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Abstract—Recent years have witnessed the increasing pene-
tration of wireless charging base stations in the workplace and
public areas, such as airports and cafeteria. Such an emerging
wireless charging infrastructure has presented opportunities for
new indoor localization and identification services for mobile
users. In this paper, we present QID, the first system that can
identify a Qi-compliant mobile device during wireless charging
in real-time. QID extracts features from the clock oscillator and
control scheme of the power receiver and employs light-weight
algorithms to classify the device. QID adopts 2-dimensional
motion unit to emulate a variety of multi-coil designs of Qi,
which allows for fine-grained device fingerprinting. Our results
show that QID achieves high recognition accuracy. With the
prevalence of public wireless charging stations, our results also
have important implications for mobile user privacy.

Index Terms—Qi wireless charging, device recognition, real-
time processing

I. INTRODUCTION

Recent years have witnessed the increasing penetration of

wireless charging base stations in public areas like offices,

restaurants, and airports, etc. [1]. These is also a trend to em-

bed wireless charging base stations in furnitures like desks and

tables [2], [3]. It is estimated that nearly 600 million wireless

charging devices were shipped during the year 2018 [4]. This

emerging wireless charging infrastructure has presented new

opportunities for precise user localization, where the base sta-

tion learns the location and identification of the mobile device

being charged. A number of different wireless- or ultrasonic-

based approaches have been proposed for indoor localization

[5]–[12]. Designed for providing continuous location of a

moving user, they often incur significant overhead, e.g., due to

the need of large-scale wardriving for collecting fine-grained

signal fingerprints. In this work, we exploit wireless charging

for a specific application scenario, where the user stays right

next to the wireless charger, waiting for the phone to be

charged. Therefore, the wireless charger localizes a mobile

phone by simply referring to the already-known location of

the registered charger.

Pervasive wireless charging stations provide high localiza-

tion accuracy and high reliability at low deployment cost,

which will enable a wide range of applications. For instance,

a coffee shop may recognize its customers when they charge

their phones on the coffee table, and provide customized ser-

vices or location-based advertisements. For another example,

when users charge their phones on the table instrumented

with wireless charing during a meeting or lecture, the precise

sitting positions of the users can be determined, which enables

interesting interactions such as sharing documents in an ad-hoc

group, sending instant messages, or exploring nearby people

[13]. In addition to mobile device localization, the popularity

of wireless charging infrastructure also provides opportunities

for user authentication. For instance, a paid wireless charing

service may use the charger to identify the phone and process

the payment automatically.

To leverage the wireless charging infrastructure for user

localization and identification, a key challenge is to reli-

ably identify the wireless charging unit of mobile devices.

Unfortunately, unlike network interfaces such as Wi-Fi and

Bluetooth that have unique and fixed hardware addresses, the

wireless charging unit of commercial off-the-shelf (COTS)

mobile devices typically does not have a fixed hardware ID.

For instance, according to the Qi standard [14], the identity

of a power receiver is defined by a Basic Device ID, which

can be a software-generated random sequence that may change

each time the power receiver is booted.

In this paper, we present the design, implementation, and

evaluation of QID – the first practical system that reliably

identifies Qi-compliant mobile devices based on the hardware

fingerprints. Specifically, QID augments standard-compliant

wireless charging base station to extract features from the os-

cillator, coil, and controller of a Qi-compliant power receiver,

while requiring no retrofitting or modification to existing

Qi-compatible mobile devices. QID employs a 2-D motion

controller to emulate the coil array in the Qi reference design

(described in Section III) and regulate the inductive coupling

between the power transmitting and receiving coils, which

allows for fine-grained fingerprinting of the power receiver

while optimizing the efficiency of power transfer. Experimen-

tal results based on 52 Qi-compatible devices show that QID

achieves an overall identification accuracy of up to 89.7%,

with an average of 85.3%. Our results also have important

implications for user privacy. With the increasing prevalence

of wireless charging stations in public areas, how to prevent

the leakage of user’s location opens up new research questions.

The rest of the paper is organized as follows. Section II
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reviews related work. Section III introduces the background

of the Qi specification. Section IV presents the challenges and

the overview of the QID design. In Section V, we describe

our QID sensor design for device fingerprint acquisition.

Section VI presents the QID motion control design. Section

VII discusses the feature selection and classification at the

server side. The implementation and the evaluation results of

the QID are discussed in Section VIII and Section IX. Finally,

we conclude this paper and discuss the future work.

II. RELATED WORK

Device identification has been studied for a wide range

of communication systems. The existing techniques can be

broadly classified into two categories. One category uses the

fingerprints of RF signal introduced by hardware imperfection

of frequency generator on the devices. The other category uses

temporal features, i.e. the clock skew introduced by the minor

difference in the oscillator among the devices. The clock skew

mainly affects the time interval of the transmitted packets.

RF Signal Fingerprinting. PARADIS [15] identified the

source network interface card (NIC) of an IEEE 802.11 frame

through passive radio-frequency analysis. Specifically, it uses

I/Q origin offset, frequency error, and SYNC correlation to

distinguish the devices. Caraoke [16] separated devices by

their carrier frequency offset differences to avoid wireless

collisions in an e-toll transponder network. Similarly, Danev

et al. [17] achieved wireless sensor recognition using radio

frequency transient characteristics. Eletreby et al. proposed

Choir [18], a system that disentangles collisions in LoRa LP-

WAN by distinguishing the sensor nodes using their time,

frequency and phase offsets caused by hardware imperfection.

However, these techniques cannot be applied to wireless

charging, because extracting the fingerprints of RF signal often

requires expensive equipment. For example, [15] used Agilent

89641S vector signal analyzer to capture the error vectors in

the IQ plane. Moveover, wireless charging adopts resonant

coupling to transfer energy, where both the carrier frequency

and amplitude are variable, which makes it impossible to infer

the device identity using the RF signal in wireless charging.

Clock Skew Fingerprinting. Kohno et al. [19] used the TCP

timestamp option to estimate a device’s clock skew. Similarly,

Cristea and Groza [20] studied how to fingerprint smartphones

remotely via the Internet Control Message Protocol (ICMP)

timestamp response. While these two studies focused on traffic

and driver-level signatures, other systems explored hardware-

level features to distinguish devices. Huang et al. [21] used

temporal features of Bluetooth baseband embedded in the

chipset firmware to fingerprint Bluetooth devices. However,

one key difference between these scenarios and wireless charg-

ing is that the clock skew fingerprints of the mobile device

is heavily dependent on the device placement. Moreover, the

placement of the device on the charger pad is unpredictable,

which casts significantly difficulty in building a precise model

for each device. We will further discuss the challenges in detail

in Section IV.

TABLE I
PRX TIMING CONSTRAINTS DURING THE QI POWER TRANSFER PHASE.

Parameter Symbol Target (ms) Max (ms)

CEP Interval tinterval 250.0 350.0

RPP Interval treceived 1500.0 4000.0

Qi receiver module

Samsung Galaxy S3

Fig. 1. An attachable Qi-compatible power receiver for Samsung Galaxy S3.

(a) (b)

Fig. 2. Examples of the multi-coil PTx designs in Qi.

There exist other device identification technologies based on

fingerprints of acoustic sensor [22], [23], and inertia sensor

[24], [25]. Although these methods may achieve acceptable

accuracy, they require reading the data or sensor samples from

the phone directly, which can be intrusive.

In addition to the device identification, Lu et al. [26]

proposed a wireless charging network system, where multiple

wireless chargers communicate with the server or adjacent

wireless chargers to provide pay-per-use charging service. We

note that reliable charging device identification is the basic

building block for such applications.

III. BACKGROUND

Qi is an open standard that defines wireless power transfer

over short distances. A typical Qi system consists of a power

transmitter (PTx) installed on a Qi base station and a power

receiver (PRx) attached to or installed in a Qi-compliant

mobile device. The PTx comprises a transmitting coil, called

Primary Coil, which generates an oscillating magnetic field,

that induces an alternating current in the receiving coil, namely

the Secondary Coil, of the PRx. The PRx communicates with

the PTx via backscatter modulation of the current draw, and

primarily sends two types of messages to optimize the power

transfer. The control error packet (CEP) carries an integer that

indicates the difference between the desired power level and

the received power level. The received power packet (RPP)

reports the average level of power received in the past period.

Throughout the process of charging, CEPs and RPPs are trans-
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Fig. 3. Examples of feature acquisition in three configurations: (1) stationary PRx; (2) PRx position changed during charging; (3) QID is enabled.

mitted periodically. Table I shows the CEP and RPP intervals

specified by the Qi standard. Based on the information in CEPs

and RPPs, the PTx adjusts the carrier frequency and amplitude

of the primary power signal to optimize the coupling between

the coils of PTx and PRx. The combination of the carrier wave

frequency and amplitude is defined as the operating point.

Qi specifies multiple reference receiver and coil designs

[27]. Fig. 1 exemplifies one of the available designs and

Samsung Galaxy S3 that supports attachable Qi-compatible

PRx modules. It has a pair of terminals (+5V and GND) that

connects to the output of the PRx. In such a design, the

PRx is an independent module and does not communicate

with the phone. The attachable PRx modules provide the

wireless charging capacity to those devices that originally do

not ship with the wireless power receivers. In this work, we

assume each such module represents a user identity, since it

is an independent component (either attached outside or pre-

installed inside). It outputs stable current at 5 V for charging

with its maximum capacity most of the time.

In addition to the PRx design, Qi also specifies more than

30 type A and 7 type B PTx designs, where type A designs

have one or more Primary Coils but only one of them can be

activated at a time, while type B designs support an array of

Primary Coils and one or more Primary Coils can be activated

to provide wireless power to multiple PRxs simultaneously.

Fig. 2 [28] shows two examples of the multi-coil chargers.

Compared to the single coil designs, multi-coil PTx enlarges

the possible coupling area with the PRx, thus providing more

flexibility in the device placement. As a result, the coil array

PTx designs become more prevailing on the market.

Qi also supports a serial number of at least 20 bits, also

known as the Basic Device ID. However, a PRx can also use

a random number generator to dynamically change the Basic

Device ID, so that every time the user puts the mobile device

onto a PTx, the Basic Device ID updates. Such a random

ID invalidates device ID based applications, which inspires

us to design a system to identify a device using its hardware

fingerprints.

IV. DESIGN CHALLENGES AND SYSTEM OVERVIEW

A. Design Challenges

In this work, we choose the PRx temporal and control

scheme features of charging process to identify the mobile

device, which include CEP time intervals and values. As

discussed in Section III, these features can be easily extracted

from any Qi-compliant devices, which ensures the compat-

ibility and easy deployment of our system. However, the

following challenges need to be addressed due to the intrinsic

characteristics of wireless charging environment.

Noise in temporal features caused by power transfer. The

wireless power transfer happens in the rapidly-changing high

power electromagnetic field between the two coupling coils,

casting more noise than typical RF wireless systems. For

instance, as shown in Fig. 3a(1), the measured packet intervals

have significant fluctuations. The standard deviation of the

CEP time interval is more than 4.4 ms, corresponding to 1.7%

error, which makes it difficult to distinguish between different

charging devices.

Undesirable stable operating point. Qi wireless charging has

a well-designed feedback control loop. The wireless power

transfer process is usually stabilized at an operating point

within hundreds of milliseconds (3 to 5 CEPs). Although this

is a desired feature in terms of maintaining high charging

efficiency, it brings a major challenge in recognizing the target

device. Fig. 3a(1) and Fig. 3b(1) show the experimental result

of such a scenario, where the phone remains stationary on the

charging pad. As shown, the selected features, both the CEP

time interval and CEP values, remain unchanged during the

charging process, which eventually raises the recognition error

rate.
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Unconstrained device placement. The third challenge, the

most difficult one in our case, is that the selected features

are dependent on the phone placement. In other words, if the

user alters the PRx position, the feature values can change

dramatically. Fig. 3a(2) and Fig. 3b(2) demonstrate how the

CEP time interval and control error value change with respect

to the phone placement. During the measurement, after we

rotate the phone with a random angle, the CEP time interval

decreases from about 250 ms to 160 ms, and the Control

Error value increases dramatically from 0 to 30. In a real-

world scenario, the placement of a mobile phone is often

unpredictable. As a result, the errors are accumulated over

time, which eventually renders the recognition unsuccessful.

B. System Overview

We now provide an overview of the QID system. The

system architecture is shown in Fig. 4. It consists of 3

components, namely an off-the-shelf Qi wireless charger, the

QID sensor, and the QID server. The QID sensor is responsible

for collecting a selected set of features from wireless charging

and uploading the data to the server, while the QID server is

responsible for the feature extraction and device classification.

The QID server can connect to the QID sensor directly (e.g.,

through UART) or resides on the cloud and communicates with

multiple QID sensors through the Internet, enabling tracking

the target device at different charging locations.

The QID sensor can work with most Qi-compliant chargers.

It does not modify any of the charger pad circuits. What

QID sensor needs from a Qi-compliant charger is a test pin
that outputs the filtered data bit flow. We note that such

data pin is indispensable for the Qi charging system because

the PTx requires the feedback from the PRx. Reading data

flow from the pin does not affect the operation of the Qi

charging system. Therefore, thanks to the minimal modifica-

tion requirement, QID can be easily integrated with off-the-

shelf Qi chargers. After connecting the test pin and mounting

the charger coil to QID sensor, the platform is ready for

device fingerprinting. The QID sensor consists of a motion

control hardware component and a software component for

feature collection. The design of the motion unit is discussed

in Section VI. The motion unit hosts the charging pad and

moves it according to certain pattern, within a range of 10

cm. This allows to fingerprint PRx dynamically at different

relative positions between the PTx and PRx coils, resulting in

higher identification accuracy. We note that the motion unit is

connected to a separate control module, and it does not require

wire connection with the charger itself. As a result, it can be

integrated with any off-the-shelf charger easily.

The motivation of adopting the motion unit is two-fold.

First, it can be easily integrated with single-coil chargers and

improve the performance of classification accuracy as well

as power delivery. Second, it can emulate many emerging

new chargers with multi-coil Qi-compliant power transmitter

design [28]–[30]. As described in Section III, each coil on

such transmitter is controlled by an individual switch or a

separate bridge. The PTx can select the optimal coil to deliver

the wireless power to the PRx. Thus it enlarges the coupling

area between the PTx and PRx and provides more flexibility in

the device placement. Despite these advantages, it is difficult

to exploit the multiple coils of Qi chargers for fingerprinting

in practice, since there exists a large number of heterogeneous

designs as specified by Qi [27]. To address this challenge, the

QID sensor extends the design of the physical coil array to

a mobile coil by equipping the primary transmitter coil with

a motion unit. Such a design effectively emulates a variety

of different multi-coil designs of Qi, while it tackles the

design challenges mentioned in Section IV-A for the following

reasons. First, the noise within the temporal features can be

controlled and even filtered out in post-processing, because

the fingerprints are collected from multiple coil locations, a

more complete device profile can be built. Second, the wireless

power transfer process to hop between different operating

points when the charging coils are switched. Thus we can infer

the PRx control scheme from the transient states between the

operating points, which can be used to differentiate different

Qi modules. Finally, the feature uncertainty caused by the

phone placement can be essentially mitigated because the coil

array covers a range of device positions on the charger pad.

In addition to the motion unit, the QID sensor also extracts

and timestamps every packet in the data flow. A challenge

in the design is to ensure the PRx is correctly located and

measured. The details of the QID sensor are discussed in

Section V. The last component, namely the QID server, reads

all the data sent by the QID sensor. As the packet is in

byte representation, the server needs to parse each field in

the packet. Then, the server performs feature extraction and

classification, which are discussed in Section VII.

V. FEATURE SELECTION AND ACQUISITION

A. Selecting Hardware Fingerprints

To reliably identify Qi-compliant devices, QID leverages

hardware fingerprints extracted from the following three PRx
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components. The selected fingerprints should be device-

specific, time-invariant and discriminative. We notice that

although QID is able to sense many of the analog signals, such

as current magnitude, carrier wave frequency, and duty cycles,

we are not going to employ them as recognition features.

Because these analog features exhibit significant variance as

the operating point changes, such that the feature values

largely overlap between different devices, defying the success

in the device identification.

Onboard oscillator. The PRx controller chip of Qi utilizes

an internal oscillator to generate the clock signal. It is well

known that oscillators have distinctive drifts due to factors like

hardware manufacturing variations [19]–[21]. We thus exploit

the drift of the PRx oscillator as a feature to identify the

device under charging. For example, Panasonic AN32258A

[31], a commercially available Qi receiver IC, utilizes an

internal oscillator. NXP MWPR1516 [32] also uses internal

Low Power Oscillator (LPO) as the clock source. We note that

the Qi receiver ICs typically have low clock accuracy as they

are not designed for data communication. For instance, the

receiver IC NXP MWPR1516 has a clock accuracy tolerance

of as high as ±5%; Rohm BD57011AGWL data sheet [33]

also indicates that the driving frequency of the communication

signal is between 1.92 and 2.08 kHz, which corresponds to

a 4% frequency error tolerance. In comparison, the clock

frequency tolerance is ±50 ppm for Bluetooth [34] and ±40
ppm for Zigbee [35]. Therefore, the clock drift effect of Qi is

highly device dependent and much more significant than other

wireless communication systems. Although drift variations

like this can be used to differentiate different devices, it is

difficult, if not impossible, to directly measure the clock drifts

in COTS devices. Our key observation is that the Control Error

Packet (CEP) time interval yields high variance among the

devices around the target value specified in Qi (see TABLE

I). Fig. 5 shows that the CEP time interval distribution of 42

devices spans a range of (238, 270) ms in the time domain.

Therefore, the PRx oscillator can be inferred and fingerprinted

by measuring the period drift of the control packets. However,

some devices, for example, “A2” and “C2”, or “F6” and “F7”,

yield close CEP time interval values.

Receiving coil. Different Qi-compliant devices may have

different coil shapes, diameters, and layouts. Generally, a

larger PRx coil has a larger contact area between the PRx

and the PRx coils, leading to more flexibility in placing the

device. In our scenario, the receiving coil diameter can be

fingerprinted based on the area that the PTx interacts with the

PRx. We discuss how to measure the contact range of the PRx

coil in Section VI-B.

PRx controller. The Qi standard does not specify the exact

period of control packet transmission. We observe that the

periods of the CEPs do differ across devices of different

manufacturers. Such vendor-dependent controller implementa-

tions can be exploited as a fingerprint to differentiate devices

from different manufacturers. For example, Texas Instruments

bq51013B [36] sends the CEPs with an interval of 240 ms,

while Panasonic AN32258A sends the CEPs at a period of 160
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The error bar shows the standard deviation of the CEP time interval. The
corresponding actual time interval spans a range of (238, 270) ms.

ms. This feature is not related to clock error but a value chosen

at design time by the manufacturer. Intuitively, determining

the IC manufacturer improves the recognition accuracy by

narrowing the categories of the devices. In addition to the

packet period, the value carried in the CEP is also specified by

the receiver IC manufacturers. For example, we observe that

the maximum control error value sent by brand “C” devices

is 30, while the brand “Z” devices can send the control error

values as high as 80. Therefore, it is another feature that may

distinguish the device brand.

B. Temporal Feature Acquisition

We now discuss how the QID sensor collects temporal

features of Qi packets. To decode the bits, the QID sensor

uses a timer to measure the width of each pulse. As the data

sent by the PRx is encoded with a differential bi-phase scheme,

we can convert the pulse widths to bit values. The decoded

bits are then grouped into bytes.

A Qi packet consists of preamble, header, payload, and

checksum. The QID sensor timestamps the packet after the

11th bit in the preamble phase of each packet. The corre-

sponding packet time interval is then the difference between

two consecutive timestamps. As described in Section III, the

Qi protocol defines two types of packets that have fixed time

intervals. QID sensor mainly observes and analyzes the CEP

time interval to infer the PRx oscillator because the CEP is the

most frequent type of packets that are sent during the wireless

charging process.

VI. QID MOTION CONTROL

A. Motion Platform Design

In this subsection, we present the mechanical design to

enable the movement of the charger coil, as illustrated in Fig.

6. It requires two linear slides powered by a stepper motor

individually. First, the bottom slide is fixed on a surface. Next,

the upper slide is placed with its axis direction perpendicular

to that of the bottom one. The upper one is attached to the

bottom one’s slider. Finally, the charger coil is attached to the

slider of the upper linear slide. The two stepper motors are

controlled independently to drive the coil in an X-Y plane
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Fig. 6. Mechanical design - the charger pad is controlled by two stepper
motor linear slides, moving in a 2-D surface.

to form a mobile coil. It thus allows for more flexibility in

the PRx placement. The user can place the device with any

location and any angle in the designated area. Correspondingly,

we define the axes of the bottom slide and the upper slide

as the x axis and y axis respectively. As the lengths of the

two slides are the same, the working space of the PTx coil

is defined as a square area. We envision that the QID motion

platform can enable other applications, such as locating the

PRx and searching for the optimal charging operating points,

which are critical for optimizing the charging efficiency [14].

We leave these applications for future work.

B. QID Sensor Motion Control

In this subsection, we discuss the control schemes for the

proposed QID sensor motion platform.

1) Contact area boundary detection: The detection of the

PRx boundary allows for better coil movement control. For

example, the stepper motor can adapt to a higher speed if

the PRx is out of the contact range, or the trajectory can be

optimized to avoid unnecessary moves, such that the total time

needed for collecting sufficient features can be reduced. The

QID sensor utilizes a timer to detect the contact boundary.

Each time the QID sensor receives a new packet, it reads the

real-time timer (RTT) to update a value tlast. In the meantime,

the QID sensor reads the RTT with a period of 10 ms to

fetch the current time tn and compares it with tlast. Then the

condition that the PRx is out of the contact range is given by:

tn > tlast + Ttimeout,

where Ttimeout is the allowed time that the PRx does not send

any feedback. We choose Ttimeout to be 350 ms, which is the

maximum CEP time interval in the Qi standard, as presented

in Table I. If the condition is met, the QID sensor determines

that the PRx loses its contact with the PTx.

2) PRx symmetric axis alignment: Next we discuss how the

QID sensor finds the symmetric axis of the PRx coil along the

y axis. Finding the symmetric axis is important because it is

the reference for the fingerprinting trajectory.

We assume that the device is in the contact range once

the user puts it on the charger pad. The PRx symmetric axis

alignment is achieved as follows. In the beginning, the PTx

coil moves along the positive direction of the y axis until it is

x0 x1
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x4 x5

xcenter

xstart

x6x7

xend

(a) Symmetric axis searching. The
upper left point is the starting point.
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(b) The designed trajectory of the
charger coil center within one com-
plete fingerprinting scan.

Fig. 7. Trajectory design of the QID sensor.

out of the contact range. Next it moves to the negative direction

of both x and y axis, reaching the starting point shown in Fig.

7a (upper left corner). From there, the coil starts to move in

an “S” pattern and sweeps across the PRx coil for four times,

generating a sequence of the detected boundary [x0, x1, ..., x7].
Then the x value of the symmetry axis is

xcenter =
1

8

7∑

i=0

xi

Finally, the PTx coil is aligned to the xcenter with its y
coordinate value right out of the contact range boundary. This

location is the starting point of the coil in the fingerprinting

phase.

We note that, for a multi-coil PTx, this phase can be

achieved by switching between the coils and identifying the

one with the highest coupling.

3) Fingerprinting trajectory planning: Now we present the

PTx coil trajectory design when the QID sensor collects

fingerprints from the PRx. We take two factors into account

when designing it. On the one hand, it is crucial to ensure

the QID sensor captures adequate data from the PRx in the

multicoil array, such that QID records the complete feature

profile of the PRx. On the other hand, the more data points

are measured, the more time it takes. Typically 4 or 5 packets

can be collected during one second. If we plan to record 3,000

CEPs, it may take more than 10 minutes and exceed the time

one leaves the phone on the charger pad. Therefore, we need

to find a trade-off between the spatial data diversity and the

measurement delay. In our design, we assume that the PRx

will be left stationary on the platform for a time window of at

least 90 seconds, such that the QID sensor captures adequate

fingerprints for device identification.

The designed fingerprinting trajectory of the QID sensor

is shown in Fig. 7b. It comprises two sessions, namely the

forward one and the backward one. During both sessions, the

QID sensor records all the packets sent by the PRx and uploads

them to the server. The forward session starts from the end

point of the PRx symmetric axis alignment phase. The PTx

coil is driven to move along the positive direction of the y axis.

Once it enters the contact range, the coordinate value ystart is

recorded. In the meantime, the moving speed of the coil is set

6
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to a lower speed. It stops for 1 second each time after moving

forward for about 8 mm (corresponding to 40 control units in

Fig. 7b) to wait for the operating point hopping, which also

mimics the coil switching in an array. Once the PTx loses

contact with the PRx, i.e., the PRx is out of the contact range,

the boundary point yend is recorded, which also marks the

end of the forward session. The backward trace is similar to

the center alignment one, which is in “S” shape. The major

difference is that the distance Δx between the farthermost

point and the symmetric axis is about 10 mm along the x
axis, corresponding to 50 control units. The movement along

the negative y direction is divided into 6 sections. Each of

them is

Δy =
yend − ystart

6

At each turning point, the PTx coil stops for 1 second to wait

for the operating point hopping. After the coil reaches the for-

ward session starting point (xcenter, ystart), the fingerprinting

phase finishes. We define a complete scan as the completion of

both the forward and backward sessions, and the data collected

during this phase are defined as a scan sample correspondingly.

It is later post-processed at the QID server.

There are several reasons why such a trajectory is designed.

First of all, it covers the central area of the contact range. Even

if the PRx changes its placement angle next time, the central

region still largely remains overlapping. As a result, the two

independent scan samples do not deviate significantly. Second,

the distance Δx is carefully chosen to accommodate different

coil shapes and sizes. No matter how the PRx is placed, the

planned trajectory falls within the contact range for most of

the time. The trajectory is also able to tolerate the symmetric

axis alignment error up to about 8 mm (corresponding to 40

control units). Finally, the same location is fingerprinted for at

most once, as the forward and backward traces do not overlap

except the region where the coil center enters or exits the

contact area.

VII. FEATURE EXTRACTION AND DEVICE

CLASSIFICATION

In this section, we present how the QID server extracts the

features from the measured data and classifies the features into

different device classes.

A. Feature Extraction

We note that the contact range diameter of the receiving

coil physical feature can be simply calculated as yend−ystart.
The oscillator features and the PRx control schemes require

additional processing to obtain. We discuss them as follows.

1) CEP interval features: The QID server uses a local

maximum searching algorithm to extract the CEP time in-

tervals that represent the feature of PRx onboard oscillator.

First, all the CEP time intervals are processed with a fixed

bandwidth Gaussian kernel density estimator (KDE). Unlike

the histogram, the Gaussian KDE represents the probability

of each point in the feature space with a fixed-variance

Gaussian distribution, i.e., the Gaussian kernel, and then the

Fig. 8. Gaussian kernel density estimation of CEP time intervals. The letters
indicate the device brands. The number indicates each unique device of its
brand. The 0 in the horizontal axis corresponds to 240 ms in real time scale.

TABLE II
THE LIST OF FEATURES EXTRACTED FROM A COMPLETE SCAN.

Feature Group Feature Value Range

Oscillator
feature

Domain 1 CEP interval [40, 60] ms
Domain 1 CEP interval

peak log-probability
Domain 2 CEP interval [140, 160] ms
Domain 2 CEP interval

peak log-probability
Domain 3 CEP interval [235, 270] ms
Domain 3 CEP interval

peak log-probability
Sample time Time needed in a complete scan >0

PRx controller
feature

Number of packets >0
CEP value = 0 frequency [0, 1]
CEP value ∈ [1, 5] frequency [0, 1]
CEP value ∈ [6, 10] frequency [0, 1]
CEP value ∈ [11, 20] frequency [0, 1]
CEP value ∈ [21, 30) frequency [0, 1]
CEP value = 30 frequency [0, 1]
CEP value ∈ (30, 127] frequency [0, 1]

estimation output is the averaged sum of all the individual

kernel probability estimations. The output of the KDE is

actually the probability density function (PDF) of CEP time

interval.

d(t) = pdf(t), t ∈ [40, 270] ms

Note that the variable t here is in time domain representa-

tion, while the feature values correspond to the QID sensor

controller timer values.

Next, the QID server extracts the CEP time intervals that

achieve local maximums in the PDF. We observe that the CEP

time intervals typically fall into 3 domains, corresponding to

[40, 60], [140, 160], [235, 270] ms in time domain (as shown

as the three local maxima in Fig. 8). Therefore, it is feasible

to find the peaks directly without calculating the derivative

of the CEP time interval PDF. Specifically, the 3 domains are

denoted as D1, D2, and D3 respectively. Then the feature CEP

time intervals and their corresponding log-probabilities are

tpi = argmax
t∈Di

d(t), i = 1, 2, 3.

pLi = log d(tpi), i = 1, 2, 3.
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The detected peaks of 8 independent complete scan samples

are marked in Fig. 8. The CEP time interval that corresponds

to 240 ms in time domain is shifted to 0. Although some

of the curves appear close to each other in the figure, their

peak-indexed CEP time interval features actually span a con-

siderable wide range in the feature space, as shown in Fig. 5

and the zoom-in sub-figure in Fig. 8. In the zoom-in figure, we

see that the indexed time interval values have little intra-class

variability and inter-class similarity. For example, although

“C3” and “C6” are from the same brand, their peak indexes

deviate from each other with a distance up to 20, while the

three peak indexes of device “C6” are consistent during the

three independent scans that are collected in a wide time span.

2) CEP value features: QID also fingerprints the controller

of a PRx based on the statistic of the recorded CEP values

during a complete scan. What the CEP value differs from the

CEP time interval is that the former can only take integer val-

ues. We analyze CEP values using probability mass function

(PMF). Specifically, we compute the PMF of the CEP values

as

p(V ) =

∑N
i=1 1{vi == V }

N

where V is the absolute CEP value, ranging from 0 to 127,

1{a == b} is an indicator function, and N is the total number

of CEPs in a scan sample. In particular, N is chosen to

be one of the CEP value features because it is an indirect

measurement of the frequency that the PRx sends CEPs. As

we note in Section V-A, it is a PRx controller implementation

specific feature rather than the oscillator drift. We find that the

PMF of the CEP values is not a good feature, as the PMFs span

a wide range of [0, 127], which introduces high variance in

the output features. We also observe that even the same device

may generate different PMFs within different scan samples.

To reduce the variance in the output CEP value features, we

further group the CEP values into 7 ranges. For each range, the

probabilities of the CEP values within the range are summed

up. Specifically, the 7 ranges are: 0, [1, 5], [6, 10], [11, 20],

[21, 30), 30, (30, 127]. We choose these ranges empirically

by correlating the statistical patterns of the ranges with the

device brand.

Table II summarizes the features used in classification.

These features are collected in both steady charging states and

operating point switching transient states, through which QID

extracts the fingerprints in the oscillator, coil and the controller

for classification. We envision that the PRx controller features

can separate the device brand and the oscillator features can

then further separate the devices within the same brand.

B. Classification

The QID server classifies Qi-compliant devices by an en-

semble classifier, also known as “bagging classifier”, com-

prising of Support Vector Machine (SVM) [37], AdaBoost

[38] with decision tree as weak learner, decision tree classifier

[39], k-Nearest Neighbor (kNN) [40], and Linear Discriminant

Classifier (LDC) [41]. The bagging algorithm in our design

utilizes a voting system. When 3 or more classifiers are

outputting the same device label, the bagging classifier chooses

it as the final decision. Otherwise, the output of the SVM is

chosen because it has relatively higher accuracy than the other

classifiers.

The QID server stores all the extracted features and their

corresponding device labels in a feature table. Then it uti-

lizes the repeated random sub-sampling cross-validation, also

known as Monte Carlo cross-validation [42], to split the data

into training and testing set randomly. Finally, the classifier

models are trained with the training set and validated with the

testing set. The mean and the standard deviation of accuracy

from the results of the sub-sampling experiments are recorded.

It is shown [43] that cross validation evaluation introduces

neighborhood bias to the time-continuous sliding window

frame data, which results in overly optimistic model evaluation

estimations. However, in our experiments each of the samples

are collected in a wide span in time domain. In other words,

all the features extracted from a complete experiment scan are

independent to each other. As a result, the cross validation is

suitable for our experiments.

The objective of the QID server is focused on classifying the

device into one of the known classes. This design is applicable

to the scenarios where the devices are already fingerprinted.

For instance, a company may register and fingerprint all the

work devices of employees, and then use QID to track the

location of each device. However, QID can be easily extended

to recognize new devices via online learning. For instance,

by setting a detection threshold in the classifier, QID can

identify whether the newly collected sample corresponds to

any device that is already recorded. If the sample’s probability

of corresponding to an existing device is low, QID can

recognize the device as a new one.

The QID server stores all the extracted features and their

corresponding device labels in a feature table. Then it uti-

lizes the repeated random sub-sampling cross-validation, also

known as Monte Carlo cross-validation [42], to split the data

into training and testing set randomly. Finally, the classifier

models are trained with the training set and validated with the

testing set. The mean and the standard deviation of accuracy

from the results of the sub-sampling experiments are recorded.

The objective of the QID server is focused on classifying the

device into one of the known classes. This design is applicable

to the scenarios where the devices are already fingerprinted.

For instance, a company may register and fingerprint all the

work devices of employees, and then use QID to track the

location of each device. However, QID can be easily extended

to recognize new devices via online learning. For instance,

by setting a detection threshold in the classifier, QID can

identify whether the newly collected sample corresponds to

any device that is already recorded. If the sample’s probability

of corresponding to an existing device is low, QID can

recognize the device as a new one.

VIII. IMPLEMENTATION

In this section, we present the implementation of the QID

system. Fig. 9 shows a QID sensor prototype.
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Fig. 9. A prototype of the QID sensor.

QID sensor base station. The base station is the mechanical

component of the QID sensor, which is built on a clear

acrylic board. The two stepper motor linear sliders enable the

motion along the x and y direction respectively, with a moving

distance of 90 mm each. A switch is added to one end of

each screw, such that the MCU can reset the position each

time the system is powered on. Another clear acrylic board

(not shown in the figure) supported by four nylon hex spacers

is the surface that the mobile device is put on. The cost of

the mechanical components is less than $20. Therefore it is

feasible to be massively deployed in the public area. We note

that the dimensions of the motion unit can be further reduced

by adopting other machenical structure, such as transitional

planar cable-driven movement system [44].

Embedded controller and motor driver. At the center of the

QID sensor, the Atmel SAMG53N19 [45] MCU is employed,

which is responsible for decoding and timestamping packets,

driving the stepper motors, and sending collected data to the

QID server. The MCU supports the UART communication

with the server via a USB virtual COMM port. The motor

driver IC is Toshiba TB6612FNG, which shares the power

with the Qi PTx. The peak motor driving current is around

150 to 200 mA, which is negligible to the Qi wireless charging

system because a typical COTS USB charger can provide 2000

mA current at 5 V.

Qi-compatible power transmitter. We choose a COTS

GMYLE Mini Qi Charging Pad as the PTx, which is connected

to the MCU via a data flow debug pin. The PTx coil is

extended with a pair of wires, which provides extra flexibility,

such that the coil moves without dragging the charger circuit

board around.

The QID server. At the server side, the feature extraction and

classification modules are implemented using approximately

1,100 lines of Python codes, including the pySerial UART

library for the QID sensor communication handler and the ma-

chine learning library scikit-learn [46] for classification.

TABLE III
THE MEASUREMENT DELAY IN THE QID SYSTEM

Symbol Definition Mean (s) Std (s)

T1 Coil symmetric axis alignment time 8.050 0.927

T2 Fingerprinting time 55.478 6.092

T3 Feature extraction time 0.147 0.006

T4 Classification time 0.001 N/A

IX. EVALUATION

In this section, we present the performance evaluation of

QID based on 52 Qi-compliant devices. We first present the

evaluation settings and then discuss feature analysis, measure-

ment delay analysis, classification accuracy, feature backward

search, and accuracy breakdown test.

A. Evaluation Settings

We evaluate 52 Qi-compliant devices in total, including

7 Google Nexus 4 (labeled as “N”) and 45 attachable PRx

modules from 6 different manufacturers, including DigiYes,

Hugchg, and RAVPower. We note that the ICs in these

modules are widely used in mainstream mobile devices. For

example, the Texas bq51013B in the DigiYes modules is also

adopted by Google Nexus 5. For each device, we conduct 10

complete independent scans to collect fingerprints. In total,

there are 520 scan samples. To simulate the users’ device

placement behavior in the real world, we alter the phone

placement manually. Specifically, for the first scan, the phone

is aligned with the x axis of the motion plane. For the next

seven scans, the device is rotated counter-clockwise for 45◦

each time. For the last two scans, the phone is placed on the

pad with a random angle. To quantify the contribution of the

motion platform, we repeat this whole process for once without
moving the charger coil with respect to the PRx. We consider

this as our baseline and will discuss it in Section IX-C.

In classification, the training and testing split ratio is 7:

3. In other words, 7 out of the 10 samples for each device

are randomly chosen to train the QID classifier model, and

the remaining scan samples are for testing. Such a process is

repeated for 10 times. The average accuracy and the standard

deviation of each classifier are reported. In addition, the

hyperparameters in all the implemented classifiers are tuned

by the grid search. As discussed in Section VII-B, we assume

all the devices are already fingerprinted and recorded in the

database.

B. Measurement Delay

The measurement delay is defined as the time delay from

the moment when the power receiver is booted to the moment

that the server produces a device label. Specifically, the

measurement delay TM is

TM = T1 + T2 + T3 + T4

where T1 is the coil symmetric axis alignment time, T2 is the

fingerprinting time, T3 is the feature extraction time, and T4 is

9
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Fig. 10. The cross-validation score and device brand detection accuracy of
different classifiers.

the classification time. The means and standard deviations of

these measurement delay terms are presented in TABLE III.

As one can see, the fingerprint phase time T2 is around 55.5

s, which contributes the most to the total measurement delay.

Thus reducing the time T2 is crucial in further optimizing the

measurement delay TM .

The measurement delay is actually acceptable due to the

characteristics of wireless charging. First, unlike other wireless

communication systems where the user is usually in mobility,

the charging process usually takes more than 10 minutes,

during which the user device remains stationary. Second,

in the targeted scenarios, such as a coffee shop that offers

location and personalized services to customers, the users need

to register their devices before using such user-identification

service. During the registration process, QID can collect 8-

10 different samples for future recognition. Finally, previous

systems that exploit clock drifts for device identification have

similar delay performance. For example, BlueID [21] takes

21 seconds for data traffic or 65 seconds for voice traffic

to gurantee the low measurement error. in [19], it takes the

system hours to collect enough packets in order to distinguish

deivces. Therefore, the 60-second measurement delay in QID

is actually acceptable.

C. Classification Accuracy

We first present the overall test accuracy of the cross-

validation study. The overall accuracy is the ratio of the

number of correctly classified scan samples to the size of

the test set. Fig. 10 shows the means and standard deviations

of the implemented classifiers from 10 repeated random sub-

sampling cross-validation folds. As shown in the figure, all

of the implemented classifiers can recognize the device brand

with a mean validation accuracy up to 96.1%. Particularly, the

bagging classifier identifies the brand with up to 97.9% mean

accuracy. The mobile device brand classification accuracy is

of interest because of the following two reasons. First, it is

the foundation of device recognition. As mentioned in Section
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Fig. 11. The impact of feature selection on the classification accuracy.
G1: classification without the CEP time interval features; G2: all features
are included, but they are measured without the motion platform; G3:
classification performance using the CEP time interval features only; G4: all
features are included.

Fig. 12. Confusion matrix of the 52 evaluated devices.

V-A, although the CEP interval is a good device separator, it

confuses some devices from different brands. If the device

brand is successfully identified, QID server can reduce the

range of device candidates and increase the overall device

classification accuracy. Moreover, brand recognition can en-

able applications like device brand specific advertisement. For

device identification, the bagging classifier achieves an average

accuracy of 85.2%. The highest accuracy achieved by QID is

89.7%. To illustrate the classifier performance, a confusion

matrix is plotted in Fig. 12. Generally, the misclassified

samples are from the devices of the same brand that have

close clock drifts. For instance, there are two devices, namely

“C8” and “Z3”, whose all 3 test samples are mis-classified.

However, some devices are classifed into a different brand due

to their close values in feature space.
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Fig. 13. Number of packet per scan feature distribution of 42 devices (10
samples per device).

Fig. 14. The frequency of CEP value equaling 0 distribution of 42 devices
(10 samples per device).

Next, we quantify the performance of the motion platform,

namely the multi-coil array. The G2 in Fig. 11 shows the

baseline result, where the motion unit is not enabled. Each

device is sampled without the motion control for 55 seconds,

corresponding to the delay T2 in Section IX-B. We plot the

classification accuracy of QID in Fig. 11 G4 for comparison.

As we can see, the device recognition rate increases by 17%

by both SVM and bagging classifier when the motion platform

is enabled. The brand recognition accuracy is also boosted by

8%. It is indicated that the motion platform plays an important

role in achieving reliable and sufficient device features for

classification due to its ability to extract fingerprints from more

spots, which captures a more complete profile of a device.

D. Impact of Feature Selection

Not all features are equally important. Fig. 13 and Fig. 14

shows the distribution of two features respectively, obtained

from 42 out of the 52 devices, namely the total number

of packets per scan and the frequency of the CEP value 0.

The distribution of other CEP value frequencies yields similar

trends as shown in Fig. 14 and is thus omitted. These two

features contain more noise than the CEP interval (as shown

in Fig. 5). Nonetheless, intuitively, these features are able to

separate device classes to some extent. We next conduct the

backward search to evaluate the effectiveness of each selected

feature.

We perform two case studies. In the first case “G1”, we

evaluate the bagging classifier without the CEP time interval

features, i.e., the onboard oscillator fingerprints. In other

words, only the CEP value features are used. In the second

case “G3”, we evaluate the bagging classifier with only the

CEP time interval features. The results of these two case

studies are shown in Fig. 11. We observe that the device

recognition accuracies of both the bagging and the SVM

classifier degrade to about 21% in G1, which indicates the

significant contribution of the onboard oscillator fingerprint to

device identification performance. Another observation is that,

although the CEP value features fail in device recognition, they

are still able to distinguish the brands with 75% accuracy by

the bagging classifier. Next, we compare G3 and G4. We can

see that both the device and brand recognition accuracies of

the bagging classifier are improved by about 2.5% by adding

the CEP value features to the CEP time interval features.

This indicates that although the CEP value features are not as

important as the onboard oscillator fingerprints, it helps QID to

reduce uncertainty and achieve higher accuracy. However, as

the number of devices increases, the chance of CEP interval

(PRx oscillator) feature overlapping is expected to increase.

In such a case, the PRx controller fingerprints will provide

necessary device brand identifies, thus reducing the collision

in the feature space.

X. DISCUSSION AND CONCLUSION

In this paper, we present our design and implementation

of QID, the first system that recognizes Qi power receiver

during wireless charging using fingerprints from the onboard

oscillator, coil characteristics, and control scheme of the wire-

less charging system. QID also employs a movement unit to

emulate multi-coil power transmitter and allow for fine-grained

fingerprinting. Our evaluation results show that QID achieves

a high overall accuracy of both device and brand recognition.

Therefore, we demonstrate the feasibility of leveraging public

wireless charging infrastructure for tracking mobile users and

providing ID/location-based services. Our results also open

up new research questions on how to prevent the leakage of

user’s location with the increasing wireless charging station

deployment in public.

QID has several limitations. First of all, unlike other wire-

less communication systems where passive remote sensing

and recognition is possible, QID adopts a user-initiated device

recognition approach. This narrows its applications because

it requires the physical contact between the device and the

sensor. However, this could also be an advantage because it

preserves the user’s awareness and thus protects the user’s

privacy. Second, at this stage QID requires motion parts to

achieve fine-grained fingerprinting. We envision to achieve

device recognition in wireless charging using only stationary

multicoil array. However, since the commercially-available

multicoil chargers are not ready for device recognition yet,

our QID sensor implementation mainly focuses on emulating

a multicoil array with motion control. We expect no motion

unit is needed in the future implementation and deployment.

Nevertheless, the mechanical structure could be possibly re-

designed to achieve a smaller form factor. Finally, we note that

the charging process may cause several short-time charging

disruptions (about 1 to 2 seconds each) due to the discoupling

between the PTx and PRx coils. In such a case, the user ex-
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perience may be potentially impacted. However, as discussed

above, the measurement delay is about 55 seconds. After a

device is successfully identified, the PTx coil will move to a

position (or switch to a particular physical coil) that achieves

the maximum coil coupling to continue the power delivery

process.

Our findings have important implications on the user pri-

vacy. The location of a mobile device may be tracked when

the user charges mobile devices in public wireless chargers.

Mitigating such possible user privacy breach is left for future

work.

In the future, we plan to design a compact coil antenna

to extract the data directly from the wireless power interface,

such that the QID sensor can be non-intrusive to the PTx.

We will also explore new fingerprinting trajectories to further

reduce the measurement delay. Although the users usually

initialize their mobile device registration by themselves in

our targeted scenarios, we still aim to design efficient online

machine learning algorithms to classify unknown devices, such

that QID provides an easy-to-use interface and enablea a wider

range applications. We can achieve this by quantifying the

similarity between the incoming sample features with the ones

already in our database. If the difference exceeds a threshold,

QID determines the sample belongs to a device that has not

been seen before.
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