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Abstract
We construct weak solutions to the ideal magneto-hydrodynamic (MHD) equations
which have finite total energy, and whose magnetic helicity is not a constant function
of time. In view of Taylor’s conjecture, this proves that there exist finite energy weak
solutions to ideal MHD which cannot be attained in the infinite conductivity and zero
viscosity limit. Our proof is based on a Nash-type convex integration scheme with
intermittent building blocks adapted to the geometry of the MHD system.

1 Introduction

We consider the three-dimensional incompressible ideal magneto-hydrodynamic
(MHD) equations

∂t u + (u · ∇)u − (B · ∇)B + ∇ p = 0 (1.1a)

∂t B + (u · ∇)B − (B · ∇)u = 0 (1.1b)

div u = div B = 0. (1.1c)

posed on the periodic boxT3 = [−π, π ]3, for the velocity field u : T3×[0, T ] → R
3,

themagnetic field B : T3×[0, T ] → R
3, and the scalar pressure p : T3×[0, T ] → R.

This is the classical macroscopic model couplingMaxwell’s equations to the evolution
of an electrically conducting fluid/plasma [4,26,54].

B Vlad Vicol
vicol@cims.nyu.edu

Rajendra Beekie
beekie@cims.nyu.edu

Tristan Buckmaster
buckmaster@math.princeton.edu

1 Courant Institute of Mathematical Sciences, New York University, New York, USA

2 Department of Mathematics, Princeton University, Princeton, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40818-020-0076-1&domain=pdf


1 Page 2 of 40 R. Beekie et al.

1.1 MHD Conservation Laws

The ideal MHD equations (1.1) posses a number of conservation laws, which inform
the class of solutions we work with. The mean of u and B over T3 are conserved
in time (even for weak solutions) and thus we consider solutions of (1.1) such that´
T3 u(x, t)dx = ´

T3 B(x, t)dx = 0. For smooth solutions of (1.1) the coercive con-
servation law, and in fact Hamiltonian [43,59] of the system, is given by the total
energy

E(t) = 1

2

ˆ

T3
|u(x, t)|2 + |B(x, t)|2 dx .

This motivates us to work with solutions to (1.1) such that u(·, t), B(·, t) ∈ L2(T3)

for all times t . At this L∞
t L2

x regularity level the cross helicity

Hω,B =
ˆ

T3
u(x, t) · B(x, t)dx

is well-defined, and (1.1) formally conserves the cross helicity. Lastly, we mention the
conservation of the magnetic helicity [48,60,61], defined as

HB,B(t) =
ˆ

T3
A(x, t) · B(x, t) dx ,

where A is a vector potential for B, i.e. curl A = B. As we work on the simply
connected domain T3, the value ofHB,B(t) is independent of the choice of A. Indeed,
keeping in mind the Helmholtz decomposition we note that the gradient part of A is
orthogonal to B, and thus Amay be chosenwithout loss of generality such that div A =
0 and

´
T3 A(x, t)dx = 0. Throughout the paper we work with this representative

vector potential given by the Biot-Savart law: A = curl (−�)−1B. This also justifies
our generalized helicity notation used above: H f ,g = ´

T3 curl (−�)−1 f · g dx (see
also [43]).

We emphasize that as opposed to the total energy and cross helicity (the so-called
Elsässer energies [2]), the magnetic helicity lies at a negative regularity level, namely
L∞

t Ḣ−1/2
x . This subtle difference points to the fact that magnetic helicity plays a spe-

cial role among the conserved quantities of (1.1), a fact which is famously manifested
in the context of reconnection events in magneto-hydrodynamic turbulence. While
turbulent low-density plasma configurations are observed to dissipate energy [24,47],
it is commonly accepted knowledge in the plasma physics literature that the magnetic
helicity is conserved in the infinite conductivity limit. This striking phenomenon is
known as Taylor’s conjecture [3,32,49,57,58], and we recall in Section 1.3 its math-
ematical foundations [14,35]. In contrast, our main result (cf. Theorem 1.4) shows
that there exist weak solutions of the ideal MHD equations (cf. Definition 1.1) whose
magnetic helicity is not a constant function of time. We thus prove that the ideal-MHD-
version of Taylor’s conjecture is false.
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1.2 Weak Solutions and Onsager Exponents for MHD

Before stating our result precisely, we recall a number of previous works on this
subject. First, we introduce the notion of weak/distributional solutions to (1.1) that we
consider in this paper. We work with solutions of regularity at the level of the strongest
known coercive conservation law, i.e., they have finite energy.

Definition 1.1 (Weak solution) We say (u, B) ∈ C((−T , T ); L2(T3)) is a weak
solution of the ideal MHD system (1.1) if for any t ∈ (−T , T ) the vector fields
(u(·, t), B(·, t)) are divergence free in the sense of distributions, they have zero mean,
and (1.1) holds in the sense of distributions, i.e.

ˆ T

−T

ˆ

T3
∂tψ · u + ∇ψ : (u ⊗ u − B ⊗ B)dxdt = 0

ˆ T

−T

ˆ

T3
∂tψ · B + ∇ψ : (u ⊗ B − B ⊗ u)dxdt = 0

hold for all divergence free test functions ψ ∈ C∞
0 ((−T , T ) × T

3).

In analogy with the famed Onsager conjecture for weak solutions of the 3D Euler
equations [52], it is natural to ask the question of the minimal regularity required
by weak solutions of (1.1) to respect the ideal MHD conservation laws: the energy
E , the cross helicity Hω,B , and the magnetic helicity HB,B . Once a suitable scale of
Banach spaces is fixed tomeasure regularity, this putativeminimal regularity exponent
defines a critical/threshold exponent above which all weak solutions obey the given
conservation law (the rigid side), while below this exponent there exist weak solutions
which violate it (the flexible side). See [44], where this question is posed for general
nonlinear, supercritical, Hamiltonian evolution equations (3D Euler and 3D MHD
being examples of such systems), [11, Remark 1.8] in the context of the SQG system,
and [41] for more general active scalar equations.

Concerning the conservation of the L2
x quantities E andHω,B , similar results have

been established in parallel to the rigid side of the Onsager conjecture in 3D Euler
[15,22,33]. To see this, recall that the Elsässer variables z± = u±B are incompressible
and obey ∂t z± + z∓ · ∇z± = −∇�, where � = p + B2/2. Using the commutator
estimates of [22], Caflisch–Klapper–Steele [14] proved the conservation of energy
and cross helicity for weak solutions (u, B) ∈ Bα

3,∞ with α > 1/3. See also [42] who

use the methods of [15] to reach the endpoint case B1/3
3,c(N)

.
The analogy with 3D Euler spectacularly fails when we consider the flexible part

of the Onsager question, namely to construct weak solutions to (1.1), in the sense of
Definition 1.1, with regularity below 1/3 when measured in L3, that do not conserve
energy, or cross helicity. For 3D Euler the Onsager conjecture is now solved, cf. Isett
[39], and B.-De Lellis-Székelyhidi-V. [10] for dissipative solutions. In contrast, for
3D MHD the only non-trivial (i.e. B �≡ 0) non-conservative example arises when
one imposes a symmetry assumption which embeds the system into a 21

2D Euler
flow: if v = (v1, v2, v3)(x1, x2) solves 3D Euler, then setting u = (v1, v2, 0) and
B = (0, 0, v3), the resulting x3 independent functions solve the ideal MHD system.
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This symmetry reduced system is used by Bronzi-Lopes Filho-Nussenzveig Lopes
in [5] to construct an example with E not constant. Note however that in this case
both the cross helicity and the magnetic helicity vanish identically, so that Hω,B =
HB,B = 0 are conserved. A first attempt at constructing wild solutions is the work
of Faraco-Lindberg [34], who use the ideas of De Lellis-Székelyhidi [27] and the
Tartar framework [56] to show that there do in fact exist non-vanishing smooth strict
subsolutions of 3D ideal MHD with compact support in space-time. However, the
interior of the 3D 	-convex hull is empty, which makes the implementation of a
convex integration scheme starting from this subsolution very nontrivial. In fact, in
this same paper [34] it is shown that ideal 2D MHD does not have weak solutions (or
even subsolutions) with compact support in time and with B �≡ 0. The difficulty raised
by the emptiness of the interior of the 3D	-convex hull for (1.1) was recently resolved
by Faraco-Lindberg-Székelyhidi [36] who construct bounded weak solutions which
have compact support in time. While these solutions do not conserve E and Hω,B ,
their magnetic helicity is necessarily trivial, i.e. HB,B ≡ 0. The physical obstruction
to constructing non-conservative solutions to idealMHDwith nonconstantHB,B is that
the magnetic helicity is conserved by weak solutions under much milder assumptions.
We note that a parallel obstruction for L∞

x,t convex-integration constructions occurs
in the setting of the SQG equation: the kinetic energy conservation requires that the
potential vorticity has 1/3 regularity, whereas the conservation of the Hamiltonian
only requires L3

t,x integrability [11,41].
Indeed, Caflisch–Klapper–Steele prove in [14] that the magnetic helicity is con-

served by weak solutions of (1.1) as soon as (u, B) ∈ Bα
3,∞ with α > 0. Note the

considerably weaker condition α > 0 forHB,B conservation, as opposed to α > 1/3
for E . Kang-Lee [42] and subsequently Aluie [1] and Faraco-Lindberg [34] were able
to derive the endpoint case which states that magnetic helicity is conserved as soon as
(u, B) ∈ L3

x,t . This discrepancy between the requirements for energy and magnetic
helicity conservation is the underlying physical difficulty to our construction, known
in the plasma physics community as Taylor’s conjecture (discussed in Sect. 1.3 below).

Whether the L3
x,t regularity threshold for the conservation ofHB,B is sharp remains

open. As mentioned before, we do not have examples of non-conservative solutions to
(1.1). This open problem is stated explicitly in [35]: “It is still open whether magnetic
helicity is conserved if u and B belong to the energy space L∞(0, T ; L2(T3,R3))”.
In this paper we answer this question in the positive, see Theorem 1.4.

1.3 Taylor’s Conjecture

Before turning to our main result, we briefly discuss the mathematical aspects of
Taylor’s conjecture, which has interesting consequences concerning the set of weak
solutions to (1.1).

The viscous (ν > 0) and resistive (μ > 0) MHD equations are given by

∂t u + (u · ∇)u − (B · ∇)B + ∇ p = ν �u (1.2a)

∂t B + (u · ∇)B − (B · ∇)u = μ�B (1.2b)

div u = div B = 0. (1.2c)
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In analogy to the 3D Navier–Stokes equation, using the energy inequality for (1.2)

E(t) + ν

ˆ t

t0
‖∇u(·, s)‖2L2ds + μ

ˆ t

t0
‖∇B(·, s)‖2L2ds ≤ E(t0) , (1.3)

it is classical to build a theory of Leray-Hopf weak solutions for (1.2). These are
solutions with u, B ∈ C0

w,t L2
x ∩ L2

t Ḣ1
x which obey (1.3) for a.e. t0 ≥ 0 and all t > t0.

Note that the only uniform in (ν, μ) bounds for Leray-Hopf weak solutions to (1.2)
are at the L∞

t L2
x regularity level, as in Definition 1.1. Following [Definition 1.1] [35]

we recall the definition:

Definition 1.2 (Weak ideal limit [35]) Let (ν j , μ j ) → (0, 0) be a sequence of van-
ishing viscosity and resistivity. Associated to a sequence of divergence free initial
data converging weakly (u0, j , B0, j )⇀(u0, B0) in L2(T3), let (u j , B j ) be a sequence
of Leray-Hopf weak solutions of (1.2). Any pair of functions (u, B) such that

(u j , B j )
∗
⇀ (u, B) in L∞(0, T ; L2(T3)), are called a weak ideal limit of the sequence

(u j , B j ).

Note in particular that a weak ideal limit (u, B) need not be a weak solution of
the ideal MHD equations (1.1). Taylor’s conjecture states that weak ideal limits of
Leray-Hopf weak solutions to (1.2) conserve the magnetic helicity. This was proven
recently in [35]:

Theorem 1.3 (Proof of Taylor’s conjecture [35]) Suppose (u, B) ∈ L∞
t L2

x is a weak
ideal limit of a sequence of Leray-Hopf weak solutions. Then HB,B is a constant func-
tion of time. In particular, finite energy weak solutions of the ideal MHD equations (1.1)
which are weak ideal limits, conserve magnetic helicity.

The proof of Theorem 1.3 given in [35] (who also consider domains which are
not simply connected) has three ingredients: Leray-Hopf weak solutions to (1.2)
have desirable properties which may be deduced from (1.3), the magnetic helicity
is bounded as soon as B ∈ L∞

t Ḣ−1/2
x , and the fact L2 ⊂ Ḣ−1/2 is compact (we

work with zero mean functions). We recall this argument in Appendix B and note that
similar proofs appear in the context of the 2D Euler equations [16] and of the 2D SQG
equations [20].

In conclusion, we emphasize that there is a substantial integrability/scaling dis-
crepancy between the results of [1,34,42], which consider the conservation of HB,B

directly for weak solutions of ideal MHD, and the result of Taylor’s conjecture [35],
which considers weak solutions to (1.1) that arise as weak ideal limits from (1.2). The
first set of results require L3

x,t integrability to guarantee that the magnetic helicity is
constant in time, while the second result requires merely L∞

t L2
x integrability. Thus,

there is additional hidden information in the definition of a weak ideal limit, a ghost of
the energy inequality (1.3). Our goal in this paper is to show that this scaling discrep-
ancy is real, by proving that there exist L∞

t L2
x weak solutions to ideal MHD which

do not conserve magnetic helicity (see Section 1.4 for details).
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1.4 Results and New Ideas

In this paper we prove the existence of non-trivial non-conservative weak solutions
to (1.1) with finite kinetic energy. For clarity of the presentation, we only prove the
simplest version of this statement:

Theorem 1.4 (Main result) There exists β > 0 such that the following holds. There
exist weak solutions (u, B) ∈ C([0, 1], Hβ) of (1.1), in the sense of Definition 1.1,
which do not conserve magnetic helicity. In particular, there exist solutions as above
with 2

∣
∣HB,B(0)

∣
∣ ≤ HB,B(1) and HB,B(1) > 0. For these solutions the total energy

E and cross helicity Hω,B are non-trivial non-constant functions of time.

To the best of our knowledge Theorem 1.4 provides the first example of a non-
conservative weak solution to the ideal MHD equations, for which E,Hω,B andHB,B

are all non-trivial. A direct consequence of our result is the non-uniqueness of weak
solutions to (1.1) in the sense of Definition 1.1. In fact, at this L∞

t L2
x regularity level,

Theorem 1.4 also gives the first existence result for weak solutions to (1.1), as the usual
weak-compactness methods from smooth approximations fail, for the same reasons
they fail in 3D Euler. In fact, we note that in view of Theorem 1.3, the weak solutions
of 3D ideal MHD which we construct in Theorem 1.4 cannot be obtained as weak
ideal limits from 3D viscous and resistive MHD.

The regularity of the weak solutions from Theorem 1.4 is slightly better thanC0
t L2

x ,
as the parameter β is very small (as in [13]). In view of the conservation of magnetic
helicity inC0

t L3
x , and of the Sobolev embedding, any construction of non-conservative

weak solutions in Hβ must have β < 1/2. However, it seems that fundamentally new
ideas are needed to substantially increase the value of β in Theorem 1.4. Additionally,
making progress towards the flexible side of an Onsager conjecture for ideal MHD,
i.e. to construct weak solutions in Bα

3,∞ with 0 < α < 1/3 which do not conserve total
energy seems out of reach of current methods (such solutions would need to conserve
magnetic helicity, but not total energy).

The proof of Theorem 1.4 is based on a Nash-style convex integration scheme with
intermittent building blocks adapted to the specific geometry of the MHD system. For
the 3D Euler equations, Scheffer [53] and Shnirelman [55] first gave examples of wild
solutions in L2

x , respectively L∞
x , while De Lellis-Székelyhidi [27] have placed these

constructions in a unifiedmathematical framework. Convex integration schemes based
on the ideas of Nash [50] were first used in the context of the 3D Euler system by
De Lellis-Székelyhidi in the seminal work [28]. A sequence of works [6,8,9,25,29,40]
further built on these ideas, leading to the resolution of the Onsager conjecture by Isett
[38,39]. For dissipative solutions, the proof of the flexible side of the Onsager conjec-
ture was given by B.-De Lellis-Székelyhidi-V. [10] (see [12,30] for recent reviews).
Nash-style convex integration schemes in Hölder spaces were also applied to other
classical hydrodynamic models [11,18,41,51]. The last two authors’ work [13] intro-
duced intermittent building blocks in a L2-based convex integration scheme in order to
construct weak solutions of the 3DNavier–Stokes equations (3DNSE)with prescribed
kinetic energy. These ideaswere further developed in [7] to construct intermittentweak
solutions of 3D NSE with partial regularity in time, in [7,45] for the hyperdissipative
problem, in [17,46] for the stationary problem, and in [23] to treat the Hall-MHD
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system. We note that Dai’s [23] non-uniqueness result fundamentally relies on the
presence of the Hall term curl (curl B × B)which is of highest order and is not present
in the ideal MHD system. We refer to the review papers [12,30,31] for further refer-
ences.

The main difficulties in proving Theorem 1.4 arise from the specific geometric
structure of 3D MHD which we describe next, along with the main new ideas used to
overcome them. First, the intermittent constructions developed in the context of 3D
NSE [7,13,17], more specifically the building blocks of these constructions (intermit-
tent Beltrami flows, intermittent jets, respectively viscous eddies), are not applicable to
the ideal MHD system. Informally speaking, for 3D NSE one requires building blocks
with more than 2D intermittency, whereas the geometry of the nonlinear terms of 3D
MHD system requires the building blocks’ direction of oscillation to be orthogonal to
two direction vectors, only permitting the usage of 1D intermittency (co-dimension
2). In particular, our construction does not work for the 2D MHD system, as expected
[34]. Our solution is based on constructing (see Section 5) a set of intermittent build-
ing blocks adapted to this geometry, which we call intermittent shear velocity flows
and intermittent shear magnetic flows. Their spatial support is given by a thickened
plane spanned by two orthogonal vectors k1 and k2, whereas their only direction of
oscillation is given by a vector k which is orthogonal to both k1 and k2. The second
fundamental difference is that in 3D NSE intermittency is only used to treat the linear
term �u, as an error term. In the case of 3D ideal MHD it turns out that intermittency
is used to treat the nonlinear oscillation terms. Due to the two dimensional nature of
their support, the interaction of different intermittent shear flows is not small when
measured using the usual techniques. At this point intermittency plays a key role: we
note that the product of two rationally-skew-oriented 1D intermittent building blocks
is more intermittent than each one of them: it has 2D intermittency because the inter-
section of two thickened (nonparallel) planes is given by a thickened line, which has
2D smallness.

We remark that a similar method to the one outlined here, combined with suitable
localization arguments, should be able to yield the existence of weak solutions to ideal
3D MHD which have compact support in physical space and which do not conserve
magnetic helicity (see [21,37] for the construction of smooth and of rough solutions
to steady ideal MHD with compact support). Such a construction would permit the
treatment of non-simply-connected domains, an important geometry in plasma physics
(e.g. tokamaks).

We also note that the construction given in this paper describes an algorithm with
very explicit steps. Moreover, as opposed to Euler convex integration schemes, one
does not need to numerically solve a large number of transport equations, which
is computationally costly. It would be very interesting to implement the construction
given belowon a computer, and to visualize the emerging intermittentMHDstructures.

2 Outline of the Paper

The proof of Theorem 1.4 relies on constructing solutions (uq , Bq , R̊u
q , R̊B

q ) for every
integer q ≥ 0 to the following relaxation of (1.1):
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∂t uq + div (uq ⊗ uq − Bq ⊗ Bq) + ∇ pq = div R̊u
q (2.1a)

∂t Bq + div (uq ⊗ Bq − Bq ⊗ uq) = div R̊B
q (2.1b)

div uq = div Bq = 0 (2.1c)

where R̊u
q is a symmetric traceless 3× 3 matrix which we call the Reynolds stress and

R̊B
q is a skew-symmetric 3×3matrixwhichwe call themagnetic stress.We recover the

pressure pq by solving the equation �pq = div div (−uq ⊗ uq + Bq ⊗ Bq + R̊u
q ) with´

T3 pqdx = 0. We construct solutions to (2.1) such that the Reynolds and magnetic
stresses go to zero in a particular way as q → ∞, so that in the limit we obtain a weak
solution of (1.1).

In order to quantify the convergence of the stresseswe introduce a frequency param-
eter λq and an amplitude parameter δq defined as follows:

λq = a(bq ) and δq = λ−2β
q (2.2)

where β > 0 is a (very small) regularity parameter and a, b ∈ N are both large. By
induction, we will assume the following bounds on the solution of (2.1) at level q:

∥
∥Bq

∥
∥

L2 ≤ 1 − δ
1
2
q ,

∥
∥Bq

∥
∥

C1
x,t

≤ λ2q ,

∥
∥
∥R̊B

q

∥
∥
∥

L1
≤ cBδq+1, (2.3)

∥
∥uq
∥
∥

L2 ≤ 1 − δ
1
2
q ,

∥
∥uq
∥
∥

C1
x,t

≤ λ2q ,

∥
∥
∥R̊u

q

∥
∥
∥

L1
≤ cuδq+1 . (2.4)

The constants cu and cB are universal: cu only depends on fixed geometric quan-
tities, and cB depends on cu and other geometric quantities. We can assume that
cu, cB ≤ 1. We note that, unless otherwise stated, ‖ f ‖L p will be used as shorthand for
‖ f ‖L∞

t ((−T ,T );L p
x (T3)). Moreover, we write ‖ f ‖C1

x,t
to denote ‖ f ‖L∞ + ‖∇ f ‖L∞ +

‖∂t f ‖L∞ .

Proposition 2.1 (Main Iteration) There exist constants β ∈ (0, 1) and a0 =
a0(β, cB , cu) such that for any natural number a ≥ a0 there exist functions
(uq+1, R̊u

q+1, Bq+1, R̊B
q+1) which solve (2.1) and satisfy (2.3) and (2.4) at level q +1.

Furthermore, they satisfy

∥
∥uq+1 − uq

∥
∥

L2 ≤ δ
1
2
q+1 and

∥
∥Bq+1 − Bq

∥
∥

L2 ≤ δ
1
2
q+1 . (2.5)

Sections 3–6 contain the proof of Proposition 2.1, while the proof of Theorem 1.4
is given in Sect. 7.

3 Mollification

It is convenient to mollify the velocity and the magnetic field to avoid the loss of
derivatives problem. Let φε be a family of standard Friedrichs mollifiers on R

3 and
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let ϕε be a family of standard Friedrichs mollifiers on R. Define a mollification of
uq , Bq , R̊u

q , and, R̊B
q in space and time at length scale � by

u� := (uq ∗x φ�) ∗t ϕ� and B� := (Bq ∗x φ�) ∗t ϕ�

R̊u
� := (R̊u

q ∗x φ�) ∗t ϕ� and R̊B
� := (R̊B

q ∗x φ�) ∗t ϕ� .

Using (2.1a) and (2.1b), (u�, R̊u
� ) and (B�, R̊B

� ) satisfy

∂t u� + div (u� ⊗ u� − B� ⊗ B�) + ∇ p� = div (R̊u
� + R̊u

comm) (3.1a)

∂t B� + div (u� ⊗ B� − B� ⊗ u�) = div (R̊B
� + R̊B

comm) (3.1b)

div u� = div B� = 0 (3.1c)

where the traceless symmetric commutator stress R̊u
comm and the skew-symmetric

commutator stress R̊B
comm are given by

R̊u
comm = (u�⊗̊u�) − (B�⊗̊B�) − ((uq⊗̊uq − Bq⊗̊Bq) ∗x φ�) ∗t ϕ� ,

R̊B
comm = u� ⊗ B� − B� ⊗ u� − ((uq ⊗ Bq − Bq ⊗ uq) ∗x φ�) ∗t ϕ� ,

and p� is defined as

p� = (pq ∗x φ�) ∗t ϕ� − |u�|2 + |B�|2 + (|uq |2 − |Bq |2) ∗x φ�) ∗t ϕ� .

Using standard mollification estimates and (2.3)–(2.4) we have the following esti-
mates for R̊B

� and R̊u
� :

∥
∥
∥∇M R̊u

�

∥
∥
∥

L1
+
∥
∥
∥∇M R̊B

�

∥
∥
∥

L1
� �−Mδq+1 . (3.2)

For R̊B
comm we use the double commutator estimate from [19] and the inductive esti-

mates (2.3)–(2.4) to conclude

∥
∥
∥R̊B

comm

∥
∥
∥

L1
�
∥
∥
∥R̊B

comm

∥
∥
∥

C0
� �2

∥
∥Bq

∥
∥

C1
x,t

∥
∥uq
∥
∥

C1
x,t

� �2λ4q . (3.3)

Since uq and Bq satisfy the same inductive estimates, we have the same bound from
(3.3):

∥
∥
∥R̊u

comm

∥
∥
∥

L1
� �2λ4q . (3.4)

We will choose the mollification length scale so that both (3.3) and (3.4) are less than
δq+2: using (2.2) this implies that � must satisfy

� � λ
− 2

b −βb
q+1 . (3.5)
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1 Page 10 of 40 R. Beekie et al.

If we define � as

� := λ
−η
q+1

then (3.5) translates into η > 2
b + βb.

Remark 3.1 The implicit constants appearing in (3.3) and (3.4), aswell as later inequal-
ities in this paper,will dependon themollifiers, N	 (seeRemark4.3),� (seeSection5),
and various other geometric quantities. In particular, none of the implicit constants
will depend on q. By taking a to be sufficiently large we will be able to use a small
power of λq+1 to absorb the implicit constants and have bonafide inequalities. ��

4 Linear Algebra

As with previous convex integration schemes, we construct perturbations to add to
the velocity and magnetic fields to reduce the size of the stresses. The following two
lemmas are an important part of designing the perturbations so that this cancellation
of the previous stress occurs. The proofs are given in Appendix A.1.

Lemma 4.1 (First Geometric Lemma) There exists a set 	B ⊂ S2∩Q
3 that consists of

vectors k with associated orthonormal bases (k, k1, k2), εB > 0, and smooth positive
functions γ(k) : BεB (0) → R, where BεB (0) is the ball of radius εB centered at 0 in
the space of 3 × 3 skew-symmetric matrices, such that for A ∈ BεB (0) we have the
following identity:

A =
∑

k∈	B

γ 2
(k)(A)(k1 ⊗ k2 − k2 ⊗ k1) . (4.1)

Lemma 4.2 (SecondGeometric Lemma) There exists a set 	u ⊂ S2∩Q
3 that consists

of vectors k with associated orthonormal bases (k, k1, k2), εu > 0, and smooth positive
functions γ(k) : Bεu (Id) → R, where Bεu (Id) is the ball of radius εu centered at the
identity in the space of 3 × 3 symmetric matrices, such that for S ∈ Bεu (Id) we have
the following identity:

S =
∑

k∈	u

γ 2
(k)(S)k1 ⊗ k1 . (4.2)

Furthermore, we may choose 	u such that 	B ∩ 	u = ∅.

Remark 4.3 By our choice of 	B and 	u and the associated orthonormal bases, there
exists N	 ∈ N with

{N	k, N	k1, N	k2} ⊂ N	S
2 ∩ Z

3.

For instance, N	 = 65 suffices. ��
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Remark 4.4 Let M∗ be a geometric constant such that

∑

k∈	u

∥
∥γ(k)

∥
∥

C1(Bεu (Id)) +
∑

k∈	B

∥
∥γ(k)

∥
∥

C1(BεB (0)) ≤ M∗ . (4.3)

This parameter is universal. We will need this parameter later when estimating the
size of the perturbations, see (5.18) and (5.11). ��

5 Constructing the Perturbation: Intermittent Shear Flows

Let� : R → R be a smooth cutoff function supported on the interval [−1, 1]. Assume
it is normalized in such a way that φ := − d2

dx2
� satisfies

ˆ

R

φ2(x)dx = 2π.

For a small parameter r , define the rescaled functions

φr (x) := 1

r
1
2

φ
( x

r

)

, and �r (x) := 1

r
1
2

�
( x

r

)

,

which implies the relation φr = −r2 d2

dx2
�r . We periodize φr and �r so that we can

view the resulting functions (which we will also denote as φr and �r ) as functions
defined on R/2πZ = T. For a large parameter λ such that λ−1 � r and rλ ∈ N the
intermittent shear velocity flow is defined as

W(k) := φr (λr N	k · x)k1 for k ∈ 	u ∪ 	B ,

and the intermittent shear magnetic flow is defined as

D(k) := φr (λr N	k · x)k2 for k ∈ 	B ,

where the notation (k) at the subindex is shorthand for a dependence on k, λ and other
parameters. The fields W(k) and D(k) are (T/(rλ))3− periodic, have zero mean, and
are divergence free. We introduce the shorthand notation

φ(k)(x) := φr (λr N	k · x), �(k)(x) := �r (λr N	k · x)

which allows us to write the intermittent fields more concisely as

W(k) = φ(k)k1, D(k) = φ(k)k2 .

Note that by the choice of normalization for φ, we have

〈

φ2
(k)

〉

=
 

T3
φ2

(k)(x)dx = 1 . (5.1)
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1 Page 12 of 40 R. Beekie et al.

This sets the zeroth Fourier coefficient for φ2
(k) to equal 1 and implies that

∥
∥W(k)

∥
∥
2
L2 =

∥
∥D(k)

∥
∥2

L2 = 8π3.

5.1 Estimates forW(k) and D(k)

Lemma 5.1 For p ∈ [1,∞] and M ∈ N we have the following estimates for φ(k) and
�(k):

∥
∥
∥∇M�(k)

∥
∥
∥

L p
+
∥
∥
∥∇Mφ(k)

∥
∥
∥

L p
� λMr

1
p − 1

2 . (5.2)

Furthermore, we have the following estimate for the size of the support of φ(k):

∣
∣supp (φ(k))

∣
∣ � r (5.3)

where | · | denotes Lebesgue measure and the implicit constant only depends on the
wavevector sets and fixed geometric quantities.

Proof of Lemma 5.1 First, we estimate the L∞ norm. Let α be a multiindex such that
|α| = M . Then,

∂α
x φ(k)(x) = ∂α

x (φr (N	λrk · x)) = kα(N	rλ)M d M

dx M
φr (N	λrk · x)

where kα =∏3
i=1 kαi

i . Using the definition of φr we have that

d M

dx M
φr (N	rλk · x) = 1

r
1
2+M

d M

dx M
φ(N	λk · x) .

Since φ is a smooth compactly supported function this implies that

∥
∥
∥∇Mφ(k)

∥
∥
∥

L∞ � λMr− 1
2 . (5.4)

Next, we estimate the L1 norm. To do this, we first obtain a bound on the size of the
support of φ(k), as claimed in (5.3). Recall that φ(k) is (T/(λr))3-periodic. Therefore,
φ(k) on T

3 can be thought of as being made of (λr)3 copies of φ(k) defined on cubes
of side length 2π

λr . Thus, it suffices to obtain an estimate on cubes with side length 2π
λr

and then multiply the resulting estimates by (λr)3. Due to the periodicity of φ(k), in
one of these cubes the support of φ(k) consists of parallel planes with thickness∼ λ−1.
The minimum distance between the planes is bounded below by s 2π

λr where s ∈ (0, 1)
depends only on the wavevector sets (specifically, s is the minimum distance from
the planes determined by k · x = 0 to a point in (2πZ)3; by the rationality of the
entries of k and since there are only a finite number of wavevectors this number is
finite). Since the side length of the cubes is 2π

λr , the the maximum number of thickened
planes that could compose the support of φ(k) is bounded by 2s−1. Therefore, over
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the small cube we have a support bound given by |supp (φ(k))| ≤ C	u ,	B (λr)−2λ−1

where C	u ,	B is a constant depending on the wavevector sets and other geometric
quantities. Multiplying this bound by (λr)3 gives the desired support estimate for
whole torus.

The L1 estimate follows from the support bound. Using Hölder’s inequality, (5.4),
and (5.3) we have

∥
∥
∥∇Mφ(k)

∥
∥
∥

L1
≤
∣
∣
∣supp (∇Mφ(k))

∣
∣
∣

∥
∥
∥∇Mφ(k)

∥
∥
∥

L∞ �
∣
∣supp (φ(k))

∣
∣ λMr− 1

2 � λMr
1
2 .

Interpolating between the L1 and L∞ yields the desired estimate for all p ∈ (1,∞).
Repeating the same analysis for �(k) gives the desired conclusion. ��
Lemma 5.2 (Product estimate) For p ∈ [1,∞], M ∈ N, and k �= k′ we have the
following estimate

∥
∥
∥∇M (φ(k)φ(k′))

∥
∥
∥

L p(T3)
� λMr

2
p −1

. (5.5)

Furthermore, we have the following estimate for the size of the support of φ(k)φ(k′):

∣
∣supp (φ(k)φ(k′))

∣
∣ � r2 (5.6)

where the implicit constant only depends on the wavevector sets and fixed geometric
quantities.

Proof of Lemma 5.2 Proceeding as before, we first estimate the L∞ norm. Using (5.2)
with p = ∞ yields

∥
∥
∥∇M (φ(k)φ(k′))

∥
∥
∥

L∞ �
M
∑

j=0

∥
∥
∥∇ jφ(k)

∥
∥
∥

L∞

∥
∥
∥∇M− jφ(k′)

∥
∥
∥

L∞ � λMr−1 . (5.7)

We now obtain a bound on the support of the function φ(k)φ(k′) for k �= k′. As in the
proof of Lemma 5.1 it suffices to obtain an estimate on cubes with side length 2π

λr
and then multiply the resulting estimates by (λr)3. Since the support of φ(k) consists
of parallel planes with thickness ∼ λ−1, the support of φ(k)φ(k′) will consist of the
intersection of these thickened planes, which are thickened lines with cross-sectional
area ∼ λ−2

sin(θ)
where θ is the angle between k and k′. Since there are only a finite

number of wavevectors, there is a minimal separation angle θ . Therefore the cross-
sectional area for an individual cylinder is bounded by C	u ,	B λ−2 where C	u ,	B is
some constant depending on the wavevector sets and other geometric quantities. To
estimate the total number of intersections of the planes in a given cube, we note that
since the total number of thickened planes in the support of φ(k) in a small cube is
bounded by 2s−1 the number of intersection points for two distinct planes is bounded
by 4s−2. Finally, the length of such an intersection is bounded by the main diagonal
of the cube, therefore it is bounded by 2λr . Combining all of this, we conclude that,
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1 Page 14 of 40 R. Beekie et al.

over an individual cube with side length 2π
λr , the measure of the support of φ(k)φ(k′) is

bounded by C	u ,	B λ−2(λr)−1. Multiplying by the total number of cubes (λr)3 gives
the bound C	u ,	B r2 in (5.6).

We now proceed with the L1 estimate using Hölder’s inequality, (5.7) and (5.6):

∥
∥
∥∇M (φ(k)φ(k′))

∥
∥
∥

L1
≤ |supp (∇M (φ(k)φ(k′)))|

∥
∥
∥∇M (φ(k)φ(k′))

∥
∥
∥

L∞

� |supp (φ(k)φ(k′))|λMr−1 � λMr .

By interpolation between the L1 and L∞ norms we obtain the desired result. ��
We will now fix the values of the parameters r and λ. We set

λ := λq+1 and r := λ
− 3

4
q+1.

The requirement that rλ ∈ N = λ
− 3

4
q+1 implies that b from (2.2) should be divisible by

4.

Remark 5.3 Now that we have defined all the fundamental parameters, we can specify
values that allow the proof of Proposition 2.1 to close. If we let β = 10−9 then b = 104

and η = 10−3 are allowable choices. ��

5.2 The Perturbation

5.2.1 Amplitudes

To apply the geometric lemmas we need pointwise control over the size of the stresses.
However, the stresses are not necessarily spatially homogeneous, so we need to divide
them by suitable functions to ensure that they are pointwise small, as well as small
in L1. To achieve this, we follow [45]. Let χ : [0,∞) → R be a smooth function
satisfying

χ(z) =
{

1 0 ≤ z ≤ 1

z z ≥ 2

with z ≤ 2χ(z) ≤ 4z for z ∈ (1, 2).
Next, we define

ρB(x, t) := 2δq+1ε
−1
B cBχ

(

(cBδq+1)
−1|R̊B

� (x, t)|
)

where εB is as in Lemma 4.1. The key properties of ρB are that pointwise we have

∣
∣
∣
∣
∣

R̊B
� (x, t)

ρB(x, t)

∣
∣
∣
∣
∣
=
∣
∣
∣
∣
∣
∣

R̊B
� (x, t)

2δq+1ε
−1
B cBχ

(

(cBδq+1)−1|R̊B
� (x, t)|

)

∣
∣
∣
∣
∣
∣

≤ εB
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and that for all p ∈ [1,∞) the bound

‖ρB‖L p ≤ 8ε−1
B

(

(cB(8π3)
1
p )δq+1 +

∥
∥
∥R̊B

�

∥
∥
∥

L p

)

(5.8)

holds. By using standard Hölder estimates (see, for example, [8, Appendix C]), (3.2),
the ordering � ≤ δq+1, and the gain of integrability for mollified functions we have

‖ρB‖C0
x,t

� �−3 and ‖ρB‖
C j

x,t
� �−4 j (5.9a)

∥
∥
∥
∥
ρ

1
2
B

∥
∥
∥
∥

C0
x,t

� �−2 and

∥
∥
∥
∥
ρ

1
2
B

∥
∥
∥
∥

C j
x,t

� �−5 j . (5.9b)

for j ≥ 1.
We then define the magnetic amplitude functions

a(k) := ak,B(x, t) = ρ
1
2
B γ(k)

(

−R̊B
�

ρB

)

, for k ∈ 	B . (5.10)

By (5.8), (2.3), the fact that mollifiers have mass 1, and by choosing cB sufficiently
small, we have

∥
∥ak,B

∥
∥

L2 ≤ ‖ρB‖
1
2
L1

∥
∥γ(k)

∥
∥

C0(BεB (0))

≤ M∗(8ε−1
B )

1
2 (cB8π

3δq+1 +
∥
∥
∥R̊B

�

∥
∥
∥

L1
)
1
2

≤ M∗[8ε−1
B cBδq+1(8π

3 + 1)] 12

≤ min

[(
cu

|	B |
) 1

2

,
1

3|	B |C∗(8π3)
1
2

]

δ
1
2
q+1 . (5.11)

where C∗ is defined in Lemma 5.4. The reason for the strange prefactor in front of the

δ
1
2
q+1 is because the magnetic amplitudes will be used to define two different objects
which need to satisfy different sets of bounds (for details, see the discussion preceding
(5.15) and (5.35) below). Using (5.9b) we arrive at

∥
∥a(k)

∥
∥

C j
x,t

� �−5 j−2 . (5.12)

for j ≥ 0.
The motivation for definition (5.10) is as follows: by (5.1) we have

φ2
(k)(k1 ⊗ k2 − k2 ⊗ k1) = 〈φ2

(k)〉(k1 ⊗ k2 − k2 ⊗ k1)+P�=0(φ
2
(k))(k1 ⊗ k2−k2 ⊗ k1)

= k1 ⊗ k2 − k2 ⊗ k1 + P�=0(φ
2
(k))(k1 ⊗ k2 − k2 ⊗ k1)
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where 〈·〉 denotes spatial average over T3 and P�=0 denotes projection onto nonzero
Fourier modes. Multiplying through by a2

(k), summing over 	B , and using Geometric
Lemma 1 gives

∑

k∈	B

a2
(k)φ

2
(k)(k1 ⊗ k2 − k2 ⊗ k1)

= −R̊B
� +

∑

k∈	B

a2
(k)P�=0(φ

2
(k))(k1 ⊗ k2 − k2 ⊗ k1) . (5.13)

Before we give the definition of the velocity amplitude functions we note that we
need to account for two key differences with the magnetic amplitudes: Geometric
Lemma 2 allows us to cancel matrices in a neighborhood of the identity as opposed
to the origin. In order to cancel both stresses, the velocity perturbation will need to
have wavevectors from both 	u and 	B (see (5.21a)). To address this second issue
we define

G̊ B :=
∑

k∈	B

a2
(k)(k1 ⊗ k1 − k2 ⊗ k2). (5.14)

Note that since G̊ B only depends on a(k), we have that G̊ B is a function of R̊B
� . By

using that a2
(k) = ρBγ 2

(k)(−
RB

�

ρB
), (3.2), (5.9a), and (5.11), for j ≥ 0 we have

∥
∥
∥G̊ B

∥
∥
∥

C0
x,t

� �−3, and
∥
∥
∥G̊ B

∥
∥
∥

L1
≤ 2cuδq+1 . (5.15)

Next, define ρu and the associated velocity amplitudes as

ρu := 2ε−1
u cuδq+1χ

(

(cuδq+1)
−1|R̊u

� (x, t) + G̊ B |
)

,

a(k) := ak,u(x, t) = ρ
1
2
u γ(k)

(

Id − R̊u
� + G̊ B

ρu

)

, for k ∈ 	u . (5.16)

Comparing (5.10) and (5.16) we notice that the definitions of a(k) for k ∈ 	B , respec-
tively for k ∈ 	u , differ slightly. Throughout the paper we abuse this notation and
write a(k) = ak,B for k ∈ 	B and also a(k) = ak,u for k ∈ 	u . With these definitions
we have the following properties for ρu and a(k):

∣
∣
∣
∣
∣

R̊u
� (x, t) + G̊ B

ρu(x, t)

∣
∣
∣
∣
∣
=
∣
∣
∣
∣
∣
∣

R̊u
� (x, t) + G̊ B

2δq+1ε
−1
u cuχ

(

(cuδq+1)−1|R̊u
� (x, t) + G̊ B |

)

∣
∣
∣
∣
∣
∣

≤ εu

and we have for all p ∈ [1,∞)

‖ρu‖L p ≤ 8ε−1
u

(

(cu(8π3)
1
p )δq+1 +

∥
∥
∥R̊u

� (x, t) + G̊ B
∥
∥
∥

L p

)

. (5.17)
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Using (5.11), (5.17), the fact that mollifiers have mass 1, (2.4), and choosing cu suffi-
ciently small we have

∥
∥a(k)

∥
∥

L2 ≤ ‖ρu‖
1
2
L1

∥
∥γ(k)

∥
∥

C0(Bεu (Id)) ≤ M∗
(

8ε−1
u

(

cu8π
3δq+1 +

∥
∥
∥R̊u

�

∥
∥
∥

L1
+
∥
∥
∥G̊ B

∥
∥
∥

L1

)) 1
2

≤ M∗(8ε−1
u (cu8π

3δq+1 + cuδq+1 + 2cuδq+1))
1
2

≤ δ
1
2
q+1c

1
2
u M(8ε−1

u (8π3 + 3))
1
2

≤
δ
1
2
q+1

3|	u |C∗(8π3)
1
2

. (5.18)

Note that cu only depends on M∗ and 	B which are fixed at the beginning of the
induction. In particular, cu does not depend on the value of cB so there is no circular
reasoning caused by cB depending on cu . Using the same techniques used to derive
(5.12) with (5.15) we have for j ≥ 0

∥
∥a(k)

∥
∥

C j
x,t

� �−10 j−2 for k ∈ 	u . (5.19)

Analogous reasoning to that used in (5.13) for the coefficients defined for k ∈ 	u

gives

∑

k∈	u

a2
(k)φ

2
(k)k1 ⊗ k1 = ρuId − R̊u

� − G̊ B +
∑

k∈	u

a2
(k)P�=0(φ

2
(k))k1 ⊗ k1 . (5.20)

Thus, if we define the the principal part of the perturbations w
p
q+1 and d p

q+1 as

w
p
q+1 :=

∑

k∈	u

a(k)W(k) +
∑

k∈	B

a(k)W(k) (5.21a)

d p
q+1 :=

∑

k∈	B

a(k) D(k) , (5.21b)

then in the nonlinear term in the magnetic equation we can use (5.13) to write

w
p
q+1 ⊗ d p

q+1 − d p
q+1 ⊗ w

p
q+1 + R̊B

�

=
∑

k∈	B

a2
(k)φ

2
(k)(k1 ⊗ k2 − k2 ⊗ k1) + R̊B

�

+
∑

k �=k′∈	B

a(k)a(k′)φ(k)φ(k′)(k1 ⊗ k′
2 − k′

2 ⊗ k1)

+
∑

k∈	u ,k′∈	B

a(k)a(k′)φ(k)φ(k′)(k1 ⊗ k′
2 − k′

2 ⊗ k1)

=
∑

k∈	B

a2
(k)P�=0(φ

2
(k))(k1 ⊗ k2 − k2 ⊗ k1)
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+
∑

k �=k′∈	B

a(k)a(k′)φ(k)φ(k′)(k1 ⊗ k′
2 − k′

2 ⊗ k1)

+
∑

k∈	u ,k′∈	B

a(k)a(k′)φ(k)φ(k′)(k1 ⊗ k′
2 − k′

2 ⊗ k1) , (5.22)

while for the velocity equation we have that

w
p
q+1 ⊗ w

p
q+1 − d p

q+1 ⊗ d p
q+1 + R̊u

�

=
∑

k,k′∈	u

a(k)a(k′)φ(k)φ(k′)k1 ⊗ k′
1

+
∑

k,k′∈	B

a(k)a(k′)φ(k)φ(k′)(k1 ⊗ k′
1 − k2 ⊗ k′

2) + R̊u
�

+
∑

k∈	u ,k′∈	B

a(k)a(k′)φ(k)φ(k′)(k1 ⊗ k′
1 + k′

1 ⊗ k1)

=: O1 + O2 (5.23)

where the terms O1 and O2 are defined by the first, respectively second line of the
above. Using the identity

∑

k∈	B

a2
(k)φ

2
(k)(k1 ⊗ k1 − k2 ⊗ k2) = G̊ B +

∑

k∈	B

a2
(k)P�=0(φ

2
(k))(k1 ⊗ k1 − k2 ⊗ k2) ,

which follows from (5.14), and appealing to (5.20), we rewrite the O1 term as

O1 =
∑

k∈	u

a2
(k)φ

2
(k)k1 ⊗ k1 +

∑

k∈	B

a2
(k)φ

2
(k)(k1 ⊗ k1 − k2 ⊗ k2) + R̊u

�

+
∑

k �=k′∈	u

a(k)a(k′)φ(k)φ(k′)k1 ⊗ k′
1

+
∑

k �=k′∈	B

a(k)a(k′)φ(k)φ(k′)(k1 ⊗ k′
1 − k2 ⊗ k′

2)

= ρuId − R̊u
� − G̊ B + R̊u

� + G̊ B +
∑

k∈	u

a2
(k)P�=0(φ

2
(k))k1 ⊗ k1

+
∑

k∈	B

a2
(k)P�=0(φ

2
(k))(k1 ⊗ k1 − k2 ⊗ k2)

+
∑

k �=k′∈	u

a(k)a(k′)φ(k)φ(k′)k1 ⊗ k′
1

+
∑

k �=k′∈	B

a(k)a(k′)φ(k)φ(k′)(k1 ⊗ k′
1 − k2 ⊗ k′

2)

= ρuId +
∑

k∈	u

a2
(k)P�=0(φ

2
(k))k1 ⊗ k1 +

∑

k∈	B

a2
(k)P�=0(φ

2
(k))(k1 ⊗ k1 − k2 ⊗ k2)
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+
∑

k �=k′∈	u

a(k)a(k′)φ(k)φ(k′)k1 ⊗ k′
1

+
∑

k �=k′∈	B

a(k)a(k′)φ(k)φ(k′)(k1 ⊗ k′
1 − k2 ⊗ k′

2) . (5.24)

Therefore, combining (5.23) and (5.24), we arrive at

w
p
q+1 ⊗ w

p
q+1 − d p

q+1 ⊗ d p
q+1 + R̊u

�

= ρuId +
∑

k∈	u

a2
(k)P�=0(φ

2
(k))k1 ⊗ k1 +

∑

k∈	B

a2
(k)P�=0(φ

2
(k))(k1 ⊗ k1 − k2 ⊗ k2)

+
∑

k �=k′∈	u

a(k)a(k′)φ(k)φ(k′)k1 ⊗ k′
1

+
∑

k �=k′∈	B

a(k)a(k′)φ(k)φ(k′)(k1 ⊗ k′
1 − k2 ⊗ k′

2)

+
∑

k∈	u ,k′∈	B

a(k)a(k′)φ(k)φ(k′)(k1 ⊗ k′
1 + k′

1 ⊗ k1) . (5.25)

The calculation in (5.25)motivates the definition of G̊ B : due to the fact thatw p
q+1 needs

more wavevectors than d p
q+1, we get an extra self-interaction term in the expansion of

w
p
q+1 ⊗w

p
q+1 that is too large to go into the next Reynolds stress so must be cancelled

completely.
Note that as a consequence of the definitions (5.21), the estimates (5.2), (5.12),

(5.19), and the parameter inequality �−10 � λq+1 we have

∥
∥
∥w

p
q+1

∥
∥
∥

C1
x,t

+
∥
∥
∥d p

q+1

∥
∥
∥

C1
x,t

� �−2λq+1r− 1
2 . (5.26)

5.3 Incompressibility Correctors

Due to the spatial dependence of the amplitudes a(k), the principal parts of the
perturbation, w

p
q+1 and d p

q+1, are no longer divergence free. To fix this, we define
incompressibility correctors analogously to [7]. First define

W c
k := 1

N 2
	λ2q+1

�(k)k1 , Dc
k := 1

N 2
	λ2q+1

�(k)k2 . (5.27)

Then we define the incompressibility correctors

wc
q+1 :=

∑

k∈	u

curl (∇a(k) × W c
k ) + ∇a(k) × curl W c

k

+
∑

k∈	B

curl (∇a(k) × W c
k ) + ∇a(k) × curl W c

k
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dc
q+1 :=

∑

k∈	B

curl (∇a(k) × Dc
k) + ∇a(k) × curl Dc

k .

With this definition we see that

curl curl

⎛

⎝
∑

k∈	u

a(k)W
c
k +

∑

k∈	B

a(k)W
c
k

⎞

⎠

=
∑

k∈	u

a(k)Wk + curl (∇a(k) × W c
k ) + ∇a(k) × curl W c

k

+
∑

k∈	B

a(k)Wk + curl (∇a(k) × W c
k ) + ∇a(k) × curl W c

k

= w
p
q+1 + wc

q+1 (5.28)

and

curl curl

⎛

⎝
∑

k∈	B

a(k) Dc
k

⎞

⎠ =
∑

k∈	B

a(k) Dk + curl (∇a(k) × Dc
k) + ∇a(k)

× curl Dc
k = d p

q+1 + dc
q+1 . (5.29)

From (5.28) and (5.29) we deduce that div (w
p
q+1 + wc

q+1) = div (d p
q+1 + dc

q+1) = 0,
which justifies the definitions of the incompressibility correctors.

Using (5.27), (5.12), and (5.2), and the fact that �−5 � λq+1 we obtain for any
p ∈ [1,∞]
∥
∥
∥dc

q+1

∥
∥
∥

L p
≤
∑

k∈	B

∥
∥curl (∇a(k) × Dc

k) + ∇a(k) × curl Dc
k

∥
∥

L p

≤
∑

k∈	B

∥
∥
∥Dc

k ∇2a(k)

∥
∥
∥

L p
+ ∥∥∇a(k) · ∇Dc

k

∥
∥

L p + ∥∥∇a(k) × curl Dc
k

∥
∥

L p

�
∥
∥a(k)

∥
∥

C1
x,t

∥
∥Dc

k

∥
∥

W 1,p + ∥∥a(k)

∥
∥

C2
x,t

∥
∥Dc

k

∥
∥

L p

� �−7r
1
p − 1

2 λ−1
q+1 + λ−2

q+1r
1
p − 1

2 �−12

� �−7r
1
p − 1

2 λ−1
q+1 . (5.30)

Using (5.19) for k ∈ 	u we also have that

∥
∥
∥w

c
q+1

∥
∥
∥

L p
� �−12r

1
p − 1

2 λ−1
q+1 . (5.31)

Thus, by (5.19), (5.12), (5.2), and �−10 � λq+1 we obtain

∥
∥
∥w

c
q+1

∥
∥
∥

C1
x,t

� �−12r− 1
2 and

∥
∥
∥dc

q+1

∥
∥
∥

C1
x,t

� �−7r− 1
2 . (5.32)
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Lastly, we define the velocity and magnetic perturbations:

wq+1 := w
p
q+1 + wc

q+1 (5.33a)

dq+1 := d p
q+1 + dc

q+1 (5.33b)

and the next iterate:

vq+1 := v� + wq+1 (5.34a)

Bq+1 := B� + dq+1 . (5.34b)

5.4 Lp Decorrelation

In order to verify the inductive estimates on the perturbations wq+1 and dq+1 we will
need the L p Decorrelation Lemma from [13], which we record here for convenience.

Lemma 5.4 (L p Decorrelation) Fix integers N, κ ≥ 1 and let ζ > 1 be such that

2π
√
3ζ

κ
≤ 1

3
and ζ 4 (2π

√
3ζ )N

κ N
≤ 1

Let p ∈ {1, 2}, and let f be a T
3-periodic function such that there exists a constant

C f > 0 such that

∥
∥
∥D j f

∥
∥
∥

L p
≤ C f ζ

j

holds for all 0 ≤ j ≤ N + 4. In addition, let g be a (T/κ)3 − periodic function.
Then we have that

‖ f g‖L p ≤ C f C∗ ‖g‖L p ,

where C∗ is a universal constant.

We will apply this lemma with f = a(k), g = φ(k), κ = rλq+1, N = 1 and p = 2.
The choice of C f and ζ depends on the wavevector set. For k ∈ 	B , using (5.11),
(5.12), and that � ≤ δq+1 we have for j ≥ 0

∥
∥
∥D j a(k)

∥
∥
∥

L2
≤ δ

1
2
q+1

3C∗(8π3)
1
2 |	B |

�−8 j , k ∈ 	B .

For k ∈ 	u , using (5.18) and (5.19) gives

∥
∥
∥D j a(k)

∥
∥
∥

L2
≤ δ

1
2
q+1

3C∗(8π3)
1
2 |	u |

�−13 j , k ∈ 	u .
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Thus we can take C f = δ
1
2

q+1

3C∗(8π3)
1
2 |	B |

and ζ = �−8 for k ∈ 	B and C f =
δ
1
2

q+1

3C∗(8π3)
1
2 |	u |

with ζ = �−13 for k ∈ 	u . We are justified in applying the decor-

relation lemma with the above chosen parameters because �−65 � rλq+1 = λ
1
4
q+1

which is the most restrictive condition coming from our choice of parameters.
Applying Lemma 5.4 gives

∥
∥ak,Bφ(k)

∥
∥

L2 ≤ δ
1
2
q+1

3(8π3)
1
2 |	B |

∥
∥φ(k)

∥
∥

L2 = δ
1
2
q+1

3|	B | (5.35)

∥
∥ak,uφ(k)

∥
∥

L2 ≤ δ
1
2
q+1

3(8π3)
1
2 |	u |

∥
∥φ(k)

∥
∥

L2 = δ
1
2
q+1

3|	u | (5.36)

since φ2
(k) was normalized to have unit average over T3.

5.5 Verification of Inductive Estimates

Using (5.30) and (5.35) we can verify inductive estimates (2.3) and (2.4). For the
magnetic increment we have the bound

∥
∥dq+1

∥
∥

L2 ≤
∥
∥
∥d p

q+1

∥
∥
∥

L2
+
∥
∥
∥dc

q+1

∥
∥
∥

L2
≤
∥
∥
∥
∥
∥
∥

∑

k∈	B

a(k) D(k)

∥
∥
∥
∥
∥
∥

L2

+
∥
∥
∥dc

p

∥
∥
∥

L2
≤ 1

3
δ
1
2
q+1

+ �−8λ−1
q+1 ≤ 1

2
δ
1
2
q+1 (5.37)

where we used an extra power of � to absorb any implicit constants coming from (5.30)
and that λ−1

q+1 � �8δq+1 in the last inequality. Similarly, for the velocity we have

∥
∥wq+1

∥
∥

L2 ≤
∥
∥
∥w

p
q+1

∥
∥
∥

L2
+
∥
∥
∥w

c
q+1

∥
∥
∥

L2

≤
∥
∥
∥
∥
∥
∥

∑

k∈	u

a(k)W(k) +
∑

k∈	B

a(k)W(k)

∥
∥
∥
∥
∥
∥

L2

+
∥
∥
∥w

c
q+1

∥
∥
∥

L2

≤
∑

k∈	u

∥
∥a(k)W(k)

∥
∥

L2 +
∑

k∈	B

∥
∥a(k)W(k)

∥
∥

L2 +
∥
∥
∥w

c
q+1

∥
∥
∥

L2

≤ δ
1
2
q+1

3
+ δ

1
2
q+1

3
+ �−13λ−1

q+1 ≤ 3

4
δ
1
2
q+1 . (5.38)
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Applying standard mollification estimates, using (2.3), (2.4), and ηb − 2 � bβ

∥
∥Bq − B�

∥
∥

L2 �
∥
∥Bq − B�

∥
∥

C0 � �
∥
∥Bq

∥
∥

C1
x,t

� �λ2q � δ
1
2
q+1 (5.39)

and

∥
∥uq − u�

∥
∥

L2 �
∥
∥uq − u�

∥
∥

C0 � �
∥
∥uq
∥
∥

C1
x,t

� �λ2q � δ
1
2
q+1 . (5.40)

Combining (5.39), (5.37), (5.40), and (5.38) for the magnetic field and velocity
respectively we obtain

∥
∥Bq − Bq+1

∥
∥

L2 ≤ ∥∥Bq − B�

∥
∥

L2 + ∥∥B� − Bq+1
∥
∥

L2 ≤ 1

2
δ
1
2
q+1 + ∥∥dq+1

∥
∥

L2 ≤ δ
1
2
q+1

∥
∥uq − uq+1

∥
∥

L2 ≤ ∥∥uq − u�

∥
∥

L2 + ∥∥u� − uq+1
∥
∥

L2 ≤ 1

4
δ
1
2
q+1 + ∥∥wq+1

∥
∥

L2 ≤ δ
1
2
q+1

as desired.
Now we check the L2 norm:

∥
∥Bq+1

∥
∥

L2 = ∥∥B� + dq+1
∥
∥

L2 ≤ ‖B�‖L2 + ∥∥dq+1
∥
∥

L2 ≤ 1 − δ
1
2
q + δ

1
2
q+1 ≤ 1 − δ

1
2
q+1

where we used that 2δ
1
2
q+1 ≤ δ

1
2
q . The same reasoning shows that

∥
∥uq+1

∥
∥

L2 ≤ 1−δ
1
2
q+1

as well.
We finish by checking the C1

x,t estimate for the velocity and magnetic field at level
q + 1: using the parameter inequality �−1 � r−1 � λq+1, and the bounds (5.26),
(5.32), we have

‖dq+1‖C1
x,t

≤ ‖d p
q+1‖C1

x,t
+ ‖dc

q+1‖C1
x,t

� �−2λq+1r− 1
2

+ �−7r− 1
2 � �−2λq+1r− 1

2 ≤ λ2q+1

and

‖wq+1‖C1
x,t

≤ ‖w p
q+1‖C1

x,t
+ ‖wc

q+1‖C1
x,t

� �−2λq+1r− 1
2

+ �−12r− 1
2 � �−2λq+1r− 1

2 ≤ λ2q+1.

6 Reynolds andMagnetic Stress

6.1 Symmetric Inverse Divergence

In order to define the Reynolds and magnetic stress we need an inverse divergence
operator that acts on mean-free vector fields. For the Reynolds stress it suffices to use
the inverse-divergence operator from [28]:
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(Rv)kl = ∂k�
−1vl + ∂l�

−1vk − 1

2
(δkl + ∂k∂l�

−1)div�−1v

where k, � ∈ {1, 2, 3}. The operator R returns a symmetric, trace-free matrix and
satisfies the following key identity for mean-free vector fields: divR(v) = v. Note
that |∇|R is a Calderon-Zygmund operator.

6.2 Skew-Symmetric Inverse Divergence

Unlike in previous convex integration schemes,wewill also need an inverse divergence
that returns skew-symmetric matrices as opposed to symmetric trace-free ones. We
will denote this operator as RB . We want divRB( f ) = f where f : R3 → R

3 and
RB( f ) = −(RB( f ))�. If we define

(RB f )i j := εi jk(−�)−1(curl f )k

where εi jk is the Levi-Civita tensor and div f = 0, then a direct calculation of the
divergence (contracting along the second index) shows that divRB( f ) = f . Again,
|∇|RB is a Calderon-Zygmund operator.

6.3 Decomposition of the Stresses

Our goal is now to show that the stresses R̊u
q+1 and R̊B

q+1 satisfy (2.4) and (2.3).

However, we must first determine R̊u
q+1 and R̊B

q+1. To do this, consider the equation
satisfied by (uq+1, Bq+1):

div R̊u
q+1 − ∇ pq+1

= ∂twq+1 + div (v� ⊗ wq+1 + wq+1 ⊗ v� − B� ⊗ dq+1 − dq+1 ⊗ B�)
︸ ︷︷ ︸

div R̊u
lin+∇ plin

+ div (w
p
q+1 ⊗ w

p
q+1 − d p

q+1 ⊗ d p
q+1 + R̊u

� )
︸ ︷︷ ︸

div R̊u
osc+∇ posc

+ div (wq+1 ⊗ wc
q+1 + wc

q+1 ⊗ w
p
q+1 − dq+1 ⊗ dc

q+1 − dc
q+1 ⊗ d p

q+1)
︸ ︷︷ ︸

div R̊u
corr +∇ pcorr

+ div R̊u
comm − ∇ p� (6.1)

and

div R̊B
q+1 = ∂t dq+1 + div (u� ⊗ dq+1 + wq+1 ⊗ B� − B� ⊗ wq+1 − dq+1 ⊗ u�)

︸ ︷︷ ︸

div R̊B
lin

+ div (w
p
q+1 ⊗ d p

q+1 − d p
q+1 ⊗ w

p
q+1 + R̊B

� )
︸ ︷︷ ︸

div R̊B
osc
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+ div (wc
q+1 ⊗ dq+1 − dq+1 ⊗ wc

q+1 + w
p
q+1 ⊗ dc

q+1 − dc
q+1 ⊗ w

p
q+1)

︸ ︷︷ ︸

div R̊B
corr

+ div R̊B
comm . (6.2)

Applying the symmetric and skew-symmetric inverse divergence operators allows us
to define the different parts of the Reynolds and magnetic stresses as follows:

R̊B
lin = RB(∂t dq+1) + u� ⊗ dq+1 − dq+1 ⊗ u� + wq+1 ⊗ B� − B� ⊗ wq+1 (6.3)

R̊B
corr = wc

q+1 ⊗ dq+1 − dq+1 ⊗ wc
q+1 + w

p
q+1 ⊗ dc

q+1 − dc
q+1 ⊗ w

p
q+1 (6.4)

and

R̊u
lin = R(∂twq+1) + v�⊗̊wq+1 + wq+1⊗̊v� − B�⊗̊dq+1 − dq+1⊗̊B� (6.5)

R̊u
corr = wq+1⊗̊wc

q+1 + wc
q+1⊗̊w

p
q+1 − dq+1⊗̊dc

q+1 − dc
q+1⊗̊d p

q+1 . (6.6)

The associated pressure terms are defined as plin = 2v� · wq+1 − 2B� · dq+1 and
pcorr = wq+1 ·wc

q+1+wc
q+1 ·w p

q+1−dq+1 ·dc
q+1−dc

q+1 ·d p
q+1. In order to determine

the equation for R̊B
osc, we use (5.22) and the fact that k1 · ∇φ(k) = k2 · ∇φ(k) = 0, and

obtain

div (w
p
q+1 ⊗ d p

q+1 − d p
q+1 ⊗ w

p
q+1 + R̊B

� )

=
∑

k∈	B

∇(a2
(k))P�=0(φ

2
(k))(k1 ⊗ k2 − k2 ⊗ k1)

+ div

(
∑

k �=k′∈	B

a(k)a(k′)φ(k)φ(k′)(k1 ⊗ k′
2 − k′

2 ⊗ k1)

)

+ div

(
∑

k∈	u ,k′∈	B

a(k)a(k′)φ(k)φ(k′)(k1 ⊗ k′
2 − k′

2 ⊗ k1)

)

. (6.7)

Here and throughout the paperwe use the notation∇ f (�⊗�′) to denote the contraction
on the second component of the tensor, namely �(�′ · ∇) f . Similarly, to find R̊u

osc and
posc we appeal to (5.25) and apply the divergence operator, to arrive at

div
(

w
p
q+1 ⊗ w

p
q+1 − d p

q+1 ⊗ d p
q+1 + R̊u

�

)

= ∇ posc +
∑

k∈	u

∇(a2
(k))P �=0(φ

2
(k))k1 ⊗ k1

+
∑

k∈	B

∇(a2
(k))P �=0(φ

2
(k))(k1 ⊗ k1 − k2 ⊗ k2)

+ div

(
∑

k �=k′∈	u

a(k)a(k′)φ(k)φ(k′)k1⊗̊k′
1 +

∑

k �=k′∈	B

a(k)a(k′)φ(k)φ(k′)(k1⊗̊k′
1 − k2⊗̊k′

2)

)

+ div

(
∑

k∈	u ,k′∈	B

a(k)a(k′)φ(k)φ(k′)(k1⊗̊k′
1 + k′

1⊗̊k1)

)

, (6.8)
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where

posc = ρu +
∑

k �=k′∈	u

a(k)a(k′)φ(k)φ(k′)k1 · k′
1

+
∑

k �=k′∈	B

a(k)a(k′)φ(k)φ(k′)(k1 · k′
1 − k2 · k′

2)

+ 2
∑

k∈	u ,k′∈	B

a(k)a(k′)φ(k)φ(k′)k1 · k′
1

Therefore, from (6.7) we have that the magnetic oscillation stress is given by

R̊B
osc =

∑

k∈	B

RB
(

∇(a2
(k))P�=0(φ

2
(k))(k1 ⊗ k2 − k2 ⊗ k1)

)

+
∑

k �=k′∈	B

a(k)ak′,Bφ(k)φ(k′)(k1 ⊗ k′
2 − k′

2 ⊗ k1)

+
∑

k∈	u ,k′∈	B

a(k)a(k′)φ(k)φ(k′)(k1 ⊗ k′
2 − k′

2 ⊗ k1) , (6.9)

while from (6.8) we deduce that the Reynolds oscillation stress is defined as

R̊u
osc =

∑

k∈	u

R
(

∇(a2
(k))P�=0(φ

2
(k))k1 ⊗ k1

)

+
∑

k∈	B

R
(

∇(a2
(k))P�=0(φ

2
(k))(k1 ⊗ k1 − k2 ⊗ k2)

)

+
∑

k �=k′∈	u

a(k)a(k′)φ(k)φ(k′)k1⊗̊k′
1

+
∑

k �=k′∈	B

a(k)a(k′)φ(k)φ(k′)(k1⊗̊k′
1 − k2⊗̊k′

2)

+
∑

k∈	u ,k′∈	B

a(k)a(k′)φ(k)φ(k′)(k1⊗̊k′
1 + k′

1⊗̊k1) . (6.10)

In conclusion, we note that the pressure at level q + 1 is given by pq+1 := p� −
plin − posc − pcorr , while the magnetic and Reynolds stresses are given respectively
by

R̊B
q+1 = R̊B

lin + R̊B
osc + R̊B

corr + R̊B
comm (6.11a)

R̊u
q+1 = R̊u

lin + R̊u
osc + R̊u

corr + R̊u
comm . (6.11b)
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6.4 Estimates for theMagnetic Stress

In order to estimate the stresses in L1, since Calderon-Zygmund operators are not
bounded on L1, we fix an integrability parameter p sufficiently close to 1, which we
will use whenever we have a stress term that involves a Calderon-Zygmund operator.

6.4.1 Linear Error

We first estimate the time derivative term in (6.3). By (5.29) we have ∂t dq+1 =
curl curl (

∑

	B
∂t (a(k) Dc

k)) = curl curl (
∑

	B
∂t a(k)Dc

k). Therefore using (5.12), the
definition of Dc

k in (5.27), and (5.1) we have

‖RB(∂t dq+1)‖L1 � ‖RB(∂t dq+1)‖L p �
∑

k∈	B

‖RBcurl curl (∂t a(k)Dc
k)‖L p

�
∑

k∈	B

‖curl (∂t a(k)Dc
k)‖L p

�
∑

k∈	B

‖a(k)‖C2
x,t

‖Dc
k‖W 1,p

� �−12λ−1
q+1 (6.12)

where we used the fact that 1 ≤ p ≤ 2 to remove the (good) r factor from the
‖∇Dc

k‖L p estimate.
Next we estimate the high-low interaction terms present in (6.2). First we write

dq+1 = d p
q+1 + dc

q+1 so we have u� ⊗ dq+1 = u� ⊗ d p
q+1 + u� ⊗ dc

q+1. We will only
show how to estimate one term since the other terms can be handled similarly. By
(2.4), regularizing properties of mollification, (5.30), and (5.2) we have

∥
∥u� ⊗ dq+1

∥
∥

L1 ≤
∥
∥
∥u� ⊗ d p

q+1

∥
∥
∥

L1
+
∥
∥
∥u� ⊗ dc

q+1

∥
∥
∥

L1

≤ ‖u�‖C0

∥
∥
∥d p

q+1

∥
∥
∥

L1
+ ‖u�‖L2

∥
∥
∥dc

q+1

∥
∥
∥

L2

� �− 3
2

∥
∥
∥d p

q+1

∥
∥
∥

L1
+
∥
∥
∥dc

q+1

∥
∥
∥

L2

� �− 3
2 �−2r

1
2 + �−7λ−1

q+1

� �−4r
1
2 (6.13)

where we used that λ−1
q+1 � r � �. The same estimate also holds for the term

wq+1 ⊗ B�. Therefore,

∥
∥
∥R̊B

lin

∥
∥
∥

L1
�
∥
∥
∥RB(∂t dq+1)

∥
∥
∥

L p

+ ∥∥u� ⊗ dq+1 − dq+1 ⊗ u� + wq+1 ⊗ B� − B� ⊗ wq+1
∥
∥

L1

� �−12λ−1
q+1 + �−4r

1
2

� �−4r
1
2 . (6.14)
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6.4.2 Oscillation Error

In order to estimate the magnetic oscillation stress we use (6.9) to decompose it into
two parts:

R̊B
osc = E B

1 + E B
2

where

E B
1 :=

∑

k∈	B

RB
(

∇(a2
(k))P�=0(φ

2
(k))(k1 ⊗ k2 − k2 ⊗ k1)

)

E B
2 :=

∑

k �=k′∈	B

a(k)ak′,Bφ(k)φ(k′)(k1 ⊗ k′
2 − k′

2 ⊗ k1)

+
∑

k∈	u ,k′∈	B

a(k)a(k′)φ(k)φ(k′)(k1 ⊗ k′
2 − k′

2 ⊗ k1) .

First note that since div
(

a2
(k)P�=0(φ

2
(k))(k1 ⊗ k2 − k2 ⊗ k1)

)

= ∇(a2
(k))P�=0(φ

2
(k))

(k1⊗k2−k2⊗k1), we can conclude that∇(a2
(k))P�=0(φ

2
(k))(k1⊗k2−k2⊗k1) is mean

free. A calculation also shows that div div (a2
(k)P�=0(φ

2
(k))(k1 ⊗ k2 − k2 ⊗ k1)) = 0 so

E B
1 is well-defined. Therefore it suffices to estimate E B

1 and E B
2 individually. For E B

1 ,
we note that since φ(k) is λq+1r periodic, so is φ2

(k). Therefore the minimal active fre-

quency in P�=0φ
2
(k) is λq+1r ; we have that P�=0(φ

2
(k)) = P≥(λq+1r/2)(φ

2
(k)). This allows

us to exploit the frequency separation between ∇(a2
(k)) and φ2

(k) and gain a factor of

λq+1r from the application of RB . To be precise, we recall Lemma B.1 from [13]:

Lemma 6.1 Fix parameters 1 ≤ ζ < κ, p ∈ (1, 2], and assume there exists an L ∈ N

such that

ζ L ≤ κL−2

Let a ∈ C L(T3) be such that there exists Ca > 0 with

∥
∥
∥D j a

∥
∥
∥

C0
≤ Caζ j

for all0 ≤ j ≤ L. Assume also that f ∈ L p(T3) is such that
´
T3 a(x)P≥κ f (x)dx = 0.

Then we have

∥
∥
∥|∇|−1(aP≥κ f )

∥
∥
∥

L P
� Ca

‖ f ‖L p

κ

where the implicit constant depends only on p and L.

Using (5.15) we see that we can apply Lemma 6.1 with a = ∇(a2
(k)), f = φ2

(k)

and parameter values κ = λq+1r , ζ = �−5, Ca = �−9, and L = 3. We are justified

123



Weak Solutions of Ideal MHD Which Do Not Conserve Magnetic Helicity Page 29 of 40 1

in these choices because ζ 3 = �−15 = λ
15η
q+1 ≤ λ

1
4
q+1. Applying Lemma 6.1 and (5.1)

yields

∥
∥
∥E B

1

∥
∥
∥

L1
�
∥
∥
∥E B

1

∥
∥
∥

L p
≤
∑

k∈	B

∥
∥
∥RB

(

∇(a2
(k))P≥(λq+1r/2)(φ

2
(k))(k1 ⊗ k2− k2 ⊗ k1)

)∥
∥
∥

L p

� �−9λ−1
q+1r−1

∥
∥
∥φ

2
(k)(k1 ⊗ k2 − k2 ⊗ k1)

∥
∥
∥

L p

� �−9λ−1
q+1r−1

∥
∥φ(k)

∥
∥2

L2p

� �−9λ−1
q+1r−1r

1
p −1

� �−9λ−1
q+1r

1
p −2

. (6.15)

For the second term in the decomposition of R̊B
osc, namely E B

2 , we apply the product
estimate (5.5), along with the magnitude bounds (5.12) and (5.19) to derive

∥
∥
∥E B

2

∥
∥
∥

L1
≤

∑

k �=k′∈	B

∥
∥a(k)a(k′)φ(k)φ(k′)

∥
∥

L1 +
∑

k∈	u ,k′∈	B

∥
∥a(k)a(k′)φ(k)φ(k′)

∥
∥

L1

�
∑

k �=k′∈	B

∥
∥a(k)

∥
∥2

C0

∥
∥φ(k)φ(k′)

∥
∥

L1

+
∑

k∈	u ,k′∈	B

∥
∥a(k)

∥
∥

C0

∥
∥a(k′)

∥
∥

C0

∥
∥φ(k)φ(k′)

∥
∥

L1

� �−4r .

Combining the estimates for E B
1 and E B

2 we conclude that

∥
∥
∥R̊B

osc

∥
∥
∥

L1
� �−4r + �−9λ−1

q+1r
1
p −2 � �−9λ−1

q+1r
1
p −2 (6.16)

upon recalling that r = λ
− 3

4
q+1, and that p is close to 1.

6.4.3 Corrector Error

Due to the smallness of the corrector terms, to estimate (6.4), it suffices to simply
apply Cauchy-Schwarz and use (5.30), (5.31), (5.37), and (5.38):

∥
∥
∥R̊B

corr

∥
∥
∥

L1
�
∥
∥
∥w

c
q+1 ⊗ dq+1

∥
∥
∥

L1
+
∥
∥
∥w

p
q+1 ⊗ dc

q+1

∥
∥
∥

L1

�
∥
∥
∥w

c
q+1

∥
∥
∥

L2

∥
∥dq+1

∥
∥

L2 +
∥
∥
∥w

p
q+1

∥
∥
∥

L2

∥
∥
∥dc

q+1

∥
∥
∥

L2

� �−12λ−1
q+1δ

1
2
q+1 + �−7λ−1

q+1δ
1
2
q+1

� �−12λ−1
q+1δ

1
2
q+1 . (6.17)

This concludes the estimates necessary to bound R̊B
osc.

123



1 Page 30 of 40 R. Beekie et al.

6.5 Estimates for the Reynolds Stress

6.5.1 Linear Error

To bound (6.5) we proceed just as we did for (6.3). As we had for the magnetic per-
turbations, by (5.28) we have ∂twq+1 = curl curl (

∑

	u
∂t a(k)W c

k +∑	B
∂t a(k)W c

k ).
Therefore we can obtain the same estimate as in (6.12) except we account for the
worse amplitudes estimates we get for k ∈ 	u :

∥
∥R∂twq+1

∥
∥

L1 �
∑

k∈	u

∥
∥a(k)

∥
∥

C2
x,t

∥
∥∇W c

k

∥
∥

L p � �−22λ−1
q+1 .

Furthermore, an examination of (6.13) shows that the same bound will hold for cross
terms in the Reynolds stress (again using the fact that λ−1

q+1 � r � � ):

∥
∥v�⊗̊wq+1 + wq+1⊗̊v� − B�⊗̊dq+1 − dq+1⊗̊B�

∥
∥

L1 � �−4r
1
2 . (6.18)

Therefore we obtain the same bound for the linear Reynolds stress as we had obtained
earlier for the linear magnetic stress in (6.14):

∥
∥
∥R̊u

lin

∥
∥
∥

L1
≤ ∥∥R∂twq+1

∥
∥

L1 + ∥∥v�⊗̊wq+1 + wq+1⊗̊v� − B�⊗̊dq+1 − dq+1⊗̊B�

∥
∥

L1

� �−4r
1
2 . (6.19)

6.5.2 Oscillation Error

In order to estimate (6.10) we decompose it into three terms:

R̊u
osc = Eu

1,1 + Eu
1,2 + Eu

2 ,

where
Eu
1,1 :=

∑

k∈	u

R
(

∇(a2
(k))P�=0(φ

2
(k))k1 ⊗ k1

)

Eu
1,2 :=

∑

k∈	B

R
(

∇(a2
(k))P�=0(φ

2
(k))(k1 ⊗ k1 − k2 ⊗ k2)

)

and Eu
2 is defined by the high frequency terms on the last two lines on the right side

of (6.10).
To estimate Eu

1,1 we again apply Lemma 6.1 with the same parameters, except now
Ca = �−14 and ζ = �−10. This leads to
∥
∥
∥Eu

1,1

∥
∥
∥

L1
�
∑

k∈	u

∥
∥
∥R
(

∇(a2(k))P �=0(φ
2
(k))k1 ⊗ k1

)∥
∥
∥

L p
� �−14λ−1

q+1r−1
∥
∥
∥(φ

2
(k))k1 ⊗ k1

∥
∥
∥

L p

� �−14λ−1
q+1r−1‖φ(k)‖2L2p

� �−14λ−1
q+1r

1
p −2

.
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For Eu
1,2, we can just use the estimate for E B

1 since only the direction is different, and

RB obeys the same bounds as R. From (6.15) we then obtain

∥
∥Eu

1,2

∥
∥

L1 � �−9λ−1
q+1r

1
p −2

.

Lastly we bound the Eu
2 stress given by the last two lines on the right side of

(6.10). Since we need only consider the amplitude functions themselves and not their
derivatives, setting j = 0 in (5.12) and (5.19) we arrive at

∥
∥Eu

2

∥
∥

L1 ≤
(
∑

k �=k′∈	u

+
∑

k �=k′∈	B

+
∑

k∈	u ,k′∈	B

)
∥
∥a(k)a(k′)φ(k)φ(k′)

∥
∥

L1

� �−4r .

Combining the estimates obtained for the three parts in which we have decomposed
R̊u

osc we obtain

∥
∥
∥R̊u

osc

∥
∥
∥

L1
� �−4r + �−9λ−1

q+1r
1
p −2 + �−14λ−1

q+1r
1
p −2 � �−14λ−1

q+1r
1
p −2

. (6.20)

6.5.3 Corrector Error

First, note that by inspection one can check that (6.6) can be written in the following
symmetric way as

wc
q+1⊗̊wc

q+1 + w
p
q+1⊗̊wc

q+1 + wc
q+1⊗̊w

p
q+1

−(dc
q+1⊗̊dc

q+1 + d p
q+1⊗̊dc

q+1 + dc
q+1⊗̊d p

q+1) .

We now proceed to estimate R̊u
corr as we did for R̊B

corr :

∥
∥
∥R̊u

corr

∥
∥
∥

L1
≤
∥
∥
∥wq+1⊗̊wc

q+1

∥
∥
∥

L1
+
∥
∥
∥w

c
q+1⊗̊w

p
q+1

∥
∥
∥

L1
+
∥
∥
∥dq+1⊗̊dc

q+1

∥
∥
∥

L1

+
∥
∥
∥dc

q+1⊗̊d p
q+1

∥
∥
∥

L1

�
∥
∥wq+1

∥
∥

L2

∥
∥
∥w

c
q+1

∥
∥
∥

L2
+
∥
∥
∥w

c
q+1

∥
∥
∥

L2

∥
∥
∥w

p
q+1

∥
∥
∥

L2
+ ∥∥dq+1

∥
∥

L2

∥
∥
∥dc

q+1

∥
∥
∥

L2

+
∥
∥
∥dc

q+1

∥
∥
∥

L2

∥
∥
∥d p

q+1

∥
∥
∥

L2

� δ
1
2
q+1�

−12λ−1
q+1 + δ

1
2
q+1�

−7λ−1
q+1

� δ
1
2
q+1�

−12λ−1
q+1 . (6.21)

123



1 Page 32 of 40 R. Beekie et al.

6.6 Verification of Inductive Estimate for Magnetic and Reynolds Stress

Finally, we verify (2.3) and (2.4) for the stresses. Using (6.14), (6.16), (6.17), and
(3.3) we have

‖R̊B
q+1‖L1 ≤ ‖R̊B

lin‖L1 + ‖R̊B
osc‖L1 + ‖R̊B

corr‖L1 + ‖R̊B
comm‖L1

� �−4r
1
2 + �−9λ−1

q+1r
1
p −2 + �−12λ−1

q+1δ
1
2
q+1 + �2λ4q

≤ �−5r
1
2 + �−10λ−1

q+1r
1
p −2 + �−13λ−1

q+1 + �
3
2 λ4q

≤ 2(�−10λ−1
q+1r

1
p −2 + �

3
2 λ4q)

≤ cBδq+2 ,

upon taking p close to 1, and a sufficiently large to make the last inequality true.
Finally, we estimate the velocity Reynolds stress. From (6.19), (6.20), (6.21), and
(3.4) we derive

∥
∥
∥R̊u

q+1

∥
∥
∥

L1
≤
∥
∥
∥R̊u

lin

∥
∥
∥

L1
+
∥
∥
∥R̊u

osc

∥
∥
∥

L1
+
∥
∥
∥R̊u

corr

∥
∥
∥

L1
+
∥
∥
∥R̊u

comm

∥
∥
∥

L1

� �−4r
1
2 + �−14λ−1

q+1r
1
p −2 + �−12λ−1

q+1δ
1
2
q+1 + �2λ4q

≤ �−5r
1
2 + �−15λ−1

q+1r
1
p −2 + �−13λ−1

q+1 + �
3
2 λ4q

≤ 2(�−15λ−1
q+1r

1
p −2 + �

3
2 λ4q)

≤ cuδq+2 ,

as above. This concludes the proof of the main iteration in Proposition 2.1.

7 Proof of Theorem 1.4

Having established Proposition 2.1, we now turn to the proof of Theorem 1.4. Consider
the mean-free, incompressible vector fields u0 and B0 given by

u0 = t

(2π)
3
2

(sin(λ
1
2
0 x3), 0, 0) B0 = t

(2π)3
(sin(λ

1
2
0 x3), cos(λ

1
2
0 x3), 0) . (7.1)

A calculation shows that u0 · ∇B0 − B0 · ∇u0 = 0 and that u0 · ∇u0 − B0 · ∇B0 = 0.
Therefore, u0 and B0 satisfy (2.1a) and (2.1b) with

R̊u
0 = 1

λ
1
2
0 (2π)

3
2

⎡

⎢
⎣

0 0 − cos(λ
1
2
0 x3)

0 0 0

− cos(λ
1
2
0 x3) 0 0

⎤

⎥
⎦
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and

R̊B
0 = 1

λ
1
2
0 (2π)3

⎡

⎢
⎢
⎣

0 0 − cos(λ
1
2
0 x3)

0 0 sin(λ
1
2
0 x3)

cos(λ
1
2
0 x3) − sin(λ

1
2
0 x3) 0

⎤

⎥
⎥
⎦

.

We have that
∥
∥
∥R̊B

0

∥
∥
∥

L1
,

∥
∥
∥R̊u

0

∥
∥
∥

L1
≤ λ

− 1
2

0 < λ
−2bβ
0 = δ1. Therefore by taking a suffi-

ciently large we have
∥
∥
∥R̊u

0

∥
∥
∥

L1
≤ cuδ1 and

∥
∥
∥R̊B

0

∥
∥
∥

L1
≤ cBδ1. Similarly we can show

that the other conditions in (2.3) and (2.4) are all satisfied (possibly by taking a larger).
Therefore, we can apply Proposition 2.1 to get the existence of a sequence of iterates
(uq+1, R̊u

q+1, Bq+1, R̊B
q+1) which satisfy (2.1) and obey the bounds (2.3)–(2.5).

By interpolation, we have for any β ′ ∈ (0, β
2+β

) the sequence of velocity and

magnetic increments is summable in Hβ ′
, i.e.

∑

q≥0

∥
∥uq+1 − uq

∥
∥

Hβ′ +
∑

q≥0

∥
∥Bq+1 − Bq

∥
∥

Hβ′

≤
∑

q≥0

∥
∥uq+1 − uq

∥
∥1−β ′

L2

∥
∥uq+1 − uq

∥
∥β ′

H1 +
∑

q≥0

∥
∥Bq+1 − Bq

∥
∥1−β ′

L2

∥
∥Bq+1 − Bq

∥
∥β ′

H1

�
∑

q≥0

δ
1−β′
2

q+1 λ
2β ′
q+1 =

∑

q≥0

λ
−β(1−β ′)+2β ′
q+1 � 1.

The sequence {(uq , Bq)}q≥0 is hence Cauchy and we may define a limiting pair
(u, B) = limq→∞(uq , Bq). This pair satisfies (1.1) because limq→∞ R̊u

q =
limq→∞ R̊B

q = 0 in C([0, 1], L1). Therefore, we have a weak solution of (1.1) which

lies in C([0, 1]; Hβ ′
), proving the first part of Theorem 1.4 replacing β by β ′.

Now we will show that the magnetic helicity of the weak solution of (1.1) at least
doubles from time 0 to time 1, and is nonzero at time 1. The vector field B0 has
associated with it the vector potential A0:

A0 = t

λ
1
2
0 (2π)3

(sin(λ
1
2
0 x3), cos(λ

1
2
0 x3), 0)

Therefore we can compute the first iterate of the magnetic helicity, H0,B,B(t) :=´
T3 A0 · B0, as

H0,B,B(t) =
ˆ

T3
A0 · B0dx = t2

(2π)6λ
1
2
0

ˆ

T3
|B0|2dx = t2

(2π)3λ
1
2
0

= t2

(2π)3a
1
2
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Next, wewish to estimate the deviation between this quantity and themagnetic helicity
for the limiting vector field B:

|HB,B(t) − H0,B,B(t)| =
∣
∣
∣
∣

ˆ

T3
A · Bdx −

ˆ

T3
A0 · B0dx

∣
∣
∣
∣
≤ ‖A − A0‖L2 ‖B‖L2

+‖A0‖L2 ‖B − B0‖L2 .

Using (2.3)we have that ‖B‖L2 ≤ 1 and by construction, A0 : ‖A0‖L2 ≤ λ
− 1

2
0 (2π)− 3

2 .
Therefore, we have

|HB,B(t) − H0,B,B(t)| ≤ ‖A − A0‖L2 + 1

λ
1
2
0 (2π)

3
2

‖B − B0‖L2 .

Applying the triangle inequality, (2.5), and using the fact that b > 2 and consequently
that bq ≥ bq for q ≥ 1 we can estimate ‖B − B0‖L2 as

‖B − B0‖L2 ≤
∑

q≥0

∥
∥Bq+1 − Bq

∥
∥

L2 ≤
∑

q≥0

δ
1
2
q+1 =

∑

q≥1

(abq
)−β

≤
∑

q≥1

(abq)−β = a−βb

1 − a−βb
.

To estimate ‖A − A0‖L2 we use the fact that we can take Aq to be divergence free for
all q ∈ N. This choice allows us to recover Aq using the Biot-Savart law:

‖A − A0‖L2 ≤
∑

q≥0

∥
∥Aq+1 − Aq

∥
∥

L2 ≤
∑

q≥0

∥
∥
∥curl (−�)−1(Bq+1 − Bq)

∥
∥
∥

L2
.

Now, recall that Bq+1 − Bq = dq+1 + B� − Bq , and therefore

∥
∥
∥curl (−�)−1(Bq+1 − Bq)

∥
∥
∥

L2
≤
∥
∥
∥curl (−�)−1dq+1

∥
∥
∥

L2

+
∥
∥
∥curl (−�)−1(B� − Bq)

∥
∥
∥

L2
.

We first estimate the
∥
∥curl (−�)−1(B� − Bq)

∥
∥

L2 term. Note that B� − Bq has mean
zero, and thus

∥
∥curl (−�)−1(B� − Bq)

∥
∥

L2 ≤ ∥∥B� − Bq
∥
∥

L2 . Furthermore, using stan-
dard mollification estimates and (2.3) we obtain the bound

∥
∥Bq − B�

∥
∥

L2 ≤ (2π)
3
2 �λ2q = (2π)

3
2 λ

−η+ 2
b

q+1 .
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Summing this expression gives

∑

q≥0

‖Bq − B�‖L2 ≤ (2π)
3
2
∑

q≥0

λ
−η+ 2

b
q+1 ≤ (2π)

3
2
∑

q≥1

(abq)−η+ 2
b ≤ (2π)

3
2
∑

q≥1

(a−1)q

= (2π)
3
2 a−1

1 − a−1

where we used that ηb ≥ 3 and that b ≥ 2. Finally, we estimate
∑

q≥0∥
∥curl (−�)−1dq+1

∥
∥

L2 . Recall that dq+1 = curl curl (
∑

k∈	B
a(k)Dc

k). Using that
curl (

∑

k∈	B
a(k) Dc

k) is divergence free, we have that

curl (−�)−1curl curl

(
∑

k∈	B

a(k)Dc
k

)

= curl

(
∑

k∈	B

a(k)Dc
k

)

.

From the triangle inequality, (5.12), Lemma 5.1, and the fact that �−1 � λq+1 we
have

∑

k∈	B

∥
∥curl (a(k)Dc

k)
∥
∥

L2 ≤
∑

k∈	B

∥
∥curl (a(k) Dc

k)
∥
∥

L2 ≤
∑

k∈	B

∥
∥∇a(k) × Dc

k

∥
∥

L2

+ ∥∥ak,Bcurl Dc
k

∥
∥

L2

≤
∑

k∈	B

∥
∥∇a(k)

∥
∥

C0

∥
∥Dc

k

∥
∥

L2 + ∥∥a(k)

∥
∥

C0

∥
∥curl Dc

k

∥
∥

L2

� �−7λ−2
q+1 + �−2λ−1

q+1 � �−2λ−1
q+1.

Using a factor of � to absorb the implicit constant, and using that �−3λ−1
q+1 ≤ λ

− 1
2

q+1,
we deduce that

∑

q≥0

∥
∥
∥curl (−�)−1dq+1

∥
∥
∥

L2
≤
∑

q≥0

λ
− 1

2
q+1 ≤

∑

q≥1

(abq)−
1
2 = a− b

2

1 − a− b
2

≤ a−1

1 − a−1

where we used that b ≥ 2.
Therefore we have proven that

‖A − A0‖L2 ≤ 2(2π)
3
2 a−1

1 − a−1

which gives the bound

|HB,B(t) − H0,B,B(t)| ≤ 2(2π)
3
2 a−1

1 − a−1 + a−βb

1 − a−βb

1

a
1
2 (2π)

3
2

= 1

a
1
2

(

2(2π)
3
2 a− 1

2

1 − a−1 + a−βb

1 − a−βb

1

(2π)
3
2

)

.
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Since H0,B,B(1) = 1

(2π)3a
1
2

by taking a sufficiently large, we can ensure that

|HB,B(t)−H0,B,B(t)| ≤ 1
3H0,B,B(1). This implies thatHB,B(1) ≥ 2

3H0,B,B(1) > 0
and |HB,B(0)| ≤ 1

3H0,B,B(1), since H0,B,B(0) = 0. This shows that the magnetic
helicity at least doubles in magnitude and is nonzero at time 1.

Remark 7.1 The total energy E(t) and the cross-helicity Hω,B(t) can similarly be
shown to not be conserved for the limiting solution (u, B), if we use (7.1) as the first
term in the sequence. By inspection, the initial fields have non-trivial energy and cross-
helicity which allows us to prove the non-conservation as in the proof of Theorem 1.4.
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A Appendix

A.1 Proof of Geometric Lemmas

In this section, we will provide proofs of Lemmas 4.1 and 4.2, following the classical
arguments of [8,28].

Proof of Lemma 4.1 Let 	B = {e1, e2, e3,
3
5e1 + 4

5e2,− 4
5e2 − 3

5e3} and to these vec-
tors, consider the orthonormal bases given by

k k1 k2
e1 e2 e3
e2 e3 e1
e3 e1 e2
3
5e1 + 4

5e2
4
5e1 − 3

5e2 e3
− 4

5e2 − 3
5e3

3
5e2 − 4

5e3 e1

We define

A1 := e2 ⊗ e3 − e3 ⊗ e2, A2 := e3 ⊗ e1 − e1 ⊗ e3, A3 := e1 ⊗ e2 − e2 ⊗ e1,

A4 :=
(
4

5
e1 − 3

5
e2

)

⊗ e3 − e3 ⊗
(
4

5
e1 − 3

5
e2

)

,

A5 :=
(
3

5
e2 − 4

5
e3

)

⊗ e1 − e1 ⊗
(
3

5
e2 − 4

5
e3

)

.

Using these matrices we can write

7

4
A1 + 11

3
A2 + A3 + 35

12
A4 + 5

3
A5 = 0 . (A.1)
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Since A1, A2, A3 form a basis for the 3× 3 skew-symmetric matrices, we can express
any skew-symmetric matrix A as a unique linear combination A = c1A1 + c2A2 +
c3A3. Combining this with (A.1) gives

(
7

4
+ c1

)

A1 +
(
11

3
+ c2

)

A2 + (1 + c3) A3 + 35

12
A4 + 5

3
A5 = A .

Therefore we can define

γ1,B =
√

7

4
+ c1, γ2,B =

√

11

3
+ c2, γ3,B = √1 + c3, γ4,B =

√

35

12
,

γ5,B =
√

5

3
.

For εB <
√
2, the γi will be smooth. Therefore it suffices to take εB = 1. ��

Proof of Lemma 4.2 Proceeding as before let	u = { 5
13e1± 12

13e2,
12
13e1± 5

13e3,
5
13e2±

12
13e3} and to these vectors, consider the orthonormal bases given by

k k1 k2
5
13e1 ± 12

13e2
5
13e1 ∓ 12

13e2 e3
12
13e1 ± 5

13e3
12
13e1 ∓ 5

13e3 e2
5
13e2 ± 12

13e3
5
13e2 ∓ 12

13e3 e1

Note that	u ∩	B = ∅. Next, note that∑k∈	u
1
2k1⊗k1 = Id, and thus by the implicit

function theorem, there exists εu such that for S ∈ Bεu (Id), S can be expressed as a
linear combination of the Si with positive coefficients. See [8,28] for further details.

��

B Proof of Magnetic Helicity Conservation

In this appendix we give the proof of Theorem 1.3. For u, B ∈ L3(0, T ; L3(T3)) we
have magnetic helicity conservation for (1.1), as in [42]. A simple modification of this
argument shows that Leray-Hopf solutions of (1.2) satisfy a magnetic helicity balance

(by interpolation we have that u, B ∈ L
10
3

x,t (T
3)):

ˆ

T3
A · B(t)dx + 2μ

ˆ t

0

ˆ

T3
curl B · B(s)dxds =

ˆ

T3
A · B(0)dx . (B.1)

Assume that (u j , B j ) is a weak ideal sequence and thatμ j → 0. Using the uniform
bounds coming from the total energy inequality (1.3) we have that

μ j

ˆ t

0

ˆ

T3
|curl B j · B j |dxds ≤ tμ

1
2
j ‖μ

1
2
j (curl B j )‖L∞

t L2
x
‖B j‖L∞

t L2
x

→ 0 as j→∞ .
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Therefore, passing to the limit in (B.1) (for A j and B j ), we obtain

lim inf
j→∞

ˆ

T3
A j · B j (t)dx = lim inf

j→∞

ˆ

T3
A j · B j (0)dx =

ˆ

T3
A · B(0)dx

where the last equality comes from the fact that since B j (0)⇀B(0) in L2, A j (0) →
A(0) in L2 and the product of a weakly convergent sequence and a strongly conver-

gent sequence converges. By Aubin-Lions Lemma with the triple L2 ⊂ H− 1
2 ⊂ H−3

applied to B j , we conclude that B j (t) has a strongly convergent subsequence in

C([0, T ]; H− 1
2 ) (also denoted B j (t)). This implies A j (t) is strongly convergent in

C([0, T ]; Ḣ
1
2 ). Along this subsequence

ˆ

T3
A j · B j (t)dx =

ˆ

T3
|∇| 12 A j · |∇|− 1

2 B j (t)dx →
ˆ

T3
|∇| 12 A · |∇|− 1

2 B(t)dx

=
ˆ

T3
A · B(t)dx

where we are using that limit of the strongly convergent subsequence must coincide
with the weak ideal limit by uniqueness of weak-* limits. Furthermore, we can extend
this to the entire sequence to conclude

ˆ

T3
A(t) · B(t)dx =

ˆ

T3
A(0) · B(0)dx

as desired.
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