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Abstract

We construct weak solutions to the ideal magneto-hydrodynamic (MHD) equations
which have finite total energy, and whose magnetic helicity is not a constant function
of time. In view of Taylor’s conjecture, this proves that there exist finite energy weak
solutions to ideal MHD which cannot be attained in the infinite conductivity and zero
viscosity limit. Our proof is based on a Nash-type convex integration scheme with
intermittent building blocks adapted to the geometry of the MHD system.

1 Introduction

We consider the three-dimensional incompressible ideal magneto-hydrodynamic
(MHD) equations

ou+ wu-Viu—(B-VYB+Vp=0 (1.1a)
B+ Ww-V)B—(B-Vu=0 (1.1b)
divu =divB =0. (1.1¢)

posed on the periodic box T3 = [—7, 7 )°, for the velocity field u : T %[0, T] — R3,
the magnetic field B : T3 x [0, T] — R3, and the scalar pressure p : ™x[0,T] — R.
This is the classical macroscopic model coupling Maxwell’s equations to the evolution
of an electrically conducting fluid/plasma [4,26,54].
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1.1 MHD Conservation Laws

The ideal MHD equations (1.1) posses a number of conservation laws, which inform
the class of solutions we work with. The mean of u and B over T> are conserved
in time (even for weak solutions) and thus we consider solutions of (1.1) such that
Jps u(x, t)dx =[5 B(x, t)dx = 0. For smooth solutions of (1.1) the coercive con-
servation law, and in fact Hamiltonian [43,59] of the system, is given by the toral
energy

Et) = %/TS lu(x, H)* +|B(x, )|>dx .

This motivates us to work with solutions to (1.1) such that u(-, ), B(-, 1) € L*(T?)
for all times #. At this L;’OLi regularity level the cross helicity

Ho.B = / u(x,t) - B(x,t)dx
3

is well-defined, and (1.1) formally conserves the cross helicity. Lastly, we mention the
conservation of the magnetic helicity [48,60,61], defined as

Hp.g(t) = / A(x,t) - B(x,t)dx,
']1'3

where A is a vector potential for B, i.e. curlA = B. As we work on the simply
connected domain T2, the value of H B, (t) is independent of the choice of A. Indeed,
keeping in mind the Helmholtz decomposition we note that the gradient part of A is
orthogonal to B, and thus A may be chosen without loss of generality such thatdiv A =
0 and fﬂg A(x, t)dx = 0. Throughout the paper we work with this representative
vector potential given by the Biot-Savart law: A = curl (—A)~! B. This also justifies
our generalized helicity notation used above: H 7 , = fT3 curl (—A)~! f - gdx (see
also [43)).

We emphasize that as opposed to the total energy and cross helicity (the so-called
Elsdsser energies [2]), the magnetic helicity lies at a negative regularity level, namely
LX® I-‘I;l/ 2. This subtle difference points to the fact that magnetic helicity plays a spe-
cial role among the conserved quantities of (1.1), a fact which is famously manifested
in the context of reconnection events in magneto-hydrodynamic turbulence. While
turbulent low-density plasma configurations are observed to dissipate energy [24,47],
it is commonly accepted knowledge in the plasma physics literature that the magnetic
helicity is conserved in the infinite conductivity limit. This striking phenomenon is
known as Taylor’s conjecture [3,32,49,57,58], and we recall in Section 1.3 its math-
ematical foundations [14,35]. In contrast, our main result (cf. Theorem 1.4) shows
that there exist weak solutions of the ideal MHD equations (cf. Definition 1.1) whose
magnetic helicity is not a constant function of time. We thus prove that the ideal-MHD-
version of Taylor’s conjecture is false.
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1.2 Weak Solutions and Onsager Exponents for MHD

Before stating our result precisely, we recall a number of previous works on this
subject. First, we introduce the notion of weak/distributional solutions to (1.1) that we
consider in this paper. We work with solutions of regularity at the level of the strongest
known coercive conservation law, i.e., they have finite energy.

Definition 1.1 (Weak solution) We say (u, B) € C((—=T,T); L>(T%)) is a weak
solution of the ideal MHD system (1.1) if for any + € (=T, T) the vector fields
(u(-, 1), B(-, 1)) are divergence free in the sense of distributions, they have zero mean,
and (1.1) holds in the sense of distributions, i.e.

T
//3t1/f'M+VI/fI(M®u—B®B)dxdt=O
—T JT3
T
/ /atl/f'B+V1/fi(M®B—B®u)dxdt=O
—T JT3

hold for all divergence free test functions v € Cg°((—T, T) x T3).

In analogy with the famed Onsager conjecture for weak solutions of the 3D Euler
equations [52], it is natural to ask the question of the minimal regularity required
by weak solutions of (1.1) to respect the ideal MHD conservation laws: the energy
&, the cross helicity H,, p, and the magnetic helicity Hp . Once a suitable scale of
Banach spaces is fixed to measure regularity, this putative minimal regularity exponent
defines a critical/threshold exponent above which all weak solutions obey the given
conservation law (the rigid side), while below this exponent there exist weak solutions
which violate it (the flexible side). See [44], where this question is posed for general
nonlinear, supercritical, Hamiltonian evolution equations (3D Euler and 3D MHD
being examples of such systems), [11, Remark 1.8] in the context of the SQG system,
and [41] for more general active scalar equations.

Concerning the conservation of the L)ZC quantities £ and H,,, g, similar results have
been established in parallel to the rigid side of the Onsager conjecture in 3D Euler
[15,22,33]. To see this, recall that the Elsiisser variables z+ = u+ B are incompressible
and obey 9,z% + zF - Vz* = —VII, where I1 = p + B%/2. Using the commutator
estimates of [22], Caflisch—Klapper—Steele [14] proved the conservation of energy
and cross helicity for weak solutions (u#, B) € Bg,oo with ¢ > 1/3. See also [42] who

use the methods of [15] to reach the endpoint case B31 / 63(N).

The analogy with 3D Euler spectacularly fails when we consider the flexible part
of the Onsager question, namely to construct weak solutions to (1.1), in the sense of
Definition 1.1, with regularity below 1/3 when measured in L3, that do not conserve
energy, or cross helicity. For 3D Euler the Onsager conjecture is now solved, cf. Isett
[39], and B.-De Lellis-Székelyhidi-V. [10] for dissipative solutions. In contrast, for
3D MHD the only non-trivial (i.e. B # 0) non-conservative example arises when
one imposes a symmetry assumption which embeds the system into a 2%D Euler
flow: if v = (v, v2, v3)(x1, x2) solves 3D Euler, then setting u = (vy, vz, 0) and
B = (0, 0, v3), the resulting x3 independent functions solve the ideal MHD system.
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This symmetry reduced system is used by Bronzi-Lopes Filho-Nussenzveig Lopes
in [5] to construct an example with £ not constant. Note however that in this case
both the cross helicity and the magnetic helicity vanish identically, so that H, p =
Hp.p = 0 are conserved. A first attempt at constructing wild solutions is the work
of Faraco-Lindberg [34], who use the ideas of De Lellis-Székelyhidi [27] and the
Tartar framework [56] to show that there do in fact exist non-vanishing smooth strict
subsolutions of 3D ideal MHD with compact support in space-time. However, the
interior of the 3D A-convex hull is empty, which makes the implementation of a
convex integration scheme starting from this subsolution very nontrivial. In fact, in
this same paper [34] it is shown that ideal 2D MHD does not have weak solutions (or
even subsolutions) with compact support in time and with B # 0. The difficulty raised
by the emptiness of the interior of the 3D A-convex hull for (1.1) was recently resolved
by Faraco-Lindberg-Székelyhidi [36] who construct bounded weak solutions which
have compact support in time. While these solutions do not conserve £ and H,, g,
their magnetic helicity is necessarily trivial, i.e. H g g = 0. The physical obstruction
to constructing non-conservative solutions to ideal MHD with nonconstant H g_p is that
the magnetic helicity is conserved by weak solutions under much milder assumptions.
We note that a parallel obstruction for L7°, convex-integration constructions occurs
in the setting of the SQG equation: the kinetic energy conservation requires that the
potential vorticity has 1/3 regularity, whereas the conservation of the Hamiltonian
only requires Lt3, . integrability [11,41].

Indeed, Caflisch—Klapper—Steele prove in [14] that the magnetic helicity is con-
served by weak solutions of (1.1) as soon as (4, B) € Bg"oo with @ > 0. Note the
considerably weaker condition & > 0 for H g g conservation, as opposed to o > 1/3
for £. Kang-Lee [42] and subsequently Aluie [1] and Faraco-Lindberg [34] were able
to derive the endpoint case which states that magnetic helicity is conserved as soon as
(u, B) € Li! .- This discrepancy between the requirements for energy and magnetic
helicity conservation is the underlying physical difficulty to our construction, known
in the plasma physics community as Taylor’s conjecture (discussed in Sect. 1.3 below).

Whether the L;t regularity threshold for the conservation of H g, g is sharp remains
open. As mentioned before, we do not have examples of non-conservative solutions to
(1.1). This open problem is stated explicitly in [35]: “It is still open whether magnetic
helicity is conserved if u and B belong to the energy space L°(0, T; L*(T3, R3))”.
In this paper we answer this question in the positive, see Theorem 1.4.

1.3 Taylor’s Conjecture

Before turning to our main result, we briefly discuss the mathematical aspects of
Taylor’s conjecture, which has interesting consequences concerning the set of weak
solutions to (1.1).

The viscous (v > 0) and resistive (u > 0) MHD equations are given by

ou+ (w-VY<u—(B-VYB+Vp=vAu (1.2a)
B+ w-V)B—(B-V)u=uAB (1.2b)
divu =divB =0. (1.2¢)
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In analogy to the 3D Navier—Stokes equation, using the energy inequality for (1.2)

t t
5(t>+v/ ||W(-,s>||izds+u/ IVB(,5)l%.ds < Eto) (1.3)
to to

it is classical to build a theory of Leray-Hopf weak solutions for (1.2). These are
solutions with u, B € CSML?C N L?Hx1 which obey (1.3) for a.e. 7o > O and all ¢ > #.
Note that the only uniform in (v, ) bounds for Leray-Hopf weak solutions to (1.2)
are at the L?OLi regularity level, as in Definition 1.1. Following [Definition 1.1] [35]

we recall the definition:

Definition 1.2 (Weak ideal limit [35]) Let (v;, 1;) — (0, 0) be a sequence of van-
ishing viscosity and resistivity. Associated to a sequence of divergence free initial
data converging weakly (uo, j, Bo, j)— (1o, Bo) in L2(T3), let (uj, Bj) be a sequence
of Leray-Hopf weak solutions of (1.2). Any pair of functions (u#, B) such that
(uj, Bj) X (u, B) in L*®(0, T; L*(T3)), are called a weak ideal limit of the sequence
(uj, Bj).

Note in particular that a weak ideal limit (x, B) need not be a weak solution of
the ideal MHD equations (1.1). Taylor’s conjecture states that weak ideal limits of
Leray-Hopf weak solutions to (1.2) conserve the magnetic helicity. This was proven
recently in [35]:

Theorem 1.3 (Proof of Taylor’s conjecture [35]) Suppose (u, B) € L° Li is aweak
ideal limit of a sequence of Leray-Hopf weak solutions. Then H g p is a constant func-
tion of time. In particular, finite energy weak solutions of the ideal MHD equations (1.1)
which are weak ideal limits, conserve magnetic helicity.

The proof of Theorem 1.3 given in [35] (who also consider domains which are
not simply connected) has three ingredients: Leray-Hopf weak solutions to (1.2)
have desirable properties which may be deduced from (1.3), the magnetic helicity
is bounded as soon as B € L;’OI:IX_UZ, and the fact L2 ¢ H Y2 is compact (we
work with zero mean functions). We recall this argument in Appendix B and note that
similar proofs appear in the context of the 2D Euler equations [16] and of the 2D SQG
equations [20].

In conclusion, we emphasize that there is a substantial integrability/scaling dis-
crepancy between the results of [1,34,42], which consider the conservation of Hp p
directly for weak solutions of ideal MHD, and the result of Taylor’s conjecture [35],
which considers weak solutions to (1.1) that arise as weak ideal limits from (1.2). The
first set of results require L;’ , integrability to guarantee that the magnetic helicity is
constant in time, while the second result requires merely LSOL% integrability. Thus,
there is additional hidden information in the definition of a weak ideal limit, a ghost of
the energy inequality (1.3). Our goal in this paper is to show that this scaling discrep-
ancy is real, by proving that there exist L?° L)z( weak solutions to ideal MHD which
do not conserve magnetic helicity (see Section 1.4 for details).
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1.4 Results and New Ideas

In this paper we prove the existence of non-trivial non-conservative weak solutions
to (1.1) with finite kinetic energy. For clarity of the presentation, we only prove the
simplest version of this statement:

Theorem 1.4 (Main result) There exists B > O such that the following holds. There
exist weak solutions (u, B) € C([0, 1], Hﬁ) of (1.1), in the sense of Definition 1.1,
which do not conserve magnetic helicity. In particular, there exist solutions as above
with 2 ’HB,B(O)‘ < Hp,p(1) and Hp (1) > 0. For these solutions the total energy
& and cross helicity H,, p are non-trivial non-constant functions of time.

To the best of our knowledge Theorem 1.4 provides the first example of a non-
conservative weak solution to the ideal MHD equations, for which £, H,, g and Hp g
are all non-trivial. A direct consequence of our result is the non-uniqueness of weak
solutions to (1.1) in the sense of Definition 1.1. In fact, at this L™ L? regularity level,
Theorem 1.4 also gives the first existence result for weak solutions to (1.1), as the usual
weak-compactness methods from smooth approximations fail, for the same reasons
they fail in 3D Euler. In fact, we note that in view of Theorem 1.3, the weak solutions
of 3D ideal MHD which we construct in Theorem 1.4 cannot be obtained as weak
ideal limits from 3D viscous and resistive MHD.

The regularity of the weak solutions from Theorem 1.4 is slightly better than C ?Li ,
as the parameter § is very small (as in [13]). In view of the conservation of magnetic
helicity in C?Li, and of the Sobolev embedding, any construction of non-conservative
weak solutions in H? must have 8 < 1/2. However, it seems that fundamentally new
ideas are needed to substantially increase the value of 8 in Theorem 1.4. Additionally,
making progress towards the flexible side of an Onsager conjecture for ideal MHD,
i.e. to construct weak solutions in Bg{ oo With 0 < & < 1/3 which do not conserve total
energy seems out of reach of current methods (such solutions would need to conserve
magnetic helicity, but not total energy).

The proof of Theorem 1.4 is based on a Nash-style convex integration scheme with
intermittent building blocks adapted to the specific geometry of the MHD system. For
the 3D Euler equations, Scheffer [53] and Shnirelman [55] first gave examples of wild
solutions in L%, respectively LS, while De Lellis-Székelyhidi [27] have placed these
constructions in a unified mathematical framework. Convex integration schemes based
on the ideas of Nash [50] were first used in the context of the 3D Euler system by
De Lellis-Székelyhidi in the seminal work [28]. A sequence of works [6,8,9,25,29,40]
further built on these ideas, leading to the resolution of the Onsager conjecture by Isett
[38,39]. For dissipative solutions, the proof of the flexible side of the Onsager conjec-
ture was given by B.-De Lellis-Székelyhidi-V. [10] (see [12,30] for recent reviews).
Nash-style convex integration schemes in Holder spaces were also applied to other
classical hydrodynamic models [11,18,41,51]. The last two authors’ work [13] intro-
duced intermittent building blocks in a L2-based convex integration scheme in order to
construct weak solutions of the 3D Navier—Stokes equations (3D NSE) with prescribed
kinetic energy. These ideas were further developed in [7] to construct intermittent weak
solutions of 3D NSE with partial regularity in time, in [7,45] for the hyperdissipative
problem, in [17,46] for the stationary problem, and in [23] to treat the Hall-MHD
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system. We note that Dai’s [23] non-uniqueness result fundamentally relies on the
presence of the Hall term curl (curl B x B) which is of highest order and is not present
in the ideal MHD system. We refer to the review papers [12,30,31] for further refer-
ences.

The main difficulties in proving Theorem 1.4 arise from the specific geometric
structure of 3D MHD which we describe next, along with the main new ideas used to
overcome them. First, the intermittent constructions developed in the context of 3D
NSE [7,13,17], more specifically the building blocks of these constructions (intermit-
tent Beltrami flows, intermittent jets, respectively viscous eddies), are not applicable to
the ideal MHD system. Informally speaking, for 3D NSE one requires building blocks
with more than 2D intermittency, whereas the geometry of the nonlinear terms of 3D
MHD system requires the building blocks’ direction of oscillation to be orthogonal to
two direction vectors, only permitting the usage of 1D intermittency (co-dimension
2). In particular, our construction does not work for the 2D MHD system, as expected
[34]. Our solution is based on constructing (see Section 5) a set of intermittent build-
ing blocks adapted to this geometry, which we call intermittent shear velocity flows
and intermittent shear magnetic flows. Their spatial support is given by a thickened
plane spanned by two orthogonal vectors ki and k;, whereas their only direction of
oscillation is given by a vector k which is orthogonal to both k; and k5. The second
fundamental difference is that in 3D NSE intermittency is only used to treat the linear
term Au, as an error term. In the case of 3D ideal MHD it turns out that intermittency
is used to treat the nonlinear oscillation terms. Due to the two dimensional nature of
their support, the interaction of different intermittent shear flows is not small when
measured using the usual techniques. At this point intermittency plays a key role: we
note that the product of two rationally-skew-oriented 1D intermittent building blocks
is more intermittent than each one of them: it has 2D intermittency because the inter-
section of two thickened (nonparallel) planes is given by a thickened line, which has
2D smallness.

We remark that a similar method to the one outlined here, combined with suitable
localization arguments, should be able to yield the existence of weak solutions to ideal
3D MHD which have compact support in physical space and which do not conserve
magnetic helicity (see [21,37] for the construction of smooth and of rough solutions
to steady ideal MHD with compact support). Such a construction would permit the
treatment of non-simply-connected domains, an important geometry in plasma physics
(e.g. tokamaks).

We also note that the construction given in this paper describes an algorithm with
very explicit steps. Moreover, as opposed to Euler convex integration schemes, one
does not need to numerically solve a large number of transport equations, which
is computationally costly. It would be very interesting to implement the construction
given below on a computer, and to visualize the emerging intermittent MHD structures.

2 Outline of the Paper

The proof of Theorem 1.4 relies on constructing solutions (i, By, Ii’(’;, R (f ) for every
integer g > 0 to the following relaxation of (1.1):
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diug + div (uy ® ug — By ® By) + Vp, = div R (2.1a)
3By +div (uy ® By — By ® uy) = div R} (2.1b)
divugy =divB; =0 (2.1¢)

where Rg is a symmetric traceless 3 x 3 matrix which we call the Reynolds stress and
R 5 is a skew-symmetric 3 x 3 matrix which we call the magnetic stress. We recover the
pressure p, by solving the equation A p, = divdiv (—uy ® uy + By ® By + I%Z) with
J3 Pgdx = 0. We construct solutions to (2.1) such that the Reynolds and magnetic
stresses go to zero in a particular way as ¢ — 00, so that in the limit we obtain a weak
solution of (1.1).

In order to quantify the convergence of the stresses we introduce a frequency param-
eter A4 and an amplitude parameter &, defined as follows:

bl -2
hg=a®  and 5, =1, (2.2)

where B > 0 is a (very small) regularity parameter and a, b € N are both large. By
induction, we will assume the following bounds on the solution of (2.1) at level g:

IA

|84 2 <cdgrt.  (23)

1 o
1=8;. Byl =22 |RE|

Ll

IA

< Cubyi1 . (2.4)

1 °
gl o= 1=07  Jualer =22 &) <

The constants ¢, and cp are universal: ¢, only depends on fixed geometric quan-
tities, and cp depends on ¢, and other geometric quantities. We can assume that
cu, cp < 1. We note that, unless otherwise stated, || f||;» will be used as shorthand for
||f”L§’°((—T,T);Lf(’]I‘3))' Moreover, we write ”f”Cxl,, to denote || fll; 0 + IV fllpe +

1197 f Il oo

Proposition 2.1 (Main Iteration) There exist constants B € (0,1) and ap =
ao(B, cp, cy) such that for any natural number a > aq there exist functions
(tg+1, R;_H, Byi1, R(f_H) which solve (2.1) and satisfy (2.3) and (2.4) at level g + 1.
Furthermore, they satisfy

1 1
lug+1 —uq|» <8,y and  |Byr1 — Byl 2 <8 (25)

q+1-

Sections 3—6 contain the proof of Proposition 2.1, while the proof of Theorem 1.4
is given in Sect. 7.

3 Mollification

It is convenient to mollify the velocity and the magnetic field to avoid the loss of
derivatives problem. Let ¢, be a family of standard Friedrichs mollifiers on R> and
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let . be a family of standard Friedrichs mollifiers on R. Define a mollification of
ug, By, R’(;, and, R(f in space and time at length scale £ by

ue := (g *x ) *; Q¢ and By = (By *x ) *1 ¢¢
RY = (I%Z %y o) % 9¢  and  RE = (1%5 kx P) * P .

Using (2.1a) and (2.1b), (u¢, RY) and (By, R?) satisfy

dueg + div (e ® ug — By ® Be) + Vpy = div (R + RY,,,.) (3.1a)
3 Be + div (ug ® By — By ® ug) = div(RE + RE ) (3.1b)
divuy =divB, =0 (3.1¢)
where the traceless symmetric commutator stress Iégomm and the skew-symmetric

B i
commutator stress R, are given by

RYm = eBup) — (Be®By) — (ug®ug — By®By) *x ¢0) * ¢¢ ,
comm = Ut @ By — Be @uy — (g ® By — By @ ug) *x d¢) *; @p

=)
&
|

and py is defined as
_ 2 2 2 2
pe = (Pg *x o) *1 ¢ — lug|” + |Be|™ + (Jug|™ — By l”) *x @e) *1 ¢ .

Using standard mollification estimates and (2.3)—(2.4) we have the following esti-
mates for Rf and Ry:

< E_M(Sq+] . (32)

L'~

s
Hv R

M BB
Pl b

For R 5 .m We use the double commutator estimate from [19] and the inductive esti-

mates (2.3)—(2.4) to conclude

|2

comm ‘

<]
lN

5B
Rcomm ‘

S €| By

co ™

L e lugller, < €. (3.3)

Since u, and B, satisfy the same inductive estimates, we have the same bound from
(3.3):

HI%" ‘ SO (3.4)

comm
L

We will choose the mollification length scale so that both (3.3) and (3.4) are less than
84-+2: using (2.2) this implies that £ must satisfy

—2_Bb
e (3.5)
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If we define ¢ as

— N
=20

then (3.5) translates into n > % + Bb.

Remark 3.1 The implicitconstants appearing in (3.3) and (3.4), as well as later inequal-
ities in this paper, will depend on the mollifiers, N (see Remark 4.3), ® (see Section 5),
and various other geometric quantities. In particular, none of the implicit constants
will depend on ¢g. By taking a to be sufficiently large we will be able to use a small
power of A, to absorb the implicit constants and have bonafide inequalities. O

4 Linear Algebra

As with previous convex integration schemes, we construct perturbations to add to
the velocity and magnetic fields to reduce the size of the stresses. The following two
lemmas are an important part of designing the perturbations so that this cancellation
of the previous stress occurs. The proofs are given in Appendix A.1.

Lemma 4.1 (First Geometric Lemma) There exists a set Ag C S>NQ?3 that consists of
vectors k with associated orthonormal bases (k, k1, k2), ep > 0, and smooth positive
Sunctions y) : Bey (0) — R, where Bgy(0) is the ball of radius ep centered at 0 in
the space of 3 x 3 skew-symmetric matrices, such that for A € Bg,(0) we have the
following identity:

A=) yi (A @k —k ® k). (4.1)
keAp

Lemma 4.2 (Second Geometric Lemma) There exists a set A, C S>NQ3 that consists
of vectors k with associated orthonormal bases (k, k1, k2), &, > 0, and smooth positive
Sunctions y : Be,(Id) — R, where B, (1d) is the ball of radius &, centered at the
identity in the space of 3 x 3 symmetric matrices, such that for S € Bg, (I1d) we have
the following identity:

S= > Yok ®ki . 4.2)
ke,

Furthermore, we may choose Ay such that Ap N A, = 0.

Remark 4.3 By our choice of A p and A, and the associated orthonormal bases, there
exists No € N with

{Npak, Npnki, Naky} C NAS2 nz3.

For instance, Ny = 65 suffices. O
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Remark 4.4 Let M, be a geometric constant such that

Z ||)/(k) ”Cl(Bg,, Id)) + Z ” Y ||C1(BgB 0)) = M. 4-3)
ke, keAp

This parameter is universal. We will need this parameter later when estimating the
size of the perturbations, see (5.18) and (5.11). O
5 Constructing the Perturbation: Intermittent Shear Flows

Let @ : R — R be a smooth cutoff function supported on the interval [—1, 1]. Assume
it is normalized in such a way that ¢ := —szzcb satisfies

/ $*(x)dx = 2.
R

For a small parameter r, define the rescaled functions

¢r(x) == l,qb (i—c) and @, (x) := 1o (i‘)

r r
which implies the relation ¢, = —rzcg“’—;d)r. We periodize ¢, and @, so that we can
view the resulting functions (which we will also denote as ¢, and ®,.) as functions
defined on R/277Z = T. For a large parameter A such that A~! < r and rA € N the
intermittent shear velocity flow is defined as
Wy := ¢r (Ar Npk - x)kg for ke Ay,UAp,

and the intermittent shear magnetic flow is defined as

Dy := ¢r(ArNpk - x)ko for ke Ap,
where the notation (k) at the subindex is shorthand for a dependence on k, A and other
parameters. The fields W) and D) are (T/ (ra))3— periodic, have zero mean, and
are divergence free. We introduce the shorthand notation

Dy (x) :=dr(ArNpak - x),  Ppy(x) := O (ArNpk - x)

which allows us to write the intermittent fields more concisely as

W = dawki, Dy = bk .

Note that by the choice of normalization for ¢, we have

(63)) = £, ot00dx = 1. 6.
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1 Page 120f 40 R. Beekie et al.

This sets the zeroth Fourier coefficient for qb(zk) to equal 1 and implies that || W H iz =
2
[Dw 7> = 8.

5.1 Estimates for W, and D,

Lemma 5.1 For p € [1,00] and M € N we have the following estimates for ¢ and
CD(k).'

11

M M < M, .52
[0 |+ 6w , < s¥rre. (5.2)

Furthermore, we have the following estimate for the size of the support of ¢):

|supp (¢w)| S r (5.3)

where | - | denotes Lebesgue measure and the implicit constant only depends on the
wavevector sets and fixed geometric quantities.

Proof of Lemma 5.1 First, we estimate the L°° norm. Let « be a multiindex such that
|| = M. Then,

M

d
3% Pk (x) = 3% (¢r (NpATK - X)) = k“(NArx>Mm¢r<NAxrk )

where k% = ]_[f'=1 kf”' . Using the definition of ¢, we have that
M 1 M

d d
dx—M(Pr(NA”)»k cx) = Tm dx—Mq5(NA)»k - X).

Since ¢ is a smooth compactly supported function this implies that

=

H M H LS (5.4)

Next, we estimate the L' norm. To do this, we first obtain a bound on the size of the
support of @), as claimed in (5.3). Recall that ¢, is (T/ (kr))3-periodic. Therefore,
k) on T3 can be thought of as being made of (ar)3 copies of ¢ defined on cubes
of side length i—’r’ Thus, it suffices to obtain an estimate on cubes with side length i—;’
and then multiply the resulting estimates by (Ar)3. Due to the periodicity of D), In
one of these cubes the support of ¢(x) consists of parallel planes with thickness ~ At
The minimum distance between the planes is bounded below by s i—’: where s € (0, 1)
depends only on the wavevector sets (specifically, s is the minimum distance from
the planes determined by k - x = 0 to a point in (277Z)>; by the rationality of the
entries of k and since there are only a finite number of wavevectors this number is
finite). Since the side length of the cubes is i—’:, the the maximum number of thickened
planes that could compose the support of ¢ ) is bounded by 2s~!. Therefore, over
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the small cube we have a support bound given by [supp (k)| < Ca,, A, (ar)~2a!
where Cp, ap 1S a constant depending on the wavevector sets and other geometric
quantities. Multiplying this bound by (Ar)> gives the desired support estimate for
whole torus.

The L! estimate follows from the support bound. Using Holder’s inequality, (5.4),
and (5.3) we have

=

_1
”VM¢(1<) ”Ll =< ‘SUPP (VM¢(k))’ H VM) HLOO < |supp ()| AMr2 S aMr
Interpolating between the L' and L yields the desired estimate for all p € (1, 00).
Repeating the same analysis for @) gives the desired conclusion. O

Lemma 5.2 (Product estimate) For p € [1,00], M € N, and k # k' we have the
following estimate

M 2—1
<AMrrp. (5.5

~

[V @]

LP(T3)

Furthermore, we have the following estimate for the size of the support of ¢\ -

|supp () pur)| < r? (5.6)

where the implicit constant only depends on the wavevector sets and fixed geometric
quantities.

Proof of Lemma 5.2 Proceeding as before, we first estimate the L° norm. Using (5.2)
with p = oo yields

<aMpmt, (5.7)
L:XJ

M
”VM (¢(k)¢(k/))H Lo S > H V' ) H Lo H VM e,
j=0

We now obtain a bound on the support of the function ¢ P for k # k. As in the
proof of Lemma 5.1 it suffices to obtain an estimate on cubes with side length %\_7;
and then multiply the resulting estimates by (Ar)3. Since the support of @ (k) consists
of parallel planes with thickness ~ A~!, the support of O Py will consist of the
intersection of these thickened planes, which are thickened lines with cross-sectional

area ~ % where 0 is the angle between k and k’. Since there are only a finite
number of wavevectors, there is a minimal separation angle 6. Therefore the cross-
sectional area for an individual cylinder is bounded by Ca, o ,A~> Where Ca, A, is
some constant depending on the wavevector sets and other geometric quantities. To
estimate the total number of intersections of the planes in a given cube, we note that
since the total number of thickened planes in the support of @) in a small cube is
bounded by 25! the number of intersection points for two distinct planes is bounded
by 4s~2. Finally, the length of such an intersection is bounded by the main diagonal
of the cube, therefore it is bounded by 2Ar. Combining all of this, we conclude that,
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over an individual cube with side length i—’:, the measure of the support of ¢y Py is
bounded by Cp, A B)Fz()»r)’] . Multiplying by the total number of cubes (Ar)> gives
the bound Cy,, 4,7 in (5.6).

We now proceed with the L! estimate using Holder’s inequality, (5.7) and (5.6):

”VM(¢(/¢)¢(1«))‘ < Isupp (V¥ (day b)) H VM(</>(1<)¢>(kf))HLOo

< Isupp (b dar) MM r =1 < aMr .

Ll

By interpolation between the L' and L norms we obtain the desired result. O

We will now fix the values of the parameters » and A. We set

Jw

Ai=hgy1 and  ri=2,

1

+ &

_3
The requirement that rA € N = A q_ﬁl implies that b from (2.2) should be divisible by
4.

Remark 5.3 Now that we have defined all the fundamental parameters, we can specify
values that allow the proof of Proposition 2.1 to close. If we let 8 = 10~ then b = 10*
and n = 1073 are allowable choices. O

5.2 The Perturbation

5.2.1 Amplitudes

To apply the geometric lemmas we need pointwise control over the size of the stresses.
However, the stresses are not necessarily spatially homogeneous, so we need to divide
them by suitable functions to ensure that they are pointwise small, as well as small

in L!. To achieve this, we follow [45]. Let x : [0,00) — R be a smooth function
satisfying

1 0<z<1
x(@) =
z z=2

with z < 2x(z) <4zforz e (1,2).
Next, we define

pu(x 1) i= 28 e cpx ((epdyr) ™ IRE (1))
where ¢p is as in Lemma 4.1. The key properties of pp are that pointwise we have

RB(x,1)
pB(x,1)

RE(x. 1)
= <SB

264165 enx ((adprnIRE G 01|
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and that for all p € [1, co) the bound

1 o
losllLr < 85" ((cn®7H) P01 + | RE|

Ll’) (5-8)

holds. By using standard Holder estimates (see, for example, [8, Appendix C]), (3.2),
the ordering £ < 8,1, and the gain of integrability for mollified functions we have

losllco, S € and  ipplle S e (5.92)

for j > 1.
We then define the magnetic amplitude functions

1
<¢?  and Pp

0
Cx,t

< (5.9b)

1
2
Pp .
Cly

1 —RB
ak) ‘= ak’B(X, t) = 10[237/(/() < IOBZ ) s for keAgp. (5.10)

By (5.8), (2.3), the fact that mollifiers have mass 1, and by choosing cp sufficiently
small, we have

1
Hak,BHLZ = ||pB||zl H)’(k) “CO(BEB(O))
< Mooz (csn s, + | RE| )3

1
< M.[8e5' cpdyr1 (87 + ]2

1
. Cu )2 1 1
< min ) Sgt1- >-11)
|:<|AB| 3|AB|C*(87T3)5:| o

where C, is defined in Lemma 5.4. The reason for the strange prefactor in front of the

1

8 qz 41 1s because the magnetic amplitudes will be used to define two different objects
which need to satisfy different sets of bounds (for details, see the discussion preceding
(5.15) and (5.35) below). Using (5.9b) we arrive at

lacole;, s €72 (5.12)

for j > 0.
The motivation for definition (5.10) is as follows: by (5.1) we have

Bl k1 @ ky —ka @ k1) = (d() (k1 ® k — ko ® k1) +P20(¢p)) (k1 ® ka—ky ® k1)
=k ®ky —ky ® ki + Pro(¢g) (ki ® ko — ka ® k1)
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where (-) denotes spatial average over T3 and P denotes projection onto nonzero
Fourier modes. Multiplying through by a(zk), summing over A g, and using Geometric
Lemma 1 gives

> ay i ki @ ky — ky ® ki)
keAp

=—RE+ > ad Pro@d) ki @k — ko @ K1) (5.13)
kGAB

Before we give the definition of the velocity amplitude functions we note that we
need to account for two key differences with the magnetic amplitudes: Geometric
Lemma 2 allows us to cancel matrices in a neighborhood of the identity as opposed
to the origin. In order to cancel both stresses, the velocity perturbation will need to
have wavevectors from both A, and Ap (see (5.21a)). To address this second issue
we define
GB .= Z afy ki @ ki —ky ® ka). (5.14)

keAp

Note that since G2 only depends on ), we have that G? is a function of Iéf . By

B
using that ag, = pgy(i)(—’;—z), (3.2), (5.9a), and (5.11), for j > 0 we have

B < c";BHLl < 2,8041 . (5.15)

~ ’

and

0
Cx.t

Next, define p,, and the associated velocity amplitudes as

Pu =26, cudyi1 X ((Cu5q+1)_l|1%?(3€, 1)+ G°B|> ,
RY 4+ GB

) s for keA,. (5.16)
Pu

1
agy = aku(x, 1) = pi Vi (Id -

Comparing (5.10) and (5.16) we notice that the definitions of a) for k € A p, respec-
tively for k € A,, differ slightly. Throughout the paper we abuse this notation and
write ay = ay, p for k € Ap and also aqy = ay,, for k € A,. With these definitions
we have the following properties for p, and a):

Ri(x,0) + G
pu(x1 t)

B Ri(x,0) + GP _
= = &y

28160 ux ((eudgs) RE G 1) + GB))

and we have for all p € [1, co)
1 o o
ol = 867" (€ @x) M8 + | RECon +GE| ) 51D
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Using (5.11), (5.17), the fact that mollifiers have mass 1, (2.4), and choosing ¢, suffi-
ciently small we have

1 . . 3
lago 2 = el 71 vl cocs,, aay = M (85;1 (Cu8”33q+1 + HRZ HLI + HGBHL1>)2

1
< M*(Ssu_l(cu8n38q+1 +cubgi1 + 2cuy41))?
1

<52 cu 2 M(8e; (873 +3))2

q+1

82
<ot (5.18)
3| Al Ci(873)2

Note that ¢, only depends on M, and Ap which are fixed at the beginning of the
induction. In particular, ¢, does not depend on the value of cp so there is no circular
reasoning caused by cp depending on ¢,. Using the same techniques used to derive
(5.12) with (5.15) we have for j > 0

lawlei <72 for ke Ay (5.19)

Analogous reasoning to that used in (5.13) for the coefficients defined for k € A,
gives

> alybipki @ ki = pJd — R —G® + > afyPro(¢g)ki @ ki . (5.20)
kGAu kEAu

Thus, if we define the the principal part of the perturbations w” | and d 41 s

q+
w5+1 = Z ag Wy + Z am W (5.21a)
keAy keAp
=) anDw, (5.21b)
keAp

then in the nonlinear term in the magnetic equation we can use (5.13) to write

p p p p 5B
Wy ®dyyy —dy, @wy + Ry

q
= Z a(zk)¢(2k)(k1 ®ky —ky ® k1) + Rf
keAp
+ Y amagnbmdan ki @k — ks ® ki)
kK eng
+ ) amawbme ki ®ky — k) @ ki)
keA, k'eAp
= Y ayPro@f) ki @ ks — ka ® k1)
kEAB
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+ 2: awyaw)Pw b (ki @ ky — ky ® ki)
k#k €A g

+ Y amawnbmdan ki @k —k ® ki), (5.22)
keA, k'eAp

while for the velocity equation we have that
p p p p U
Wyt1 ® Woi1 — qurl ® dq+1 + Ry

= Z agag) i bank ® ky

kk' €A,
+ }: agaw) b du) (ki @ ki — ko @ ky) + RY
k,k/EAB
+ ) amawbmbe) ki @K + ki @ k)
ke, k'eAp
=01+0, (5.23)

where the terms O and O, are defined by the first, respectively second line of the
above. Using the identity

Y afybit @k —ka®ky) =GP + > afyPro(@g)) ki @ ki —ka @ ka) ,
keAp keAp

which follows from (5.14), and appealing to (5.20), we rewrite the O term as

O1= ) agbiki @ki+ Y afydi, (ki @ ki —ky @ ko) + Ry

keAy keAp
+ Z amyaw)Pu bk ® ki
k#k' €A,
+ Y amawdmde) ki @k — ke @ kb)
k#k'eA g
=pdd = R = G® + R{ + G + Y agPro(@)k1 @ ki
keAy
+ Y agyPro@) (ki @ ki — ky ® k2)
keAp
+ Z aw)ag) b bankl ® ki
k#k' €A,
+ Y amawdmda) ki ® ki — ke @ kb)
k#k'eAp
=pudd+ Y ad Pao(@f)kt @ki+ Y ag Po(¢h,) ki @ ki — k2 @ k)
kel keAg
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+ Z amaHda bk @ ki
k#k' €A,

+ Z agoauH P du (ki @ ki — ko @ k) . (5.24)
k£k €A p

Therefore, combining (5.23) and (5.24), we arrive at
Wy @ wyyy —dgyy ®dyy, + RY
= pudd+ Y agyPro(g)k @ ki + Y agyPro(p) ki @ ki — ka @ k)

keAy keAp

+ Z awandmdanks @ ki
kK €A,

+ Z amyagn b b (ki ® ki —ka ® k)
k#k €A

+ Z agagyu dan (ki ® ky + k) ® ki) . (5.25)
keA, k'eAp

The calculation in (5.25) motivates the definition of G2 due to the fact that w 5 1 needs
p

more wavevectors than d 4+10 We getan extra self-interaction term in the expansion of
w),; ®@w/ | thatis too large to go into the next Reynolds stress so must be cancelled
completely.

Note that as a consequence of the definitions (5.21), the estimates (5.2), (5.12),

(5.19), and the parameter inequality £~'0 « hq+1 we have
— _1
et P ) B VT (5.26)
Xt x,t

5.3 Incompressibility Correctors

Due to the spatial dependence of the amplitudes a), the principal parts of the

perturbation, w;’ 41 and d” 41> are no longer divergence free. To fix this, we define

incompressibility correctors analogously to [7]. First define

= —5—5—Ppk>. (5.27)

Then we define the incompressibility correctors

Wyt = Z curl (Vagy x Wi) + Vagy x curl Wy
keAy

+ Z curl (Vagy x W) + Vag) x curl Wi
kEAB
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dyiy = Z curl (Vag) x Dy) + Vagy x curl Dy .
kEAB

With this definition we see that

curl curl Z ag Wy + Z agy Wy
keA, keAp
= Z agy Wi + curl (Vag) x Wlé) + Vag,y x curl ng
keAy
+ Z agy Wi + curl (Vagy x ch) + Vagy x curl ch
kEAB

=w/, | +wgy (5.28)

and

curl curl Z ag) D; = Z ay Dy + curl (Vagy x DZ) + Vag
keAp keAp

x curl Dy = 5“ + d;-&-l . (5.29)

From (5.28) and (5.29) we deduce that div (w, | +w} ) = div (d}, | +dS, ) =0,
which justifies the definitions of the incompressibility correctors.

Using (5.27), (5.12), and (5.2), and the fact that 7« Ag+1 We obtain for any
p €[l, 0]

‘ d

C
q+1

- kZ [eurl (Vagy x Df) + Vagy x curl D¢,
eAp

<> H Di VZag, H L T 1Vaw - VD] L, + [ Vaa x curl DE|
keAp

S lawler, 198l wir +lawlez, 10¢] o

11 _ 1_1
<e¢Trr2pc!] +Aqilrn 20712

q+1
11
< T ”qi1~ (5.30)
Using (5.19) for k € A, we also have that
12 4-1, —1
Jwen|,, s el (5.31)
Thus, by (5.19), (5.12), (5.2), and €10 <« A, we obtain
N 12 -1 . 7 1
Hw;H‘Cxltge r~%  and ‘ ‘;H’C},gﬁ = (5.32)

@ Springer



Weak Solutions of Ideal MHD Which Do Not Conserve Magnetic Helicity Page210f40 1

Lastly, we define the velocity and magnetic perturbations:

Wyl i= wé’H + Wiy (5.33a)
dgy1 = d;+1 + d;Jr] (5.33b)
and the next iterate:
Vg+1 = Vg + Wyl (5.34a)
Byi1:= By +dgy1. (5.34b)

5.4 LP Decorrelation

In order to verify the inductive estimates on the perturbations wy 41 and d,1 we will
need the LP? Decorrelation Lemma from [13], which we record here for convenience.

Lemma 5.4 (L” Decorrelation) Fix integers N, k > 1 and let { > 1 be such that

Mf <1

N
and {4 —(27T \/Eé')
K

W | =

Let p € {1,2}, and let f be a T3-periodic function such that there exists a constant
C¢ > 0 such that

1], = e

holds for all 0 < j < N + 4. In addition, let g be a ('11"//()3 — periodic function.
Then we have that

lfellr < CrCullglpr,

where Cy. is a universal constant.

We will apply this lemma with f = aw), § = ¢w), Kk =7rArg41, N =1and p = 2.
The choice of Cy and ¢ depends on the wavevector set. For k € Ap, using (5.11),
(5.12), and that £ < 441 we have for j > 0

52 |
at 8, keAp.

|plaw),, =
3C,(873) 2| Ap|

<
L2~

For k € Ay, using (5.18) and (5.19) gives

1
82 1
< Lg*lh’ keAy.

Djak‘ <
|Paw] . 3C,(873) | Ayl
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1

82
Thus we can take Cy = ——“—— and ¢ = ¢ % fork € Ag and Cy =
3C.(873)2 | Al
1
8?
——at with ¢ = €713 for k € A,. We are justified in applying the decor-

3C.(873)2 | Ayl
1

relation lemma with the above chosen parameters because £~ < ri i = k; 11
which is the most restrictive condition coming from our choice of parameters.
Applying Lemma 5.4 gives

1 1

87 (Sj
<ot — 4t 535
lax.8dw)| 2 < 3679 Al low | - 3145 (5.35)
8%+1 5%+1
- ‘atl - 9 5.36
lacutwl,z = 387%)7 Al Iwlez =53] 0

since ¢(2k) was normalized to have unit average over T°.

5.5 Verification of Inductive Estimates

Using (5.30) and (5.35) we can verify inductive estimates (2.3) and (2.4). For the
magnetic increment we have the bound

) 1
ldg1,2 = qu+1‘ ot ’d§+1‘ L= 2 awDw| + ‘dﬁ 2 = 3%+
keAp 12
Fetol < Lsd (537)
g+1 — 2 q+1 .

where we used an extra power of £ to absorb any implicit constants coming from (5.30)
and that A -51-1 < €88q+1 in the last inequality. Similarly, for the velocity we have

[wgeilz < [wlia] |+ [wen] .
<D awWu + Y. awWe| + HwZH‘ I
keAy keAp 12
<Y lawWwlp+ D lawWol .+ ngﬂ -
keAy keAp
3 5
8,11 8711 i 31
< L e < T (5.38)
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Applying standard mollification estimates, using (2.3), (2.4), and nb — 2 > bp

1
|Bg = Bell 2 < 1By = Bellco S € By, < 3G <854, (5.39)
and
1
lug —uel 2 < Jug —ueleo S €lugler, S G <8500 (540)

Combining (5.39), (5.37), (5.40), and (5.38) for the magnetic field and velocity
respectively we obtain

1 1 1

” By — Byt ||L2 = ” By — Be ”L2 + “ By — Bq+1HL2 = ES;H + qu+1 ||L2 = ‘qu+1
1 1 1

lug —ugeill o = fug —uel o+ lue =gl 2 = 38550 + wer] 12 = 854,

as desired.
Now we check the L2 norm:

1 1 1
IBg+1]l2 = | Be + gt ]| 2 < I1Bell gz + [dgs || o < 1 =85 +687,, <1-8.,

1 1 1
where we used that 26", | < 8; . The same reasoning shows that [[ug+1 [, < 1-8.
as well.
We finish by checking the C ; , estimate for the velocity and magnetic field at level
g + 1: using the parameter inequality £~ <« r~! « Ag+1, and the bounds (5.26),
(5.32), we have

p -2 -3

Mgrille, < 0dluiller, +1dSy e S € 2 r ™2
7 -1 ) 1 2

+ 07T S0 BT <22

and

A

p -2 _1
”wq+1 ||ij, = ”wq+1 ”Q,, + ||w;+1”cl\1,.t ,S ¢ )‘q+1r 2

—12 -1 -2 -1 2
+OrT2 ST g 2 <At

6 Reynolds and Magnetic Stress
6.1 Symmetric Inverse Divergence
In order to define the Reynolds and magnetic stress we need an inverse divergence

operator that acts on mean-free vector fields. For the Reynolds stress it suffices to use
the inverse-divergence operator from [28]:
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1
(RM = g A~ + 9 A7k — 7 Gu+ A" HdivaTly

where k, £ € {1,2,3}. The operator R returns a symmetric, trace-free matrix and
satisfies the following key identity for mean-free vector fields: div R(v) = v. Note
that |V|R is a Calderon-Zygmund operator.

6.2 Skew-Symmetric Inverse Divergence

Unlike in previous convex integration schemes, we will also need an inverse divergence
that returns skew-symmetric matrices as opposed to symmetric trace-free ones. We
will denote this operator as R?. We want div RE(f) = f where f : R?® — R3 and
RE(f) = —(RE(f))T. If we define

(REf)ij = eije(—A) " (curl £);

where ¢;j; is the Levi-Civita tensor and div f = 0, then a direct calculation of the
divergence (contracting along the second index) shows that div R?(f) = f. Again,
|[V|RE is a Calderon-Zygmund operator.

6.3 Decomposition of the Stresses

Our goal is now to show that the stresses I%Z 41 and Iéf 1 satisfy (2.4) and (2.3).

B

N d
However, we must first determine R g+ and R pRE

satisfied by (ug41, Bg+1):

To do this, consider the equation

div RY | — Vg1
= 0rwg+1 + div (ve ® wyt1 + Wgt1 @ ve — Be ® dgt1 — dg+1 @ By)

div I%Iuin-l—Vp]in

+divw)  @w)  —dl ®dl  +R))

div R +Vposc

osc

+div (wg1 ® wi g + Wi @ wyy —dgy1 ®dgy —dg ®d) )

div 1%?0,,+V[?mrr
+divR", — Vp (6.1)

and

div I%fﬂ =0dg11 +div (g @ dy11 + wyr1 ® Be — By ® wy 11 — dgi1 ® uy)

. 3 B
div R;;,

: p p p P 5B
+d1V(u)q+l®dq+l_dq+1®wq+l+Re)

div RB

osc
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+div (wg ) ®dgy1 — dgy1 @iy +wy ®dgyy —dg ®wyy)

divRB

corr

+divRE . (6.2)

Applying the symmetric and skew-symmetric inverse divergence operators allows us
to define the different parts of the Reynolds and magnetic stresses as follows:

RE, = REBdgs1) + ue ® dgt — dgs1 ® ug + w1 ® Be — By @ wyr1 (6.3)

R, = Wyt @ dg+1 = dg1 @ wy iy + w5+1 ®dgiy —dgy © w5+1 (©.4)
and

R, = R(Bwgs1) + 0@y + Wt 1®Ve — Be®dyy1 — dy1®Br  (6.5)

SU _ &0\ C c S 2 S gC c N4
RC(}rr = wq+1®u)q+1 + wq+1®wq+1 — dq+1®dq+l — dq+]®dq+1 . (66)

The associated pressure terms are defined as pji, = 2ve - wy41 — 2By - dyy1 and
Peorr = W41+ Wy + W 1y -wf;_H —dgy1-dy —dg ~d5+1.1n order to determine
the equation for RZ, ., we use (5.22) and the fact that k; - Vi) = ka - Vegy) = 0, and
obtain
: p p p p S B
d1V(wq_H ®dq+1 —dq+1 ® wy g +R,)
= Y Vi(ag)Pro(pg) ki ® ky — ky @ ki)
kEAB

+ div ( Z agauydubo (ki ® ky —ky ® k1)>
Ktk eAp

+ div < Z agawbuwban ki ® ké — ké ® kl)) . 6.7)
keA, k'eAp

Here and throughout the paper we use the notation V f (£®£’) to denote the contraction
on the second component of the tensor, namely £(¢' - V) f. Similarly, to find R% . and
Posc We appeal to (5.25) and apply the divergence operator, to arrive at

div (w5+1 @l —dl, @d, + 1%;) = Vpose+ Y V(adyPro(@h)ki ® ki
ke,

+ Y Viag)Pro(¢g,) k@ ki — k ® k2)
keAp

+diV< D awpawdmdunki®ki + Y awaw)bmdu, ki &K —kzé’ké))

k#k €Ay k#k'eAp
+div ( D awaw)bwba &k + ki ®k1)> : (6.8)
keA, k'eAp
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where

Posc = Pu + Z agaw) b bunki «ki
k#£k'e Ay

+ ) awawdmda ki ki —ka - ky)
k#k'eAp

+2 Z awag)Pabank - ki
kel ,k'eAp

Therefore, from (6.7) we have that the magnetic oscillation stress is given by

RE =" R (V@ Pao@f) ki @ ko — ko @ k1))

kEAB

+ > awar.sbwdu) ki @ ks — kh ® ki)
kk'eAp

+ Z agauH P du (ki @ ky — ks @ ki), (6.9)
kelA, k'eAp

while from (6.8) we deduce that the Reynolds oscillation stress is defined as

Rise = 3" R (V@) Pk @ k)
ke,

+ Z R (V(a(zk))P#O((p(zk))(kl Rk —ky ® kz))
keAp

+ 2: agag) e b ki k)
k#k' €A,

+ Z agaw) i ) (ki k| — ka®ks)
k#k €A g

+ E: agaw) PP (ki k) + ki ®k1) . (6.10)
kelA, ,k'eNp

In conclusion, we note that the pressure at level g + 1 is given by p,41 1= p¢ —

Plin — Posc — Dcorr» While the magnetic and Reynolds stresses are given respectively
by

5B 5B 5B 5B 5B
Rq+1 = Rjj, + Rose + Reorr + Reomm (6.11a)
}%Z—H = Iéﬁn + Iégsc + Rg?orr + Iégomm' (611b)
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6.4 Estimates for the Magnetic Stress

In order to estimate the stresses in L', since Calderon-Zygmund operators are not
bounded on L', we fix an integrability parameter p sufficiently close to 1, which we
will use whenever we have a stress term that involves a Calderon-Zygmund operator.

6.4.1 Linear Error

We first estimate the time derivative term in (6.3). By (5.29) we have 0;d, 1 =
curl curl (ZAB 0 (awyDy)) = curl curl (ZAB dracky Dy). Therefore using (5.12), the
definition of Dy in (5.27), and (5.1) we have

IRE @ydy D)l S IRP @ydgyn)lle S Y IRPcurl curl (drag DY) Lo
kEAB
< D lleurl (Bragy DY)y
keAp
S D lawlez, ID¢lw
kGAB

o (6.12)

where we used the fact that 1| < p < 2 to remove the (good) r factor from the
VD{llLr estimate.

Next we estimate the high-low interaction terms present in (6.2). First we write
dgy1 = qu +dg iy sowehave uy @ dg1 = ur ® d5+1 +ue ®d, ;. We will only
show how to estimate one term since the other terms can be handled similarly. By

(2.4), regularizing properties of mollification, (5.30), and (5.2) we have

e ® dyst| 1 < Jue @y, + e @] |
< luells q+1\L+||ue||Lz as .
3
A Pl
SO \dgy ‘ q+1’
_3 o1 7=
<0 r2+E oty
1
<2 (6.13)

where we used that A Jlrl & r K L. The same estimate also holds for the term
wy+1 @ By. Therefore,

B
o SRR @d],
+ |ue ® dg1 — dgy1 ® ug + wyi1 ® By — By ® wyri |
—12, -1 41
<ol e

5B
H Rlin

=

<o, (6.14)
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6.4.2 Oscillation Error

In order to estimate the magnetic oscillation stress we use (6.9) to decompose it into
two parts:

RE —EB + EB

osc

where

EF = 3" R¥ (V(ad)Po@d) (ki @ ks — ko @ k1) )

keAp
E3 := Z agar BPada) (ki ® ky — ky @ ki)
k#k'eA p
+ Z agyawnPa bkt @ ky —ky @ ki) .
keA, ,k'eAp

First note that since div (a(zk)IP’#o(qb(zk))(kl Qkr—ky ® k1)> — V(a(zk))P#O(cpfk))
(k1 @k —ka @k1), we can conclude that V ()P0 (#,) (k1 ®ka —ka @k1) is mean
free. A calculation also shows that div div (ag, P20 (¢3,) (ki ® ka — ka ® k1)) = 050

EB is well-defined. Therefore it suffices to estimate E5 and E? individually. For E&,
we note that since ¢ ) is A4 periodic, so is ¢(2k). Therefore the minimal active fre-

quency in ]P)?’;()(P(Zk) is Ag41r; we have that Po (¢(2k)) =P>0,r/2) (¢(2k)). This allows
us to exploit the frequency separation between V(a(zk)) and ¢(2k) and gain a factor of
Ag+17 from the application of RB. To be precise, we recall Lemma B.1 from [13]:

Lemma 6.1 Fix parameters 1 < ¢ < k, p € (1, 2], and assume there exists an L € N
such that

CL < KL_2

Let a € CE(T3) be such that there exists C, > 0 with
||, = cue’

forall0 < j < L.Assumealsothat f € LP (T3 is such thath3 a(x)Ps, f(x)dx = 0.
Then we have

|1V @Poc 1)

LA llr
< c, LILP
Lk~ Ca K

where the implicit constant depends only on p and L.

Using (5.15) we see that we can apply Lemma 6.1 with a = V(a(zk)), f = q)(2k)
and parameter values k = Ay 17, ¢ = 073, C, = ¢2 and L = 3. We are justified
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1
in these choices because 3 = ¢~ = AT < a3 Applying Lemma 6.1 and (5.1)

X q+1 — "g+1°
yields
B B B 2 2
[e7| s[Ef], = X |RP (V@) Pt @R 1 @ = ka2 k)|
kEAB
< e 92k @ ka — ko @ k)
~ g+1 (k) K1 2 2 1 Lp
—9,-1 -1 2
St )‘q+1r ||¢(k) ”LZP
1
§£_9)L;ilr_lr7’_l
1
SR (6.15)

For the second term in the decomposition of R fg »namely E B we apply the product

estimate (5.5), along with the magnitude bounds (5.12) and (5.19) to derive

H Ef‘ 0= Z lawaw)bwda | + Z lawawdwban | 1
k#k'eAp ke, ,k'eAp
S Y lawleo lowew |,
k#k'eAp
+ 2 lawleo law leo l6wtan
keA, k'eAp
<o
Combining the estimates for £ lB and EZB we conclude that
S _ _9._ 1_ _9. _ 1_
HRESC L <t Yy 9)»%1_1;’1’ 2 <t 9)‘q—i1” 2 (6.16)

_3
2

upon recalling that r = Aq I

and that p is close to 1.
6.4.3 Corrector Error

Due to the smallness of the corrector terms, to estimate (6.4), it suffices to simply
apply Cauchy-Schwarz and use (5.30), (5.31), (5.37), and (5.38):

I%B

corr

< c 4 c
L H Wy+1 ®dq+l‘ L + H Wg+1 ® dq“'l‘ L

c p c

N qu+1 ‘ 12 qu+1||L2 + qu+1‘ 12 dg 1 ‘ 12
1 1

< p—125-1 2 =751 ¢2

SO 8 A 00
1

125 -1 ¢2
Se Agi18g41 - (6.17)

B

This concludes the estimates necessary to bound I%w .
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6.5 Estimates for the Reynolds Stress
6.5.1 Linear Error

To bound (6.5) we proceed just as we did for (6.3). As we had for the magnetic per-
turbations, by (5.28) we have d; w41 = curl curl (ZAM dragy Wi + ZAB dragy WY).
Therefore we can obtain the same estimate as in (6.12) except we account for the
worse amplitudes estimates we get for k € Ay,:

[RAwg 1] € 3 law ez, IVWEllLo < €720 -
ke,

Furthermore, an examination of (6.13) shows that the same bound will hold for cross
terms in the Reynolds stress (again using the fact that )‘;il LrkKe):

1

[ve@wgr1 + wy+1®ve — Be®dy11 — dg+19Be ”Ll Setre (6.18)

Therefore we obtain the same bound for the linear Reynolds stress as we had obtained
earlier for the linear magnetic stress in (6.14):

U
H Rlin

= R8O w1 1 + [ve@wgr1 + wy1®ve — Be®dy11 — dg1®Be|

<o (6.19)
6.5.2 Oscillation Error
In order to estimate (6.10) we decompose it into three terms:

I%(I:sc = E’f,l + E'f,Z + Eg ’

where
Ef, =) R (V(a(zk))P;eo(¢(2k))k1 ®k1)
ke,
(2= Y R(V@hPeo@h) ki @k — k@ k)
keAp

and EJ is defined by the high frequency terms on the last two lines on the right side
of (6.10).

To estimate EY | we again apply Lemma 6.1 with the same parameters, except now
C, = ¢ " and ¢ = ¢719. This leads to

£t

LS Y IR(V@EPa@hki en)| , s el @k e k|

u

Lp
—14,-1 -1 2
S g2,

1

< —14,—-1 -2

St Aq+1rl’ .
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For E ‘l‘ »» We can just use the estimate for £ f since only the direction is different, and
RB obeys the same bounds as R. From (6.15) we then obtain

|t -

—9, -1 1
2||Ll St )‘q-i-lrp
Lastly we bound the Ej stress given by the last two lines on the right side of
(6.10). Since we need only consider the amplitude functions themselves and not their

derivatives, setting j = 0in (5.12) and (5.19) we arrive at

||E§’||L15( D D >Ha<k>a<k'>¢><k>¢<k’>|u

k#k'eN, k#k'eAp keA,.k'eAp
< 074y

Combining the estimates obtained for the three parts in which we have decomposed

u
RY . we obtain

_ _ 9. _ 1_, _ _ 1_9 _ _ 1_5
St e T T S T (6.20)

1 ~

osc

6.5.3 Corrector Error

First, note that by inspection one can check that (6.6) can be written in the following
symmetric way as

c & 1 C P &, C c SI4
wq+l®wq+l + wq+1®wq+l + wq+l®wq+l
c c &P
—(dg &dg ) +dg ®dyyy +dy &d] ).

as we did for RB

We now proceed to estimate Rwrr corr

S & . C c N 4 & gc
corr|| 1 = )wﬁl@wq“”y + qu+1®wq+] HLI + qu+1®d‘1+1 HLI
c & P
+ d‘1+1®d‘1+1”L1
S lwga ]l 2wl |, + | wg wer| o+ ldan] 2 | dg
~ g+l | Wg+1 12 g1 2 || a1 2 g+1iir2 |%g+1 12
c p
+ ‘1+1‘ 12 dq-i-l‘ L2
<1 g2y 7, —
SOt )”q+l+5q+1£ hgt
1
2 —124 -1
SSq—HE )‘q—H‘ (6.21)
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6.6 Verification of Inductive Estimate for Magnetic and Reynolds Stress

Finally, we verify (2.3) and (2.4) for the stresses. Using (6.14), (6.16), (6.17), and
(3.3) we have

||Rq+1||L1 < IRE Nt + IRG N ot + IRl + IR 1
<ot 3 +£‘9A;+lrp +Z_12)f 152+1 +¢ )»4
<752 +£‘10)»;}r1r’l7_ +e +gqu‘
<2070 2 4 ednd)
< cBdg42.

upon taking p close to 1, and a sufficiently large to make the last inequality true.
Finally, we estimate the velocity Reynolds stress. From (6.19), (6.20), (6.21), and
(3.4) we derive

H Rq+1 ) L= H le + H Rosc + H Rwrr + H Rc()mm‘ I
4 1 144 —1 l— 124 -1 2.4
<4 P4t Agpr? T +e Aq+]8;+l+£ Ay
1 1_ _ 3
e N e N AN Y PR A Y

1 ;
<2070t T eiad)

E CM8q+2 )

as above. This concludes the proof of the main iteration in Proposition 2.1.

7 Proof of Theorem 1.4

Having established Proposition 2.1, we now turn to the proof of Theorem 1.4. Consider
the mean-free, incompressible vector fields uo and By given by

up = (27_[)% (51n(A2x3) 0,0) By = 2;)3 (sin(kéxg),cos(kéxg),O). (7.1)

A calculation shows that ug - VBy — Bg - Vug = 0 and that ug - Vug — By - VBy = 0.
Therefore, ug and By satisfy (2.1a) and (2.1b) with

1
| 0 0 —cos(Ax3)
R = ——— o 0 0
2 3 1
Ao Qm)z | cos(rjx3) 0 0
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and

1
| 0 0 — cos(X x3)
. 1
Ry = T 0 0 sin(A] x3)
A2 1 1
0 2m) cos(Ajx3) —sin(igx3) 0

. . I
We have that HRg HL Ryl <% <A 26 _ 5. Therefore by taking a suffi-

1’ I

0= c,81 and H RE HLI < cpd1. Similarly we can show

ciently large we have H 1%3

that the other conditions in (2.3) and (2.4) are all satisfied (possibly by taking a larger).
Therefore, we can apply Proposition 2.1 to get the existence of a sequence of iterates
(tg41, RZ+1’ By, Rfﬂ) which satisfy (2.1) and obey the bounds (2.3)—(2.5).

By interpolation, we have for any g € (0, %) the sequence of velocity and

. . . . ! .
magnetic increments 1S summable in Hﬁ , 1.E.

Z lug+1 — g o + Z | Bg+1 = Byl o

q>0 q>0
= Z “”q+1 —Uq ”;ﬂ H”q+1 — Ug “/211 + Z ” Bgy1— By H;ﬁ “ Bgy1 — By “Zl
q>0 q>0
l;ﬂ/ / _ _ /
SIS =Y A i <
q>0 g>0

The sequence {(uy, B;)}4>0 is hence Cauchy and we may define a limiting pair
(u, B) = limyoo(uy, By). This pair satisfies (1.1) because lim,_ Rg =
lim, s I%(f = 0in C([0, 1], L"). Therefore, we have a weak solution of (1.1) which

lies in C([0, 1]; HF'), proving the first part of Theorem 1.4 replacing 8 by f’.

Now we will show that the magnetic helicity of the weak solution of (1.1) at least
doubles from time O to time 1, and is nonzero at time 1. The vector field By has
associated with it the vector potential Ag:

1 1
Ag = (sin(Ag x3), cos(Aj x3), 0)

T
hg (27)3

Therefore we can compute the first iterate of the magnetic helicity, Ho g, p(t) =
J13 Ao - Bo, as

t2 2 t2 f2
Ho.B,B(t) =/ Ao - Bodx = —— |Bo|2dx = = ]
T3 (271.)6)6 T3 (27_[)3)% (277)3617
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Next, we wish to estimate the deviation between this quantity and the magnetic helicity
for the limiting vector field B:

|Hp, () — Ho,p,B(1)| = '/JI“ A - Bdx — /1r3 Ao - Bodx| < |A— Aol 2 1Bl 2

+ 1 Aollz2 1B — Bollz2 -

_1
Using (2.3) we have that || Bl| 2 < 1and by construction, Ag : [[Aoll 2 < A, 2(2m)

Therefore, we have

_3
2

1
Hp.5(1) = Ho.p.p(0) < 1A = Aollp2 + ——— 1B = Boll> -
22 (2m)3

Applying the triangle inequality, (2.5), and using the fact that b > 2 and consequently
that b7 > bg for ¢ > 1 we can estimate || B — By||;2 as

1
1B = Bollp2 < ) [ Byt = Byl o = D05, =) @)F

q=0 q=0 g=1
_ﬁb
bg\—B _ _ 4
< -
<Y @ Tt
g>1

To estimate ||A — Ag|| .2 we use the fact that we can take A, to be divergence free for
all ¢ € N. This choice allows us to recover A, using the Biot-Savart law:

14 = Aol = 3 [Agir = Agll = 3 [eurd ()7 By = By)|
q=0 q=0

L’
Now, recall that By 1| — By = d4+1 + B¢ — By, and therefore

chrl (—A) ' (Byyr — Bq)HL2 < chrl(—A)_lqu

12
+ chrl (=AY (B — Bq)’

L2’

We first estimate the ||curl (—=A)"Y(B, — By) H ;2 term. Note that By — B, has mean
zero, and thus ||curl (—A) 1By — Bq)”L2 < ” By — By ||L2. Furthermore, using stan-
dard mollification estimates and (2.3) we obtain the bound

—n+3

|By — Be| 2 < @m)3 032 = @n)2a, ]|
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Summing this expression gives

SB, - Bele < @03 YT < 00 Y@ < ent Y@y
q=0 q=0 q=1 q=1

. (2n)%a’1

T 1—a!
where we used that nb > 3 and that » > 2. Finally, we estimate Zqzo

[curl (—A)~'dy 44 ||L2. Recall that dg1 = curleurl (3 .5, ak) Dy). Using that
curl (3 ;ca, @) Dy) is divergence free, we have that

curl (—A) ™ 'curl curl ( Z ag) D,f) = curl < Z a(k)D,f> .

keAp keAp

From the triangle inequality, (5.12), Lemma 5.1, and the fact that £~! « Agt1 we
have

> feurl @y DY) |2 = Y Jeurd (agy D) |12 < D [ Vaw x D,
keAp keAp keAp

+ ”ak,gcurl Dy ||L2

< 2 IVawlco 1280 2 + ol co feurt DF 2
keAp

<e 2

e S ey

q+1 ~ q+1°

Using a factor of ¢ to absorb the implicit constant, and using that E‘ﬁ; i <X, _&1,
we deduce that

b
- -1
b a2 a
Z chrl( Ay L= Z)\'q_;'_] = Z(“ O R
q>0 g>1 l—a™>
where we used that b > 2.
Therefore we have proven that
2027)2a!
A — Aoll2 < T_a 1
which gives the bound
3
2Q2m)2a! a PP 1
IHp.p() — Ho.p.B(1)| < — —pb 1 3
l—a l1—a azi(2m)?

1 (20m)%a: . afb
a% 1 —Cl71 1-— afﬂb (27.[)% ’
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Since Ho p,p(1) = 13 - by taking a sufficiently large, we can ensure that
Q2m)a?

"p.5(t) —Ho.p.5(1)| < 5Ho.5.5(1). This implies that Hp (1) = $Ho.p.5(1) > 0
and |[Hp p(0)| < %Ho,B,B(l), since Ho,5,p(0) = 0. This shows that the magnetic
helicity at least doubles in magnitude and is nonzero at time 1.

Remark 7.1 The total energy £(¢) and the cross-helicity H,, p(#) can similarly be
shown to not be conserved for the limiting solution (u, B), if we use (7.1) as the first
term in the sequence. By inspection, the initial fields have non-trivial energy and cross-
helicity which allows us to prove the non-conservation as in the proof of Theorem 1.4.

O
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A Appendix
A.1 Proof of Geometric Lemmas

In this section, we will provide proofs of Lemmas 4.1 and 4.2, following the classical
arguments of [8,28].

Proofof Lemma 4.1 Let Ag = {ey, 2, e3, %el + %ez, —%ez — %eg} and to these vec-
tors, consider the orthonormal bases given by

k ki ko
€] €2 €3
en es3 el
e3 el e
3 4 4 3
sel + €2 ze1 — 43162 e3
Zdey ey | dey—de | e
3€2 3€3 3€2 3€3 1

We define

Al =ea®e3—e3Qe, Ay =e3®e; —e1 Re3, A3:=e1Qer —ex ey,

Ag = <L—Lel — Eez) ®e3 —e3® (iel - i€2> s
5 5 5 5

As = <§ez — ileg) e —e1 ® <§ez — ieg) .
5 57 5 5

Using these matrices we can write

T+ L a2 a1 245=0 (A.1)
gt T AT AT AT 3 aAs = '
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Since A1, Az, A3 form a basis for the 3 x 3 skew-symmetric matrices, we can express
any skew-symmetric matrix A as a unique linear combination A = ¢1A| + c2A2 +
c3A3. Combining this with (A.1) gives

7+ A~|—11+ Ay +(1+ )A+35A—|—5A A.
4 (& 1 3 (&) 2 Cc3 3 124 35

Therefore we can define

7 11 35

Vl,BZ\/Z‘i‘Cla J/2,3=,/?+62, v3.B =+ 1+4+c3, yap= IR
_\F
Y5,B = g

Forep < ﬁ, the y; will be smooth. Therefore it suffices to take ep = 1. O

Proof of Lemma 4.2 Proceeding as before let A, = {15—3e1 + %62, %61 + 15—383, 15—362 +
%e3} and to these vectors, consider the orthonormal bases given by

| |k k|
1 eq :|: 5El 62 1161 F }—262 e3
53e1 e %5361 + 1 ez | e

82:l: 1333 1362 F 1363 €l

Note that A, N Ap = @. Next, note that Zke,\u %k1 ®k1 = 1d, and thus by the implicit
function theorem, there exists ¢, such that for S € B, (Id), S can be expressed as a
linear combination of the S; with positive coefficients. See [8,28] for further details.

O

B Proof of Magnetic Helicity Conservation

In this appendix we give the proof of Theorem 1.3. For u, B € L3(0, T; L*(T?)) we

have magnetic helicity conservation for (1.1), as in [42]. A simple modification of this

argument shows that Leray-Hopf solutions of (1.2) satisfy a magnetic helicity balance
10

(by interpolation we have that u, B € LE ; (T3)):

t
/A~B(t)dx+2u//curlB-B(s)dxds:/ A-B(0)dx. (B.1)
T3 0 Jr3 T3

Assume that (u;, Bj) is a weak ideal sequence and that 1t ; — 0. Using the uniform
bounds coming from the total energy inequality (1.3) we have that

t o1
Mj/o /T3 lcurl Bj - Bjldxds < tu; ||,u12.(curlBj)||L?oL§||Bj||L?cL§ — 0 as j—o0.
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Therefore, passing to the limit in (B.1) (for A; and B;), we obtain

liminf/ Aj-Bjt)dx = liminf/ Aj-B;j(0)dx =/ A - B(0)dx
3 3 T3

j—o0 j—o00

where the last equality comes from the fact that since B;(0)— B(0) in L% A j(0) —
A(0) in L? and the product of a weakly convergent sequence and a strongly conver-

gent sequence converges. By Aubin-Lions Lemma with the triple L?> ¢ H -3 cH?
applied to Bj, we conclude that B;(t) has a strongly convergent subsequence in

c(o, 1], H’%) (also denoted B (t)). This implies A () is strongly convergent in
C([0, T]; I-'I%). Along this subsequence

/w Aj- Bj(t)dx = /w IVI2A; - |V|"2Bj(1)dx — /TS IVI2A - |V|"2B(t)dx

= / A - B(t)dx
3

where we are using that limit of the strongly convergent subsequence must coincide
with the weak ideal limit by uniqueness of weak-* limits. Furthermore, we can extend
this to the entire sequence to conclude

/ A(t) - B(t)ydx = / A(0) - B(0)dx
3 3

as desired.

References

1. Aluie, H.: Hydrodynamic and magnetohydrodynamic turbulence: Invariants, cascades, and locality.
Ph.D. thesis, Johns Hopkins University (2009)

2. Aluie, H., Eyink, G.L.: Scale locality of magnetohydrodynamic turbulence. Phys. Rev. Lett. 104(8),
081101 (2010)

3. Berger, M.A.: Introduction to magnetic helicity. Plasma Phys. Control. Fusion 41(12B), B167 (1999)

4. Biskamp, D.: Nonlinear Magnetohydrodynamics, vol. 1. Cambridge University Press, Cambridge
(1997)

5. Bronzi, A.C., Filho, M.C.Lopes, Lopes, H.J.Nussenzveig: Wild solutions for 2D incompressible ideal
flow with passive tracer. Commun. Math. Sci. 13(5), 1333-1343 (2015)

6. Buckmaster, T.: Onsager’s conjecture almost everywhere in time. Commun. Math. Phys. 333(3), 1175—
1198 (2015)

7. Buckmaster, T., Colombo, M., Vicol, V.: Wild solutions of the Navier-Stokes equations whose singular
sets in time have hausdorff dimension strictly less than 1. arXiv:1809.00600 (2018)

8. Buckmaster, T., De Lellis, C., Isett, P., Székelyhidi Jr., L.: Anomalous dissipation for 1/5-Holder Euler
flows. Ann. Math. 182(1), 127-172 (2015)

9. Buckmaster, T., De Lellis, C., Székelyhidi Jr., L.: Dissipative Euler flows with Onsager-critical spatial
regularity. Commun. Pure Appl. Math. 69(9), 1613-1670 (2016)

10. Buckmaster, T., De Lellis, C., Székelyhidi Jr., L., Vicol, V.: Onsager’s conjecture for admissible weak
solutions. Commun. Pure Appl. Math. 72(2), 227-448 (2019)
11. Buckmaster, T., Shkoller, S., Vicol, V.: Nonuniqueness of weak solutions to the SQG equation. Com-

mun. Pure Appl. Math. 72(9), 1809-1874 (2019)

@ Springer


http://arxiv.org/abs/1809.00600

Weak Solutions of Ideal MHD Which Do Not Conserve Magnetic Helicity Page390f40 1

12.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.
35.

36.

Buckmaster, T., Vicol, V.: Convex integration and phenomenologies in turbulence. arXiv:1901.09023
(2019)

. Buckmaster, T, Vicol, V.: Nonuniqueness of weak solutions to the Navier—Stokes equation. Ann. Math.

189(1), 101-144 (2019)

. Caflisch, R.E., Klapper, I., Steele, G.: Remarks on singularities, dimension and energy dissipation for

ideal hydrodynamics and MHD. Commun. Math. Phys. 184(2), 443-455 (1997)

Cheskidov, A., Constantin, P., Friedlander, S., Shvydkoy, R.: Energy conservation and Onsager’s
conjecture for the Euler equations. Nonlinearity 21(6), 1233-1252 (2008)

Cheskidov, A., Filho, M C Lopes, Lopes, H J Nussenzveig, Shvydkoy, R.: Energy conservation in
two-dimensional incompressible ideal fluids. Commun. Math. Phys. 348(1), 129-143 (2016)
Cheskidov, A., Luo, X.: Stationary and discontinuous weak solutions of the Navier-Stokes equations.
arXiv:1901.07485 (2019)

Colombo, M., De Lellis, C., De Rosa, L.: Ill-posedness of Leray solutions for the Hypodissipative
Navier-Stokes equations. Commun. Math. Phys. 362, 659-688 (2018)

Constantin, P., Weinan, F., Titi, E.S.: Onsager’s conjecture on the energy conservation for solutions of
Euler’s equation. Commun. Math. Phys 165(1), 207-209 (1994)

Constantin, P., Ignatova, M., Nguyen, H.Q.: Inviscid limit for SQG in bounded domains. SIAM J.
Math. Anal. 50(6), 6196-6207 (2018)

Constantin, P., La, J., Vicol, V.: Remarks on a paper by Gavrilov: Grad-shafranov equations, steady
solutions of the three dimensional incompressible Euler equations with compactly supported velocities,
and applications. Geom. Funct. Anal. 29(6), 1773-1793 (2019)

Constantin, P., Weinan, E., Titi, E.S.: Onsager’s conjecture on the energy conservation for solutions of
Euler’s equation. Commun. Math. Phys. 165(1), 207-209 (1994)

Dai, M.: Non-uniqueness of Leray-Hopf weak solutions of the 3D Hall-MHD system.
arXiv:1812.11311 (2018)

Dallas, V., Alexakis, A.: The signature of initial conditions on magnetohydrodynamic turbulence.
Astrophys. J. Lett. 788(2), L36 (2014)

Daneri, S., Székelyhidi Jr., L.: Non-uniqueness and h-principle for Holder-continuous weak solutions
of the Euler equations. Arch. Ration. Mech. Anal. 224(2), 471-514 (2017)

Davidson, P.A.: An Introduction to Magnetohydrodynamics. Cambridge University Press, Cambridge
(2001)

De Lellis, C., Székelyhidi Jr., L.: The Euler equations as a differential inclusion. Ann. Math. 170(3),
1417-1436 (2009)

De Lellis, C., Székelyhidi Jr., L.: Dissipative continuous Euler flows. Invent. Math. 193(2), 377407
(2013)

De Lellis, C., Székelyhidi Jr., L.: Dissipative Euler flows and Onsager’s conjecture. J. Eur. Math. Soc.
16(7), 1467-1505 (2014)

De Lellis, C., Székelyhidi Jr., L.: High dimensionality and h-principle in PDE. Bull. Am. Math. Soc.
54(2), 247-282 (2017)

De Lellis, C., Székelyhidi Jr, L.: On turbulence and geometry: from Nash to Onsager. arXiv:1901.02318
(2019)

Escande, D.F.: What is a reversed field pinch? Rotation and momentum transport in magnetized plas-
mas, pp. 247-86 (2015)

Eyink, G.L.: nergy dissipation without viscosity in ideal hydrodynamics I. Fourier analysis and local
energy transfer. Phys. D Nonlinear Phenom. 78(3—4), 222-240 (1994)

Faraco, D., Lindberg, S.: Magnetic helicity and subsolutions in ideal MHD. arXiv:1801.04896 (2018)
Faraco, D., Lindberg, S.: Proof of Taylor’s conjecture on magnetic helicity conservation.
arXiv:1806.09526 (2018)

Faraco, D., Lindberg, S., Székelyhidi, L.: Bounded solutions of ideal MHD with compact support in
space-time. arXiv:1909.08678 (2019)

. Gavrilov, A.V.: A steady Euler flow with compact support. Geom. Funct. Anal. 29(1), 190-197 (2019)
. Isett, P.: On the endpoint regularity in Onsager’s conjecture. arXiv:1706.01549 (2017)

. Isett, P.: A proof of Onsager’s conjecture. Ann. Math. 188(3), 871-963 (2018)

. Isett, P, Oh, S.-J.: On nonperiodic Euler flows with Holder regularity. Arch. Ration. Mech. Anal.

221(2), 725-804 (2016)

. Isett, P., Vicol, V.: Holder continuous solutions of active scalar equations. Ann. PDE 1(1), 1-77 (2015)

@ Springer


http://arxiv.org/abs/1901.09023
http://arxiv.org/abs/1901.07485
http://arxiv.org/abs/1812.11311
http://arxiv.org/abs/1901.02318
http://arxiv.org/abs/1801.04896
http://arxiv.org/abs/1806.09526
http://arxiv.org/abs/1909.08678
http://arxiv.org/abs/1706.01549

Page 40 of 40 R. Beekie et al.

42.
43.
44,
45.
46.
47.
48.
49.
50.
51.

52.
53.

54.

55.

56.

57.

58.
59.

60.
61.

Kang, E., Lee, J.: Remarks on the magnetic helicity and energy conservation for ideal magneto-
hydrodynamics. Nonlinearity 20(11), 2681-2689 (2007)

Khesin, B., Peralta-Salas, D., Yang, C.: A basis of Casimirs in 3d magnetohydrodynamics.
arXiv:1901.04404 (2019)

Klainerman, S.: On Nash’s unique contribution to analysis in just three of his papers. Bull. Am. Math.
Soc. 54(2), 283-305 (2017)

Luo, T., Titi, E.S.: on-uniqueness of weak solutions to hyperviscous Navier-Stokes equations - on
sharpness of J.-L. Lions exponent. arXiv:1808.07595 (2018)

Luo, X.: Stationary solutions and nonuniqueness of weak solutions for the Navier-Stokes equations in
high dimensions. Arch. Rational Mech. Anal. 233, 701-747 (2019)

Mininni, P.D., Pouquet, A.: Finite dissipation and intermittency in magnetohydrodynamics. Phys. Rev.
E 80(2), 025401 (2009)

Moffatt, H.K.: The degree of knottedness of tangled vortex lines. J. Fluid Mech. 35(1), 117-129 (1969)
Moffatt, H.K.: Magnetic relaxation and the Taylor conjecture. J. Plasma Phys. 81(6), (2015)

Nash, J.: ¢! isometric imbeddings. Ann. Math., 383-396 (1954)

Novack, M.: Non-uniqueness of weak solutions to the 3D Quasi-Geostrophic equations.
arXiv:1812.08734 (2018)

Onsager, L.: Statistical hydrodynamics. Nuovo Cimento 9, 279-287 (1949)

Scheffer, V.: An inviscid flow with compact support in space-time. J. Geom. Anal. 3(4), 343-401
(1993)

Sermange, M., Temam, R.: Some mathematical questions related to the MHD equations. Commun.
Pure Appl. Math. 36(5), 635-664 (1983)

Shnirelman, A.L: On the nonuniqueness of weak solution of the Euler equation. Commun. Pure Appl.
Math. 50(12), 1261-1286 (1997)

Tartar, L.: The compensated compactness method applied to systems of conservation laws. In: Systems
of nonlinear partial differential equations (Oxford, 1982), NATO Adyv. Sci. Inst. Ser. C Math. Phys.
Sci., vol. 111, pp. 263-285. Reidel, Dordrecht, (1983)

Taylor, J.B.: Relaxation of toroidal plasma and generation of reverse magnetic fields. Phys. Rev. Lett.
33(19), 1139 (1974)

Taylor, J.B.: Relaxation and magnetic reconnection in plasmas. Rev. Mod. Phys. 58(3), 741 (1986)
Vishik, S.M., Dolzhanskii, F.V.: Analogs of the euler-lagrange equations and magnetohydrodynamics
equations related to lie groups. Sov. Math. Doklady 19, 149-153 (1978)

Woltjer, L.: On hydromagnetic equilibrium. Proc. Natl. Acad. Sci. USA 44(9), 833 (1958)

Woltjer, L.: A theorem on force-free magnetic fields. Proc. Natl. Acad. Sci. USA 44(6), 489 (1958)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer


http://arxiv.org/abs/1901.04404
http://arxiv.org/abs/1808.07595
http://arxiv.org/abs/1812.08734

	Weak Solutions of Ideal MHD Which Do Not Conserve Magnetic Helicity
	Abstract
	1 Introduction
	1.1 MHD Conservation Laws
	1.2 Weak Solutions and Onsager Exponents for MHD
	1.3 Taylor's Conjecture
	1.4 Results and New Ideas
	2 Outline of the Paper

	3 Mollification
	4 Linear Algebra
	5 Constructing the Perturbation: Intermittent Shear Flows
	5.1 Estimates for W(k) and D(k)
	5.2 The Perturbation
	5.2.1 Amplitudes

	5.3 Incompressibility Correctors
	5.4 Lp Decorrelation
	5.5 Verification of Inductive Estimates

	6 Reynolds and Magnetic Stress
	6.1 Symmetric Inverse Divergence
	6.2 Skew-Symmetric Inverse Divergence
	6.3 Decomposition of the Stresses
	6.4 Estimates for the Magnetic Stress
	6.4.1 Linear Error
	6.4.2 Oscillation Error
	6.4.3 Corrector Error

	6.5 Estimates for the Reynolds Stress
	6.5.1 Linear Error
	6.5.2 Oscillation Error
	6.5.3 Corrector Error

	6.6 Verification of Inductive Estimate for Magnetic and Reynolds Stress

	7 Proof of Theorem 1.4
	Acknowledgements
	A Appendix
	A.1 Proof of Geometric Lemmas
	B Proof of Magnetic Helicity Conservation
	References





