.11). By (4.21) and (4.22), we have

KT ε̄+KT
ε̄3

ε̃2
+KT

ε̄2

ε̃
≤ 1

4C
.

Dividing our choice of radii ε, ε̃, and ε̄ fixed in Subsection 4.7 by C1 if necessary, we conclude that

ψ̄(u, p) ≤ 1

2
ψ(u, p) + Cψ0(u, p) + CMT (f) + C‖u0‖H2r−1

which concludes the proof of Theorem 2.7. �

6. Analyticity for the Navier-Stokes equations

In this section, we apply Theorem 2.7 to the Navier-Stokes equations. Writing the equations (1.1) as a
forced Stokes system, we have

∂tu−∆u+∇p = −u · ∇u+ f, in Ω

∇ · u = 0, in Ω,
(6.1)

where Ω is a bounded domain Ω ∈ R3 with analytic boundary ∂Ω.

6.1. The Stokes estimate. Applying the estimate (2.14) in Theorem 2.7 to the Stokes system (6.1), we
obtain

ψ(u, p) . ψ0(u, p) +MT (f) + ‖u0‖H2r−1

+
∑

i+j+k≥(r−2)+

(i+ j + k + 2)rεiε̃j+2ε̄k

(i+ j + k + 2)!
‖ti+j+k+2−r∂jxTk∂it(u · ∇u)‖L2

x,t(Ω×(0,T ))

+
∑

i+k≥(r−2)+

(i+ k + 2)rεiε̄k+2

(i+ k + 2)!
‖ti+k+2−rTk∂it(u · ∇u)‖L2

x,t(Ω×(0,T ))

+
∑
i≥r−1

(i+ 1)rεi+1

(i+ 1)!
‖ti+1−r∂it(u · ∇u)‖L2

x,t(Ω×(0,T ))

= ψ0(u, p) +MT (f) + ‖u0‖H2r−1 + M̃1 + M̃2 + M̃3,

(6.2)

where MT (f) is given explicitly in (2.11). The parameters ε, ε̃, ε̄ are determined according to (2.5) and the
equations (4.20)–(4.22). As stated in Theorem 2.7, these parameters depend on the choices of r and d.

Before we start with the proof of Theorem 2.8 we recall that any smooth vector field X on a differential
manifold M satisfies

X(fg) = X(f)g + fX(g), f, g ∈ C∞(M). (6.3)

For the vector fields X0 and T on Ω̄ introduced in Section 2, the Leibniz rule (6.3) holds, i.e., for any β ∈ I ,
we have

Tβ(u · v) = Tβu · v + u · Tβv.
We then check the product rule for ‖T k(u · v)‖L2

x,t
with the notation given in (2.2)–(2.4).
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LEMMA 6.1. For u ∈ H1(0, T ;Hk+2(Ω)) and v ∈ H1(0, T ;Hk+1(Ω)), where k ∈ N, we have

‖Tk(u · v)‖L2
x,t
.

k∑
m=0

(
k

m

)
‖Tmu‖L∞x,t‖T

k−mv‖L2
x,t
.

Similarly, for u, v ∈ H1(0, T ;Hk+1(Ω)), where k ∈ N, we have

‖Tk(u · v)‖L2
x,t
.

k∑
m=0

(
k

m

)
‖Tmu‖L∞t L4

x
‖Tk−mv‖L2

tL
4
x
. (6.4)

The issue with this Leibniz rule, even in two space dimensions, is that the above norms are represented
by sums and thus the inequalities need to be checked directly.

PROOF OF LEMMA 6.1. First, we write

‖Tk(u · v)‖L2
x,t

=
∑
β∈Ik
‖Tβ(u · v)‖L2

x,t
=

∑
(β1,...,βk)∈Ik

‖Tβ1 · · ·Tβk(u · v)‖L2
x,t

=
∑
β∈Ik

k∑
m=0

∑
τ∈π(k,m)

‖Tβτ1 · · ·Tβτmu · Tβτm+1
· · ·Tβτk v‖L2

x,t
.

(6.5)

Using the Cauchy-Schwarz inequality, we arrive at the upper bound∑
β∈Ik

k∑
m=0

∑
τ∈π(k,m)

‖Tβτ1 · · ·Tβτmu‖L∞x,t‖Tβτm+1
· · ·Tβτk v‖L2

x,t
.

k∑
m=0

(
k

m

)
‖Tmu‖L∞x,t‖T

k−m‖L2
x,t
.

Similarly, the inequality (6.4) follows from (6.5) and the Cauchy-Schwarz inequality. �

Lemma 6.1 is applied below on the sums M̃1, M̃2, and M̃3 with v = ∇u.
The proof of Theorem 2.8 parallels the proof of Theorem 2.3 in [12] in which we considered the same

problem in the half space Ω = {x = (x1, . . . , xd) ∈ Rd : xd > 0}. In both cases, the bulk of the proof
comprises of bounds on the sums M̃1, M̃2, and M̃3 appearing in (6.2) in terms of the analyticity norm. In
order to avoid repetition, we shall frequently refer to the proof of Theorem 2.3 in [12].

6.2. Space-time analytic estimates for the nonlinear term. We use the notation |(i, j, k)| = i+j+k,
which indicates the length of the multi-index, and denote

Ui,j,k :=

{
Ni+j+kε

iε̃j ε̄k‖ti+j+k−r∂jxTk∂itu‖L2
x,t
, |(i, j, k)| ≥ r,

‖∂jxTk∂itu‖L2
x,t
, 0 ≤ |(i, j, k)| ≤ r − 1,

(6.6)

with Ni+j+k = |(i, j, k)|r/|(i, j, k)|! = (i+ j + k)r/(i+ j + k)!. From here on, we set r = 3, which is a
suitable choice for the space dimensions 2 and 3. Using the definition of ψ(u, p) in (2.13), we obtain

ψ̄(u, p) ≥
∑

i+j+k≥r
Ui,j,k and ψ0(u, p) ≥

∑
0≤i+j+k≤r−1

Ui,j,k.

6.3. Gagliardo-Nirenberg inequalities. We recall the space-time Gagliardo-Nirenberg inequalities
from [12] that are frequently used below in order to bound the nonlinear term appearing on the right side of
(6.1). For u ∈ H2(Ω), we utilize the following estimates:

‖u‖L∞(Ω) . ‖u‖
d/4

Ḣ2(Ω)
‖u‖1−d/4

L2(Ω)
+ ‖u‖L2(Ω), u ∈ H2(Ω), (6.7)

‖u‖L∞(Ω) . ‖u‖
d/4

Ḣ2(Ω)
‖u‖1−d/4

L2(Ω)
, u ∈ H2(Ω), with u

∣∣
∂Ω

= 0,

‖u‖L4(Ω) . ‖u‖
d/4

Ḣ1(Ω)
‖u‖1−d/4

L2(Ω)
+ ‖u‖L2(Ω), u ∈ H1(Ω), (6.8)
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‖u‖L4(Ω) . ‖u‖
d/4

Ḣ1(Ω)
‖u‖1−d/4

L2(Ω)
, u ∈ H1(Ω), with u

∣∣
∂Ω

= 0. (6.9)

For v ∈ H1(0, T ) such that v|t=0 = 0, we use Agmon’s inequality

‖v‖L∞(0,T ) . ‖v‖
1/2
L2(0,T )

‖∂tv‖1/2L2(0,T )
, (6.10)

while in the case v|t=0 6= 0, a lower order term is needed in the above estimate, namely,

‖v‖L∞(0,T ) . ‖v‖
1/2
L2(0,T )

‖∂tv‖1/2L2(0,T )
+ ‖v‖L2(0,T ). (6.11)

Together, the estimates (6.7)–(6.11) imply that for u ∈ H1(0, T ;H2(Ω)), we have

‖u‖L∞x,t . ‖∂tu‖
1/2

L2
t Ḣ

2
x
‖u‖1/2

L2
t Ḣ

2
x

+ ‖u‖L2
t Ḣ

2
x

+ ‖∂tu‖L2
x,t

+ ‖u‖L2
x,t
. (6.12)

Similarly, for u ∈ H1(0, T ;H1(Ω)), we may bound

‖u‖L∞t L4
x
. ‖∂tu‖1/2L2

t Ḣ
1
x
‖u‖1/2

L2
t Ḣ

1
x

+ ‖u‖L2
t Ḣ

1
x

+ ‖∂tu‖L2
x,t

+ ‖u‖L2
x,t
. (6.13)

Next, we rewrite (6.10) and (6.11) for a function of the form t`+n+m∂nxTm∂`tu. The inequality (6.11)
becomes

‖t`+n+m∂nxTm∂`tu‖L∞x,t =
∑

α∈Nd0,|α|=n,β∈Im
‖t`+n+m∂αxTβ∂`tu‖L∞x,t

.
∑

α∈Nd0,|α|=n,β∈Im

(
‖∂t(t`+n+m∂αxTβ∂`tu)‖1/2

L2
t Ḣ

2
x
‖t`+n+m∂αxTβ∂`tu‖

1/2

L2
t Ḣ

2
x

)
+

∑
α∈Nd0,|α|=n,β∈Im

(
‖t`+n+m∂αxTβ∂`tu‖L2

t Ḣ
2
x

+ ‖∂t(t`+n+m∂αxTβ∂`tu)‖L2
x,t

+ ‖t`+n+m∂αxTβ∂`tu‖L2
x,t

)
.
∥∥∥∂t (t`+n+m∂nxTm∂`tu

)∥∥∥1/2

L2
t Ḣ

2
x

‖t`+n+m∂nxTm∂`tu‖
1/2

L2
t Ḣ

2
x

+ ‖t`+n+m∂nxTm∂`tu‖L2
t Ḣ

2
x

+ ‖∂t(t`+n+m∂nxTm∂`tu)‖L2
x,t

+ ‖t`+n+m∂nxTm∂`tu‖L2
x,t
.

With the notation (2.4) and (6.6), we simply write

U`,n+2,m = N`+n+m+2ε
`ε̃n+2ε̄m‖t`+n+m−1∂nxTm∂`tu‖L2

t Ḣ
2
x

for |(`, n,m)| ≥ 1. This allows us to express [12, Lemma 4.2] as follows.

LEMMA 6.2. For u ∈ H1(0, T ;H2(Ω)) and all multi-indices |(`, n,m)| ≥ 1, we have

N`+n+mε
`ε̃nε̄m‖t`+n+m∂nxTm∂`tu‖L∞x,t

. U1/2
`+1,n+2,mU

1/2
`,n+2,mT

1/2|(`, n,m)|5/2 + U`,n+2,mT
1/2|(`, n,m)|5/2

+ U`+1,n,m

(
T1`+n+m=1 + T 2

1`+n+m≥2

)
|(`, n,m)|

+ U`,n,m

(
T `+n+m−1

1`+n+m≤2 + T 2
1`+n+m≥3

)
|(`, n,m)|.

Analogously, the equation (4.13) in [12] is preserved when using the notation (2.2)–(2.4). We then
rewrite [12, Lemma 4.3] as follows.

LEMMA 6.3. For u ∈ H1(0, T ;H1(Ω)) and all multi-indices |(`, n,m)| ≥ 2, we have

N`+n+mε
`ε̃nε̄m‖t`+n+m−1∂nxTm∂`tu‖L∞t L4

x
. U1/2

`+1,n+1,mU
1/2
`,n+1,mT

1/2|(`, n,m)|3/2

+ U`,n+1,mT
1/2|(`, n,m)|3/2 + U`+1,n,mT |(`, n,m)|

+ U`,n,m (1`+n+m=2 + T1`+n+m≥3) |(`, n,m)|.
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6.4. Terms with only time derivatives. In this section, we estimate M̃3 in (6.2). Since we do not have
any tangential or normal derivatives in this case, the arguments in [12, Subsection 4.2] apply without much
change. The only difference arises from the treatment of the term ∇u. Instead of splitting the gradient
∇ = (∂̄, ∂d) into normal and tangential components as in [12], we keep it as a gradient, i.e., ∂1

x, and switch
the order with ∂t. Then, applying the Leibniz rule, we have

M̃3 ≤
∑
i≥2

i∑
`=0

(
i

`

)
Ni+1ε

i‖ti−2∂`tu · ∂1
x∂

i−`
t u‖L2

x,t
.

Next, we show that the estimate for M3 in [12, (4.15)] stays valid for M̃3 as well.

LEMMA 6.4. For solution u of the Cauchy problem (6.1), we have

M̃3 . φ0(u)1/2φ(u)3/2 + T 1/2φ(u)2 (6.14)

for 0 < T ≤ 1.

PROOF OF LEMMA 6.4. Analogously to the proof of Lemma 4.4 in [12], we split M̃3 into sums M̃31

and M̃32 corresponding to i = 2 or i ≥ 3, respectively. By applying the product rule and switching the
order of ∇ and ∂t, we have

M̃31 . ‖u‖L∞x,t‖∂
1
x∂

2
t u‖L2

x,t
+ ‖∂tu‖L∞t L4

x
‖∂1

x∂tu‖L2
tL

4
x

+ ‖∂2
t u‖L2

tL
4
x
‖∂1

xu‖L∞t L4
x
.

Noting the similarity of the estimates above with those in [12], we point out that the upper bounds on the
expression ∂`t∂du in [12] may be used on ∂1

x∂
`
tu exactly with the same norms. Therefore, following the

same strategy in [12] we apply (6.12) and (6.13) on M̃31 to conclude that

M̃31 . φ0(u)2 + φ0(u)1/2φ(u)3/2.

Using the notation bxc = [x] and dxe = [x] + 1, we get

M̃32 ≤
∑
i≥3

bi/2c∑
`=1

(
i

`

)
Ni+1ε

i‖t`∂`tu‖L∞x,t‖t
i−`−2∂1

x∂
i−`
t u‖L2

x,t
+
∑
i≥3

Ni+1ε
i‖u‖L∞x,t‖t

i−2∂1
x∂

i
tu‖L2

x,t

+
∑
i≥3

i−1∑
`=di/2e

(
i

`

)
Ni+1ε

i‖t`−2∂`tu‖L2
tL

4
x
‖ti−`∂1

x∂
i−`
t u‖L∞t L4

x

+
∑
i≥3

Ni+1ε
i‖ti−2∂itu‖L2

tL
4
x
‖∂1

xu‖L∞t L4
x

= M̃321 + M̃322 + M̃323 + M̃324.
(6.15)

First, we check the boundary terms M̃322 and M̃324. Using (6.12), we see that we get the same upper bound
as on the term M322 in [12]. Therefore,

M̃322 .
∑
i≥3

Ni+1ε
i
(
‖∂tu‖1/2L2

t Ḣ
2
x
‖u‖1/2

L2
t Ḣ

2
x

+ ‖u‖L2
t Ḣ

2
x

+ ‖∂tu‖L2
x,t

+ ‖u‖L2
x,t

)
‖ti−2∂1

x∂
i
tu‖L2

x,t

. (φ0(u) + φ0(u)1/2φ̄(u)1/2)
∑
i≥3

Ni+1ε
i‖ti−2∂1

x∂
i
tu‖L2

x,t

. φ0(u)φ(u) + φ0(u)1/2φ(u)3/2.

Likewise, we proceed with the Gagliardo-Nirenberg inequalities (6.8)–(6.13) for M̃324 and write

M̃324 .
∑
i≥3

Ni+1ε
i
(
‖ti−2∂itu‖

d/4

L2
t Ḣ

1
x
‖ti−2∂itu‖

1−d/4
L2
x,t

)
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×
(
‖∂1

x∂tu‖
1/2

L2
t Ḣ

1
x
‖∂1

xu‖
1/2

L2
t Ḣ

1
x

+ ‖∂1
xu‖L2

t Ḣ
1
x

+ ‖∂1
x∂tu‖L2

x,t
+ ‖∂1

xu‖L2
x,t

)
.

Expressing the estimates in terms of Ui,j,k and recalling the notation (2.3)–(2.4), we note the slight change
‖ti−2∂itu‖L2

t Ḣ
1
x

= Ui,1,0 and write

M̃324 .
∑
i≥3

Ni+1ε
iU

d/4
i,1,0U

1−d/4
i,0,0 (φ̄(u)1/2φ0(u)1/2 + φ0(u))

(
(i+ 1)!

(i+ 1)3εi

)d/4( i!T
i3εi

)1−d/4

. T 1−d/4(φ̄(u)1/2φ0(u)1/2 + φ0(u))φ(u)

. T 1−d/4φ0(u)φ(u) + T 1−d/4φ0(u)1/2φ(u)3/2,

where we have used 0 < ε̃ ≤ ε̄ ≤ ε ≤ 1.
For M̃321, we express ‖ti−`−2∂1

x∂
i−`
t u‖L2

x,t
= Ui−`,1,0 and write

M̃321 .
∑
i≥3

bi/2c∑
`=1

‖t`∂`tu‖L∞x,tUi−`,1,0
(i+ 1)2ε`

`!(i− `+ 1)2
.

Following the steps used in [12], we utilize Lemma 6.2 to bound M̃321, where we express ‖t`−1∂`tu‖L2
t Ḣ

2
x

=

U`,2,0 by the notational agreement (2.4). Despite this notational difference, the essence of the inequality stays
the same and we still obtain the same estimate with the term M321 in [12, Equation (4.21)]:

M̃321 . φ0(u)φ(u) + T 1/2φ(u)2.

Lastly, we estimate M̃323. By appealing to (6.9), we obtain

M̃323 .
∑
i≥3

i−1∑
`=di/2e

(
i

`

)
Ni+1ε

i
(
‖t`−2∂`tu‖

d/4

L2
t Ḣ

1
x
‖t`−2∂`tu‖

1−d/4
L2
x,t

)
‖ti−`∂1

x∂
i−`
t u‖L∞t L4

x
.

Applying Lemma 6.3 on ‖ti−`∂1
x∂

i−`
t u‖L∞t L4

x
, we have

M̃323 .
∑
i≥3

i−1∑
`=di/2e

U
d/4
`,1,0U

1−d/4
`,0,0 U

1/2
i−`+1,2,0U

1/2
i−`,2,0T

1/2 +
∑
i≥3

i−1∑
`=di/2e

U
d/4
`,1,0U

1−d/4
`,0,0 Ui−`,2,0T

1/2

+
∑
i≥3

i−1∑
`=di/2e

U
d/4
`,1,0U

1−d/4
`,0,0 Ui−`,1,0(1i−`=1 + T1i−`≥2).

Once again, applying the discrete Young’s inequality and selecting the maximal prefactors in T , we get

M̃323 . φ0(u)φ(u) + T 1/2φ(u)2.

Combining all the estimates on the terms given in (6.15) and selecting the maximal prefactors in T and
φ0(u), we get the desired bound (6.14). �

6.5. Terms with no normal derivatives. In this section we estimate M̃2.

LEMMA 6.5. For solutions u of the Cauchy problem (6.2), we get

M̃2 . φ0(u)3/2φ(u)1/2 + Tφ(u)2 + T 3/2−d/4φ(u)2 (6.16)

for 0 < T ≤ 1.

For M̃2, we use the estimates obtained in [12, Subsection 4.3].
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PROOF OF LEMMA 6.5. Separating the terms with i + k = 1, we split the estimate of M̃2 sum into
three parts as

M̃2 ≤
∑
i+k≥2

i+k∑
|(`,m)|=0

(
i

`

)(
k

m

)
Ni+k+2ε

iε̄k‖ti+k−1Tm∂`tu · Tk−m∂i−`t ∇u‖L2
x,t

+ ‖∂t(u · ∇u)‖L2
x,t

+ ‖T(u · ∇u)‖L2
x,t

= M̃21 + M̃22 + M̃23.

(6.17)

We use the Hölder’s inequality on the lower order terms and write

M̃22 + M̃23 . ‖∂tu‖L∞t L4
x
‖∇u‖L2

tL
4
x

+ ‖u‖L∞x,t‖∂t∂
1
xu‖L2

x,t

+ ‖Tu‖L∞t L4
x
‖∇u‖L2

tL
4
x

+ ‖u‖L∞x,t‖T∇u‖L2
x,t
.

Recalling the definition of φ̄(u) and φ0(u), we obtain

M̃22 + M̃23 . φ̄(u)1/2φ0(u)3/2 + φ0(u)2. (6.18)

Now, we split M̃21 into two parts as

M̃21 .
∑
i+k≥2

b(i+k)/2c∑
|(`,m)|=0

(
i

`

)(
k

m

)
Ni+k+2ε

iε̄k

× ‖t(i+k)−(`+m)−1Tk−m∂i−`t u‖L∞t L4
x
‖t`+mTm∂`t∇u‖L2

tL
4
x

+
∑
i+k≥2

i+k∑
|(`,m)|≥d(i+k)/2e

(
i

`

)(
k

m

)
Ni+k+2ε

iε̄k

× ‖t(i+k)−(`+m)Tk−m∂i−`t u‖L∞x,t‖t
`+m−1Tm∂`t∇u‖L2

x,t

= M̃211 + M̃212.

(6.19)

Note that the inequality (6.19) is similar to the estimate (4.27) in [12]. In order to keep the commutator
terms simpler, we took advantage of the symmetry in the binomial coefficients and switched the indices
(`,m, 0) and (i− `, k −m, 0) of the operators on u and∇u (cf. compare (6.17) and (6.19)). Therefore, the
term M̃211 corresponds to the term M212 and M̃212 here corresponds to M211.

First, we start with the second term M̃212. Switching the order of∇ with the tangential vector field Tm,
we obtain an upper bound with a commutator sum

M̃212 .
∑
i+k≥2

i+k∑
|(`,m)|≥d(i+k)/2e

(
i

`

)(
k

m

)
Ni+k+2ε

i−`ε̄k−m‖t(i+k)−(`+m)Tk−m∂i−`t u‖L∞x,t

× ε`ε̄m‖t`+m−1∂1
xTm∂`tu‖L2

x,t

+
∑
i+k≥2

i+k∑
|(`,m)|≥d(i+k)/2e

m≥1

(
i

`

)(
k

m

)
Ni+k+2ε

i−`ε̄k−m‖t(i+k)−(`+m)Tk−m∂i−`t u‖L∞x,t

× ε`ε̄m‖t`+m−1[Tm,∇]∂`tu‖L2
x,t

= M̃2121 + M̃2122.
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In order to have a nontrivial commutator, we take m ≥ 1 for the second term. For M̃2121, we follow the
same steps in [12] for the term M211. By applying Lemma 6.2 on ‖t(i+k)−(`+m)Tk−m∂i−`t u‖L∞x,t , we get

εi−`ε̄k−m‖ti+k−(`+m)Tk−m∂i−`t u‖L∞x,t

. U1/2
i−`+1,2,k−mU

1/2
i−`,2,k−mT

1/2 |(i− `, 0, k −m)|5/2

Ni−`+k−m

+ Ui−`,2,k−mT
1/2 |(i− `, 0, k −m)|5/2

Ni−`+k−m

+ Ui−`+1,0,k−m(T1i−`+k−m=1 + T 2
1i−`+k−m≥2)

|(i− `, 0, k −m)|
Ni−`+k−m

+ Ui−`,0,k−m(T i−`+k−m−1
1i−`+k−m≤2 + T 2

1i−`+k−m≥3)
|(i− `, 0, k −m)|

Ni−`+k−m
.

(6.20)

Also, expressing N`+m+1ε̃ε
`ε̄m‖t`+m−1∂1

xTm∂`tu‖L2
x,t

= TU`,1,m for |(`, 0,m)| ≥ 2, we see that the

binomial coefficients coming from the two norms in M̃2121 obey the bound

Ni+k+2(i− `+ k −m)!

N`+m+1(i− `+ k −m)1/2

(
i

`

)(
k

m

)
.

(
i
`

)(
k
m

)(
i+k
`+m

) . 1 (6.21)

for |(`,m)| ≥ d(i+ k)/2e. Using the bound (6.21) on the binomial coefficients and applying the discrete
Young’s inequality on the upper bounds for M̃2121 as performed in [12] forM211, we obtain that the estimate
for M211 dominates the term M̃2121. As a result, we get

M̃2121 . Tφ0(u)φ(u) + Tφ0(u)1/2φ(u)3/2 + T 3/2φ(u)2. (6.22)

We utilize the same strategy for M̃2122. Denoting by Ai−`,k−m the right side of (6.20), we get

M̃2121 .
∑
i+k≥2

i+k∑
|(`,m)|≥d(i+k)/2e

(
i

`

)(
k

m

)
Ni+k+2

N`+m+1
Ai−`,k−mN`+m+1ε

`ε̄m‖t`+m−1[Tm,∇]∂`tu‖L2
x,t
.

(6.23)

In the same way, we first bound the binomial coefficients using (6.21) and then apply the discrete Young’s
inequality on (6.23). Using the definition of Ai−`,k−m and the norm φ(u), we obtain

M̃2121 . (φ0(u) + T 1/2φ̄(u))
∑

|(`,m)|=2,m≥1

N`+m+1ε
`ε̄m‖t`+m−1[Tm,∇]∂`tu‖L2

x,t
. (6.24)

We are now reduced to estimating the commutator sum on the right side of (6.24).
Using the estimate (5.12) derived for the commutator term in Section 5 with r = 3, we get

‖t`+m−1[Tm,∇]∂`tu‖L2
x,t
.

m−1∑
m′=0

m!

m′!
Km−m′‖t`+m−1∂1

xTm
′
∂`tu‖L2

x,t
(6.25)



30 GUHER CAMLIYURT, I. KUKAVICA, AND V. VICOL

forK > 1. The estimate (6.25) yields a bound on the commutator term on the right side of (6.24) . Applying
the Fubini Theorem on the double sums, we obtain

∑
|(`,m)|=2
m≥1

N`+m+1ε
`ε̄m

m−1∑
m′=0

m!

m′!
Km−m′‖t`+m−1∂1

xTm
′
∂`tu‖L2

x,t

.
∑

|(`,m′)|≤1

‖∂1
xTm

′
∂`tu‖L2

x,t

∑
m=m′+1

(`+m+ 1)3

(`+m+ 1)!

m!

m′!
ε̄mTm−1Km−m′

+ T
∞∑

|(`,1,m′)|=3

N`+m′+1ε̃ε
`ε̄m

′‖t`+m−2∂1
xTm

′
∂`tu‖L2

x,t

×
∑

m=m′+1

(`+m+ 1)3

(`+m′ + 1)3

(`+m′ + 1)!

(`+m+ 1)!

m!

m′!
(ε̄TK)m−m

′
.

(6.26)

For the two geometric sums in m, we note that

∑
m=m′+1

(`+m+ 1)3

(`+m+ 1)!

m!

m′!
ε̄mTm−1Km−m′ .

∞∑
m=1

m2(ε̄K)m . 1

for |(`,m′)| ≤ 1, and similarly for |(`,m′)| ≥ 2,∑
m=m′+1

(`+m+ 1)3

(`+m′ + 1)3

(`+m′ + 1)!

(`+m+ 1)!

m!

m′!
(ε̄TK)m−m

′
. ε̄K . 1

provided 0 < ε̄ ≤ 1/2K, as 0 < T ≤ 1. Therefore, the right side of (6.26) is bounded above by φ0(u) +
T φ̄(u). Using this bound in (6.24), we get

M̃2121 . (φ0(u) + T 1/2φ̄(u))(φ0(u) + T φ̄(u)) . φ0(u)2 + Tφ(u)2.

Next, we treat the term M̃211 in (6.19). Starting with a commutator argument, we have

‖t`+mTm∂`t∇u‖L2
tL

4
x
. ‖t`+m∂1

xTm∂`tu‖L2
tL

4
x

+ ‖t`+m[Tm,∇]∂`tu‖L2
tL

4
x
. (6.27)

Using (6.27), we write M̃211 as

M̃211 .
∑
i+k≥2

b(i+k)/2c∑
|(`,m)|=0

(
i

`

)(
k

m

)
Ni+k+2ε

iε̄k‖t(i+k)−(`+m)−1Tk−m∂i−`t u‖L∞t L4
x
‖t`+m∂1

xTm∂`tu‖L2
tL

4
x

+
∑
i+k≥2

b(i+k)/2c∑
|(`,m)|=1
m≥1

(
i

`

)(
k

m

)
Ni+k+2ε

iε̄k‖t(i+k)−(`+m)−1Tk−m∂i−`t u‖L∞t L4
x
‖t`+m[Tm,∇]∂`tu‖L2

tL
4
x

= M̃2111 + M̃2112. (6.28)

The first term M̃2111 may be estimated in the same way with the term M2122 in [12]. Following the same
arguments as in [12], we conclude that

M̃2111 . φ0(u)2 + T 1/2φ0(u)φ(u) + T 3/2φ0(u)1−d/4φ(u)1+d/4

+ Tφ0(u)2−d/4φ(u)d/4 + T 3/2−d/4φ(u)2.
(6.29)
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For M̃2112, we first use the Gagliardo-Nirenberg estimates and write

‖t`+m[Tm,∇]∂`tu‖L2
tL

4
x
. ‖t`+m[Tm,∇]∂`tu‖

d/4

L2
t Ḣ

1
x
‖t`+m[Tm,∇]∂`tu‖

1−d/4
L2
x,t

+ ‖t`+m[Tm,∇]∂`tu‖L2
x,t

. ‖t`+m∂1
x[Tm,∇]∂`tu‖

d/4

L2
x,t
‖t`+m[Tm,∇]∂`tu‖

1−d/4
L2
x,t

+ ‖t`+m[Tm,∇]∂`tu‖L2
x,t
.

(6.30)

Recall that by (5.15), we have

‖t`+m∂1
x[Tm,∇]∂`tu‖L2

x,t
.

m∑
m′=1

(
m

m′

)
(m′ + 1)!Km′+1‖t`+m∂1

xTm−m
′
∂`tu‖L2

x,t

+

m∑
m′=1

(
m

m′

)
m′!Km′‖t`+m∂2

xTm−m
′
∂`tu‖L2

x,t
.

(6.31)

By the discrete Young’s inequality, we note that the bound given above controls both of the terms on the
right side of (6.30). By changing the summation index to m̄ = m−m′, we get

‖t`+m[Tm,∇]∂`tu‖L2
tL

4
x
.

m−1∑
m̄=0

m!

m̄!
(m− m̄)Km−m̄‖t`+m∂1

xTm̄∂`tu‖L2
x,t

+
m−1∑
m̄=0

m!

m̄!
Km−m̄‖t`+m∂2

xTm̄∂`tu‖L2
x,t
.

(6.32)

Going back to (6.28), we apply Lemma 6.3 on the first factor. For i+ k − `−m ≥ 2, we get

εi−`ε̄k−m‖t(i+k)−(`+m)−1Tk−m∂i−`t u‖L∞t L4
x

. U1/2
i−`+1,1,k−mU

1/2
i−`,1,k−m

(i+ k − `−m)!

(i+ k − `−m)3/2
T 1/2

+ Ui−`,1,k−m
(i+ k − `−m)!

(i+ k − `−m)3/2
T 1/2 + Ui−`+1,0,k−m

(i+ k − `−m)!

(i+ k − `−m)2
T

+ Ui−`,0,k−m
(i+ k − `−m)!

(i+ k − `−m)2
(1i+k−`−m=2 + T1i+k−`−m≥3).

(6.33)

Denote

B`,m =
ε`ε̄m

(`+m)!
‖t`+m[Tm,∇]∂`tu‖L2

tL
4
x
.

By separating the term i+ k = 2 from the rest of the sum and using the notation B`,m, we rewrite M̃2112 as

M̃2112 .
(
‖Tu‖L∞t L4

x
+ ‖∂tu‖L∞t L4

x

)
‖t[T,∇]u‖L2

tL
4
x

+
∑
i+k≥3

b(i+k)/2c∑
|(`,m)|=1

(
i

`

)(
k

m

)
Ni+k+2(`+m)!

× εi−`ε̄k−m‖t(i+k)−(`+m)−1Tk−m∂i−`t u‖L∞t L4
x
B`,m,

(6.34)

where the binomial coefficients are bounded above by(
i

`

)(
k

m

)
Ni+k+2(`+m)!

(i+ k − `−m)!

(i+ k − `−m)3/2
.

(
i
`

)(
k
m

)(
i+k
`+m

) . 1.
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Bounding the binomial coefficients from above by 1, we then apply Young’s inequality on (6.34). Noting
(6.33), we deduce

M̃2112 .
(
φ0(u) + φ0(u)1/2φ̄(u)1/2

)
Tφ0(u) + (φ0(u) + T 1/2φ̄(u))

∞∑
|(`,m)|=1

B`,m. (6.35)

Next, we deal with bounding the sum on the right side of (6.35). We recall the definition of B`,m and appeal
to the formulas (6.31)–(6.32). We have

∞∑
|(`,m)|=1

B`,m .
∞∑

|(`,m)|=1

m−1∑
m̄=0

m!

m̄!

ε`ε̄m

(`+m)!
(m− m̄)Km−m̄‖t`+m∂1

xTm̄∂`tu‖L2
x,t

+

∞∑
|(`,m)|=1

m−1∑
m̄=0

m!

m̄!

ε`ε̄m

(`+m)!
Km−m̄‖t`+m∂2

xTm̄∂`tu‖L2
x,t
.

Next, we separate the casem = 1, and then apply the Fubini Theorem to change the order of the summation.
We get,

∞∑
|(`,m)|=1

B`,m . φ0(u)

( ∞∑
m=1

m(T ε̄K)m

)
+ T 2

∑
|(`,m̄)|≥2

B0 U`,1,m̄ + T
∑

|(`,m̄)|≥2

B1 U`,2,m̄,

where the coefficients B0 and B1 are given respectively as

B0 =

∞∑
m=m̄+1

(`+ m̄)!

(`+ m̄)2

(m− m̄)

(`+m)!

m!

m̄!
(T ε̄K)m−m̄

and

B1 =
∞∑

m=m̄+1

(`+ m̄)!

(`+ m̄)(`+m)!

m!

m̄!
(T ε̄K)m−m̄.

Note that the factorial terms for B0 are bounded from above by

m! (`+ m̄)!

m̄! (`+ m̄)!
(m− m̄) ≤ (m− m̄)

and likewise for B1 we have
m! (`+ m̄)!

m̄! (`+m)!
≤ 1.

Using the bounds above we obtain that the two geometric sums in m above are finite for 0 < T ≤ 1 and
0 < ε̄ ≤ 1/2K. Therefore,

∞∑
|(`,m)|=1

B`,m . Tφ0(u) + T 3φ̄(u) + T 2φ̄(u),

which implies

M̃2112 . Tφ0(u)2 + Tφ(u)2. (6.36)

Finally adding the estimates (6.18), (6.22), (6.29), (6.36), and selecting the maximal coefficients in T and
φ0(u), we obtain (6.16). �
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6.6. Terms with mixed derivatives. In this section we estimate M̃1.

LEMMA 6.6. For solutions u of the Cauchy problem (6.2), we have

M̃1 . φ0(u)3/2φ(u)1/2 + T 1/2φ0(u)φ(u) + T 3/2φ(u)2

for all 0 < T ≤ 1.

PROOF OF LEMMA 6.6. By the Leibniz rule we have

M̃1 ≤
∑

i+j+k≥1

i∑
`=0

j∑
n=0

k∑
m=0

(
i

`

)(
j

n

)(
k

m

)
Ni+j+k+2ε

iε̃j ε̄k‖ti+j+k−1∂j−nx Tk−m∂i−`t u · ∂nxTm∂`t∇u‖L2
x,t
.

Following the program in Subsection 4.4, [12], we separate the case |(i + j + k)| = 1 from the sum and
split the rest into two parts

M̃1 .
∑

i+j+k=1

(
‖u‖L∞x,t‖∂

j
xTk∂it∇u‖L2

x,t
+ ‖∂jxTk∂itu‖L∞t L4

x
‖∇u‖L2

tL
4
x

)

+
∑

i+j+k≥2

i+j+k∑
|(`,n,m)|=d(i+j+k)/2e

(
i

`

)(
j

n

)(
k

m

)
×Ni+j+k+2ε

iε̃j ε̄k‖t(i+j+k)−(`+n+m)∂j−nx Tk−m∂i−`t u‖L∞x,t‖t
`+n+m−1∂nxTm∂`t∇u‖L2

x,t

+
∑

i+j+k≥2

b(i+j+k)/2c∑
|(`,n,m)|=0

(
i

`

)(
j

n

)(
k

m

)
×Ni+j+k+2ε

iε̃j ε̄k‖t(i+j+k)−(`+n+m)−1∂j−nx Tk−m∂i−`t u‖L∞t L4
x
‖t`+n+m∂nxTm∂`t∇u‖L2

tL
4
x

= M̃11 + M̃12 + M̃13.

The estimate above on M̃1 is similar to the one on M1 in Subsection 4.4, [12]. Note that we switched
the indices (`,m, n) and (i − `, k − m,n − j) of the operators acting on u and ∇u to in order to keep
the commutator terms simpler. Due to the symmetry in the binomial coefficients, we may still follow the
corresponding estimates given in [12].

Analogously to [12], the contribution from |(i, j, k)| = 1 stays bounded by

M̃11 . φ0(u)2 + φ0(u)3/2φ(u)1/2 (6.37)

since the number of derivatives on u and on∇u does not exceed three.
For M̃12, we start with switching the order of∇ with the tangential vector field Tm and obtain an upper

bound with a commutator sum

M̃12 .
∑

i+j+k≥2

i+j+k∑
|(`,n,m)|=d(i+j+k)/2e

(
i

`

)(
j

n

)(
k

m

)
×Ni+j+k+2ε

iε̃j ε̄k‖t(i+j+k)−(`+n+m)∂j−nx Tk−m∂i−`t u‖L∞x,t‖t
`+n+m−1∂n+1

x Tm∂`tu‖L2
x,t

+
∑

i+j+k≥2

i+j+k∑
|(`,n,m)|=d(i+j+k)/2e

(
i

`

)(
j

n

)(
k

m

)
×Ni+j+k+2ε

iε̃j ε̄k‖t(i+j+k)−(`+n+m)∂j−nx Tk−m∂i−`t u‖L∞x,t‖t
`+n+m−1∂nx [Tm,∇]∂`tu‖L2

x,t

= M̃121 + M̃122.
(6.38)
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Noting the symmetry of the coefficients once again, we see that the sum M̃121 above corresponds to the term
M12 in [12]. Therefore, following the same steps in [12] to bound M12 we arrive at the conclusion that

M̃121 . φ0(u)2 + T 1/2φ0(u)φ(u) + T 3/2φ(u)2. (6.39)

Next, we treat the term M̃122 in (6.38). By the equation (5.15), we get

‖t`+n+m−1∂nx [Tm,∇]∂`tu‖L2
x,t

.
m−1∑
m′=0

∑
n′+n3=n

(
n′ +m−m′

n′

)
n! m!

n3! m′!
Kn′+m−m′‖t`+n+m−1∂n3+1

x Tm
′
∂`tu‖L2

x,t

for K > 1. Applying Lemma 6.2 on the factor ‖t(i+j+k)−(`+n+m)∂j−nx Tk−m∂i−`t u‖L∞x,t , we obtain, with
a = (i+ j + k)− (`+m+ n), that

εi−`ε̃j−nε̄k−m‖ta∂j−nx Tk−m∂i−`t u‖L∞x,t

. U1/2
i−`+1,j−n+2,k−mU

1/2
i−`,j−n+2,k−mT

1/2a
5/2

Na
+ Ui−`,j−n+2,k−mT

1/2a
5/2

Na

+ Ui−`+1,j−n,k−m(T1a=1 + T 2
1a≥2)

a

Na
+ Ui−`,j−n,k−m(T a−1

1a≤2 + T 2
1a≥3)

a

Na
.

(6.40)

We write M̃122 as

M̃122 .
∑

i+j+k≥2

i+j+k∑
|(`,n,m)|=d(i+j+k)/2e

(
i

`

)(
j

n

)(
k

m

)
Ni+j+k+2

N`+n+m+1
εi−`ε̃j−nε̄k−m

× ‖t(i+j+k)−(`+n+m)∂j−nx Tk−m∂i−`t u‖L∞x,t
ε`ε̃nε̄m

N`+n+m+1
‖t`+n+m−1∂nx [Tm,∇]∂`tu‖L2

x,t

and note that the factorial terms obey(
i

`

)(
j

n

)(
k

m

)
Ni+j+k+2

N`+n+m+1

|(i− `, j − n, k −m)|5/2

Ni−`+j−n+k−m

.

(
i

`

)(
j

n

)(
k

m

)
i+ j + k

(i+ j + k)!

(`+ n+m)!

(`+ n+m)2

(i− `+ j − n+ k −m)!

(i− `+ j − n+ k −m)1/2
≤ 1

as |(`, n,m)| ≥ d(i+ j + k)/2e. This gives

M̃122 .
∑

i+j+k≥2

i+j+k∑
|(`,n,m)|=d(i+j+k)/2e

Ai,j,k`,n,mε
`ε̃nε̄mN`+n+m+1‖t`+n+m−1∂nx [Tm,∇]∂`tu‖L2

x,t
,

whereAi,j,k`,n,m denotes the right side of (6.40) multiplied by a5/2/Na. Applying Young’s inequality we bound

the sum on Ai,j,k`,n,m by

M̃122 .
(
φ0(u) + T 1/2φ̄(u)

)( ∞∑
|(`,n,m)|=2

ε`ε̃nε̄mN`+n+m+1‖t`+n+m−1∂nx [Tm,∇]∂`tu‖L2
x,t

)
.
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Next, we estimate the second factor above. Using the bounds on the commutator sum, we have
∞∑

|(`,n,m)|=2
n,m≥1

ε`ε̃nε̄mN`+n+m+1‖t`+n+m−1∂nx [Tm,∇]∂`tu‖L2
x,t

.
∞∑

|(`,n,m)|=2
n,m≥1

ε`ε̃nε̄mN`+n+m+1

m−1∑
m′=0

∑
n′+n3=n

(
n′ +m−m′

n′

)
n! m!

n3! m′!
Kn′+m−m′

× ‖t`+n+m−1∂n3+1
x Tm

′
∂`tu‖L2

x,t
.

(6.41)

Changing the order of summation by the Fubini Theorem, the right side of (6.41) becomes∑
(`,n3+1,m′)∈Bc∪B1

∞∑
m=m′+1

∞∑
n=n3

(n− n3 +m−m′)!
(n− n3)! (m−m′)!

n! m!

n3! m′!

(`+ n+m+ 1)3

(`+ n+m+ 1)!

×Kn−n3+m−m′‖t`+n+m−1∂n3+1
x Tm

′
∂`tu‖L2

x,t

.
∑

(`,n3+1,m′)∈B1

(`+m′ + n3 + 1)3

(`+m′ + n3 + 1)!
ε`ε̃n3+1ε̄m

′
A1‖t`+n3+m′−2∂n3+1

x Tm
′
∂`tu‖L2

x,t

+
∑

(`,n3+1,m′)∈Bc
A0‖∂n3+1

x Tm
′
∂`tu‖L2

x,t

where

A1 =
∞∑

m=m′+1

∞∑
n=n3

(n− n3 +m−m′)!
(n− n3)! (m−m′)!

n! m!

n3! m′!

(`+ n+m+ 1)3

(`+ n3 +m′ + 1)3

(`+ n3 +m′ + 1)!

(`+ n+m+ 1)!

× T

ε̃
(T ε̃K)n−n3(T ε̄K)m−m

′

and

A0 =
∞∑

n,m=1

(n− n3 +m−m′)!
(n− n3)! (m−m′)!

n! m!

n3! m′!

(`+ n+m+ 1)3

(`+ n+m+ 1)!
T `+n+m−1Kn−n3+m−m′ε`ε̃nε̄m.

We recall the computations in Section 4.2 and note that

sup
(`,n3+2,m′)∈Bc

A0 . T and sup
(`,n3+2,m′)∈B1

A1 . T
2.

We recall the definition of φ0 and φ̄ and using the bounds above for A0 and A1 we conclude that

M̃122 . (φ0(u) + T 1/2φ̄(u))(Tφ0(u) + T 2φ̄(u)). (6.42)

Next, we estimate M̃13. Recalling the change of indices in the operators acting on u and ∇u, we note
that M̃13 corresponds to M13. We follow the same program we applied in the previous section to bound
M̃211, and write

M̃13 .
∑

i+j+k≥2

b(i+j+k)/2c∑
|(`,n,m)|=0

(
i

`

)(
j

n

)(
k

m

)
Ni+j+k+2ε

iε̃j ε̄k‖t(i+j+k)−(`+n+m)−1∂j−nx Tk−m∂i−`t u‖L∞t L4
x

× ‖t`+n+m∂n+1
x Tm∂`tu‖L2

tL
4
x

+
∑

i+j+k≥4

b(i+j+k)/2c∑
|(`,n,m)|=2
n,m≥1

(
i

`

)(
j

n

)(
k

m

)
Ni+j+k+2ε

iε̃j ε̄k‖t(i+j+k)−(`+n+m)−1∂j−nx Tk−m∂i−`t u‖L∞t L4
x
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× ‖t`+n+m∂nx [Tm,∇]∂`tu‖L2
tL

4
x

= M̃131 + M̃132.

Analogously to M̃2111, the first term M̃131 is dominated by the estimates on M13 in [12]. Therefore,

M̃131 . φ0(u)2 + Tφ0(u)2−d/4φ(u)d/4 + T 1/2φ0(u)φ(u)

+ T 3/2φ0(u)1−d/4φ(u)1+d/4 + T 5/2−d/4φ(u)2.
(6.43)

For M̃132, using the Gagliardo-Nirenberg estimates we first write the commutator term in L2
x,t norm

‖t`+n+m∂nx [Tm,∇]∂`tu‖L2
tL

4
x
. ‖t`+n+m∂n+1

x [Tm,∇]∂`tu‖
d/4

L2
x,t
‖t`+n+m∂nx [Tm,∇]∂`tu‖

1−d/4
L2
x,t

+ ‖t`+n+m∂nx [Tm,∇]∂`tu‖L2
x,t

. ‖t`+n+m∂n+1
x [Tm,∇]∂`tu‖L2

x,t
+ ‖t`+n+m∂nx [Tm,∇]∂`tu‖L2

x,t
.

(6.44)

Also, we estimate ‖t(i+j+k)−(`+n+m)−1∂j−nx Tk−m∂i−`t u‖L∞t L4
x

by Lemma 6.3. Putting a = i + j + k −
`− n−m ≥ 2, we get

εi−`ε̃j−nε̄k−m‖ta−1∂j−nx Tk−m∂i−`t u‖L∞t L4
x

. U1/2
i−`+1,j−n+1,k−mU

1/2
i−`,j−n+1,k−m

a!

a3/2
T 1/2 + Ui−`,j−n+1,k−m

a!

a3/2
T 1/2

+ Ui−`+1,j−n,k−m
a!

a2
T + Ui−`,j−n,k−m

a!

a2
(1a=2 + T1a≥3).

(6.45)

Denote

B`,n,m =
ε`ε̃nε̄m

(`+ n+m)!
‖t`+n+m∂nx [Tm,∇]∂`tu‖L2

tL
4
x
. (6.46)

Then, we rewrite M̃132 in this notation as

M̃132 .
∑

i+j+k≥4

b(i+j+k)/2c∑
|(`,n,m)|=1

(
i

`

)(
j

n

)(
k

m

)
Ni+j+k+2 (`+ n+m)! B`,m

× εi−`ε̃j−nε̄k−m‖t(i+j+k)−(`+n+m)−1∂j−nx Tk−m∂i−`t u‖L∞t L4
x
.

(6.47)

Similarly, the factorial and the binomial terms appearing on (6.47) and on the right side of (6.45) are bounded
from above by (

i

`

)(
j

n

)(
k

m

)
Ni+j+k+2 (`+ n+m)!

(i+ j + k − `− n−m)!

(i+ j + k − `− n−m)3/2
. 1.

With the estimate for εi−`ε̃j−nε̄k−m‖t(i+j+k)−(`+n+m)−1∂j−nx Tk−m∂i−`t u‖L∞t L4
x

given in the equation (6.45),
we bound the factorial terms in (6.47) from above by 1 , and then apply Young’s inequality on the resulting
double sum. This yields

M̃132 .
(
φ0(u) + T 1/2φ̄(u)

) ∑
|(`,n,m)|=2,n,m≥1

B`,n,m. (6.48)
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Before we bound the sum in (6.48), we recall the expansion (5.15) for the commutator term and combine it
with the estimate (6.44)

‖t`+n+m∂nx [Tm,∇]∂`tu‖L2
tL

4
x

.
m−1∑
m′=0

n+1∑
n′=0

(
n′ +m−m′

n′

)
(n+ 1)! m!

(n+ 1− n′)! m′!
Kn′+m−m′‖t`+n+m∂n+2−n′

x Tm
′
∂`tu‖L2

x,t

+
m−1∑
m′=0

n∑
n′=0

(
n′ +m−m′

n′

)
n! m!

(n− n′)! m′!
Kn′+m−m′‖t`+n+m∂n+1−n′

x Tm
′
∂`tu‖L2

x,t
.

Recalling the definition of B`,n,m in (6.46) and using the inequality above, and changing the indices to
ñ = n+ 1, n1 = n+ 1− n′ and n2 = n− n′, we obtain

∑
|(`,n,m)|=2
n,m≥1

B`,n,m .
∑

|(`,ñ,m)|=3
ñ≥2,m≥1

ε`ε̃ñ−1ε̄m

(`+ ñ+m− 1)!

m−1∑
m′=0

ñ∑
n1=0

(
ñ− n1 +m−m′

ñ− n1

)
ñ! m!

n1! m′!
K ñ−n1+m−m′

× ‖t`+ñ+m−1∂n1+1
x Tm

′
∂`tu‖L2

x,t

+
∑

|(`,n,m)|=2
n,m≥1

ε`ε̃nε̄m

(`+ n+m)!

m−1∑
m′=0

n∑
n2=0

(
n− n2 +m−m′

n− n2

)
n! m!

(n2)! m′!
Kn−n2+m−m′

× ‖t`+n+m∂n2+1
x Tm

′
∂`tu‖L2

x,t
.

(6.49)

We then change the order of the sums on the right side of (6.49) by the Fubini Theorem, and obtain∑
(`,n1,m′)∈B1∪Bc

∞∑
m=m′+1

∞∑
ñ=n1∧2

(
ñ− n1 +m−m′

ñ− n1

)
ñ! m!

(`+ ñ+m− 1)! n1! m′!
K ñ−n1+m−m′

× ε`ε̃ñ−1ε̄m‖t`+ñ+m−1∂n1+1
x Tm

′
∂`tu‖L2

x,t

+
∑

(`,n2,m′)∈B1∪Bc

∞∑
m=m′+1

∞∑
n=n2

(
n− n2 +m−m′

n− n2

)
n! m!

(`+ n+m)! n2! m′!
Kn−n2+m−m′

× ε`ε̃nε̄m‖t`+n+m∂n2+1
x Tm

′
∂`tu‖L2

x,t
.

(6.50)

Using the notation U`,n,m, we further bound the first sum in (6.50) by∑
(`,n1,m′)∈Bc

‖∂n1+1
x Tm

′
∂`tu‖L2

x,t
A0 + T

∑
(`,n1,m′)∈B1

U`,n1+1,m′A1 (6.51)

where

A0 =
1

T

∞∑
m=1

∞∑
ñ=2

(
ñ+m

ñ

)
ñ! m!

(ñ+m− 1)!
(T ε̃K)ñ(T ε̄K)m

and

A1 =
∞∑

m=m′+1
ñ=n1

(
ñ− n1 +m−m′

ñ− n1

)
ñ! m!

n1! m′!

(`+ n1 +m′)!

(`+ ñ+m− 1)!

1

(`+ n1 +m′)2
(T ε̃K)ñ−n1(T ε̄K)m−m

′
.
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After the cancellation of factorial terms, we see that A0 is summable and it is bounded above by

A0 . T ε̄K
∞∑

m,ñ=0

(n+m)(T ε̃K)ñ(T ε̄K)m . T (6.52)

for 0 < ε̃ . ε̄ < 1/K.
Similarly, we first simplify the factorial terms forA1. Recalling the hypergeometric inequality (cf. (4.9)),

the first factor below is bounded above by 1, and we have(
ñ
n1

)(
m
m′

)(
`+ñ+m

ñ−n1+m−m′
) `+ ñ+m

(`+ n1 +m′)2
.

`+ ñ+m

(`+ n1 +m′)2
,

which in turn yields

sup
(`,n1,m′)∈B1

A1 . sup
(`,n1,m′)∈B1

∞∑
m=m′+1
ñ=n1

`+ ñ+m

(`+ n1 +m′)2
(T ε̃K)n−n1(T ε̄K)m−m

′

. T ε̄K . T

(6.53)

for 0 < ε̄ ≤ 1/2K.
In the same fashion, the second sum in (6.50) is bounded above by∑

(`,n2,m′)∈Bc
‖∂n2+1

x Tm
′
∂`tu‖L2

x,t
Ã0 + T 2

∑
(`,n2,m′)∈B1

U`,n2+1,m′Ã1 (6.54)

with the coefficients Ã0 and Ã1 obeying the same estimates with A0 and A1.
Back to (6.50), we bound the two sums as given in (6.51) and (6.54) and apply the estimates (6.52) and

(6.53) on the coefficients A0, Ã0 and A1, Ã1. With the final application of discrete Young’s inequality on
the sums (6.51), (6.54), we reach the estimate∑

|(`,n,m)|=2
n,m≥1

B`,n,m . Tφ0 + T 2φ̄(u) + Tφ0(u) + T 3φ̄(u)

and putting this estimate on (6.48), we get

M̃132 . Tφ0(u)2 + T 5/2φ(u)2. (6.55)

Combining (6.43) and (6.55) and selecting the maximal prefactors in T , we conclude that

M13 . φ0(u)2 + Tφ(u)2. (6.56)

Adding the estimates (6.37), (6.39), (6.42), and (6.56), we conclude the proof of Lemma 6.4. �
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[21] Z. Grujić and H. Kalisch. Local well-posedness of the generalized Korteweg-de Vries equation in spaces of analytic func-

tions. Differential Integral Equations, 15(11):1325–1334, 2002.
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