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Abstract—We present a System for Processing In-situ Bio-
signal Data for Emotion Recognition and Sensing (SPIDERS)
— a low-cost, wireless, glasses-based platform for continuous in-
situ monitoring of user’s facial expressions (apparent emotions)
and real emotions. We present algorithms to provide four core
functions (eye shape and eyebrow movements, pupillometry,
zygomaticus muscle movements, and head movements), using
the bio-signals acquired from three non-contact sensors (IR
camera, proximity sensor, IMU). SPIDERS distinguishes between
different classes of apparent and real emotion states based on
the aforementioned four bio-signals. We prototype advanced
functionalities including facial expression detection and real
emotion classification with a facial expression detector based on
landmarks and optical flow that leverages changes in a user’s
eyebrows and eye shapes to achieve up to 83.87% accuracy, as
well as a pupillometry-based real emotion classifier with higher
accuracy than other low-cost wearable platforms that use sensors
requiring skin contact. SPIDERS costs less than $20 to assemble
and can continuously run for up to 9 hours before recharging.
We demonstrate that SPIDERS is a truly wireless and portable
platform that has the capability to impact a wide range of
applications, where knowledge of the user’s emotional state is
critical.

Index Terms—Wearables, emotion monitoring, pupillometry,
facial expression detection, bio-signal acquisition

I. INTRODUCTION

Emotion monitoring systems play an important role in
improving the mental health conditions of the general public.
They help psychotherapists diagnose and develop better treat-
ments for patients, as well as inform the general population of
their own mental states. Emotion monitoring platforms also
have immense impacts for businesses, providing companies
with another measure of the effectiveness of their products
and advertisements. Additionally, a low-cost and portable
solution would enhance the lives of the general population
by bringing, for example, enhanced entertainment experiences
when movies/games/tv shows present dynamic content to users
based emotions experienced by the user in real-time and
affordable mental health services to people who have access
and cost barriers to mental health care [1]-[4].

However, predicting emotions is challenging, let alone
detecting emotions on a resource-constrained and wearable
device. There are commercial products and research platforms
developed for monitoring specific signals that provide insight
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Fig. 1: Left: SPIDERS glasses platform (red: hardware sen-
sors; blue: PCB boards; yellow: frame components; greenop-
tional attachments). Right: SPIDERS glasses on a mannequin.

into a user’s real emotion. However, many of the existing
commercial products and sensors such as EEG caps are
bulky, expensive, wired, and require constant skin contact,
limiting their use to clinical or controlled environments. All
of the existing vision-based approaches and products for
detecting facial expressions utilize static features found within
a single image to detect whether a person is smiling, sad,
disgusted, etc. Whereas, each person’s eye and facial features,
such as skin tone and eye shape, vary widely. This makes
it difficult to create an algorithm or train a classifier that
can generalize to unseen examples well. Additionally, it is
even more challenging to implement semi-real-time vision-
based facial expression detectors on a resource-constrained,
wearable, embedded platform. We observe that the facial and
eye movements made by a person as s/he transitions into a new
expression is more consistent across different demographics
and leverage this information to develop our facial expression
(apparent emotion) algorithm.

Pupillometry has been shown to be a strong indicator of
real emotions [5]-[7]. However, even using the state-of-art
algorithms and systems that utilize pupillometry, such as the
Tobii Pro Glasses 2, cannot reliably predict real emotions
due to inherent noise in the measurements caused by lighting
changes, reflections, rapid eye movements, blinking, etc. As
such in addition to real emotions, we provide facial expression
(apparent emotion) as a direct output to support applications
where apparent emotions are sufficient, or preferred.

Our contributions are summarized below:

« We present SPIDERS, a low-cost, energy-efficient, and
portable wearable platform, shown in Figure 1 that
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collects data from a variety of non-contact sensors to
provide: 1) eye & eyebrow detection, 2) pupillometry,
3) zygomaticus muscle (smile muscle) movements, and
4) head movements. SPIDERS can be also extended to
include functionalities provided by contact-based sen-
sors, such as 5) heart rate and 6) 8-channel EEG. We
demonstrate the robustness of our sensing modalities by
comparing against commercial products.

« We present novel and robust vision-based techniques to
perform pupillometry and eye & eyebrow shape detection
using infrared (IR)-band gray-scale images, from an IR
camera positioned at a low angle from the eye as to not
block the field of view of the user.

e We develop a data processing pipeline that intelligently
partitions tasks and computation across the glasses wear-
able and more powerful processing units (e.g. computer,
cloud, smartphone) to maintain high accuracy, long bat-
tery life, and ensure that our emotion recognition algo-
rithms run in semi-real-time. We demonstrate that our
wearable is able to last up to 9 hours.

« We propose a novel optical-flow based algorithm for esti-
mating facial expressions (apparent emotions) by leverag-
ing movements in the user’s eyes as s/he transitions into
a new expression, reaching an average classification rate
of 83.87%, outperforming the state-of-the-art approach
[4]. We also demonstrate SPIDERS’s capability of esti-
mating a user’s affective state (real emotions), reaching
a classification rate of 49.32%.

o We provide the community with: 1) anonymized dataset
of biometrics measured from subjects during our con-
trolled experiment setting 2) circuit-design and 3D model
design for our eyeglasses wearable; and 3) a suite of
algorithms and libraries that enable everyone to easily
build their own emotion-based applications based on
SPIDERS.

The rest of this paper is organized as follows. Section
II presents related work and discusses limitations in cur-
rent works and products that SPIDERS addresses. Section
III details the sensing modalities included in SPIDERS and
the hardware platform. Section IV describes the library of
core functions, including the eye and eyebrow shape de-
tection, pupillometry, and zygomatics movements, that SPI-
DERS enables. Section V prototypes and evaluates the facial
expressions (apparent emotion) detection and real emotion
classification. Section VI introduces the potential applications
SPIDERS could enable. Section VII discusses limitations and
future work, and Section VIII concludes the paper.

II. RELATED WORK

In this section, we first analyze related commercial products
that track physiological data in order to identify issues in price,
portability, and usefulness. We then analyze different modal-
ities of data that would be useful for emotion classification
purposes, and explore algorithms which derive the types of
data that cannot be directly measured by minimal sensors.
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A. Bio-signal Acquisition by Wearable Devices

There are a variety of commercial bio-signal acquisition
devices on the market, but all have specific problems that
make them unsuitable candidates for a low-cost, energy-
efficient, and portable platform for monitoring user emotion.
For instance, Fitbit is a wireless wearable activity tracker, but
only measures three-axis acceleration data, and photoplethys-
mography (PPG), both of which are not reliable measures
of emotional states by themselves [8]. Muse is a headband
that provides five-channel electroencephalogram (EEG) data,
heart-rate, and gyroscope sensors [9]. Both heart-rate and EEG
sensors require skin contact, which is difficult to maintain
in a mobile wearable where the user may be on the move.
Pupillometry is well-known as an indicator of affective states,
and there are eye-tracking cameras on the market that measure
these signals. For example, the Tobii Pro Glasses 2 leverages a
wide-angle camera, microphone, gyroscope, and accelerometer
to track the wearer’s eye [10]. However, the system is not
truly wireless (requires an external recording unit) and very
expensive ($10,000+). To summarize, commercial products
measure a limited amount of bio-signals that often require
direct skin contact, or are very expensive and not portable.

There are a number of research platforms and glasses devel-
oped to provide a wearable platform for emotion monitoring.
However, most of these systems focus exclusively on pupil-
lometry [11]-[13], but not apparent emotion. A second cate-
gory of works leverage photoreflective IR sensors integrated
within the eyeglasses frames to detect facial expressions [14]
[15]. However, using IR sensors provides limited resolution
about the position of the cheeks/brows and no pupillometry
measurements, making it difficult to perform robust facial
expression recognition or real emotion classification across a
varied population. [16] leverages sensor fusion, combining fa-
cial features extracted from a camera pointed at the user’s eye
and other physiological signals, such as skin conductance and
PPG, to obtain a more accurate estimation of real emotions.
However, we recognize that facial expressions are not reliable
indicators of real emotions; for example, a user can easily fake
a smile even if s/he is depressed. Additionally, measuring skin
conductance and PPG requires direct contact between the skin
and sensor, which is not stable if the wearer is on-the-move.

B. Vision-Based Apparent Emotion Classification

Research about facial expression classification based on
images of the whole face is abundant. Nevertheless, these
approaches require continuous capturing user’s entire face with
a camera looking from a distance, which is not portable and
can lead to privacy concerns. On the other hand, wearable
devices are becoming more and more popular, and provide
in-situ sensing capabilities [17]-[20]. A camera mounted on
the glasses can not only sense the pupil size and gaze angle,
but also can see clearly the eyelids and the eyebrows. Previous
work directly use raw images as an input to a machine learning
classifier [16]. However, directly learning the features with raw
images requires large amount of labeled data and can perform
well within the dataset and perform poorly in real-world cases.
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Fig. 2: Four-layer system architecture block diagram.

For eyelid and eyebrow detection, many previous works uti-
lize RGB images, conducting adaptive thresholding, luminance
valley detection, and edge detection to detect the shape of
the eye lids and eyebrows [21]-[23]. However, these methods
are computationally expensive and not robust. Also, in order
to perform pupillometry, we have to use IR cameras which
produce gray-scale images, making the boundary between
the sclera (white outer layer of the eye) and skin harder to
distinguish.

Convolutional neural networks (CNN) and regression tree
models have been commonly used for generating facial land-
marks for facial expression recognition. These methods es-
timate facial landmark points that draw out the location and
curvature of the eyelids and brows [24] [25], and some of these
methods have been shown to run in real-time [26]. As such,
we decide to adopt a similar approach in landmark generation.
However, generating the shapes of the eyelids and brows and
determining the user’s expression and apparent emotions based
on this information are two different problems, the latter of
which is not addressed by previous works.

C. Real Emotion Recognition

A variety of bio-signals have been explored for recognizing
a person’s real emotional state. Pupillometry is one of the most
popular signals used to classify real emotional states due to its
non-invasive nature and its high discriminatory power between
different classes of real emotion. To achieve high accuracy
in classifying arousal and valence levels (two measures of
real emotions), the majority of works in the literature acquire
the pupillometry and gaze information from commercial eye
trackers that are expensive and not truly wireless [6], [27],
[28].

Other bio-signals that have been linked to real emotions are
heart rate and EEG. Long-term heart rate variability (HRV)
has been shown to be correlated to emotional patterns and
shifts [29] [30]. EEG head caps are also widely used in
detecting emotion because it non-intrusively captures brain
signals [31]-[33]. However both heart rate monitoring and
EEG monitoring require sensors to be in direct contact with
the skin; in a wearable system, where a user could be moving,
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maintaining contact is not guaranteed nor very comfortable for
the wearer. Additionally, EEG-based methods have achieved
high performance rates because of the sheer number of chan-
nels, employed in these works (often 32 or more). It is difficult
to incorporate even a few channels of EEG into a resource-
constrained wearable.

III. SYSTEM DESIGN

SPIDERS is a low-cost, long-lasting, and mobile platform
for monitoring apparent and real emotions of the wearer.
In this section, we present our hardware design and data
processing architecture that allows SPIDERS to achieve robust
apparent and real emotional recognition while being energy-
efficient and maintaining a suitable latency.

Figure 2 shows the functional system architecture of SPI-
DERS. Each layer in the architecture directly enables the
applications or functionalities in the layer directly above. We
take a top-down approach in designing SPIDERS based on
the types of applications we aim to address. There are many
applications and problems that untethered emotion monitoring
could enable; our aim is to provide the community with
a platform that enables emotion monitoring and allows re-
searchers to develop their own algorithms to address a wide
range of applications by leveraging the plethora of sensors and
modalities that SPIDERS provides.

We recognize that there are two facets of emotions that
people exhibit, apparent and real emotion, provided at the
Advanced Functionalities layer. By providing a mobile plat-
form that is capable of measuring these two dimensions of
emotion, we believe that we can impact some of the Enabled
Applications listed in Figure 2.

A. Sensing Modalities Overview

In this section, we discuss the types of bio-signals that we
decided to incorporate into SPIDERS based on what is needed
to achieve robust apparent and real emotion recognition. Pupil-
lometry, EEG, HRYV, skin conductance, and facial expressions
are commonly used to determine a person’s emotional state, as
discussed in Section II. Previous works generally leverage all
or a subset of these signals to classify emotional states. First,
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we recognize that there are two facets of emotion that people
exhibit: apparent and real emotion, and that knowing one does
not necessarily provide the other. A person may smile while
s/he is happy or sad.

Common signals used to determine someone’s real emotions
include pupillometry, skin conductance, EEG, and HRV. We
omit facial expressions, as people’s expressions may not
accurately represent their real emotions. Skin conductance,
EEG, and HRV are all commonly measured using sensors that
require skin contact. However, in a mobile wearable system,
the contact between the sensor and skin will often be unstable,
making these signals difficult to acquire. Pupillometry has
been shown to be powerful in discriminating between differ-
ent emotional states and can be measured using a camera,
which is non-contact. The IR-filtered camera coupled with
IR illuminator usually has better performance in conducting
pupillometry than the commonly used RGB cameras. Hence,
we integrate an IR-band gray-scale camera into SPIDERS to
perform pupillometry to classify real emotion. Our proposed
methods for obtaining robust pupillometry in face of these
challenges are described in Section IV-B.

Facial expressions are representative of a person’s appar-
ent emotion, or the emotion that people express through
visible body language. Facial expressions, head movements,
and zygomaticus muscle movements can be adequately cap-
tured using camera, inertial measurement units (IMU), and
proximity sensors pointed at a person’s face. Both are non-
contact sensors, and proximity sensors have negligible power
consumption when compared to that of a camera. Our novel
algorithms for determining facial expressions and apparent
emotion using signals from these sensors are detailed in
Section IV-A and Section V.

A summary of the different bio-signals that SPIDERS
provides is shown in the Core Function Library layer of
Figure 2. A summary of the different sensors integrated into
SPIDERS to enable the measurement of these bio-signals can
be found in the Hardware Sensors layer.

B. Hardware Platform

In this section, we describe the hardware platform im-
plementation of SPIDERS that allows us to perform robust
apparent emotion detection and real emotion classification
efficiently and with low latency. Additionally, we open-source
all of our glasses designs, code, and assembly instructions to
the community to allow anyone to build upon or use SPIDERS
for their own projects .

1) Processing and Wireless Transmission Components: The
system on a chip (SoC) module is responsible for sampling
and transmitting sensor data from the glasses wearable to the
client application. A microcontroller with proper performance
is required to sample and transmit data from all the sensors
with enough temporal resolution. To minimize the PCB layout
area, we also prefer wireless SoC modules with an integrated
radio module. Based on these requirements, we chose the

Uhttps://github.com/Columbia-ICSL/SPIDERS
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TABLE I: Price Breakdown.

Module Unit Price Unit Price

(Retail) [U$]  (Wholesale) [U$]
MCU (ESP-32) 4.80 4.80
Proximity Sensor (VL6180X) 4.50 2.18
IMU (MPU-6050) 7.28 3.52
CAMERA (0V2640) 8.50 8.50
Voltage Regulators (TPS63031DSKR) 1.87 0.79
Glasses (PLA Filament) 0.01 0.01
total 26.96 19.80

Espressif ESP32 as our processor and wireless transmission
module. The Espressif ESP32 supports both WiFi and Blue-
tooth, computational power at low power consumption, and
direct memory access (DMA) support.

2) Hardware Sensors: The camera sensor captures eye &
eyebrow shape as well as pupillometry. We chose the OV2640
camera module because of its high sampling rate and moderate
pixel resolution (320x240). Additionally, the OV2640 module
performs on-chip JPEG encoding, converting pixels into a
machine-readable format without computation required from
the MCU. We also install an 850nm band-pass IR filter and
two IR LEDs in front of the camera lens to illuminate the areas
directly in front of the camera and to eliminate the influence
of different iris colors and ambient light from our images.

Compared to the camera, the proximity sensor and IMU
are relatively compact and low-power. We decided to use a
VL6180X proximity sensor to measure the distance between
the sensor and zygomaticus muscle (smile muscle) and an
MPU6050 gyroscope and accelerator sensor to detect the head
movements in the final SPIDERS glasses system.

3) Eyeglasses Frame Design and Sensor Placement: In
order to make the circuit board compact to fit onto the glass
frame, we separate the whole system into two miniature
PCBs: the main board and the power board, as illustrated
in Figure 1. The main board features our processing +
wireless transmission SoC (ESP32-Wrover) and gyroscope +
accelerometer sensor (MPU6050). The power board houses a
2000mAh lithium polymer battery to power the system.

The assembled SPIDERS glasses platform is shown in
Figure 1. The frame itself was 3D printed, and we use 6-
mm wide metal hinges to join the glasses temples to the
frontal frame to allow for foldability just like a normal pair
of glasses. We include two compartments, which we labeled
PCB compartments, on both of the temples to house the main
board and power board.

The proximity sensor is placed below the right lens, pointing
towards the left cheek (zygomaticus muscle) of the user.
Placing the proximity sensor in this location allows SPIDERS
to detect movements of the cheek muscle as a person changes
facial expressions. The camera module + IR lights are placed
in a similar position below the left lens and angled upwards
to capture images of the user’s left eye and brow. The two
extensions where the sensors are mounted on have a certain
degree of freedom to rotate, which enables customized sensor
placement.

All boards and sensors are connected with wires running
along the frame of the glasses. The total weight of SPIDERS,
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TABLE II: Power consumption.

Module Active Power  Sleep Power
ESP32 MCU 128.00 mW 2.64 mW
ESP32 WiFi Connection 29.60 mW 0
IMU (MPU6050) 16.30 mW 16.50 LW
Proximity Sensor (VL6180X) 82.10mW 3.30 uW
IR LED 49.50 mW 0
Camera (OV2640) 168.00 mW 1.98 mW
ESP32 WiFi 286.40 mW 0
total 759.90 mW 4.6398 mW

with all boards, sensors, and battery installed, is below 100g,
which is around a quarter of the weight of the Tobii Pro
Glasses 2.

C. Price Breakdown

Table I summarizes the retail unit price and wholesale
unit price for each major hardware component integrated
into SPIDERS. All software packages and programs used to
develop SPIDERS is freely available at no cost. The total price
to produce a single SPIDERS glasses hardware platform is
as low as $19.80, which is low-cost. Compared to existing
commercial products like the Tobii Pro Glasses 2, SPIDERS
is orders of magnitude less expensive.

D. Power Consumption

Table II lists the active and idle power consumption for
all major components of SPIDERS. When sampling and
transmitting data from all sensors, SPIDERS consumes around
759.9mW. Powering the total system off of a 2000mAh
battery allows SPIDERS to continuously run for more than
9 hours in a battery life test. Additionally, we allow users to
turn off specific sensors when not needed to reduce power con-
sumption further. Turning all sensors and the MCU processing
unit to sleep consumes less than 5mW of energy.

E. Heat Dissipation and Comfort

To verify that SPIDERS’s temperature would not cause
discomfort for the wearer, we measure the heat dissipation
of the entire system for one hour. To measure the temperature
of the main board (the area with the highest temperature on
SPIDERS) platform during one hour of continuous operation,
we use the Fluke TIS75 Thermal Imager. In the steady-state,
the highest temperature of the inward facing side of the
frame is approximately 35°C', which is near the normal body
temperature of a person. The thermal images shown in Figure 3
suggests that the heat is mostly generated by the wireless MCU
and the camera module. Since the temperature of SPIDERS is
no higher than human body temperature, the user would not
feel any discomfort from heat dissipation.

E. System Pipeline and Typical Usage

SPIDERS senses a wide range of bio-signals using multiple
sensors, as summarized in Figure 2. Processing all of this data
on a resource-constrained wearable to perform robust apparent
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Fig. 3: Thermal image of SPIDERS in active mode.

and internal emotion classification, while maintaining semi-
real-time and low power consumption, is not possible. Addi-
tionally, we propose novel algorithms for extracting pupillom-
etry and facial expressions, which are detailed in Section V.
These algorithms, including a facial expression detector that
captures eye sizes and movements in the eyebrows, as a person
changes expressions to more robustly classify apparent emo-
tion, are too expensive to compute on the SPIDERS glasses
efficiently and in real-time. As such, we offload all of our
computation, via WiFi, onto the SPIDERS client application.
The client application computes and stores bio-signal data
extracted from all of the sensors on the SPIDERS glasses
platform. Users are able to view their processed bio-signal
and sensor readings on the client application in semi-real-
time (on the order of seconds in delay). Although there is a
noticeable delay between when the glasses platform samples
from its sensors to when a user can see his/her sensor and
bio-signal readings, we posit that most of the applications that
utilize SPIDERS do not require sub-second-level latency. For
example, knowing when a person becomes depressed 200ms
or 2 seconds after the fact would likely not change the outcome
or quality of care the person receives. Currently, the client
application is implemented on an internet-connected desktop
server. We leave a smartphone implementation for future work.

IV. CORE FUNCTION LIBRARY

In this section, we discuss the algorithms we employ to
extract bio-signals listed in the Core Functionality Library
in the system architecture shown in Figure 2. These signals
can be freely used by developers building upon SPIDERS
for their own applications. Additionally, SPIDERS leverages
the measurements of these signals to detect facial expressions
(apparent emotion) and real emotion.

A. Eye & Eyebrow Shape Detection

1) Shape Detection: The shapes of the eye and eyebrow are
detected to extract features for facial expression classification.
Additionally, determining the shape of the eye allows us to
better detect and localize the pupil, which is an important
preprocessing step in pupillometry.

To determine the shape of the wearer’s eye and eyebrow,
we leverage a convolutional neural network (CNN) based ap-
proach to determine landmark points that outline the wearer’s
eyelids and eyebrows from gray-scale and partial eye images.
First, we construct a dataset of over 6000 images using our
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Fig. 4: Left: Example raw image of the eye. Right: Eye image
with 27 landmark points generated by CNN (9 points on the
upper eyelid, 9 on the lower eyelid, and 9 on the eyebrow).

L b L

(a) Regular clear images cap- (b) Extreme cases with blurry
tured by SPIDERS. images with squint eye.

Fig. 5: Comparison between the ground-truth landmarks and
the landmarks output by the CNN model (red: hand-labeled
ground truth; green: output of the CNN model).

IR camera taken from 10 human subjects of varying ages,
genders, and ethnicities. During the experiment, subjects are
instructed to express six facial expressions reflecting the six
basic human emotions indicated in [34]: angry, disgusted,
fearful, happy, sad, and surprised, as well as a neutral facial
expression, while wearing SPIDERS. The details of subject
demographic distribution and experiment setup are illustrated
in Section V. We manually label each image with 27 land-
mark points per image, as shown in Figure 4. Generating 27
landmark points provides us with enough resolution to make
out the shape of the eye and position of the brow, while not
being too computationally expensive. Our CNN consists of
8 convolutional layers and two fully connected layers that
outputs the predicted locations of the 27 landmark points for
each input image. Finally, we obtain the final contours of the
eyelids and brows by fitting the generated landmark points
onto a fifth-order polynomial curve.

2) Evaluation: We test the eye and brow shape detector
on approximately 200 gray-scale eye images outside of the
training set. Since the CNN model is light, consisting of only
8 convolutional layers, we are able to generate the shape of
the eyelids and brows in less than 5ms per input image. The
average root mean square error (RMSE) of all estimated land-
marks in the test set was 4.90 pixels. Figure 5 shows the decent
performance of our CNN model, even in the case of squinted
eyes or blurry pictures. Additionally, we tested our model on
people of varying races, skin tone, and facial characteristics
(e.g., different eye lash or hair lengths) and found similar
performance across a wide range of demographics.

We show a set of eyelid and brow shape landmarks output
by our model, compared to our hand-labeled ground truth, in
Figure 5. Overall, our model is able to find the contours of
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Fig. 6: Pupil data processing pipeline. (a): The original image
captured by SPIDERS. (b): The 27 landmarks generated by
the CNN model mentioned in Section IV-A. (c): The cropped
eye area image based on the landmarks for upper and lower
eyelids. (d): The color histogram of (c), which used to detect
the threshold of the pupil light intensity. (e): Binary image
based on the threshold (white: pupil). (f): The raw contour of
the pupil. (g): The raw contour curvature and its segmentation
according to the negative peaks. (h): The contour of the pupil.
(i): The elliptic contour of the pupil.

eye and eyebrows with high accuracy, even in the case of as
shown in Figure 5.

B. Pupillometry

Our approach for robust pupillometry using our gray-scale
camera is outlined in Figure 6. Determining the shape of the
eye is a crucial first step in determining pupillometry as it helps
in localizing the pupil by constraining the area to search for
the pupil. First, we apply the eye and eyebrow shape detector,
described in Section IV-A. The result of this step is shown in
(a) and (b). Next, we crop out the eye area and discard the
rest of the image with the knowledge of eyelid shape in (c),
since the pupil can only be located within the eye area.

Next, we generate a histogram of light intensity of the
pixels (d). We note that pupil is generally a much darker color
(lower intensity) than any part of the surrounding eye, and is
thus located in the valley of the histogram of light intensities.
Having this information, we set the threshold of light intensity
to be the intensity correspond to the first local minimum in the
valley, as labeled in (d). Following the rule that any pixel in the
image has lower light intensity than the threshold is set to be
white (within the pupil area), otherwise is set to be black, we
threshold the image to generate (e). Next, we extract the raw
contour of the pupil (f). This is only a rough and noisy contour
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Pupil Diameter — Tobii Pro Nano V.S. SPIDERS
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Fig. 7: A 60-second segment of pupil diameters measured by
both Tobii Pro Nano and SPIDERS.

of the pupil, since this contour includes part of the eyelids and
effects due to light reflection. To clean the contour in (f), we
extract the curvature (g) along the raw contour starting from a
the lowest point on the contour and calculated pixel by pixel
in clockwise as demonstrated in (f). The negative peaks in (g)
are the sharp turning points when we “walk” along the contour
in (f). We use the negative peaks as the critical points to chop
the curvature into several segments. The sharp positive peak
correspond to the portion where the raw contour is distorted
by reflecting light. Those smoother curvature segments either
correspond to the contour of pupil or occlusions caused by
eyelids. The later factor can be identified by calculating the
average distance between the contour segment and the eyelids,
remembering the coordinates of the eyelids are provided by
the eye and eyebrow shape detector in a previous step. After
we exclude the segments regarding to the light reflections and
eyelid occlusions, the segments for the pupil contour can be
detected, as shown in (h). Finally, we fit an ellipse to the
contour segments to obtain the final denoised contour of the
pupil, shown in (i).

Sometimes the contour of the extracted pupil is of low
quality due to a number of reasons (e.g., a person blinks, closes
his eyes, or squints). To filter out frames where the state of the
eye prevents SPIDERS from estimating the shape of the eye
accurately, we compare the shape of the true contour extracted
in step (h) and the fitted ellipse extracted in step (i) using a
error of fit function (FOF3y) [35]. If the quality is deemed too
low using this test, we discard this frame, as most likely the
user has closed his eyes, blinked, squinted, etc. In the end, we
use a Hampel filter with a threshold of 10 times the Median
Absolute Deviation (MAD) to remove the points where there is
a rapid and unnatural change in pupil size. The removed values
are then replaced with new values through linear interpolation.
Though we provide our own implementation of pupillometry,
we allow users and developers to save raw images on the client
application to design and test their own algorithms. It is hard
to detect the absolute size of pupil, which is heavily dependent
on the placement of the SPIDERS.

To evaluate our pupil detection algorithm, we compare

33

E. T BT SR AT R
i s I ‘“’f‘ mEM A W
FE NN i ECENRNE R
2N W hj | \ﬁ” AL
8 11— i | i , First Trial
PNV NEY =
2_20 z‘o 4‘0 s‘o a‘o 160 1%0 u‘w 160 Flf:ha;na‘ 200

Time (s)

Fig. 8: The relative distances between the proximity sensor and
the zygomaticus muscle while a subject alternates smile and
calm facial expressions for 10 repetitions among 5 different
trials (red shades: the ground truth when the subject is asked
to smile).

our measurements with those from a commercial product,
the Tobii Pro Nano ($10000+ with the software), which is
a bar-shaped, screen-based device that remotely tracks the
user’s gaze and pupillometry with a sampling rate of 60Hz
from its installation point underneath a computer monitor. No
additional equipment is needed to be worn by the user (aside
from SPIDERS), which ensured that the Tobii Pro Nano do
not interfere with SPIDERS. The sampling rate for SPIDERS
is 10H z.

We use both SPIDERS and Tobii Pro Nano to take measure-
ments on six subjects from different genders and enthnicities
simultaneously, with each subject being measured for five
minutes. The data collected from both Tobii and SPIDERS
are timestamped. Unlike Tobii Pro Nano, which has multiple
IR-band cameras to enable a 3-D model of pupil and calculate
the diameter of the pupil in millimeter, SPIDERS only contains
one camera module. The pupil size output by SPIDERS could
only be in the unit of pixel. The correlation between the two
time-series data with different units from SPIDERS and the
Tobii Pro Nano is 0.946, demonstrating the accuracy of our
pupillometry approach. Figure 7 exhibits an example of the
pupil diameters provided by both platforms.

C. Zygomaticus Movements

As described in Section III-B, the VL1680X proximity
sensor is placed below the right lens of the glasses, facing
the zygomaticus (cheek) muscle. This muscle flexes when a
person smiles, resulting in a decrease in the distance between
the proximity sensor and muscle [36]. To evaluate whether the
proximity sensor could detect movements in the zygomaticus
muscle, we ask six subjects wear SPIDERS and design a
stimulus to guide the subject to alternate between smiling
for 10 seconds and remaining neutral for another 10 seconds
for 10 repetitions. At the beginning of each experiment, the
position of the proximity sensor is adjusted for each subject to
face the zygomaticus muscle of each subject. To analyze the
amount of calibration required for each user among different
trials, each subject repeats the experiment procedure for five
times.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on July 07,2020 at 02:53:54 UTC from IEEE Xplore. Restrictions apply.



(a) Angry (b) Sad (c) Surprised (d) Fearful

SRS

(e) Disgusted (f) Neutral

(2) Happy

Fig. 9: Eye images of seven common facial expressions.The
constraints from the gray-scale image captured by a wearable
eye tracker make it difficult to distinguish subtle differences
among different emotions (eg. happy and disgusted).

After the client application receives the sensor values, we
first use a high pass filter with a cutoff frequency of 0.02H 2
to get rid of the artifacts due to the relative distance change
between the zygomaticus muscle and the sensor. A lowpass
filter is utilized to remove the random noise, and the filtered
data were normalized (¢ = 0 and o = 1). Figure 8 shows the
example readings from the proximity sensor for one subject
among five different trials. The red shades indicate the periods
when the subject was asked to smile. From visual inspection,
there is a noticeable difference between a smiling and a neutral
face with the signals being highly correlated between different
trials. We conducted a two-sample t-test between the processed
data of the smiling and calm trials from all subjects (p < 0.01).
This shows that with simple adjustments on the position of
proximity sensor for each user before the first use, SPIDERS is
able to robustly capture movements in the zygomaticus muscle
to detect when a person is smiling, frowning, etc.

V. ADVANCED FUNCTIONALITIES PROTOTYPING

In this section, we prototype and evaluate our algorithms
for facial expression (apparent emotion) detection and real
emotion classification in the Advanced Functionality Layer to
demonstrate adequate performance of SPIDERS compared to
other platforms, which are usually more expensive and bulky
[10] [37] [38]. These make up the Advanced Functionalities
layer of SPIDERS in Figure 2. All experiments presented in
this section are approved by the Human Research Protection
Office and IRBs at our institution.

A. Facial Expression Detection

Previous works focus on facial expression (apparent emo-
tion) detection using colored images of the entire face. Few
works have explored facial expression detection using gray-
scale images and even fewer have investigated facial ex-
pression extraction using images only contain the eye area.
Figure 9 shows images captured from our IR camera with a
user making common facial expressions. The camera is angled
very low and captures only the area around the eye and part of
the eye brow. The partial view of the brow, subtle differences
in the shape of the eye between different expressions, and the
inherent variations in the shape of the eye among different
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TABLE III: Expressions and eye area features

Apparent Eye State Brow Movement
Expression
Angry/Fearful Non-Squinting Brow Head Moves Up
Neutral/Sad Squinting/Normal No Movement/Move Down
Surprised Non-Squinting Moves Up
Disgusted Squinting Brow Head Moves Down
Happy Squinting No Movement/Moves Up
\
Landmark Eye shape
Generator
9 Optical Flow Open Squint
Detector ) SR
Eyebrow state i
; Neutral/ i
Normal ! /
[ ] Sad__ . Mappy
Angry/
[ Frown ] Fearful | Disgusted
Rise Surprised

Fig. 10: The pipeline of eye-image-based facial expression
(apparent emotion) detection.

demographics all make it difficult for traditional algorithms,
that match the shape of the eye to an expression, to perform
well.

Two feature we observed that were more consistent among
people of different races + gender and showed greater variation
among different facial expressions are the movement of the
eye brow and the size change if the eye. Table III shows the
relative state of the eyes and the movement of the eyebrows
for the different facial expressions we studied. For instance,
when a person becomes surprised, the head of the eyebrow
(portion of eyebrow closest to the nose ridge) raises and the
eyes become wide open. In the following sections, we present
and evaluate our novel facial expression detection pipeline
as shown in Figure 10, that leverages both the movement
of the eyebrow and the shape of the eye, to classify facial
expressions (apparent emotion) into one of five expressions
listed in Table III.

1) Expression Detection Approach: We propose that SPI-
DERS can perform facial expression (apparent emotion) de-
tection with the following high-level approach:

1) Extract eye landmark features that provides the rough
shape of the eyelids and eyebrows (Section IV-A).
Estimate the size of the eye (wide open vs. squinting).
Track the movement of the eyebrow (moving up vs.
moving down).

Estimate facial expressions based on the size of the eye,
movements of the eyebrow, and a binary decision tree.

2)
3)

4)

Eye Size Estimation: The goal of this step of the algorithm
is to determine if the eye is squinting or non-squinting. To
accomplish this, we need to determine the location and the
outline of the eye. The area encompassed by the outline of the
eye is directly correlated to the state of the eye; if the area is
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Fig. 11: Example of binary thresholding conducted on baseline
corrected eye size data (green shades: the ground truth when
the subject is asked to smile to express happy).

large, the eyes are wide open, and if the eyes are narrow, then
the person is squinting. The eye landmark generation algorithm
we proposed in Section IV-A generates discrete points that
outline the shape of the eye and brow. Next, we interpolate
between these points to draw the outline that encompasses
the area of the eye. Once the area is computed, we manually
set a threshold that achieves the greatest separation between
squinting and non-squinting; eye areas above this threshold
are considered non-squinting, and eyes below this threshold
are considered squinting.
Eyebrow Movement Tracking: Besides checking for squinting
eyes, tracking the movement of eyebrows is helpful in provid-
ing information about when the subject frowns or raises the
eyebrows. Figure 12 shows two consecutive frames taken when
a user’s facial expression changing from angry to neutral, and
the corresponding motion vector map generated with naive
exhaustive search algorithm. From the motion map, We can
easily observe that the eyebrow is moving towards the left.
In order to achieve real-time performance, we adapt the
PWC-Net proposed in [39] to calculate the optical flow
between frames. The mean of the motion vectors close to the
previously generated eyebrow position is taken as the eyebrow
movement vector.

As the visualization in Figure 13 shows, the motion of
the eyebrow between frames is manifest in the form of
short, high-magnitude pulses. Here, the spikes and plunges
of the horizontal and vertical motion components represent
the derivative of general eyebrow states, i.e. the acceleration
with which the eyebrow changes from one state to another.
An equal-magnitude expansion outwards in both the x- and
y-direction may represent a raise of the eyebrow (potentially
induced by surprise), while a prominent contraction inwards
in the x-direction, usually accompanied by a less prominent
y-direction movement, may signify a frown.

We utilize these pulses of movements for analyzing the
eyebrow state along the temporal dimension. Based on the
observations made previously, three states of the eyebrow are
considered in this model: neutral (state 0), raised (state 1), and
frown (state -1). In order to construct the state model of the
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horizontal steps

vertical steps
3

Motion Vector Map

Fig. 12: Motion tracking between two consecutive image
frames (top). As shown in the motion vector map (bottom),
the eyebrow region moves primarily leftwards from the image
on the left to the image on the right.

eyebrow, a few assumptions are made. First, since eyebrow
movements involve the involuntary contraction and expansion
of muscles, they happen over short periods of time, and thus
each movement is always signaled by a short, high-power
pulse. Second, we assume that each time the eyebrow state
diverges from state 0, it will return to state O from either state
1 or state -1 before it diverges again. Third, as a result of
the previous two assumptions, motion pulses are processed
in pairs, with each eyebrow movement complete only after
the appearance of both a positive diversion (a spike) and a
negative diversion (a plunge). Hence, if two spikes or plunges
appear consecutively on the time-series motion, the second
signal succeeds the first in becoming the first of the following
pair of movement, while the state of the eyebrow between the
two spikes is still seen as the one signified by the first spike.
A state diagram along the time axis is thus constructed, with
3 discrete y value levels of -1, 0, and 1, which tracks the state
of the eyebrow at any time point during a trial.

2) Experiment Setup: Participants: 10 adults, including 5
male and 5 female, from different ethnicities (6 Asian, 3
White, and 1 African American) with self-reported normal
hearing are recruited. Participants with impaired vision don’t
wear corrective lenses throughout the experiments since no
reading is required.

Stimuli and Procedure: The subjects are asked to express
seven different apparent facial expressions indicated in Table
III. For each apparent expression category, each subject is
guided to repeat the process of explicitly performing the
certain facial expression while images are taken with 10 fps
frame rate. Each subject is directed to repeat the process
of explicitly performing the certain facial expression for 50
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Fig. 13: Tracking of eyebrow region motion in the form of
overall motion vector components over time (green shades: the
ground truth when the subject is asked to perform disgusted).

frames and 50 frames of neutral facial expression for ten times,
resulting in 1000 images for one emotion.

We take the 10 frames in each 50 frames between the
transitions as the ground truth for a certain facial expression or
a neutral state. By directly calculating the eyebrow movement
from an image with a neutral state to an image with a certain
facial expression, we obtain the eyebrow movement of each
facial expression compared to the neutral baseline. The eye
sizes of the images are also calculated using the method
previously described. The eyebrow movement plots and the
histogram of the eye sizes are shown in Figure 14. The results
in these two figures support what we describe in Table III.

3) Facial Expression Detection Results: By directly train-
ing a support vector machine (SVM) classifier on the eye size
and eyebrow motion features mentioned before, we can get
a classification accuracy ranging up to 94.47% for different
subjects. However, the high accuracy results from overfitting
to the position of the glasses when taking certain trials of the
experiment. Using 3D pupil model or other computer vision
method to compensate for glasses frame movements might
solve this problem, but it is reserved for future work.

As for now, we validate the previously described more
robust method, where time-series eye image data are passed
into the two processing pipelines to obtain eye area data and
eyebrow state data separately. With the 2 x 3 combinations
of eye and eyebrow states, a facial expression classification
is generated for each time point in the test set, with the logic
shown in Figure 10. The result is a continuous prediction along
the time dimension that specifies the subject’s facial expression
at every time point. The result thus generated for the test
dataset is validated against the ground truth and an evaluation
score is calculated for each trial, based on the percentage
of time point-specific predictions made by the classification
model. The results are shown in Figure 15.

The results show that our classification model, based solely
on the detection of eye shape and the tracking of the eyebrow
state with raw, gray-scale, partial images of the eye, achieves a
satisfactory accuracy for facial expression classification, with
the balanced average accuracy reaching up to 83.87% for the
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Fig. 14: (a) Eye brow motion distribution and (b) eye size
histogram for a same subject, we can see the feature of
movements and size change described in Table III.

test dataset, exceeding the performance of Eyemotion, a state-
of-the-art method for eye-area facial expression detection with
IR cameras positioned in front of eyes (which will block the
user’s field of view) [4]. It is worth noting that instead of
providing a probability distribution, our method provides direct
classification into each facial expression. It takes less than
100ms to process each frame, so the proposed method can
achieve a frame rate of more than 10 fps.

B. Real Emotion Classification

To show SPIDERS’s effectiveness in discerning real emo-
tional states, we implemented two 3-class Support Vector
Machines (SVM), with pupil size measured from SPIDERS
as input, to detect three classes of arousal and valence levels,
which are two measures of real emotion.

To obtain data for training and evaluation, we recruited 12
adults with self-reported normal hearing, right-handed, and
varying ages. Participants with impaired vision wore corrective
lenses throughout the experiments, while everyone else had
normal vision. Half of the subjects were males and the other
half were females. During the experiment, all subjects were
exposed to picture/sound/video on a MATLAB graphical user
interface, while wearing SPIDERS. Picture and sound tests
were taken from the International Affective Picture System
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Fig. 15: Confusion matrix for facial expression classification.

(IAPS) and International Affective Digital Sounds (IADS)
datasets, while videos were selected from Youtube [40] [41].

During each trial, the subject would first observe a gray
scale picture with a black cross in the center of the screen for
6 seconds, followed by a target picture, sound, or video stimuli
for 6 seconds. Afterwards, users would enter their arousal and
valence levels using the Self-Assessment Manikin (SAM), a
9-point scale commonly used to measure arousal (excited vs.
calm) and valence (pleasant vs. unpleasant) levels [42]. We
consider one 12 second segment followed by a self-report
of valence and arousal to be a single sample. The responses
provided by the subjects would be used as labels to train and
test the SVM model. Subject responses on the 9-point SAM
scale were scaled to fit in a range from —1 to 1, and we divided
the range into three classes for both valence and arousal. The
classes for valence are ‘“Pleasant” (> 0.4), “Neutral” (< 0.4,
> —0.4), and “Unpleasant” (< —0.4). The classes for arousal
are “Excited” (> 0.4), “Neutral” (< 0.4, > —0.4), and “Calm”
(< —0.4).

We trained our SVMs on 800 samples and tested on 150
samples of pupil size and valence/arousal pairs. The confusion
matrices of our results for both valence and arousal are shown
in Figure 16. Classification for multi-class valence and arousal
levels based on physiological responses is difficult. Even
commercial products that use EEG sensing devices that cost
over $10,000 can only achieve an accuracy of around 70% [43]
[44]. The average prediction accuracy across different subjects
for three-class valence and arousal in SPIDERS are 49.32%
and 47.25%, which is higher than the accuracy of other low-
cost wearable devices ( [16] achieved 34.2% for detecting four-
class states using physiological data collected by contact-based
Sensors).

VI. ENABLED APPLICATIONS

In this section, we discuss areas and problems that SPI-
DERS has the potential to impact.
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Fig. 16: Confusion matrix for the (a) arousal and (b) valence-
based classes.

A. Emotional Health Monitoring

According to the World Health Organization, more than
300 million people suffer from depression and other emotional
health disorders worldwide [45]. Proper treatment may require
consistently monitoring the patient, which currently happens
only when patients come in for appointments [46] [47]. In
many scenarios, patients are unable to make frequent trips
to their healthcare provider (e.g. elderly patients with trouble
moving, or patients in rural/isolated areas) [1]. SPIDERS
would be able to provide almost continuous emotional health
monitoring of patients without the need to make frequent trips
to the doctor. Additionally, patients would be able to live
out their lives normally while wearing SPIDERS because the
SPIDERS glasses platform is truly wireless and portable.

B. Entertainment and Gaming

There are many ways in which SPIDERS could enrich
different categories of entertainment. For instance, a film-
maker could use the spectators’ emotion feedback to decide
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how to make the movie more sympathetic and impressive [48].
A video game could dynamically increase the difficulty of the
game if it detects that the player is getting bored or complacent
[4]. A musical therapy system can utilized real-time emotional
state of the user and adjust the music therapy to the patient’s
needs [49]. In general, media can dynamically change (and
enrich) content based on the current user state.

C. Marketing and Advertisements

Companies can use emotion predictions provided by SPI-
DERS to enhance their marketing campaigns and better reach
their target audience. For example, companies can use the
emotional response of large groups of people to determine
which advertisements generate more interest in their products
to help them create better advertisements. Companies can also
use emotional responses to their advertisements to determine
their target market and send targeted advertisements only to
the people that are most likely to buy their products [50].
Moreover, with customers’ emotional responses, the govern-
ment can enhance the impact of public service announcements,
such as advertisements for safe driving and water saving [3].
Customers would greatly benefit from this because they would
only receive advertisements about products and services they
are more willing to explore, rather than receiving advertise-
ments about products they do not care for.

VII. LIMITATIONS AND FUTURE WORK

The current SPIDERS system has several limitations. First,
the primary contribution of SPIDERS is addressing the chal-
lenges of power consumption, cost, and portability, and cre-
ating a low-power wearable platform that enables researchers
and engineers to develop real-time applications that benefit
or require continuous in-situ bio-signals monitoring. As such,
in this paper, we prototype facial expression detection and
emotion classification models and show that these models can
be run on SPIDERS with adequate performance compared to
the works done by other groups in the research community
[4] [16]. In the next phase, we will explore better feature
engineering, modality fusion, and algorithmic development
strategies that could boost the performance of the classification
models drafted in this paper.

To valid the performance of SPIDERS, we conduct the
experiments in controlled situations similar to the experiment
setups mentioned in [51] [52]. We will perform further re-
search to develop algorithms that are more robust to different
lighting conditions (indoor and outdoor), different users, and
body movements based on the four functions in SPIDERS
Core Function Library. We will also perform in-the-wild
experiments with multiple days of continuous wearing.

VIII. CONCLUSION

In this paper we present SPIDERS, a low-cost wearable
glasses platform that provides four sensing modalities (eye and
brow shape detection, pupillometry, zygomaticus movements,
head movements) from three non-contact sensors (IR camera,
proximity sensor, IMU), with the option of including sensors
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that require skin contact (heart rate, skin conductance, EEG).
We show that SPIDERS is able to robustly classify five
different classes of facial expressions (apparent emotions) and
three levels of valence and arousal (real emotion). SPIDERS’s
low cost, portability, and long battery life, combined with its
capability to estimate both facets of human emotion (apparent
and real) make it the perfect platform for exploring applica-
tions that can utilize human emotions.

Additionally, we present and discuss many high-level ap-
plications that SPIDERS will impact and plan to explore
some of these problems in future work. In addition to the
applications discussed, there are many other concrete problems
such as detecting lies, detecting drowsy driving, or determining
engagement levels in a class that SPIDERS has the chance to
impact. As such, we have open-sourced all of our code and
designs to the public and will continue to promote SPIDERS
to foster a community of developers and researchers who
will collectively improve and develop new applications for
SPIDERS. We envision SPIDERS as the go-to open-source
platform for investigating applications in mobile emotion
monitoring.
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