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Abstract—In this work, we present recEnergy, a recommender
system for reducing energy consumption in commercial build-
ings with human-in-the-loop. We formulate the building energy
optimization problem as a Markov Decision Process, show how
deep reinforcement learning can be used to learn energy saving
recommendations, and effectively engage occupants in energy-
saving actions. recEnergy is a recommender system that learns
actions with high energy saving potential, actively distribute
recommendations to occupants in a commercial building, and
utilize feedback from the occupants to learn better energy
saving recommendations. Over a four week user study, four
different types of energy saving recommendations were trained
and learned. recEnergy improves building energy reduction from
a baseline saving (passive-only strategy) of 19% to 26%.

Index Terms—Deep Reinforcement Learning, Recommender
System, Building Energy Optimization, Energy Savings.

I. INTRODUCTION

Recent research efforts have made significant progress in
reducing commercial building energy consumption through
a variety of methods, including optimizing building heat-
ing, ventilation, and air conditioning (HVAC), lighting, and
personal electric devices [1], [2]. These works focus on
reducing energy consuming resources while treating occupants
as immovable objects separate from the building energy opti-
mization problem.

However, there is a limit to how much energy can be
reduced by passively optimizing around occupants, especially
considering most of the energy consumption in a commercial
building directly or indirectly services occupants. In this work,
we show the potential to further increase the amount of energy
savings by shaping occupant behavior and engaging them in
energy saving actions.

For occupants to effectively participate in the building
energy optimization, they require knowledge of what actions
have energy saving potential. There are two obstacles: first,
actions that save energy are not always intuitive. The energy
saving potential of actions such as reducing electricity usage,
or changing the thermostat setpoint is intuitive; however, the
energy saving potential of changing location at a certain time
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Fig. 1: System architecture of recEnergy. The system is
composed of four layers: the environment layer, system state
layer, recommender system, and client layer.

is not immediately obvious. Second, some actions that save
energy in some situations may actually cause an increase in
energy consumption in other situations. For example, arriving
at work earlier than usual may result in energy savings on
some days of the week, but may also result in excess energy
consumption on other days.

Additionally, certain actions may require significant effort
on the part of the occupant. Some occupants may be more,
or less, willing to perform certain energy saving actions. For
example, some occupants may be more inclined to shift their
schedule later, while others may have responsibilities early
in the day which prevents them from shifting their schedule.
Therefore, the energy saving potential of an action must also
account for how likely an occupant is willing to perform the
recommended action.

To address these challenges, we design a recommender
system, which monitors the current building state, predicts
the actions that have the best potential for saving energy, and
distributes recommendations to the occupants in a timely
manner. We formulate the building energy saving problem as
a Markov Decision Process and implement the recommender
system using deep reinforcement learning, which not only
allows us to learn the energy saving potential of actions, but
also scales to larger building deployments.

In [3], the authors show that certain feedback mechanisms
given to occupants raises awareness and can lead to energy
saving behavior. This has been verified in the home and
commercial building environments, where previous works such
as [4], [5], [6], [7], [8], [9], [10] have shown that occupants

2327-4662 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on July 07,2020 at 02:56:49 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JI0T.2020.2974848, IEEE Internet of

Things Journal

IEEE INTERNET OF THINGS JOURNAL

can be influenced to save energy if given feedback and
incentives. In this work, we focus on increasing energy saving
behavior in two ways: firstly, by improving the quality of
recommendations through deep reinforcement learning; and
secondly, by incorporating important information such as
potential energy saving and feedback from users associated
with each action.
The contributions of this work are as follows:

o We introduce recEnergy, a scalable system for coop-
erative optimization of energy consumption through a
mixture of personalized energy saving recommendations
for building occupants and building management system
(BMS) commands. recEnergy takes advantage of human-
in-the-loop to reduce energy further than passive opti-
mization alone.

o We demonstrate the generalizability of recEnergy in a
commercial building testbed by learning three different
classes of energy saving recommendations, including in-
dividual recommendations, cooperative actions, and rec-
ommendations for building managers.

« A novel formulation of the building energy optimization
problem is proposed. We first devise the problem as a
Markov Decision Process, then show how deep rein-
forcement learning can be used to learn energy saving
recommendations. Further, we demonstrate how to adapt
different types of recommendations to fit the deep rein-
forcement learning framework.

o We deployed the system in a commercial setting, and
performed a user study to measure real energy savings.
Throughout the four-week deployment, our system pro-
duced a reduction of 7% in energy consumption with four
types of energy saving recommendations.

It is critical to note that in recEnergy, occupants are given
the choice to accept or reject an energy saving recommen-
dation. This design decision is important, as the recommen-
dations should have minimal impact on the daily lives of
occupants. Furthermore, the recommender system provides the
advantage of learning these preferences and tailoring future
recommendations appropriately.

II. RELATED WORK

Building energy consumption and optimization has been
a topic of great interest within the research community in
recent years as a means of environment conservation and waste
management. As a result, many research papers with regards
to reducing energy consumption in residential and commercial
buildings have been published.

The first group of works focus on optimizing the design of
buildings to reduce energy costs, such as incorporating natural
ventilation [11] and optimizing window placement [12]. These
“high-performance” buildings were shown to have above stan-
dard savings when compared with standard buildings, with
some buildings reaching over 50% savings [13]. However,
studies have also shown that occupant behavior is a primary
factor that determines the final energy consumption in build-
ings [14], [15], [16]. This implies that the savings potential
afforded by high-performance buildings can only be realized

if occupants make energy conscious decisions (e.g. use natural
lighting and heating when available).

Another group of research studies focuses on evaluating
the potential energy savings for various energy consuming
resources in buildings. The authors of [17] claim that there
is a huge potential to save energy in electrical appliances
and lighting through actions such as manually turning off the
lights. Additionally, there are works that show a similar large
potential to save energy from heating, ventilation, and air con-
ditioning (HVAC) [18]. To realize these savings, these papers
assume that people are willing to change their behavior to
make energy conscious decisions. Fortunately, a multitude of
studies show that people are willing to consider energy saving
actions through user feedback and recommendations [4], [5],
(61, [71, [8].

The prior work on high-performance buildings and energy
savings in building appliances show that occupant behavior has
a considerable influence on potential energy savings, but there
are few systems that directly attempt to incorporate occupant
behavior in optimization of energy consumption in buildings.
The authors of [19] propose a system that learns occupant
behavior and adapts building operations accordingly (e.g. the
system learns when to heat or cool a space depending on
past occupancy observations of the space). This system adapts
the building to a user’s habits, rather than pushing the user
to save energy. Additionally, the authors of [20] propose a
building recommendation system that recommends building
control schemes to building managers based on feedback from
other building managers. These works focuses on optimizing
the behavior of the building management systems (BMS),
rather than influencing energy savings through changes in
occupant behavior.

In addition, a number of studies have implemented modern
techniques such as reinforcement learning for incorporating
occupant behavior into energy optimization. Reinforcement
learning has the advantage of being adaptable to dynamic
environments; if the initial model of energy consumption
is inaccurate, one can provide empirical data to reduce the
error between the initial model and the actual behavior.
[21] presented a deep reinforcement learning framework to
gradually learn optimal control strategies of energy resources;
they further implemented the control logic in a real radiant
heating system. [22] utilized Q-learning to learn an occupant
behavior model with the goal of reducing uncertainty in
energy simulations. Finally, a number of works [23], [24],
[25], [26] have also utilized reinforcement learning to learn
HVAC control strategies although the control strategies are
often tested in simulations such as EnergyPlus [27]. All
of these methods utilize reinforcement learning to optimize
building parameters, but do not incorporate occupant actions
in collaboratively reducing building energy usage.

Finally, there is one recent work that provides recom-
mendations for occupants to optimize energy consumption
in commercial buildings [10]. In this work, the authors uti-
lize Q-learning to generate recommendations, demonstrate
simulations of energy saving recommendations presented to
occupants, and the simulated energy savings. The novelties of
this work over [10] is three-fold. Firstly, recEnergy implements
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a deep reinforcement learning framework that is able to incor-
porate four different types of energy saving recommendations.
Secondly, recEnergy utilizes deep Q-learning, which allows
scalability to a much greater number of states than basic Q-
learning. Finally, this work performs a more comprehensive
evaluation of the system with a real user study.

III. PROBLEM FORMULATION

We propose to include occupants as an integral component
of energy optimization in commercial buildings. By optimizing
the building energy consumption over the occupants and the
building’s energy consuming resources, greater energy savings
can be realized. However, most occupants are unaware of what
actions to take in order to help reduce energy consumption. A
recommender system that provides personalized energy saving
recommendations can equip occupants with this knowledge.

Designing a recommender system for saving energy in
commercial buildings is difficult for a number of reasons.
First, the effects of an action on the energy consumption are
difficult to measure. There are a large number of variables
that contribute to energy consumption and combining all of the
variables into a model can be impractical. Second, the building
environment does not remain static; rather, the locations of
occupants, the weather outside, the time, and other factors are
transient. Finally, acceptance probabilities of recommendations
given to an occupant are dependent on the individual person
and are nearly impossible to estimate.

A combination of deep learning and reinforcement learning
provides a framework that addresses many of these difficulties.
Model-free reinforcement learning is beneficial for the ability
to maximize long-term return without an explicit model of the
environment, including some human factors. As an example,
reinforcement learning has been widely adopted in commercial
products. Our recommender system is built on top of that
rich body of knowledge, aiming to provide high quality and
relevant recommendations to our users. Deep learning greatly
improves the scalability of reinforcement learning, especially
for large scale deployments.

A. Deep Reinforcement Learning

We consider the building energy saving problem in the
context of reinforcement learning. At each time step, the agent,
or recommender system, uses a policy to choose an action
a from a set of possible actions. This action is sent to the
actor(s) (occupant and/or building manager), which is then
accepted or rejected. A reward, or energy saved, is measured
and used by the recommender system for future learning. (As
an action may have impact many time steps into the future, it is
important for the learned value to account for future rewards.)

The building environment is constantly changing over time,
due partially to agent recommendations but also to external
factors such as occupant location changes and environmen-
tal factors, e.g, outside temperature. Thus, it is intuitive to
understand the problem as a finite Markov Decision Process
(MDP). In this representation, an action changes the state of
the building environment. The possible actions are generated
from four types of recommendations, which are described in

Section III-B. Each action has a probability of occurrence at
the current state, as well as a reward (r), representing the
energy savings of the action.

The recommender system’s goal is to choose recommen-
dations that maximize the total energy saved over the long
term given the current building state s. Standard reinforcement
learning techniques seek to maximize return at time ¢, which
is defined as R, = 3., v'ry, with v € (0, 1) as the “discount
factor”, T' representing the end time (in commercial buildings,
can be the end of the day), and r represents the immediate
reward. One widely-used model-free reinforcement learning
method to maximize the return is called Q-learning, where the
agent seeks an action-value function Q(s, a) which represents
the return of taking an action a at a given state s. Often times,
if the state/action space is too large, e.g., a huge amount of
finite states/actions or continuous state/action space, Q(s, a) is
too complex to be stored in a data structure [28]. In this case, a
function approximator can be used to estimate Q(s,a). In 2015,
a ground-breaking paper showed that the optimal action-value
function can be obtained with a deep convolutional neural
network, when invoking the methods of experience replay and
fixed Q-targets [29].

B. Recommendation Types

Different types of recommendations can save energy in
different ways. Some energy savings can be realized by actions
from only the occupant; some require action from both the
occupant and the building; and finally, some are realized by
the building with no action required from the occupants. Our
system includes four types of recommendations that encom-
pass these three classes of energy savings recommendations.

In this work, the main energy saving mechanism we utilize
is by ’relaxing” the service requirements. The mechanism
works as follows: HVAC consumption can be reduced by
allowing the setpoint temperature to deviate by a certain
amount, such as +2 degrees; lighting can often be completely
turned off. Plug load energy consumption can also be reduced
depending on the operation of the load. Works such as [30],
[1], [2], [31] demonstrate energy savings bewteen 10 — 40%
as a result of reduced service.

1) Move Recommendation: Move recommendations en-
courage an occupant to change to a different location. Energy
consumption in a space can be reduced if the space becomes
unoccupied because of the reduced service requirements of
shared energy consuming resources such as HVAC and light-
ing.

2) Schedule Change: Schedule change recommendations
encourage an occupant to change the period of time (not the
duration) spent within a space. The mechanism for reducing
energy consumption is similar to that of the move recommen-
dation. For example, if an occupant tends to arrive earlier
than other occupants, the building must begin servicing the
occupied space earlier. However, if an occupant shifts his
schedule to arrive later, the building can begin to service the
space later, thus reducing energy consumption.
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| Action Type | Example | Actor | Number of Actions |
Move Occupant 1, move to space A Occupant/Building | |P| x |S]
Shift Schedule | Occupant 1, come to lab now to save energy Occupant/Building | |P]|
Reduce Occupant 2, reduce power consumption on plugmeter 2 Occupant |D|
Coerce Building managers, reduce setpoint of space 1 by 2 degrees | Building |S|

TABLE I: Action types, examples of each action type, the actors performing the action, and the number of possible actions
of each type. P, D, and S denote the sets of occupants, personal energy resources, and spaces respectively, and | - | is the

cardinality of the set.

3) Personal Resources: Recommending an occupant to
reduce the power of energy consuming resources can lead to
immediate energy savings. Reduction of personal computers,
idle lab equipment, and other electronic devices can also
reduce energy consumption over time.

4) Coerce Recommendation: In addition to the three types
of recommendations described previously, we propose a new
category of recommendations for building managers, which
reduces service in spaces meeting certain criteria, even with
the presence of occupants. The motivation for this recom-
mendation is two-fold. First, if the occupancy in the room
is small relative to the size of the space (e.g. two people
in a hundred-person auditorium), then maintaining regular
service levels can consume excessive amounts of energy. The
recommendation would thus suggest to the building manager
to reduce service to the space. Second, reducing the service in
a space would also reduce the comfort level, thus physically
encouraging occupants to vacate the space. The degree to
which this is used, if at all, depends on the policy, typically
set by the organization. During this process, safety, comfort
and productivity issues of the occupants will be considered.

C. State Space

The state s of the building can be represented as a set of
features. Ideally, the set of features should account for all
factors that may impact the amount of energy savings of a
recommendation; however, in practice it is difficult to monitor
all of these features. For this system, we chose features that
impact the energy savings for each recommendation and are
easily measurable. The features we chose for each type of
recommendation are:

o Move Recommendation: the location of occupants and
the possible energy saved in each space.

e Schedule Change: the location of occupants and the
possible energy saved in each space.

o Personal Resources: the current energy consumption of
each resource.

o Coerce Recommendation: the occupancy of each space
and the possible energy saved in each space.

D. Action Space

The action space represents the set of all possible actions
for a building state. The actions are selected to best represent
the four types of recommendations described previously, and
include actions that may or may not have been explored in the
past. Table I displays the different action types, an example for
each action type, which actors are involved in the action type

(occupant, building, or both), and how many possible actions
are included in the recommender system for the action type.
The possible actions are concatenated into a vector that acts
as the “label” for the training data to the neural network.

E. Rewards

Associated with each action is a potential reward, or amount
of saved energy. There are two considerations for calculating
the reward as saved energy: recommendation acceptance,
and recommendation duration. First, if an occupant rejects
a recommendation, then the action has saved no energy (the
building state does not change). A recommendation that is
rejected many times will have a lower return than a recommen-
dation that saves the same amount of energy, but has a higher
acceptance rate. Second, energy savings is computed as the
integration of power reduction over time. A recommendation
that reduces the power consumption by 100 W will save 100
Wh of energy over one hour, and 200 Wh of energy over two
hours. Changes in the building environment can interrupt the
energy saving effects of a recommendation; for example, an
occupant may choose to move to a different space without
being recommended by the system. In depth descriptions for
calculating rewards of the different recommendation types are
given in Section IV-C.

F. Recommender System Example

Here we provide a small example to illustrate the advantage
of reinforcement learning. Consider two occupants, A and B,
who commonly occupy space S. If space S is unoccupied,
the shared power consumption (HVAC and light) can be
reduced by 100 W. During exploration, occupant A is given
a move recommendation to move to a different space. The
immediate energy saved is 0 Wh, as space S is still occupied
by occupant B. After occupant A has vacated the space,
two recommendations are given: a coerce recommendation,
recommending the building manager to reduce HVAC service
to space S due to low occupancy, and a move recommendation,
recommending occupant B to vacate space S. If occupant B
accepts the recommendation, the building reduces the HVAC
and light services by 100 W in space S, and a reward is
propagated back to occupant B (the return for occupant A will
include a discount of the reward given to occupant B in future
calculations). On the other hand, if occupant B rejects the
recommendation, the coerce recommendation can be carried
out. An illustration of this scenario is shown in Figure 2.
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Fig. 2: Recommender system example.

IV. ARCHITECTURE AND IMPLEMENTATION

Figure 1 shows the architecture of recEnergy. The system
is composed of four layers: the environment layer which
measures the building environment; the system state, which
maintains the current building state and necessary simulation
states; the recommender system, which learns energy saving
potential for four different types of recommendations; and the
client applications, which receive recommendations and allow
users to provide feedback on the relevance of recommenda-
tions. The blocks in gray are implemented in a cloud server;
the blocks in white are physical devices or sensors.

The benefit of this four layer system is that different
implementations of the layers can be interchanged without
affecting the overall behavior of the system. For example,
the client layer communicates to the recommender system
via APIs by receiving energy saving recommendations and
allowing users to accept or reject the recommendations. Re-
gardless of the implementation of the client, if the feedback
and recommendation mechanisms are available, the client fits
seamlessly within the system.

A. Environment

The environment layer consists of two subsystems for
measuring the building environment. This layer measures
the occupant location and energy consumption of energy
resources, and sends this data to the system state layer. The
environment layer and system state layer interface through
APIs; thus, if other features are required for different types of
recommendations, a new monitoring subsystem can be added
and connected seamlessly to the system state layer.

1) Localization: Indoor localization is a popular method
for determining the location of occupants within a building.
In this system, we utilize Bluetooth localization due to the
technology’s low cost, ease of deployment, and ability to
provide coarse-grained location information. 42 BluVision
iBeek beacons are deployed throughout the testbed and emit
signals at a frequency of 2 Hz. Each occupant’s mobile device
polls the Bluetooth beacon signal strength values; these values
are sent to the server, where a fingerprint-based approach is
used to determine the location.

2) Energy Monitoring: In our testbed, we monitor three
types of energy consuming resources: HVAC, lights, and
plugmeters. To monitor the majority of HVAC resources,

we utilize the BACNet protocol, and calculate the energy
consumption as described in [32]. Some HVAC resources are
not monitored on the BACNet; these resources are monitored
using a custom sensing node consisting of a wind velocity
sensor and temperature sensor. Lights are monitored using a
TSL2561 luminosity sensor and a Huzzah Feather Board. Each
occupant participating in our user study is given a plugmeter
to track their energy consumption, which sends data to the
server through a Samsung smarthub.

B. System State

The system state layer consists of two components: an
empirical state, which maintains the current building state, and
a simulation state, described in Section IV-C, which calculates
variations of the building state given different parameters.
The system state layer is primarily responsible for aggregat-
ing information gathered by the environment layer, such as
location of occupants, energy consumption of resources, and
weather conditions. The system state layer produces a number
of simulation states representing next states after potential
energy saving actions are taken, and passes this along to the
recommender system layer.

1) Empirical State: The empirical state is the real-time
state of the system. This state is composed of a number of
parameters, including the locations of the occupants of the
building, configuration of the spaces in a building, and the
current energy consumption of appliances and devices. Similar
to the tripartite data structure in [9], only the locations of
occupants and energy consumption of appliances change in
the system.

The empirical state is important for two reasons. Firstly,
the recommender system directly utilizes a vector of values
representing the empirical state to generate recommendations
to the client. An example of the state variables vector passed
to the recommender system is shown in Figure 4. Secondly,
the empirical state is the baseline state on which the rewards
of different actions can be simulated.

C. Simulation States

Measuring the amount of energy saved is difficult. If the
building is functioning without external intervention, then the
effect of a recommendation is unknown. On the other hand,
if a recommendation has been given and the building has
responded, the normal building operation is unknown. Ideally,
energy savings of a recommendation could be measured by
having two identical buildings, performing the recommen-
dation in one of the buildings, and calculating the energy
expenditure difference between the two buildings. However,
this is rarely possible in practice; thus, simulation is vital to
approximating the amount of energy saved.

The goal of the simulation is to produce simulation states
that are the result of a single action, or a chain of actions,
on the system state. To generate the simulation states, the
simulation must have a model of the action’s effects on the
building’s energy consumption. Each recommendation type
affects the building environment in different ways, and thus
different models may be necessary.
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Fig. 3: Power consumption curves for a simulated space.
Power varies over outside temperature and occupancy. Values
are simulated through EnergyPlus, based on the physical
parameters of our test bed.

1) Definitions: Starting from the empirical state, a number
of simulated states can be defined. We are mostly interested in
three common types of energy consuming resources: HVAC,
lighting, and plug loads. For each resource d;, we assume a
normal operation energy consumption at time ¢ and with ex-
ternal parameters 0, Py, (t;0), and a relaxed operation energy
consumption IADdi (t;6). In this application, relaxed operation
refers to the energy consumption after an action has been
taken. For HVAC, relaxed operation often refers to a relaxed
setpoint temperature; for lighting, relaxed operation refers to
the off state; for plug loads, relaxed operation refers to a low
usage or no usage.

We also define the number of people affected by a resource
as O(d;). This definition is important for this application, as
many of the recommendations utilize occupancy as the primary
factor for normal or relaxed operation of energy resources. We
borrow the concept of “human-centric zoning” from [9] to help
define affected occupants. The number of people affected is
then the sum of the occupancy of each zone serviced by the
energy resource.

2) EnergyPlus Power Model: Lighting and plug load power
consumption is often unaffected by external parameters such
as the outside temperature or numerical occupancy; for ex-
ample, the lighting state is defined solely by the presence of
occupants, while plug load consumption is often dependent
only on whether the load is in use. HVAC, however, is highly
dependent on outside temperature, and even the numerical
occupancy. This makes it difficult to approximate the energy
consumption for different parameters without a proper model.

To address this issue, we created empirical HVAC consump-
tion models for each space. We simulate power consumption
traces by utilizing EnergyPlus [27]. In EnergyPlus, we recon-
structed each space and simulated the power consumption in
different environmental conditions, 6. The environmental con-
ditions we considered included occupancy and temperature,
since these conditions vary most frequently throughout the
course of a workday. We assume that the setpoint temperature
can be relaxed by two degrees if the space is unoccupied, as
in Section III-B. Examples of simulated power consumption
curves used in our system are shown in Figure 3.

3) Move Recommendation: As described in Section III-B,
HVAC and light service can be reduced when a space is
unoccupied. Under this policy, the energy consumption of an
energy consuming resource d; can be calculated as:

t2 N
Eq, :/ Lo(d;)=0)Pu; (t§9)+]1(0(d,;)>0)Pdi (t;0)dt, (1)
t=ty

where ]1(.) is the indicator function, and ¢, is the end time of
the recommendation, or the time when the recommendation
stops yielding energy savings. In other words, from time ¢; to
to, the energy resource operation is relaxed if there are no
occupants present, and normal if there are occupants present.

To calculate the energy savings of a move recommendation,
we can consider the power consumption of all energy resources
with and without the move recommendation. Note that most of
the energy resources will continue current operation; however,
there are two sets of resources which change operation. One
set, D,, is the set of resources such that O(d;) > 0 before
the move recommendation and O(d;) = 0 after. The second
set, Dy, is the set of resources such that O(d;) = 0 before the
move recommendation, and O(d;) > 0 after. Then, the energy
savings of a move recommendation (Eg) is:

En= [ Y (Paltit) - Pa(t:0))-
t=t d;eD,
> (P, (1:0) — Py, (:0))dt. ()

djEDd

From Equation 2, the saved energy of a move recommen-
dation depends on two power consumption traces for each
resource: power consumption at normal operation, and power
consumption at relaxed operation. At any time, one of the
two power consumption traces can be measured from building
sensors; the other must be simulated.

4) Shift Schedule: A shift schedule recommendation has
two parts to consider: when the occupant arrives and when
the occupant leaves. The recommendation should have as little
effect as possible on the occupant’s work, so the duration the
occupant spends is assumed to be constant. A recommendation
to shift schedule earlier will ideally save more energy when
the occupant leaves than the extra energy consumption when
the occupant arrives. Likewise, a recommendation to shift
schedule later should save more energy when the occupant
arrives than the additional energy consumption when the
occupant leaves. The energy savings can be calculated as:

t1+At
En= [
t=t,

d; €D,
to+ AL
Z—tz

where D, is the set of resources influencing the arrival space
of the occupant, D, is the set of resources influencing the
departure space of the occupant, and At is the schedule shift.

> (Pay(t;60) — Py, (1;0))dt,

d]’ €Dy
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Fig. 4: Recommender system structure. The DNN model takes in a vector of state variables, and calculates a output return
vector for all actions. The actions are further filtered before generating the recommendations.

5) Coerce Recommendation: The reward for the coerce
recommendation of an energy consuming resource can be
calculated as the integral of the power reduction:

to R
t=t
The end time, to, occurs when the occupancy changes. If
the occupancy increases, then the service returns to normal
operating setpoint temperature; if the occupancy reduces to
zero, the energy savings will instead be credited to the vacating
occupant.

6) Personal Resources: The amount of energy saved can be
estimated by measuring the decrease in power consumption,
and the amount of time the reduced power level is maintained.
Similar to Equation 3, the energy saved is calculated as the
integral of the power level reduction over the duration of lower
power consumption.

D. Recommender System

The information flow of the recommender system is shown
in Figure 4. The current empirical building state is collected
and fed into the input layer of the neural network. The neural
network computes the return of each action. Contextual post-
filtering and softmax normalization are used to remove invalid
recommendations, encourage exploration of novel recommen-
dations, and to select recommendations for each occupant.
Finally, the recommendations are sent to the client layer
(mobile devices and wearables).

The neural network is composed of four layers in total: one
input layer, two hidden layers and an output layer. The input
layer contains 75 nodes, the output layer contains 210 nodes,
and each hidden layer has 100 nodes.

1) Training Data: ldeally, all of our training data should
come from the testing data set we build while the users are
using our system. Unfortunately, this would take too long
to acquire a reasonable amount of data; this issue is known
as the cold start problem in recommender systems. To solve
this problem, we utilized data augmentation to create a larger
training data set based on our user study data. The core idea
is that given a recommendation, certain state variables can
be changed without affecting the probability of an occupant

Room1 Room2 Room3 Room 4

S| |8

Room1 Room2 Room3 Room4

&8

Augmented State 1 Augmented State 2
A3 «
£ ’

. ’

N ,

A ’
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v Empirical State 1 \

’ A
’ A
4 A
’ A

4

| <
Room1 Room2 Room3 Room4

D

Augmented State 3

Augmented State 4, State 5, State 6...

Fig. 5: Data augmentation example.

accepting the recommendation. Figure 5 shows a example of
how data augmentation is performed. In this example, there
are four rooms, each with its own HVAC control. State 1
represents the current building state, and the person in room 1
receives a recommendation to move to room 2. With regards to
this recommendation, room 3 and room 4’s conditions should
have no effect on his or her behavior, or the action’s energy
savings. Hence, we can augment the data set with similar
states with more people in rooms 3 and 4, as an example. By
augmenting the data set, we can ensure a broader coverage of
the state space.

During the user study, the recommender system was regu-
larly retrained with new data generated from the user study.
Acceptance and rejection probabilities were included in the
generated data, which helps to improve the quality of the data.
The inclusion of both energy savings as well as acceptance and
rejection probabilities leads to overall higher energy savings.

2) Recommendation Selection: After the offline training,
the neural network is transferred to the server. The current
building state is fed to the neural network, which outputs the
return for each action. Before sending recommendations to the
occupants, we perform contextual post-filtering and softmax
normalization to further improve the quality of recommenda-
tions.

Contextual post-filtering is used to screen non-sensical
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recommendations depending on context. For example, a rec-
ommendation suggesting an occupant to move to an location
which the occupant does not have access to should not be
pushed to the occupant. Ideally, this module is not required as
the DNN model learns which recommendations are unlikely to
be accepted; however, due to the limited amount of gathered
recommendation acceptance data, we chose to manually post-
filter recommendations to decrease the amount of training data
required.

When selecting a recommendation to send to an occupant,
the primary tradeoff is between exploration and exploitation.
On the one hand, the recommender system should exploit
recommendations that have a high expected return; on the
other hand, the recommender system should explore unknown
recommendations which may result in even higher returns. To
address this exploration vs. exploitation tradeoff, we utilize
softmax normalization, as shown in Equation 4. The output
values ¢(a) for each recommendation from the DNN are
given a probability P(a) based on the softmax function.
The temperature, 7, initially has a high value to encourage
exploration; over time, the temperature decreases, which en-
courages exploitation. Using this method, recommendations
are selected based on a probability distribution such that
recommendations with high expected return are chosen more
often, and recommendations with low expected return are
chosen less often.

q(a)
Pla) = < @)

D i exp @

After contextual post-filtering and softmax normalization,
recommendations are distributed to the occupants. If a recom-
mendation has been pushed to an occupant recently, a backoff
time is implemented to prevent the same recommendation from
being pushed again within this time frame.

3) Recommendation Updates: The current state of the
building is updated constantly as data is received from the
sensors; for example, the HVAC and lighting sensors send
data to the server at rates between every 15 seconds to every
5 minutes, and the locations of occupants is sent from mobile
devices every 15 to 60 seconds.

While we did not explicitly study the optimal rate to send
recommendations to users, there are a number of consid-
erations which informed the recommendations update rates
in recEnergy. Firstly, shift schedule recommendations are
intended for arrival and departure changes the following day.
Thus, these recommendations are only updated once per day.

Secondly, move and reduce recommendations are intended
to save energy from the current building state. These recom-
mendations may become irrelevant if too much time passes;
thus, these recommendations should be provided as real-
time as possible. However, small changes in the building
state can affect the recommendations for a user, leading to
rapid changes to a user’s recommendation feed that may
adversely affect the user experience. Thus, we allow move
and reduce recommendations to persist for 5 minutes before
changing these recommendations. In future works, studying

Move Reduce

=
Reward: 5 Reward: 1

Shift

(©)

Reward: 4

Energy

Please move
to Lab Space A

Fig. 6: 10S application recommendation display and wearOS
recommendation notification.

different update rates can help optimize for user experience
and maintain recommendation relevance.

E. Client Applications

1) Mobile Application: The mobile application we devel-
oped is based on a real-time energy monitoring application of a
previous work [9]. The added recommendations page displays
an occupant’s current recommendations, as shown in Figure 6.
A reward based on the recommendation’s calculated return is
also displayed together with the recommendation. After the
occupant clicks on the block to either accept or reject the
recommendation, the feedback is sent to the server and the
block is deleted from the screen. New recommendations are
pushed to occupants periodically.

2) Wearables: An Android Wear application was developed
to reliably notify occupants of new recommendations. The
application displays a notification whenever new recommen-
dations are pushed to the occupant. The notification can be
tapped on the wearable device to activate the paired mobile
application.

V. EVALUATION
A. Deployment Setup

To evaluate recEnergy, we deployed the system in a com-
mercial building and conducted a user study lasting four
weeks. The deployment spanned two floors in a campus
building, and included a diverse set of spaces including
cubicles, offices, conference rooms, and public spaces such as
hallways. 99 BACNet endpoints, 15 shared ceiling lights, and
11 plugmeters, each connected to multiple personal appliances
via power-strips, were monitored. Some energy consuming
resources cannot be controlled by occupants in the building, or
through the building management system without permissions.
We envision that future buildings and energy saving systems
will be capable of controlling all energy consuming resources.
Thus, we chose to include recommendations that involve these
energy consuming resources, and simulated energy savings
when needed.
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B. Room Level Models

To ensure an accurate estimate of the simulated energy states
in Section IV-C, we developed room level models dependent
on outdoor temperature, room parameters, and occupancy
through EnergyPlus, as described in Section IV-C2. Figure 7
and Figure 8 show an example of real-time power and energy
measurements for a space in our deployment. In both figures,
the simulated power and energy consumption for normal
operation and relaxed operation are shown as yellow and
purple dotted lines, respectively. The realtime measurements
are shown in blue, and the simulated measurements are shown
in orange.
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Fig. 7: Direct comparison of simulated power measurements
and realtime power measurement data.
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Fig. 8: Comparison of monitored energy data with simulated
normal operation, simulated relaxed operation, and simulation
state.

In this example, the room is unoccupied and in relaxed
operation until 09:53 (indicated by the black vertical line
in Figure 8). At this time, an occupant enters the room,
causing the room to switch to normal operation. The realtime
power consumption (blue) increases to 5000 W, causing the
energy consumption slope to increase. The simulated power
consumption (orange) also increases to 5000 W and the
energy consumption slope increases to match the realtime
consumption. This shows that our simulation states provide a
reasonable approximation of the realtime energy consumption.

C. User Study

A user study was conducted to evaluate the recommender
system. For this study, we deployed mobile applications to
ten users, and regularly sent energy saving recommendations
through the mobile user interface. The experiment kept track
of 26 personal devices of the users, and contained 17 spaces
that the users can occupy. The study was conducted in two
periods: a control period and a recommender period. Each
period lasted for a two-week duration. In the control period,
the recommender system presented pseudo-random energy
saving recommendations; in the recommender period, the rec-
ommender system presented the users with recommendations
learned by the recommender system using the feedback from
the control period.

1) Accepted Recommendations: One important metric for
personalized recommendations is how likely an occupant is
to accept the recommendation. Although a recommendation
may theoretically save a large amount of energy, in practice
there is no energy savings if the occupant does not accept
the recommendation. The difference in the acceptance rate
between the control period and recommender period is shown
in Figure 9. As shown in the figure, the acceptance rate is
much higher during the recommender period than during the
control period. This dramatic increase is largely due to the
improved usefulness and relevancy of the recommendations
after our recommender system is deployed.

Most notably, we noted that recommendations accepted
during the control phase were recommended significantly more
during the recommender phase. One reason is that rejected
recommendations are labeled with an energy saving of OW
to represent that the recommendation has not resulted in any
energy savings. As a result, the acceptance rate of each rec-
ommendation plays an important role in the expected energy
saving value; a recommendation with a higher acceptance rate
will be valued higher than a recommendation with a similar
energy saving value and lower acceptance rate. Thus, it is
clear that our recommender system is a success in terms of
generating higher quality recommendations.

w B
o o
1

Recommendations Accepted
N
o

Recommender

Control

Date

Fig. 9: Acceptance rate of recommendations in the control and
recommender periods of the user study.

2) Recommendation Energy Savings: The key metric for
the recommender system is the amount of energy savings
achieved. As a baseline, we utilized a passive optimization
strategy similar to [30], [1]. This strategy consists of relaxing
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Move | Shift Earlier | Shift Later | Reduce Recommendation Energy Saved | Average % Total
Control 15% 32% 0% 53% Passive Energy Savings 458.5 kWh N/A 21%
Recommender | 73% 75% 15% 67% Move Recommendation 91.9 kWh 1.70 kWh 4.2%
Coerce Recommendation | 44.6 kWh 2.79 kWh | 2.0%
. . . Shift Schedule 12.9 kWh 0.76 kWh 0.6%
TABLE II: Acceptance rate of different type of energy saving Reduce Personal Eneray | 0.58 kWh 0.02 kWh | 0.02%

recommendations.

the setpoint temperature of spaces which are unoccupied,
without influencing the occupants.

In addition, the energy saved by each accepted recom-
mendation, and the potential saved energy by each rejected
recommendation, were recorded. The system energy savings
is the energy saved by the recommender system and the
passive optimization strategy. The potential energy savings is
calculated by including the potential saved energy (result if all
recommendations were accepted). The results for the control
and recommender phases are displayed in Figure 10.
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Fig. 10: Comparison of energy savings from passive energy
optimization, as well as actual and potential energy savings
from the recEnergy deployment.

The recommender phase produced an increase in energy
savings over the control phase; this is likely due to the
improvement in recommendation quality, leading to more
accepted recommendations as in Section V-C1. Additionally,
the energy saved due to recommendations increased energy
savings of the passive optimization baseline from 19% to 26%.

The total and average energy savings for each type of
recommendation are shown in Table III. Reduction of personal
resources resulted in the least amount of energy savings, while
move recommendations accounted for the highest total energy
savings. Additionally, the average energy savings of coerce
recommendations were highest among all recommendations.
While these initial results are promising, further research may
discover new energy saving recommendations that can result
in even greater energy savings.

D. Scalability

The recommender system should be scalable to accommo-
date larger deployment sizes and greater numbers of occu-
pants, spaces, and energy consuming resources. To demon-
strate the scalability of recEnergy, we tested the recommender

TABLE III: Total energy saved, average energy saved, and
percentage of total energy for each energy saving recommen-
dation type during the recommender phase. Passive energy
savings is included as a baseline.

system using larger deployment sizes, as shown in Table IV.
The neural network computations consume the largest fraction
of time; however, even at large deployment sizes, the entire
recommendation pipeline finishes within 10 seconds, showing
that the system can scale to larger deployments.

People | Devices | Spaces State DNN Recs

40 80 20 17.2ms | 304.8ms 45.1ms
160 320 80 34.4ms | 546.1ms 66.2ms
400 800 200 629ms | 2264.2ms | 84.5ms
480 960 240 71.8ms | 3983.4ms | 101.4ms
640 1280 320 76.3ms | 8989.8ms | 119.9ms

TABLE IV: Timing measurements for generating the DNN
input vector from the state variables (State), running the DNN
(DNN), and generating recommendations through contextual
post-filtering and softmax normalization (Recs) for varying
deployment sizes.

VI. FUTURE DIRECTIONS

This work demonstrates the potential for reduced energy
consumption as a result of a deep reinforcement learning
based recommender system. However, there are a number
of future research directions which can improve recEnergy.
Firstly, recEnergy can be improved with a model that can
accommodate changes to the occupants, energy resources, and
recommendations. Secondly, the recommendations can be im-
proved by incorporating user costs to increase recommendation
quality and providing rewards to increase user engagement.
Finally, different recommendations can be included to increase
recommendation diversity, giving users additional options for
saving energy. We describe our plans in these three directions
below.

A. Model Adaptability

The current model used in recEnergy relies on a fixed
set of occupants, energy resources and recommendations. In
many scenarios, the occupants and energy resources may vary
(e.g. visitors, or newly installed energy resources), and new
recommendations may become available. To accommodate for
these changes, a new model is required which can account
for an unknown number of occupants, energy resources and
recommendations. For example, one possibility for addressing
a variable number of occupants is to modify the state space
to include an occupancy percentage for each location, rather
than the exact location of each occupant; this would allow
for new occupants to be integrated into the state space.
An adaptable model would enable deployment of recEnergy
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into environments with transient sets of occupants, energy
resources and recommendations.

B. System

Another important extension of this work is the investigation
of the “cost” of a recommendation to the occupant. The
recommendations explored in this work are dependent on the
actions of the occupant, and thus requires effort on behalf
of the occupant. In the future, metrics such as comfort and
productivity can be measured as associated costs of recom-
mendation actions. Investigation of these costs can improve
understanding of which recommendations are more likely to
be accepted.

To further incentivize occupants of recEnergy, a monetary or
points reward system can be incorporated in the recommender
system. Because energy savings do not directly compensate
the users, a reward system will provide tangible incentives to
increase the percentage of accepted recommendations and the
energy saved. Furthermore, the rewards can be given directly
on the mobile application. One potential strategy is to adjust
the rewards proportional to the expected amount of energy
saved, to encourage users to accept recommendations with
higher energy saving potential.

C. Recommendations

While this work explores a sample of possible energy saving
recommendations, other recommendations are possible. For
instance, group recommendations (recommendations given to
a group of users) might result in more consistent energy
savings. Recommending a small group of associated occupants
to change location, resulting in an unoccupied space, may be
more effective than sending a move recommendation to each
individual occupant.

The academic community has explored a number of energy
saving actions which can be tailored into recommendations.
Examples of these actions include manipulation of shade as a
control of natural light [33], and manipulation of windows for
natural ventilation [34], [35]. These actions could be coupled
with a reduction in lighting or ventilation to reduce energy
consumption.

The addition of different recommendations is important for
diversity [36] in the recommender system. By providing a
more diverse set of recommendations, the recommender sys-
tem may have a higher chance of showing the user is willing
to perform, thus increasing the potential energy savings.

VII. CONCLUSION

In this paper, we demonstrate the potential of a deep
reinforcement learning based recommender system to reduce
energy consumption in a commercial building. We formulate
the problem as a Markov Decision Process, and defined
four different types of energy saving actions: move recom-
mendations, shift schedule recommendations, coerce recom-
mendations, and reduce personal resources recommendations.
Over a four week user study, recEnergy learned expected
energy savings for these recommendation types, distributed
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recommendations to ten subjects through their mobile devices,
and utilized occupant feedback to retrain the deep neural
network and improve recommendations both in energy saved
and in occupant acceptance rate. By using passive energy
saving strategies as a ground truth, we found that recEnergy
improves building energy reduction from a baseline saving
(passive-only strategy) of 19% to 26%.
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