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Abstract—Recent years have witnessed the increasing pene-
tration of wireless charging base stations in the workplace and
public areas, such as airports and cafeteria. Such an emerging
wireless charging infrastructure has presented opportunities for
new indoor localization and identification services for mobile
users. In this paper, we present QID, the first system that can
identify a Qi-compliant mobile device during wireless charging
in real-time. QID extracts features from the clock oscillator and
control scheme of the power receiver and employs light-weight
algorithms to classify the device. QID adopts 2-dimensional
motion unit to emulate a variety of multi-coil designs of Qi,
which allows for fine-grained device fingerprinting. Our results
show that QID achieves high recognition accuracy. With the
prevalence of public wireless charging stations, our results also
have important implications for mobile user privacy.

Index Terms—Qi wireless charging, device recognition, real-
time processing

1. INTRODUCTION

Recent years have witnessed the increasing penetration of
wireless charging base stations in public areas like offices,
restaurants, and airports, etc. [1]. These is also a trend to em-
bed wireless charging base stations in furnitures like desks and
tables [2], [3]. It is estimated that nearly 600 million wireless
charging devices were shipped during the year 2018 [4]. This
emerging wireless charging infrastructure has presented new
opportunities for precise user localization, where the base sta-
tion learns the location and identification of the mobile device
being charged. A number of different wireless- or ultrasonic-
based approaches have been proposed for indoor localization
[5]-[12]. Designed for providing continuous location of a
moving user, they often incur significant overhead, e.g., due to
the need of large-scale wardriving for collecting fine-grained
signal fingerprints. In this work, we exploit wireless charging
for a specific application scenario, where the user stays right
next to the wireless charger, waiting for the phone to be
charged. Therefore, the wireless charger localizes a mobile
phone by simply referring to the already-known location of
the registered charger.

Pervasive wireless charging stations provide high localiza-
tion accuracy and high reliability at low deployment cost,
which will enable a wide range of applications. For instance,
a coffee shop may recognize its customers when they charge
their phones on the coffee table, and provide customized ser-

vices or location-based advertisements. For another example,
when users charge their phones on the table instrumented
with wireless charing during a meeting or lecture, the precise
sitting positions of the users can be determined, which enables
interesting interactions such as sharing documents in an ad-hoc
group, sending instant messages, or exploring nearby people
[13]. In addition to mobile device localization, the popularity
of wireless charging infrastructure also provides opportunities
for user authentication. For instance, a paid wireless charing
service may use the charger to identify the phone and process
the payment automatically.

To leverage the wireless charging infrastructure for user
localization and identification, a key challenge is to reli-
ably identify the wireless charging unit of mobile devices.
Unfortunately, unlike network interfaces such as Wi-Fi and
Bluetooth that have unique and fixed hardware addresses, the
wireless charging unit of commercial off-the-shelf (COTS)
mobile devices typically does not have a fixed hardware ID.
For instance, according to the Qi standard [14], the identity
of a power receiver is defined by a Basic Device ID, which
can be a software-generated random sequence that may change
each time the power receiver is booted.

In this paper, we present the design, implementation, and
evaluation of QID — the first practical system that reliably
identifies Qi-compliant mobile devices based on the hardware
fingerprints. Specifically, QID augments standard-compliant
wireless charging base station to extract features from the os-
cillator, coil, and controller of a Qi-compliant power receiver,
while requiring no retrofitting or modification to existing
Qi-compatible mobile devices. QID employs a 2-D motion
controller to emulate the coil array in the Qi reference design
(described in Section III) and regulate the inductive coupling
between the power transmitting and receiving coils, which
allows for fine-grained fingerprinting of the power receiver
while optimizing the efficiency of power transfer. Experimen-
tal results based on 52 Qi-compatible devices show that QID
achieves an overall identification accuracy of up to 89.7%,
with an average of 85.3%. Our results also have important
implications for user privacy. With the increasing prevalence
of wireless charging stations in public areas, how to prevent
the leakage of user’s location opens up new research questions.

The rest of the paper is organized as follows. Section II
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reviews related work. Section III introduces the background
of the Qi specification. Section IV presents the challenges and
the overview of the QID design. In Section V, we describe
our QID sensor design for device fingerprint acquisition.
Section VI presents the QID motion control design. Section
VII discusses the feature selection and classification at the
server side. The implementation and the evaluation results of
the QID are discussed in Section VIII and Section IX. Finally,
we conclude this paper and discuss the future work.

II. RELATED WORK

Device identification has been studied for a wide range
of communication systems. The existing techniques can be
broadly classified into two categories. One category uses the
fingerprints of RF signal introduced by hardware imperfection
of frequency generator on the devices. The other category uses
temporal features, i.e. the clock skew introduced by the minor
difference in the oscillator among the devices. The clock skew
mainly affects the time interval of the transmitted packets.
RF Signal Fingerprinting. PARADIS [15] identified the
source network interface card (NIC) of an IEEE 802.11 frame
through passive radio-frequency analysis. Specifically, it uses
I/Q origin offset, frequency error, and SYNC correlation to
distinguish the devices. Caraoke [16] separated devices by
their carrier frequency offset differences to avoid wireless
collisions in an e-toll transponder network. Similarly, Danev
et al. [17] achieved wireless sensor recognition using radio
frequency transient characteristics. Eletreby et al. proposed
Choir [18], a system that disentangles collisions in LoRa LP-
WAN by distinguishing the sensor nodes using their time,
frequency and phase offsets caused by hardware imperfection.
However, these techniques cannot be applied to wireless
charging, because extracting the fingerprints of RF signal often
requires expensive equipment. For example, [15] used Agilent
896418 vector signal analyzer to capture the error vectors in
the IQ plane. Moveover, wireless charging adopts resonant
coupling to transfer energy, where both the carrier frequency
and amplitude are variable, which makes it impossible to infer
the device identity using the RF signal in wireless charging.
Clock Skew Fingerprinting. Kohno et al. [19] used the TCP
timestamp option to estimate a device’s clock skew. Similarly,
Cristea and Groza [20] studied how to fingerprint smartphones
remotely via the Internet Control Message Protocol (ICMP)
timestamp response. While these two studies focused on traffic
and driver-level signatures, other systems explored hardware-
level features to distinguish devices. Huang et al. [21] used
temporal features of Bluetooth baseband embedded in the
chipset firmware to fingerprint Bluetooth devices. However,
one key difference between these scenarios and wireless charg-
ing is that the clock skew fingerprints of the mobile device
is heavily dependent on the device placement. Moreover, the
placement of the device on the charger pad is unpredictable,
which casts significantly difficulty in building a precise model
for each device. We will further discuss the challenges in detail
in Section IV.

TABLE I
PRX TIMING CONSTRAINTS DURING THE QI POWER TRANSFER PHASE.

Parameter Symbol Target (ms) Max (ms)
CEP Interval  tingerval  250.0 350.0
RPP Interval  tyeceived  1500.0 4000.0

Samsung Galaxy S3

Fig. 2. Examples of the multi-coil PTx designs in Qi.

There exist other device identification technologies based on
fingerprints of acoustic sensor [22], [23], and inertia sensor
[24], [25]. Although these methods may achieve acceptable
accuracy, they require reading the data or sensor samples from
the phone directly, which can be intrusive.

In addition to the device identification, Lu et al. [26]
proposed a wireless charging network system, where multiple
wireless chargers communicate with the server or adjacent
wireless chargers to provide pay-per-use charging service. We
note that reliable charging device identification is the basic
building block for such applications.

III. BACKGROUND

Qi is an open standard that defines wireless power transfer
over short distances. A typical Qi system consists of a power
transmitter (PTx) installed on a Qi base station and a power
receiver (PRx) attached to or installed in a Qi-compliant
mobile device. The PTx comprises a transmitting coil, called
Primary Coil, which generates an oscillating magnetic field,
that induces an alternating current in the receiving coil, namely
the Secondary Coil, of the PRx. The PRx communicates with
the PTx via backscatter modulation of the current draw, and
primarily sends two types of messages to optimize the power
transfer. The control error packet (CEP) carries an integer that
indicates the difference between the desired power level and
the received power level. The received power packet (RPP)
reports the average level of power received in the past period.
Throughout the process of charging, CEPs and RPPs are trans-
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Fig. 3. Examples of feature acquisition in three configurations: (1) stationary PRx; (2) PRx position changed during charging; (3) QID is enabled.

mitted periodically. Table I shows the CEP and RPP intervals
specified by the Qi standard. Based on the information in CEPs
and RPPs, the PTx adjusts the carrier frequency and amplitude
of the primary power signal to optimize the coupling between
the coils of PTx and PRx. The combination of the carrier wave
frequency and amplitude is defined as the operating point.

Qi specifies multiple reference receiver and coil designs
[27]. Fig. 1 exemplifies one of the available designs and
Samsung Galaxy S3 that supports attachable Qi-compatible
PRx modules. It has a pair of terminals (+5V and GND) that
connects to the output of the PRx. In such a design, the
PRx is an independent module and does not communicate
with the phone. The attachable PRx modules provide the
wireless charging capacity to those devices that originally do
not ship with the wireless power receivers. In this work, we
assume each such module represents a user identity, since it
is an independent component (either attached outside or pre-
installed inside). It outputs stable current at 5 V for charging
with its maximum capacity most of the time.

In addition to the PRx design, Qi also specifies more than
30 type A and 7 type B PTx designs, where type A designs
have one or more Primary Coils but only one of them can be
activated at a time, while type B designs support an array of
Primary Coils and one or more Primary Coils can be activated
to provide wireless power to multiple PRxs simultaneously.
Fig. 2 [28] shows two examples of the multi-coil chargers.
Compared to the single coil designs, multi-coil PTx enlarges
the possible coupling area with the PRx, thus providing more
flexibility in the device placement. As a result, the coil array
PTx designs become more prevailing on the market.

Qi also supports a serial number of at least 20 bits, also
known as the Basic Device ID. However, a PRx can also use
a random number generator to dynamically change the Basic
Device ID, so that every time the user puts the mobile device
onto a PTx, the Basic Device ID updates. Such a random

ID invalidates device ID based applications, which inspires
us to design a system to identify a device using its hardware
fingerprints.

IV. DESIGN CHALLENGES AND SYSTEM OVERVIEW
A. Design Challenges

In this work, we choose the PRx temporal and control
scheme features of charging process to identify the mobile
device, which include CEP time intervals and values. As
discussed in Section III, these features can be easily extracted
from any Qi-compliant devices, which ensures the compat-
ibility and easy deployment of our system. However, the
following challenges need to be addressed due to the intrinsic
characteristics of wireless charging environment.

Noise in temporal features caused by power transfer. The
wireless power transfer happens in the rapidly-changing high
power electromagnetic field between the two coupling coils,
casting more noise than typical RF wireless systems. For
instance, as shown in Fig. 3a(1), the measured packet intervals
have significant fluctuations. The standard deviation of the
CEP time interval is more than 4.4 ms, corresponding to 1.7%
error, which makes it difficult to distinguish between different
charging devices.

Undesirable stable operating point. Qi wireless charging has
a well-designed feedback control loop. The wireless power
transfer process is usually stabilized at an operating point
within hundreds of milliseconds (3 to 5 CEPs). Although this
is a desired feature in terms of maintaining high charging
efficiency, it brings a major challenge in recognizing the target
device. Fig. 3a(1) and Fig. 3b(1) show the experimental result
of such a scenario, where the phone remains stationary on the
charging pad. As shown, the selected features, both the CEP
time interval and CEP values, remain unchanged during the
charging process, which eventually raises the recognition error
rate.
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Unconstrained device placement. The third challenge, the
most difficult one in our case, is that the selected features
are dependent on the phone placement. In other words, if the
user alters the PRx position, the feature values can change
dramatically. Fig. 3a(2) and Fig. 3b(2) demonstrate how the
CEP time interval and control error value change with respect
to the phone placement. During the measurement, after we
rotate the phone with a random angle, the CEP time interval
decreases from about 250 ms to 160 ms, and the Control
Error value increases dramatically from O to 30. In a real-
world scenario, the placement of a mobile phone is often
unpredictable. As a result, the errors are accumulated over
time, which eventually renders the recognition unsuccessful.

B. System Overview

We now provide an overview of the QID system. The
system architecture is shown in Fig. 4. It consists of 3
components, namely an off-the-shelf Qi wireless charger, the
QID sensor, and the QID server. The QID sensor is responsible
for collecting a selected set of features from wireless charging
and uploading the data to the server, while the QID server is
responsible for the feature extraction and device classification.
The QID server can connect to the QID sensor directly (e.g.,
through UART) or resides on the cloud and communicates with
multiple QID sensors through the Internet, enabling tracking
the target device at different charging locations.

The QID sensor can work with most Qi-compliant chargers.
It does not modify any of the charger pad circuits. What
QID sensor needs from a Qi-compliant charger is a test pin
that outputs the filtered data bit flow. We note that such
data pin is indispensable for the Qi charging system because
the PTx requires the feedback from the PRx. Reading data
flow from the pin does not affect the operation of the Qi
charging system. Therefore, thanks to the minimal modifica-
tion requirement, QID can be easily integrated with off-the-
shelf Qi chargers. After connecting the test pin and mounting

the charger coil to QID sensor, the platform is ready for
device fingerprinting. The QID sensor consists of a motion
control hardware component and a software component for
feature collection. The design of the motion unit is discussed
in Section VI. The motion unit hosts the charging pad and
moves it according to certain pattern, within a range of 10
cm. This allows to fingerprint PRx dynamically at different
relative positions between the PTx and PRx coils, resulting in
higher identification accuracy. We note that the motion unit is
connected to a separate control module, and it does not require
wire connection with the charger itself. As a result, it can be
integrated with any off-the-shelf charger easily.

The motivation of adopting the motion unit is two-fold.
First, it can be easily integrated with single-coil chargers and
improve the performance of classification accuracy as well
as power delivery. Second, it can emulate many emerging
new chargers with multi-coil Qi-compliant power transmitter
design [28]-[30]. As described in Section III, each coil on
such transmitter is controlled by an individual switch or a
separate bridge. The PTx can select the optimal coil to deliver
the wireless power to the PRx. Thus it enlarges the coupling
area between the PTx and PRx and provides more flexibility in
the device placement. Despite these advantages, it is difficult
to exploit the multiple coils of Qi chargers for fingerprinting
in practice, since there exists a large number of heterogeneous
designs as specified by Qi [27]. To address this challenge, the
QID sensor extends the design of the physical coil array to
a mobile coil by equipping the primary transmitter coil with
a motion unit. Such a design effectively emulates a variety
of different multi-coil designs of Qi, while it tackles the
design challenges mentioned in Section IV-A for the following
reasons. First, the noise within the temporal features can be
controlled and even filtered out in post-processing, because
the fingerprints are collected from multiple coil locations, a
more complete device profile can be built. Second, the wireless
power transfer process to hop between different operating
points when the charging coils are switched. Thus we can infer
the PRx control scheme from the transient states between the
operating points, which can be used to differentiate different
Qi modules. Finally, the feature uncertainty caused by the
phone placement can be essentially mitigated because the coil
array covers a range of device positions on the charger pad.

In addition to the motion unit, the QID sensor also extracts
and timestamps every packet in the data flow. A challenge
in the design is to ensure the PRx is correctly located and
measured. The details of the QID sensor are discussed in
Section V. The last component, namely the QID server, reads
all the data sent by the QID sensor. As the packet is in
byte representation, the server needs to parse each field in
the packet. Then, the server performs feature extraction and
classification, which are discussed in Section VII.

V. FEATURE SELECTION AND ACQUISITION
A. Selecting Hardware Fingerprints

To reliably identify Qi-compliant devices, QID leverages
hardware fingerprints extracted from the following three PRx
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components. The selected fingerprints should be device-
specific, time-invariant and discriminative. We notice that
although QID is able to sense many of the analog signals, such
as current magnitude, carrier wave frequency, and duty cycles,
we are not going to employ them as recognition features.
Because these analog features exhibit significant variance as
the operating point changes, such that the feature values
largely overlap between different devices, defying the success
in the device identification.

Onboard oscillator. The PRx controller chip of Qi utilizes
an internal oscillator to generate the clock signal. It is well
known that oscillators have distinctive drifts due to factors like
hardware manufacturing variations [19]-[21]. We thus exploit
the drift of the PRx oscillator as a feature to identify the
device under charging. For example, Panasonic AN32258A
[31], a commercially available Qi receiver IC, utilizes an
internal oscillator. NXP MWPR1516 [32] also uses internal
Low Power Oscillator (LPO) as the clock source. We note that
the Qi receiver ICs typically have low clock accuracy as they
are not designed for data communication. For instance, the
receiver IC NXP MWPR1516 has a clock accuracy tolerance
of as high as +5%; Rohm BD57011AGWL data sheet [33]
also indicates that the driving frequency of the communication
signal is between 1.92 and 2.08 kHz, which corresponds to
a 4% frequency error tolerance. In comparison, the clock
frequency tolerance is +50 ppm for Bluetooth [34] and £40
ppm for Zigbee [35]. Therefore, the clock drift effect of Qi is
highly device dependent and much more significant than other
wireless communication systems. Although drift variations
like this can be used to differentiate different devices, it is
difficult, if not impossible, to directly measure the clock drifts
in COTS devices. Our key observation is that the Control Error
Packet (CEP) time interval yields high variance among the
devices around the target value specified in Qi (see TABLE
I). Fig. 5 shows that the CEP time interval distribution of 42
devices spans a range of (238, 270) ms in the time domain.
Therefore, the PRx oscillator can be inferred and fingerprinted
by measuring the period drift of the control packets. However,
some devices, for example, “A2” and “C2”, or “F6” and “F7”,
yield close CEP time interval values.

Receiving coil. Different Qi-compliant devices may have
different coil shapes, diameters, and layouts. Generally, a
larger PRx coil has a larger contact area between the PRx
and the PRx coils, leading to more flexibility in placing the
device. In our scenario, the receiving coil diameter can be
fingerprinted based on the area that the PTx interacts with the
PRx. We discuss how to measure the contact range of the PRx
coil in Section VI-B.

PRx controller. The Qi standard does not specify the exact
period of control packet transmission. We observe that the
periods of the CEPs do differ across devices of different
manufacturers. Such vendor-dependent controller implementa-
tions can be exploited as a fingerprint to differentiate devices
from different manufacturers. For example, Texas Instruments
bq51013B [36] sends the CEPs with an interval of 240 ms,
while Panasonic AN32258A sends the CEPs at a period of 160
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Fig. 5. The scaled and zero-meaned CEP time interval distribution of 42
evaluated devices. The first letters of the devices represent the brands of the
receivers, while the following digit represents the specific label in its brand.
The error bar shows the standard deviation of the CEP time interval. The
corresponding actual time interval spans a range of (238, 270) ms.

ms. This feature is not related to clock error but a value chosen
at design time by the manufacturer. Intuitively, determining
the IC manufacturer improves the recognition accuracy by
narrowing the categories of the devices. In addition to the
packet period, the value carried in the CEP is also specified by
the receiver IC manufacturers. For example, we observe that
the maximum control error value sent by brand “C” devices
is 30, while the brand “Z” devices can send the control error
values as high as 80. Therefore, it is another feature that may
distinguish the device brand.

B. Temporal Feature Acquisition

We now discuss how the QID sensor collects temporal
features of Qi packets. To decode the bits, the QID sensor
uses a timer to measure the width of each pulse. As the data
sent by the PRx is encoded with a differential bi-phase scheme,
we can convert the pulse widths to bit values. The decoded
bits are then grouped into bytes.

A Qi packet consists of preamble, header, payload, and
checksum. The QID sensor timestamps the packet after the
11th bit in the preamble phase of each packet. The corre-
sponding packet time interval is then the difference between
two consecutive timestamps. As described in Section III, the
Qi protocol defines two types of packets that have fixed time
intervals. QID sensor mainly observes and analyzes the CEP
time interval to infer the PRx oscillator because the CEP is the
most frequent type of packets that are sent during the wireless
charging process.

VI. QID MoTION CONTROL
A. Motion Platform Design

In this subsection, we present the mechanical design to
enable the movement of the charger coil, as illustrated in Fig.
6. It requires two linear slides powered by a stepper motor
individually. First, the bottom slide is fixed on a surface. Next,
the upper slide is placed with its axis direction perpendicular
to that of the bottom one. The upper one is attached to the
bottom one’s slider. Finally, the charger coil is attached to the
slider of the upper linear slide. The two stepper motors are
controlled independently to drive the coil in an X-Y plane
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Fig. 6. Mechanical design - the charger pad is controlled by two stepper
motor linear slides, moving in a 2-D surface.

to form a mobile coil. It thus allows for more flexibility in
the PRx placement. The user can place the device with any
location and any angle in the designated area. Correspondingly,
we define the axes of the bottom slide and the upper slide
as the = axis and y axis respectively. As the lengths of the
two slides are the same, the working space of the PTx coil
is defined as a square area. We envision that the QID motion
platform can enable other applications, such as locating the
PRx and searching for the optimal charging operating points,
which are critical for optimizing the charging efficiency [14].
We leave these applications for future work.

B. QID Sensor Motion Control

In this subsection, we discuss the control schemes for the
proposed QID sensor motion platform.

1) Contact area boundary detection: The detection of the
PRx boundary allows for better coil movement control. For
example, the stepper motor can adapt to a higher speed if
the PRx is out of the contact range, or the trajectory can be
optimized to avoid unnecessary moves, such that the total time
needed for collecting sufficient features can be reduced. The
QID sensor utilizes a timer to detect the contact boundary.
Each time the QID sensor receives a new packet, it reads the
real-time timer (RTT) to update a value ?;,5;. In the meantime,
the QID sensor reads the RTT with a period of 10 ms to
fetch the current time ¢,, and compares it with ¢;,s;. Then the
condition that the PRx is out of the contact range is given by:

tn > tiast + Ttimeout7

where T}imeout 18 the allowed time that the PRx does not send
any feedback. We choose T}imeout to be 350 ms, which is the
maximum CEP time interval in the Qi standard, as presented
in Table I. If the condition is met, the QID sensor determines
that the PRx loses its contact with the PTx.

2) PRx symmetric axis alignment: Next we discuss how the
QID sensor finds the symmetric axis of the PRx coil along the
y axis. Finding the symmetric axis is important because it is
the reference for the fingerprinting trajectory.

We assume that the device is in the contact range once
the user puts it on the charger pad. The PRx symmetric axis
alignment is achieved as follows. In the beginning, the PTx
coil moves along the positive direction of the y axis until it is
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Fig. 7. Trajectory design of the QID sensor.

out of the contact range. Next it moves to the negative direction
of both z and y axis, reaching the starting point shown in Fig.
7a (upper left corner). From there, the coil starts to move in
an “S” pattern and sweeps across the PRx coil for four times,
generating a sequence of the detected boundary [z, 1, ..., Z7].
Then the x value of the symmetry axis is

7
1
Lcenter = 5 § Z;
8
1=0

Finally, the PTx coil is aligned to the Z epter With its y
coordinate value right out of the contact range boundary. This
location is the starting point of the coil in the fingerprinting
phase.

We note that, for a multi-coil PTx, this phase can be
achieved by switching between the coils and identifying the
one with the highest coupling.

3) Fingerprinting trajectory planning: Now we present the
PTx coil trajectory design when the QID sensor collects
fingerprints from the PRx. We take two factors into account
when designing it. On the one hand, it is crucial to ensure
the QID sensor captures adequate data from the PRx in the
multicoil array, such that QID records the complete feature
profile of the PRx. On the other hand, the more data points
are measured, the more time it takes. Typically 4 or 5 packets
can be collected during one second. If we plan to record 3,000
CEPs, it may take more than 10 minutes and exceed the time
one leaves the phone on the charger pad. Therefore, we need
to find a trade-off between the spatial data diversity and the
measurement delay. In our design, we assume that the PRx
will be left stationary on the platform for a time window of at
least 90 seconds, such that the QID sensor captures adequate
fingerprints for device identification.

The designed fingerprinting trajectory of the QID sensor
is shown in Fig. 7b. It comprises two sessions, namely the
forward one and the backward one. During both sessions, the
QID sensor records all the packets sent by the PRx and uploads
them to the server. The forward session starts from the end
point of the PRx symmetric axis alignment phase. The PTx
coil is driven to move along the positive direction of the y axis.
Once it enters the contact range, the coordinate value ystq.¢ iS
recorded. In the meantime, the moving speed of the coil is set
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to a lower speed. It stops for 1 second each time after moving
forward for about 8 mm (corresponding to 40 control units in
Fig. 7b) to wait for the operating point hopping, which also
mimics the coil switching in an array. Once the PTx loses
contact with the PRx, i.e., the PRx is out of the contact range,
the boundary point y.,q is recorded, which also marks the
end of the forward session. The backward trace is similar to
the center alignment one, which is in “S” shape. The major
difference is that the distance Az between the farthermost
point and the symmetric axis is about 10 mm along the x
axis, corresponding to 50 control units. The movement along
the negative y direction is divided into 6 sections. Each of

them is
Ay — Yend — Ystart

6

At each turning point, the PTx coil stops for 1 second to wait
for the operating point hopping. After the coil reaches the for-
ward session starting point (Zcenter, Ystart), the fingerprinting
phase finishes. We define a complete scan as the completion of
both the forward and backward sessions, and the data collected
during this phase are defined as a scan sample correspondingly.
It is later post-processed at the QID server.

There are several reasons why such a trajectory is designed.
First of all, it covers the central area of the contact range. Even
if the PRx changes its placement angle next time, the central
region still largely remains overlapping. As a result, the two
independent scan samples do not deviate significantly. Second,
the distance Ax is carefully chosen to accommodate different
coil shapes and sizes. No matter how the PRx is placed, the
planned trajectory falls within the contact range for most of
the time. The trajectory is also able to tolerate the symmetric
axis alignment error up to about 8 mm (corresponding to 40
control units). Finally, the same location is fingerprinted for at
most once, as the forward and backward traces do not overlap
except the region where the coil center enters or exits the
contact area.

VII. FEATURE EXTRACTION AND DEVICE
CLASSIFICATION

In this section, we present how the QID server extracts the
features from the measured data and classifies the features into
different device classes.

A. Feature Extraction

We note that the contact range diameter of the receiving
coil physical feature can be simply calculated as Yend — Ystart-
The oscillator features and the PRx control schemes require
additional processing to obtain. We discuss them as follows.

1) CEP interval features: The QID server uses a local
maximum searching algorithm to extract the CEP time in-
tervals that represent the feature of PRx onboard oscillator.
First, all the CEP time intervals are processed with a fixed
bandwidth Gaussian kernel density estimator (KDE). Unlike
the histogram, the Gaussian KDE represents the probability
of each point in the feature space with a fixed-variance
Gaussian distribution, i.e., the Gaussian kernel, and then the
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Fig. 8. Gaussian kernel density estimation of CEP time intervals. The letters
indicate the device brands. The number indicates each unique device of its
brand. The 0 in the horizontal axis corresponds to 240 ms in real time scale.

TABLE I
THE LIST OF FEATURES EXTRACTED FROM A COMPLETE SCAN.

Feature Group Feature Value Range
Domain 1 CEP interval [40, 60] ms
Domain 1 CEP interval
Oscillator peak log-probability
feature Domain 2 CEP interval [140, 160] ms
Domain 2 CEP interval
peak log-probability
Domain 3 CEP interval [235, 270] ms
Domain 3 CEP interval
peak log-probability
Sample time Time needed in a complete scan >0
Number of packets >0
CEP value = 0 frequency [0, 1]
CEP value € [1, 5] frequency [0, 1]
P R"f;;’t‘;‘rfuer CEP value € [6, 10] frequency [0, 1]
CEP value € [11, 20] frequency [0, 1]
CEP value € [21, 30) frequency [0, 1]
CEP value = 30 frequency [0, 1]

CEP value € (30, 127] frequency [0, 1]

estimation output is the averaged sum of all the individual
kernel probability estimations. The output of the KDE is
actually the probability density function (PDF) of CEP time
interval.

d(t) = pdf (t),t € [40,270] ms

Note that the variable ¢ here is in time domain representa-
tion, while the feature values correspond to the QID sensor
controller timer values.

Next, the QID server extracts the CEP time intervals that
achieve local maximums in the PDE. We observe that the CEP
time intervals typically fall into 3 domains, corresponding to
[40, 60], [140, 160], [235, 270] ms in time domain (as shown
as the three local maxima in Fig. 8). Therefore, it is feasible
to find the peaks directly without calculating the derivative
of the CEP time interval PDF. Specifically, the 3 domains are
denoted as Dy, Do, and D3 respectively. Then the feature CEP
time intervals and their corresponding log-probabilities are

tpi = arg?el%fd(t)’l =1,2,3.

pri = logd(ty:),i=1,2,3.
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The detected peaks of 8 independent complete scan samples
are marked in Fig. 8. The CEP time interval that corresponds
to 240 ms in time domain is shifted to 0. Although some
of the curves appear close to each other in the figure, their
peak-indexed CEP time interval features actually span a con-
siderable wide range in the feature space, as shown in Fig. 5
and the zoom-in sub-figure in Fig. 8. In the zoom-in figure, we
see that the indexed time interval values have little intra-class
variability and inter-class similarity. For example, although
“C3” and “C6” are from the same brand, their peak indexes
deviate from each other with a distance up to 20, while the
three peak indexes of device “C6” are consistent during the
three independent scans that are collected in a wide time span.

2) CEP value features: QID also fingerprints the controller
of a PRx based on the statistic of the recorded CEP values
during a complete scan. What the CEP value differs from the
CEP time interval is that the former can only take integer val-
ues. We analyze CEP values using probability mass function
(PMF). Specifically, we compute the PMF of the CEP values

as
=, 1y ==V}
V) ===
p(V) N
where V' is the absolute CEP value, ranging from 0 to 127,
1{a == b} is an indicator function, and N is the total number

of CEPs in a scan sample. In particular, N is chosen to
be one of the CEP value features because it is an indirect
measurement of the frequency that the PRx sends CEPs. As
we note in Section V-A, it is a PRx controller implementation
specific feature rather than the oscillator drift. We find that the
PMF of the CEP values is not a good feature, as the PMFs span
a wide range of [0, 127], which introduces high variance in
the output features. We also observe that even the same device
may generate different PMFs within different scan samples.
To reduce the variance in the output CEP value features, we
further group the CEP values into 7 ranges. For each range, the
probabilities of the CEP values within the range are summed
up. Specifically, the 7 ranges are: 0, [1, 5], [6, 10], [11, 20],
[21, 30), 30, (30, 127]. We choose these ranges empirically
by correlating the statistical patterns of the ranges with the
device brand.

Table II summarizes the features used in classification.
These features are collected in both steady charging states and
operating point switching transient states, through which QID
extracts the fingerprints in the oscillator, coil and the controller
for classification. We envision that the PRx controller features
can separate the device brand and the oscillator features can
then further separate the devices within the same brand.

B. Classification

The QID server classifies Qi-compliant devices by an en-
semble classifier, also known as “bagging classifier”, com-
prising of Support Vector Machine (SVM) [37], AdaBoost
[38] with decision tree as weak learner, decision tree classifier
[39], k-Nearest Neighbor (kNN) [40], and Linear Discriminant
Classifier (LDC) [41]. The bagging algorithm in our design
utilizes a voting system. When 3 or more classifiers are

outputting the same device label, the bagging classifier chooses
it as the final decision. Otherwise, the output of the SVM is
chosen because it has relatively higher accuracy than the other
classifiers.

The QID server stores all the extracted features and their
corresponding device labels in a feature table. Then it uti-
lizes the repeated random sub-sampling cross-validation, also
known as Monte Carlo cross-validation [42], to split the data
into training and testing set randomly. Finally, the classifier
models are trained with the training set and validated with the
testing set. The mean and the standard deviation of accuracy
from the results of the sub-sampling experiments are recorded.
It is shown [43] that cross validation evaluation introduces
neighborhood bias to the time-continuous sliding window
frame data, which results in overly optimistic model evaluation
estimations. However, in our experiments each of the samples
are collected in a wide span in time domain. In other words,
all the features extracted from a complete experiment scan are
independent to each other. As a result, the cross validation is
suitable for our experiments.

The objective of the QID server is focused on classifying the
device into one of the known classes. This design is applicable
to the scenarios where the devices are already fingerprinted.
For instance, a company may register and fingerprint all the
work devices of employees, and then use QID to track the
location of each device. However, QID can be easily extended
to recognize new devices via online learning. For instance,
by setting a detection threshold in the classifier, QID can
identify whether the newly collected sample corresponds to
any device that is already recorded. If the sample’s probability
of corresponding to an existing device is low, QID can
recognize the device as a new one.

The QID server stores all the extracted features and their
corresponding device labels in a feature table. Then it uti-
lizes the repeated random sub-sampling cross-validation, also
known as Monte Carlo cross-validation [42], to split the data
into training and testing set randomly. Finally, the classifier
models are trained with the training set and validated with the
testing set. The mean and the standard deviation of accuracy
from the results of the sub-sampling experiments are recorded.

The objective of the QID server is focused on classifying the
device into one of the known classes. This design is applicable
to the scenarios where the devices are already fingerprinted.
For instance, a company may register and fingerprint all the
work devices of employees, and then use QID to track the
location of each device. However, QID can be easily extended
to recognize new devices via online learning. For instance,
by setting a detection threshold in the classifier, QID can
identify whether the newly collected sample corresponds to
any device that is already recorded. If the sample’s probability
of corresponding to an existing device is low, QID can
recognize the device as a new one.

VIII. IMPLEMENTATION

In this section, we present the implementation of the QID
system. Fig. 9 shows a QID sensor prototype.
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Fig. 9. A prototype of the QID sensor.

QID sensor base station. The base station is the mechanical
component of the QID sensor, which is built on a clear
acrylic board. The two stepper motor linear sliders enable the
motion along the = and y direction respectively, with a moving
distance of 90 mm each. A switch is added to one end of
each screw, such that the MCU can reset the position each
time the system is powered on. Another clear acrylic board
(not shown in the figure) supported by four nylon hex spacers
is the surface that the mobile device is put on. The cost of
the mechanical components is less than $20. Therefore it is
feasible to be massively deployed in the public area. We note
that the dimensions of the motion unit can be further reduced
by adopting other machenical structure, such as transitional
planar cable-driven movement system [44].

Embedded controller and motor driver. At the center of the
QID sensor, the Atmel SAMG53N19 [45] MCU is employed,
which is responsible for decoding and timestamping packets,
driving the stepper motors, and sending collected data to the
QID server. The MCU supports the UART communication
with the server via a USB virtual COMM port. The motor
driver IC is Toshiba TB6612FNG, which shares the power
with the Qi PTx. The peak motor driving current is around
150 to 200 mA, which is negligible to the Qi wireless charging
system because a typical COTS USB charger can provide 2000
mA current at 5 V.

Qi-compatible power transmitter. We choose a COTS
GMYLE Mini Qi Charging Pad as the PTx, which is connected
to the MCU via a data flow debug pin. The PTx coil is
extended with a pair of wires, which provides extra flexibility,
such that the coil moves without dragging the charger circuit
board around.

The QID server. At the server side, the feature extraction and
classification modules are implemented using approximately
1,100 lines of Python codes, including the pySerial UART
library for the QID sensor communication handler and the ma-
chine learning library scikit-1learn [46] for classification.

TABLE III
THE MEASUREMENT DELAY IN THE QID SYSTEM

Symbol Definition Mean (s)  Std (s)
T Coil symmetric axis alignment time 8.050 0.927
T> Fingerprinting time 55.478 6.092
T3 Feature extraction time 0.147 0.006
Ty Classification time 0.001 N/A

IX. EVALUATION

In this section, we present the performance evaluation of
QID based on 52 Qi-compliant devices. We first present the
evaluation settings and then discuss feature analysis, measure-
ment delay analysis, classification accuracy, feature backward
search, and accuracy breakdown test.

A. Evaluation Settings

We evaluate 52 Qi-compliant devices in total, including
7 Google Nexus 4 (labeled as “N”) and 45 attachable PRx
modules from 6 different manufacturers, including DigiYes,
Hugchg, and RAVPower. We note that the ICs in these
modules are widely used in mainstream mobile devices. For
example, the Texas bq51013B in the DigiYes modules is also
adopted by Google Nexus 5. For each device, we conduct 10
complete independent scans to collect fingerprints. In total,
there are 520 scan samples. To simulate the users’ device
placement behavior in the real world, we alter the phone
placement manually. Specifically, for the first scan, the phone
is aligned with the z axis of the motion plane. For the next
seven scans, the device is rotated counter-clockwise for 45°
each time. For the last two scans, the phone is placed on the
pad with a random angle. To quantify the contribution of the
motion platform, we repeat this whole process for once without
moving the charger coil with respect to the PRx. We consider
this as our baseline and will discuss it in Section IX-C.

In classification, the training and testing split ratio is 7:
3. In other words, 7 out of the 10 samples for each device
are randomly chosen to train the QID classifier model, and
the remaining scan samples are for testing. Such a process is
repeated for 10 times. The average accuracy and the standard
deviation of each classifier are reported. In addition, the
hyperparameters in all the implemented classifiers are tuned
by the grid search. As discussed in Section VII-B, we assume
all the devices are already fingerprinted and recorded in the
database.

B. Measurement Delay

The measurement delay is defined as the time delay from
the moment when the power receiver is booted to the moment
that the server produces a device label. Specifically, the
measurement delay Ty is

Ty =T +To+T5+ 1Ty

where 7} is the coil symmetric axis alignment time, 7% is the
fingerprinting time, T3 is the feature extraction time, and T} is
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Fig. 10. The cross-validation score and device brand detection accuracy of
different classifiers.

the classification time. The means and standard deviations of
these measurement delay terms are presented in TABLE III.

As one can see, the fingerprint phase time 75 is around 55.5
s, which contributes the most to the total measurement delay.
Thus reducing the time 75 is crucial in further optimizing the
measurement delay T,.

The measurement delay is actually acceptable due to the
characteristics of wireless charging. First, unlike other wireless
communication systems where the user is usually in mobility,
the charging process usually takes more than 10 minutes,
during which the user device remains stationary. Second,
in the targeted scenarios, such as a coffee shop that offers
location and personalized services to customers, the users need
to register their devices before using such user-identification
service. During the registration process, QID can collect 8-
10 different samples for future recognition. Finally, previous
systems that exploit clock drifts for device identification have
similar delay performance. For example, BlueID [21] takes
21 seconds for data traffic or 65 seconds for voice traffic
to gurantee the low measurement error. in [19], it takes the
system hours to collect enough packets in order to distinguish
deivces. Therefore, the 60-second measurement delay in QID
is actually acceptable.

C. Classification Accuracy

We first present the overall test accuracy of the cross-
validation study. The overall accuracy is the ratio of the
number of correctly classified scan samples to the size of
the test set. Fig. 10 shows the means and standard deviations
of the implemented classifiers from 10 repeated random sub-
sampling cross-validation folds. As shown in the figure, all
of the implemented classifiers can recognize the device brand
with a mean validation accuracy up to 96.1%. Particularly, the
bagging classifier identifies the brand with up to 97.9% mean
accuracy. The mobile device brand classification accuracy is
of interest because of the following two reasons. First, it is
the foundation of device recognition. As mentioned in Section
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Fig. 11. The impact of feature selection on the classification accuracy.

G1: classification without the CEP time interval features; G2: all features
are included, but they are measured without the motion platform; G3:
classification performance using the CEP time interval features only; G4: all
features are included.
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Fig. 12. Confusion matrix of the 52 evaluated devices.

V-A, although the CEP interval is a good device separator, it
confuses some devices from different brands. If the device
brand is successfully identified, QID server can reduce the
range of device candidates and increase the overall device
classification accuracy. Moreover, brand recognition can en-
able applications like device brand specific advertisement. For
device identification, the bagging classifier achieves an average
accuracy of 85.2%. The highest accuracy achieved by QID is
89.7%. To illustrate the classifier performance, a confusion
matrix is plotted in Fig. 12. Generally, the misclassified
samples are from the devices of the same brand that have
close clock drifts. For instance, there are two devices, namely
“C8” and “Z3”, whose all 3 test samples are mis-classified.
However, some devices are classifed into a different brand due
to their close values in feature space.
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Next, we quantify the performance of the motion platform,
namely the multi-coil array. The G2 in Fig. 11 shows the
baseline result, where the motion unit is not enabled. Each
device is sampled without the motion control for 55 seconds,
corresponding to the delay 75 in Section IX-B. We plot the
classification accuracy of QID in Fig. 11 G4 for comparison.
As we can see, the device recognition rate increases by 17%
by both SVM and bagging classifier when the motion platform
is enabled. The brand recognition accuracy is also boosted by
8%. It is indicated that the motion platform plays an important
role in achieving reliable and sufficient device features for
classification due to its ability to extract fingerprints from more
spots, which captures a more complete profile of a device.

D. Impact of Feature Selection

Not all features are equally important. Fig. 13 and Fig. 14
shows the distribution of two features respectively, obtained
from 42 out of the 52 devices, namely the total number
of packets per scan and the frequency of the CEP value 0.
The distribution of other CEP value frequencies yields similar
trends as shown in Fig. 14 and is thus omitted. These two
features contain more noise than the CEP interval (as shown
in Fig. 5). Nonetheless, intuitively, these features are able to
separate device classes to some extent. We next conduct the
backward search to evaluate the effectiveness of each selected
feature.

We perform two case studies. In the first case “G1”, we
evaluate the bagging classifier without the CEP time interval
features, i.e., the onboard oscillator fingerprints. In other
words, only the CEP value features are used. In the second
case “G3”, we evaluate the bagging classifier with only the

CEP time interval features. The results of these two case
studies are shown in Fig. 11. We observe that the device
recognition accuracies of both the bagging and the SVM
classifier degrade to about 21% in G1, which indicates the
significant contribution of the onboard oscillator fingerprint to
device identification performance. Another observation is that,
although the CEP value features fail in device recognition, they
are still able to distinguish the brands with 75% accuracy by
the bagging classifier. Next, we compare G3 and G4. We can
see that both the device and brand recognition accuracies of
the bagging classifier are improved by about 2.5% by adding
the CEP value features to the CEP time interval features.
This indicates that although the CEP value features are not as
important as the onboard oscillator fingerprints, it helps QID to
reduce uncertainty and achieve higher accuracy. However, as
the number of devices increases, the chance of CEP interval
(PRx oscillator) feature overlapping is expected to increase.
In such a case, the PRx controller fingerprints will provide
necessary device brand identifies, thus reducing the collision
in the feature space.

X. DISCUSSION AND CONCLUSION

In this paper, we present our design and implementation
of QID, the first system that recognizes Qi power receiver
during wireless charging using fingerprints from the onboard
oscillator, coil characteristics, and control scheme of the wire-
less charging system. QID also employs a movement unit to
emulate multi-coil power transmitter and allow for fine-grained
fingerprinting. Our evaluation results show that QID achieves
a high overall accuracy of both device and brand recognition.
Therefore, we demonstrate the feasibility of leveraging public
wireless charging infrastructure for tracking mobile users and
providing ID/location-based services. Our results also open
up new research questions on how to prevent the leakage of
user’s location with the increasing wireless charging station
deployment in public.

QID has several limitations. First of all, unlike other wire-
less communication systems where passive remote sensing
and recognition is possible, QID adopts a user-initiated device
recognition approach. This narrows its applications because
it requires the physical contact between the device and the
sensor. However, this could also be an advantage because it
preserves the user’s awareness and thus protects the user’s
privacy. Second, at this stage QID requires motion parts to
achieve fine-grained fingerprinting. We envision to achieve
device recognition in wireless charging using only stationary
multicoil array. However, since the commercially-available
multicoil chargers are not ready for device recognition yet,
our QID sensor implementation mainly focuses on emulating
a multicoil array with motion control. We expect no motion
unit is needed in the future implementation and deployment.
Nevertheless, the mechanical structure could be possibly re-
designed to achieve a smaller form factor. Finally, we note that
the charging process may cause several short-time charging
disruptions (about 1 to 2 seconds each) due to the discoupling
between the PTx and PRx coils. In such a case, the user ex-
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perience may be potentially impacted. However, as discussed
above, the measurement delay is about 55 seconds. After a
device is successfully identified, the PTx coil will move to a
position (or switch to a particular physical coil) that achieves
the maximum coil coupling to continue the power delivery
process.

Our findings have important implications on the user pri-
vacy. The location of a mobile device may be tracked when
the user charges mobile devices in public wireless chargers.
Mitigating such possible user privacy breach is left for future
work.

In the future, we plan to design a compact coil antenna
to extract the data directly from the wireless power interface,
such that the QID sensor can be non-intrusive to the PTx.
We will also explore new fingerprinting trajectories to further
reduce the measurement delay. Although the users usually
initialize their mobile device registration by themselves in
our targeted scenarios, we still aim to design efficient online
machine learning algorithms to classify unknown devices, such
that QID provides an easy-to-use interface and enablea a wider
range applications. We can achieve this by quantifying the
similarity between the incoming sample features with the ones
already in our database. If the difference exceeds a threshold,
QID determines the sample belongs to a device that has not
been seen before.
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