See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/335386309

ResearchGate

Unconditionally Energy Stable DG Schemes for the Swift-Hohenberg

Equation

Article in Journal of Scientific Computing - August 2019

DOI: 10.1007/510915-019-01038-6

CITATIONS

0

2 authors:

Hailiang Liu
Northeast Ohio Medical University

73 PUBLICATIONS 1,284 CITATIONS

SEE PROFILE

All content following this page was uploaded by Peimeng Yin on 25 August 2019.

The user has requested enhancement of the downloaded file.

READS

33

Peimeng Yin
¥ lowa State University

5 PUBLICATIONS 5 CITATIONS

SEE PROFILE



Journal of Scientific Computing
https://doi.org/10.1007/s10915-019-01038-6

®

Check for
updates

Unconditionally Energy Stable DG Schemes
for the Swift-Hohenberg Equation

Hailiang Liu' - Peimeng Yin'

Received: 10 December 2018 / Revised: 6 May 2019 / Accepted: 16 August 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract

The Swift—-Hohenberg equation as a central nonlinear model in modern physics has a gradient
flow structure. Here we introduce fully discrete discontinuous Galerkin (DG) schemes for
a class of fourth order gradient flow problems, including the nonlinear Swift-Hohenberg
equation, to produce free-energy-decaying discrete solutions, irrespective of the time step
and the mesh size. We exploit and extend the mixed DG method introduced in Liu and Yin
(J Sci Comput 77:467-501, 2018) for the spatial discretization, and the “Invariant Energy
Quadratization” method for the time discretization. The resulting IEQ-DG algorithms are
linear, thus they can be efficiently solved without resorting to any iteration method. We
actually prove that these schemes are unconditionally energy stable. We present several
numerical examples that support our theoretical results and illustrate the efficiency, accuracy
and energy stability of our new algorithm. The numerical results on two dimensional pattern
formation problems indicate that the method is able to deliver comparable patterns of high
accuracy.

Keywords Swift—-Hohenberg equation - Energy stability - DG method - Implicit—explicit
time stepping

Mathematics Subject Classification 65N12 - 65N30 - 35K35

1 Introduction

Motivated by fluid mechanics, reaction—diffusion chemistry, and biological systems, pattern
forming nonequilibrium systems continue to attract significant research interest (see e.g.
[6,14]). They form a broad class of dissipative nonlinear partial differential equations (PDEs)
that describe important processes in nature. These PDEs, such as the Swift—-Hohenberg (SH)
equation [26] and extended Fisher—Kolmogorov equations [7,20], generally cannot be solved

B Hailiang Liu
hliu@iastate.edu

Peimeng Yin
pemyin@iastate.edu

Department of Mathematics, Iowa State University, Ames, IA 50011, USA

Published online: 24 August 2019 £\ Springer



Journal of Scientific Computing

analytically. Therefore, computer simulations play an essential role in understanding of the
non-equalibrium processing and how it leads to pattern formation.
We consider the following model equation

uy = —A*u—alAu—Vw), xeQC RY, t >0, (1.1)

where u(x, t) is a scalar time-dependent unknown defined in €2, a spatial domain of d dimen-
sion, and W is a given nonlinear function. Here the model parameter a is a constant. This falls
into the large class of relaxation models forming stable patterns studied in [10]. Throughout
this work we assume that

2
O(w) :=V¥(w) — %wZ is bounded from below, (1.2)

and the domain boundary d€2 has a unit outward normal v. We consider the initial/boundary
value problem for (1.1) with initial data u(x, 0) = ug(x), subject to either periodic boundary
conditions, or homogenous boundary conditions such as

OHu=0u=0;, (i)u=A~Au=0; (@{ii)dyu=0Au=0, xe€d, t>0. (1.3)

Thus Eq. (1.1) may be written as
o0&

Uy = ——

Su’

where % is the L? variational derivative, and £ is the free energy functional (or Lyapunov

functional)

Eum) = / 1 (Au + gu>2 + ®(u)dx
Q2 2 '

One can show that at least for classical solutions,
—5(u) / lus|?dx < 0. (1.4)

With assumption (1.2), the free energy £ is bounded from below, hence convergence to steady
states is expected as t — +4-o00. The expression (1.4) as a fundamental property of (1.1) is
naturally desired for high order numerical approximations. The objective of this paper is
to develop high order discontinuous Galerkin (DG) schemes which inherit this property for
arbitrary meshes and time step sizes. We note that assumption (1.2) will be essentially used
in our time discretization.

This study is motivated by the Swift—-Hohenberg equation in the theory of pattern forma-
tion,

up = eu — (A + D%u + gu’> —u, (1.5)

where € and g are physical parameters. Such model was derived by Swift and Hohenberg [26]
to describe Rayleigh—Bénard convection [9,29]. Related applications can be found in complex
pattern formation [16], complex fluids and biological tissues [15]. The Swift—-Hohenberg
equation is also known to have many qualitatively different equilibrium solutions such as
two-dimensional quasipatterns [3], and the pattern selection can depend on parameters €, g
and the size of the domain; see e.g. [19,28].

The Swift-Hohenberg equation is a gradient flow and requires very long time simulations
to reach steady states. From the numerical perspective, an ideal scheme to solve a gradient
flow would (i) preserve the energy dissipation, (ii) be more accurate, (iii) be efficient, and,
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(iv) perhaps above all, be simple to implement. Among these the first aspect is particularly
important, and is crucial to eliminating numerical results that are not physical (see e.g. [4,5] ).
For the Swift—-Hohenberg equation, an explicit time discretization is known to require a time
step extremely small to preserve the energy dissipation (see e.g. [30]). Several numerical
methods have been developed to alleviate the time step restriction while still keeping the
energy dissipation, related contributions include the fully implicit operator splitting finite
difference method [4,5], the semi-analytical Fourier spectral method [17], the unconditionally
energy stable method [11] derived from an integration quadrature formula, the large time-
stepping method [32] based on the use of an extra artificial stabilized term, and the energy
stable generalized-o method [23]. However, these methods generally require the use of an
iteration in solving the fully discrete nonlinear systems. We report here on a new method
which seems to be promising. Our numerical results will be on one and two-dimensional
cases. The relevant application is indeed mostly in two dimensional space, although some
three dimensional versions of the model also describe interesting patterns, see e.g. [27].

For the spatial discretization, we exploit and further extend the mixed discontinuous
Galerkin method introduced in [18]. The method involves three ingredients: (a) rewriting
the scalar equation into a symmetric system called mixed formulation; (b) applying the DG
discretization to the mixed formulation using only central fluxes on interior cell interfaces; and
(c) weakly enforcement of boundary conditions of types as listed in (1.3) through both u# and
the auxiliary variable g = — (A + %) u. For periodic boundary conditions and quadratic W,
both L? stability and optimal L? error estimates of the resulting semi-discrete DG method
have been established in [18] for both one dimensional and two dimensional cases using
tensor-product polynomials on rectangular meshes.

In this work, we show that the mixed DG discretization can be refined into a unified form
that works for all homogeneous boundary conditions, and further show it satisfies the energy
dissipation law (1.4) with a discrete energy of form £(uy, gn) = fg(%|qh|2 + O (up))dx.
Note that due to the weakly enforcement of boundary condition (i) in (1.3), the corresponding
discrete energy requires a correction term (vanishing when mesh is refined) so that a discrete
energy dissipation law is ensured.

Our mixed DG method has the usual advantages of a DG method (see e.g. [13,22,25]) over
the continuous Galerkin methods, such as high order accuracy, flexibility in hp-adaptation,
capacity to handle domains with complex geometry, its distinctive feature lies in numerical
flux choices without using any interior penalty. For more references to earlier results on DG
numerical approximations of some fourth order PDEs, we refer to [18].

For the temporal discretization, instead of using the method studied in [ 18] which requires
iteratively solving a nonlinear system, we explore the method of Invariant Energy Quadrati-
zation (IEQ), which was proposed very recently in [31,33]. This method is a generalization
of the method of Lagrange multipliers or of auxiliary variables originally proposed in [1,12].
With this method, we introduce an auxiliary variable U = /® (u) + B, where ®(u)+B > 0
for some constant B > 0, so that

') =HwU, U = %H(u)ut,

where H(u) := ®'(u)/+/®u) + B. Such method when applied to the semi-discrete DG
formulation requires only replacing the nonlinear function @’ (MZH) by H(uj)U "+l where
uj is the approximation of uj in the previous time step. U n+1'is updated from U” in two
steps: the piecewise L2 projection with U 4 = [U", and the update step with
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yntl _ pgn 1 n+l _ n
- Th _ H(ul) “h “h
At 2 At
This treatment when coupled with the DG discretization described above leads to
“ZH — uj, 1 1
¢ == AG.q) — (HwpU™, ¢), (1.62)
(qn. ¥) =Ay, ¥), (1.6b)
for V¢, 1 in the space of piecewise polynomials, A(-, -) is a bilinear operator corresponding to
the operator £ = — (A + %) . To obtain a second order discretization in time, we replace g, 1
and U+ in (1.6a) by (¢ +¢')/2 and (U"*! 4 U}") /2, respectively, and replace H (u})

by H (uZ’*), with uZ* = %“Z — %uz_l. We prove that these schemes are unconditionally

energy stable. In addition, the resulting discrete systems are linear with scale comparable to
that generated by the same DG discretization to the linear problem. As a result, the methods
are simple to implement and computationally efficient to achieve high order of accuracy in
space.

This paper is organized as follows: in Sect. 2, we formulate a unified semi-discrete DG
method for (1.1) subject to different boundary conditions. In Sect. 3, we present first order
and second order fully discrete DG schemes and show their energy dissipation properties.
In Sect. 4, we first present numerical results to demonstrate the high order of accuracy of
the proposed schemes, and their energy dissipating property, and we further simulate some
two dimensional pattern formation problems, including two particular patterns, rolls and
hexagons, arising during the Rayleigh—-Bénard convection as simulated in [8,21]. Finally in
Sect. 5 some concluding remarks are given.

2 Symmetrization and Spatial Discretization

In this section we recall the mixed DG spatial discretization introduced in [18] and show it
also satisfies the energy dissipation law for the nonlinear problem (1.1) when subjected to
homogeneous boundary conditions.

2.1 Symmetrization

The idea in [18] is to apply the mixed DG discretization without interior penalty to a sym-
metrized mixed formulation. For the fourth order PDE (1.1), we let £ = — (A + %) so that
the model admits the following form

= —Lu — &' (u).
Further set ¢ = Lu, then
— _ /
Let V}, denote the discontinuous Galerkin finite element space, then the DG method for (2.1)

is to find (up (-, 1), gn(-, 1)) € Vi x Vp such that

(uhl" ¢) == _A(C]h7 ¢) - (q)/(l/th), ¢)’ (223.)
(qn, ¥) = Alup, ¥), (2.2b)
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for all ¢, ¥ € Vj. Here A(qp, ¢) is the DG discretization of (Lq, ¢) and A(up, ¥) is
the DG discretization of (Lu, ). The precise form of A(-,-) will be given in the next
subsection depending on the types of boundary conditions. The initial data for uj, is taken
as up(x,0) = IMug(x), here IT is the piecewise L? projection, more precisely up (x, 0) € V),
satisfying

/ (uo(x) —up(x,0))pdx =0, V¢ € Vy.
Q

We should point out that the advantages of symmetry in the scheme formulation lie at least
in two aspects: (i) unconditional energy stability of the semi-discrete scheme, and (ii) easy
computation since the resulting discrete system has a symmetric coefficient matrix.

2.2 DG Discretization

The mixed semi-discrete DG scheme (2.2) was presented in [ 18] for one and two dimensional
rectangular meshes. Here we extend it to a unified form valid for more general meshes and
different boundary conditions, and further study its energy dissipation property.

To extend the results in [ 18] to general meshes we need to recall some conventions. Let the
domain €2 be a union of shape regular meshes 7, = {K'}, with the mesh size hx = diam{K}
and i = maxg hg. We denote the set of the interior interfaces by 0, and the set of all
boundary faces by I'?. Then the discontinuous Galerkin finite element space can be formulated
as

V, = {v e L2(Q) : v|g € PY(K), VK eTh},

where P¥(K) denotes the set of polynomials of degree no more than k on element K. If the
normal vector on the element interface ¢ € 0 K| N dK> is oriented from K| to K», then the
average {-} and the jump [-] operator are defined by

1
{v} = E(U|BK1 +vhK,), [l =vlsk, — vk,

for any function v € Vj,, where v|yg, (i = 1, 2) is the trace of v on e evaluated from element

K;.
The direct DG discretization of (2.1), following [18], is of the form

f Unipdx = — f Van - Vodx + / Buand + (an — Gh)duads
K K 0K

+ [ (Gan = o) o, (2.30)
f gnrdx =/ Vuy - Virdx
K K
- / Bon s + (un — )y s — / Cppdx.  (23b)
K K 2

for uy, gn € Vj, with test functions ¢, ¢ € V;. Here with a slight abuse of notation, we
use v to also stand for the outward normal direction to 0 K for each K. On cell interfaces
e€dK ) FO, central numerical fluxes

dvgn = {0vqn}, qn = {qn}, dun = {Byun}, wp = {up) (2.4)
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are adopted in [18]. Boundary fluxes on e € 9K () I'? depend on boundary conditions pre-
specified. For periodic boundary conditions, the numerical fluxes can take the same formula
as those in (2.4). For non-homogeneous boundary conditions

() u=g1,00u =gy (@i)u=gi, Au=gs;

(iii) dyu = gy, 0yAu = g4 on a2, t >0, (2.5)
the boundary fluxes introduced in [18] are respectively defined by
@ = g1. dvtn = 82,00 = qn.
dan = %(81 — up) + duqn; (2.6)

up = g1, up = 7(81 —up) + Oyup;

. a —  Bo a

qh = —&3 — =81, gn = — (—gs s ‘Uz) + 0vqn; 2.7)
2 h 2

A — A — a

Up = up, Oy = 825 qn = qn, OWGh = —84 — 582 (2.8)

where the flux parameters By, B are used to weakly enforce the specified boundary condi-

tions. Note that /2 in % or i—‘ needs to be carefully chosen when using unstructured meshes.

In practice, it has been selected as the distance from cell center to the domain boundary.
Summation of (2.3) over all elements K € 7}, leads to a unified DG formulation

(ne, #) + ah™ (un, p)ro = — A, qn) — (@ (un), ¢) (2.92)
(qn, V) =Aun, ¥), (2.9b)

for periodic and homogeneous boundary conditions, i.e. g; = 0. Here the bilinear functional
Aw, v) = A%(w, v) + A" (w, v)

with

Aw,vy=Y L(vu).vv_ng)dwrz {dywlv] + [wl{dyv}) ds. (2.10)

KeTy, eer0 v

Both the method parameter o and A” (-, -) are given below for each respective type of boundary
conditions:

for periodic case o =0, Ab(w, V) = % /a ({oywl}v] + [w]{dyv}) ds, (2.11a)
r

for() o=p, APw,v) = —/ wd,vds, (2.11b)
ro
for (ii) o =0, Ab(w, V) = %wv — wdyv — dywvds, (2.11c¢)
ro
for (i) « =0, A’(w,v) =0. (2.11d)

Note that for periodic case in (2.11a) the left boundary and the right boundary are considered
as same boundaries, for which we use the factor 1/2 to avoid the recounting.

Remark 2.1 For case (i), @ # 0 and AP, ) is non-symmetric; our numerical results indicate
that, the optimal order of accuracy may not be obtained if « = 0 in such case. For other types
of boundary conditions, « = 0 and Ab(., ) is symmetric, hence (2.9) reduces to (2.2).
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2.3 Energy Stability of the DG Scheme

For the semi-discrete DG scheme (2.9), we have the following energy dissipation property.

Theorem 2.1 The semi-discrete DG scheme (2.9) with a > 0 satisfies a discrete energy
dissipation law

d
—E(up, qn) = —/ lupe|2dx <0,
dt Q

where
1 2 « 2
Ewn,qn) = | =lgnl” + @up)dx + — | wujds. (2.12)
Q2 2h I

Proof Taking ¢ = uy; in (2.9a), and ¢ = ¢, in
(th, w) = A(uht’ W),

which is a resulting equation from differentiation of (2.9b) in ¢, upon summation, we obtain
the desired result. O

Remark 2.2 For case (i) with @ # 0, the discrete energy £ (uy,, gp) is still consistent with the
free energy at the continuous level. To see this, we can informally argue by assuming that
lun — gllLe @) ~ R*+1 which is the order of accuracy when using polynomials of degree
k, then with uniform meshes and note that g = 0, we have

f u%dx
Q2

o
2h

which tends to vanish as 7 — 0.

1
~ 50{|8Q|h2k+1,

2.4 Non-homogeneous Boundary Conditions

For non-homogeneous boundary conditions (i)—(iii) in (2.5), the unified DG scheme (2.9)
becomes

ni» @) +ah™ . @)ro = — A, qn) — (' (un). ¢) + Li(t: ¢), (2.13a)
(qn, V) =A(up, ) + La(t; ¥), (2.13b)
where L;(¢; -), i = 1, 2 are given below for each respective type of boundary conditions:
for(i) Li(t;v) :/ &glvds, (2.14a)
ro h
L) = [ @i - gds (2.14b)
o
forti) i = [ (@ an/Don - R vanme)as, @i
r
: Po .
Lo(t;v) = —g10yv — —g1v ) ds; (2.144d)
ro h
for (iii) Li(;v) = — (ga + aga/2)vds, (2.14e)
ro
Lo(t;v) = —/ govds. (2.14f)
ro
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The dependence of L;(t; -) on ¢ comes from the fact that g; (i = 1, - - - , 4) are functions of x
and 7. The choices for parameters By and B; have been discussed by L? stability analysis in
[18]: the scheme is L2 stable for 8; > Oand any By € R. Furthermore, numerical convergence
tests in [ 18] for linear problems indicate that the following choices are sufficient for achieving
optimal convergence,

fori) pB1 =6k =1); (2.15a)
for (i)  |Bol = C (k=1), Bo =0 (k > 2), (2.15b)

where k is the degree of underlying tensor polynomials, § > 0 in (2.15a) can be a quite small
number. For P! polynomials in one dimension, the optimal order of convergence is ensured
even when 81 = 0, as shown in [18]. The choice of C in (2.15b) is some constant. For
example, C = 3 was used in one-dimensional tests in [18, Example 5.5]. For (iii), optimal
order of convergence has been observed in all related numerical tests in [18] and the present
work.

3 Time Discretization

An appropriate time discretization should be adopted in order to preserve the energy dis-
sipation law at each time step. One such discretization of (2.2) studied in [18] is to obtain
(uy, qy) € Vi x Vj, following the marching scheme,

n+l _ n n+ly n
(u, ¢) = — A 9) - (cp(”h,”f — o ),¢>) . Gl

At up up
gy, ¥) =Auy, V), (3.1b)

for all ¢, € Vp, to approximate u, (-, ty), gn(-, t,), where t, = nAt with Atz being the
time step.
This scheme is shown in [18] to preserve the energy dissipation law in the sense that
1
e, ™ — whl)?

gn—l—l _En — _
h h At

) (3.2)

where
n n 1 n2
Q 2

However, implementation of (3.1) must involve some iteration, see a particular iteration for
simulating the Swift—-Hohenberg equation in [18].

Here following the idea of the IEQ method (cf. [31]), we propose both first and second
order time discretization to the semi-discrete DG scheme (2.9) so that the schemes obtained
are energy stable independent of time steps, and without resorting to any iteration method.
Because of (1.2), we can choose a constant B so that ®(w) + B > 0, Yw € R, and
U = /®(up) + B is well-defined. The corresponding energy now reads as

1 o
E(uh,qh,U)zf Lo+ v ax+ 2 [ wlds = cun g0 + BIRI. (3.3)
Q 2 2h ro
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With this notation we have ®'(u;,) = H (u)U with

P'(w)

HWw) = ———. (3.4)
VP (w)+ B
Instead of using the formula U = /®(uy) + B, we update U by following its differ-
entiation U, = % Huy,. More precisely, we consider the following enlarged system: find
(up(-, 1), qn(-, 1)) € Vi x Vp such that
1
U; ZEH(uh)Mht, (3.5a)
(nt, @) + ah ™" (un, §)ro = — A(@, qn) — (Hun)U, ¢), (3.5b)
(qn, ) =Aup, ¥), (3.5¢)

for all ¢, ¢ € V},. The initial data for the above scheme is chosen as

up(x,0) = Muop(x), U(x,0) =/ P(uo(x)) + B,

where IT denotes the piecewise L? projection into V.
By taking ¢ = uy; in (3.5b) and ¢ = ¢y, in (3.5¢);, which is a resulting equation from
differentiation of (3.5¢) in ¢, upon further summation one can verify that

d
L Eun, an U) = —f s [2dx <0,
dt Q

where E(up, qn, U) is the discrete energy for the enlarged system (3.5).
We are now ready to discretize (3.5) in time.

3.1 First Order Fully Discrete DG Scheme

Find (u},, q;) € Vi x Vi and U™ = U" (x) such that

Ul =nu", (3.6a)
Un+1 _ U/’}Z 1 . uz+1 _ MZ
At =y P == (5.6p)
”ZH —uj —1, n+l o n+ly nyyrn+l
A—t’ ¢ + ah (uh ’ ¢)F‘) - A((p» qh ) (H(uh)U ’ ¢) ) (3'6C)
(qy, ) =Auy, ¥), (3.6d)

for V¢, ¢ € V},, with initial data
u) =up(x,0), U=U(,0).

Note that U" is not necessary in Vj,, but U ;Z e V.
Set

E" := E(uy, q,,U}).

For fully discrete DG scheme (3.6), we have the following.
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Theorem 3.1 The fully discrete DG scheme (3.6) admits a unique solution (u},, q;) for any
At > 0. Moreover,

n+1 uz ”2
At

1 1
— Ut —up? IILthr

llu, 1
En+1 <E"— ” n+l _ n”2

Mh||L2(F8)a (37)

independent of the size of At.

Proof We first show the existence and uniqueness of (3.6) at each time step. Substitution of
(3.6b) into (3.6¢) with (3.6d) gives the following linear system

H(u" 2
<<i + (;h) )u2+1,¢> —|—Oth (un+1 ¢)]“3 +A(¢ qn—i-l) — (fn,¢), (3,82[)

AW ) — (@t vy =0, (3.8b)

where f" = up /At + 1/2H(uh)2uh H (up)U, depends on solutions att = t,. Taking
¢ = u’;lH and Y = q;lhq in (3.8), upon subtraction and using ( /", ¢) < 2Al [P REEY ||f”||2
we obtain

luy 1P+ 2480 lgy P+ 280ah ™ lun 7o ey < IALFP.

This stability estimate implies the uniqueness of the linear system (3.8), hence its existence

since for a linear system in finite dimensional space, existence is equivalent to its uniqueness.
un+1 n
We next prove (3.7). To this end, we define a notation D;uj, = ~*——", also for g; . From

(3.64), it follows

(D1qy, ) = A(Dyuy, ). (3.9)
Taking ¢ = qZH and ¢ = D;uj in (3.6¢), when combined and using (3.6b) we have

—||Dtuh||2—ah Yt Daulypo + (Degls p T 4+ (H @ U™, Dyult)

D 2 . + ALIDA 2 r ) + = Dellgl 12 + 21Dl 12
2h t uh L2(I?) ,uh L2(I?) 5t qn 3 19y,

D 2.+ ALIDA 2 ) + = Dillgl 12 + 21 Dol 12
2h t Mh L2(I'?) t“h L2(T'9) i qdh 5 19y

+ E (™2 = U 1> + 1o+t = Uy
This is nothing but the following identity

+1
™ — up?

E(u"+],qh+] Ut =E@!, ¢!, UM — T ” n+1 MZ”iz(ra)
- —||qz”+1 gyl> = Iu"t — U;:uz. (3.10)
Implied by the fact that IT is a contraction mapping in L2, we have
E(u"+1,qh+1 Un+1) < E(u”“,qhH ymt, 3.11)
hence (3.7) as desired. O
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3.2 Second Order Fully Discrete DG Scheme

Here the time discretization is done in a symmetric fashion around the point #,41/2 = (n +
1/2)At, which will produce a second order accurate method in time. Denote by v"+1/% =
(" + v /2 for v = uy, qi,, we find (uy, qy) € Vi x Vy such that for Vo, v € Vj,

urtt —up 1 it —ul
N O e 3.12b
At R HU ) =1, ( )
un-i—l —ut B 412
(%, ¢> + ah I(MZ /  P)ro
1
= —A@.q;"") = 5 (HHW + U 9). (3.12¢)
(g5 ¥) = A}, V), (3.12d)

where u';l’* is obtained using uzfl and uj by

nx 3 I,

n n
u,”" =—u; — —u 3.13
h 2 h 2 h ( )
Here instead of uZ+1/ % we use uZ’* to avoid the use of iteration steps in updating the numerical
solution, while still maintaining second order accuracy in time. When n = 0 in (3.13), we

simply take u}jl = ug.

For the obtained discrete DG scheme (3.12), we have

Theorem 3.2 The fully discrete DG scheme (3.12) admits a unique solution for any At > 0.
Moreover, such scheme satisfies the following discrete energy dissipation law,

1 1 1 ] T — i ?
E < Byt gyt UMD = BN - (3.14)
independent of the size of At.
Proof We first prove (3.14). We continue to use the notation D,;v" = ”H;t_vn . From (3.12),
it follows
(D1qy, V) = A(Dyuy, ). (3.15)

Taking ¥ = ¢ "/* and ¢ = D! in (3.12c), when combined with (3.12b) we have

_ 12 1/2 1
1D | = ah ™ @ Dy e + (Drgpt ) ) + §<H<uz’*>(U”+‘ + U, Db

o 2 1 2 1 +12 2
= %Dt”MZ”Lz(ra) + EDIHQZH + A (™17 = 1up1) -

Multiplying by At on both sides of this equality, we have

1
luy ™ = up))?

, 3.16
At (3.16)

Eyt, g U™ = E(u}. g}l Up) —

which combining with (3.11) leads to (3.14).
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For the uniqueness, we let (i, g, U) be the difference of two possible solutions at# = #,,41,
then a similar analysis to the above yields

E(i,q,0)+ llal® =0
9 9 At 9

hence we must have (i, g, U ) = (0, 0, 0), leading to the uniqueness of the full system (3.12).
O

3.3 Algorithm

The detail related to the scheme implementation is summarized in the following algorithm
(for second order scheme (3.12) only, that for first order scheme (3.6) is simpler).

e Step 1 (Initialization), from the given initial data uq(x)

(1) generate uf = Mug(x) € Vy, set u}jl = “2’
(2) solve for g; from (3.12d) based on ug, and
(3) generate U~ = /P (uo(x)) + B, where B isapriori chosen so thatinf ® (w)+B > 0.

e Step 2 (Evolution)
(1) Project U™ back into Vj,, U;} = TU"™;

(2) Solve the following linear system
1 H@ ™\ 4 1 +1y @l
((E T u, @)+ EA(‘P"IZ )+ E(uz ,¢)ro = RHS,
(3.17a)
1 1
SAWT ) = @y ) =0, (3.17b)

1

n—
u, ,and

N[—

nx _ 3.n _
Whereuh = 5u)

n 1 n o n
RHS = (f ’¢) - EA(¢,qh) - ﬂ(“h’@ra,

with 7 = /At 4 1/4H ™) 2uly — H (") Uj.
(3) Update U"*! using (3.12b), then return to (1) in Step 2.

Note that (3.17) is a linear system with sparse coefficient matrix which is changing at each
time step, we solve it by the open source deal.Il finite element library as documented in
[2], using an incomplete LU factorization as a preconditioner and preconditioned flexible
GMRES as a solver.

Remark 3.1 Recently the SAV method has been introduced in [24] with certain advantages
over the 1/ E Q. The basic idea when applied to the present setting is to introduce a scalar

auxiliary variable r = \/fQ ®(up)dx + B, and update r by r, = 21—r Jo @ (up)updx. A

replacement of (@’ (uZH), ¢) by (®'(u}), ¢)”;—:1 yields a linearized scheme which can be

shown unconditional energy stable. It appears more involved to solve the resulting system
efficiently within the DG framework.
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3.4 Fully Discrete DG Scheme for Non-homogeneous Boundary Conditions

For non-homogeneous boundary conditions (i)—(iii) given in (2.5), the fully discrete DG
schemes for (2.9) need to be modified.
For the first order fully discrete DG scheme (3.6), Egs. (3.6¢) and (3.6d) need to be

modified as
“ZH uy, +1
n
A7 O | +ah™ (u s D)o

=—A(p. gt — (HupU"', ) + L1 ¢),
(qp. V) = A(uy, ) + La(t"; ).
For the second order fully discrete DG scheme (3.12), Egs. (3.12¢) and (3.12d) need to

be modified as
uy ™ —up nt1/2
Ta ¢ + ah ( ¢)F3

n 1 n,*x n n
= —A(p, g - 5 (H W +Up). )

1 1
+ lea"“; $)+ S 11" ),

(qp. ¥) = Aup, ) + Lo(t"; ).

It is known that for non-homogeneous boundary conditions given in (2.5), the energy dissi-
pation law (1.4) needs to be replaced by

d
—Eu) = —f lug|>dx + J, (3.18)
dt Q

where the boundary contribution J = |, 90 Ur0vg — dyuq)ds with g = —(A +a/2) depends
on the available boundary data and the involved solution traces. For the above two schemes,
energy variation in time can be derived in entirely similar manner to that leading to (3.7) and
(3.14), respectively, with attention necessary only on boundary contributions.

4 Numerical Examples

In this section we numerically test the orders of convergence in both spatial and temporal
discretization, and the unconditional energy stability; further apply scheme (3.12) to recover
some known patterns governed by the 2D Swift—-Hohenberg equation. The errors between
the numerical solution ”Z (x, y) and the exact solution or a reference solution u(¢", x, y) are
evaluated in the following manner. The 2D L error is given by

"l "l }’l "l ’\l
6 = max max max u;(x s X
h X TeG 02 | h( IE ys) u(t IE ys)|

and the L? error is given by

12

hi ki ¢
e; = (Z x4y Zzwzsluh(xl —u(t" xll yé)| ) )

i =1 s=1
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Al A

where w; ; > 0 are the weights, and (x;, y;) are the corresponding quadrature points for
G > k + 1. The experimental orders of convergence (EOC) at T = nAt = 2n(At/2) in
terms of 4 and At are then determined respectively by

h %
EOC = log, B EOC = log, 2 |
h/2 h

Different choices for B, as numerically verified in most cases, can work equally well, so we
take B = 1 for all examples except in Example 4.6. In our numerical examples we output
E(uj, q;, U))— B|Q|instead of E(u}, q;,, U;)) to better observe the evolution of the original
free energy &)

Note that our numerical scheme is established for the model equation (1.1), which includes
the Swift—-Hohenberg equation (1.5) as a special case with a = 2 and

4
S R I L
2 TRt
modulo an additive constant. For any g, such W satisfies (1.2), which is necessary for the use
of the IEQ approach. In the following numerical examples we focus mainly on the Swift—

Hohenberg equation with different choices of € and/or g.

V(u) =

Example 4.1 (Spatial Accuracy Test) Consider the Swift—-Hohenberg equation (1.5) by adding
a source term f(x, y, 1) = —ev — gv?> + v3 with v = e~ /4sin(x/2) sin(y/2) for some
parameters ¢, g, and the initial data

uo(x,y) =sin(x/2)sin(y/2), (x,y) € Q2. 4.1)
Its exact solution is given by
ux,y, 1) = e *sin(x/2)sin(y/2), (x,y) € Q. (4.2)

This example is to test the spatial accuracy on 2D rectangular meshes, subject to different
types of boundary conditions, we use the second-order fully discrete DG scheme (3.12) with

1
S (TG + fC " 9),
added to the right hand side of (3.12c) using polynomials of degree k with k =1, 2, 3.

Test case 1. (Periodic boundary conditions) For parameters ¢ = 0.025, g = 0 and domain
Q = [—27, 27 ]? with periodic boundary conditions. Both errors and orders of convergence
at T = 0.1 are reported in Table 1. These results confirm the (k + 1)th orders of accuracy in
L?, L* norms.

Test case 2. For parameters ¢ = 0.025, g = 0 and domain Q = [0, 27]> with boundary
condition u = Au = 0, (x,y) € 952, we use scheme (3.12) with « = 0 and Bg = 0 in
(2.14c). Both errors and orders of convergence at 7 = 0.1 are reported in Table 2. These
results also show that (k + 1)th orders of accuracy in L2, L norms are obtained.

Test case 3. For parameters ¢ = 0.025, g = 0.05 and domain = [—, ]*> with boundary
condition d,u = d,Au = 0, (x,y) € 9L2. Both errors and orders of convergence at T = 0.1
are reported in Table 3. These results also show that (k + 1)th orders of accuracy in both L?
and L°° norms are obtained.
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Example 4.2 In this example, we consider the problem with both a source and non-
homogeneous boundary conditions of type (i) in (2.5):

u; = —(A + 1)214 +0.025u — u’ + f,y,t) (x,y,1) €[0,2m] x [0,27] x (0, T],
u(x,y,0) =sin(x/2) sin(y/2),

u@©,y,t) =umr,y,t) =u(x,0,t) =u(x,2m,t) =0,

0, u(0, y, 1) = 1/2¢ *sin(y/2), d,um, y, 1) = —1/2¢ *sin(y/2),

dyu(x,0,1) = 1/2e~*sin(x/2), dyu(x,2m, 1) = —1/2¢""*sin(x/2),

where f(x,y,1) = —0.025v 4+ v3 with v = ¢~"/*sin(x/2) sin(y/2). Its exact solution is
given by (4.2). We test the second order fully discrete DG scheme (3.12) with

1 n+1. n, 1 n+1 n

added to (3.12¢) and L, (¢"; ¥) added to (3.12d), based on Pk polynomials with k = 1, 2, 3.
The flux parameter 81 = 1. Both the errors and orders of convergence at T = 0.1 are
reported in Table 4. These results show that (k + 1)th orders of accuracy in both L? and L*®
are obtained.

Example 4.3 (Temporal Accuracy Test) Consider the Swift-Hohenberg equation (1.5) on the
domain Q = [—2m7, 27t]2 with the parameters ¢ = 0.025 and g = 0, the initial data

uo(x, y) = sin(x/4) sin(y/4). 4.3)

and generalized Neumann boundary conditions d,u = d,Au =0, (x, y) € Q.

We compute a reference solution at 7 = 2 using DG schemes (3.6) and (3.12) based on
P? polynomials with time step At = 273 and appropriate meshes. Numerical solutions are
produced using larger time steps At = 27" with 3 < m < 6. The L?, L™ errors and orders
of convergence are shown in Table 5, and these results confirm that DG schemes (3.6) and
(3.12) are first order and second order in time, respectively.

Example 4.4 (2D energy evolution) Consider the Swift—-Hohenberg equation (1.5) on rectan-
gular domain 2 = [0, 40]2 with parameters € = 2, g = 0, initial data

1, x1 <x <xp,

—1, otherwise, “4)

ux,y,0) = {
where x; = sin (21—’5 y) 4+ 15 and xp = cos (21—’5 y) + 25 form a curvy vertical strip, and the
boundary conditions d,u = d,Au = 0, (x, y) € d€2. This example is taken from [11], using
the equations of the curvy vertical strip described therein. We solve this problem by scheme
(3.12) based on P? polynomials on 64 x 64 meshes. The energy evolution in time with
t € [0, 10] for varying time steps are shown in Fig. 1, from which we see that scheme (3.12)
is always energy dissipating for any At as tested, however the size of At appears to affect
the decay rate of the energy. These numerical results suggest that time step should be chosen
with case. One possibility is to set up an energy threshold in such a way that if the energy
is about such threshold, Az should be small, and after energy falls below the threshold, one
can simply adjust to a larger time step.
Furthermore, the numerical solutions with Ar = 0.001 are shown in Fig. 2, which reveals
a series of evolved patterns in time. The energy evolution over a larger time interval is also
given in Fig. 3, which again shows the energy dissipation property of numerical solutions.
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P2, N=64 x 64, A t=0.001, T=60
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Fig.3 Energy evolution dissipation

Example 4.5 (Rolls and Hexagons) In this example, we test the formation and evolution of pat-
terns that arise in the Rayleigh—Bénard convection by simulating with the Swift-Hohenberg
equation (1.5) on rectangular domain Q2 = [0, 10072, subject to random initial data and peri-
odic boundary conditions. We apply scheme (3.12) based on P? polynomials using mesh
128 x 128 and time step size At = 0.01. Model parameters will be specified below for
different cases, and these choices of parameters have been used in [8,21].

Test case 1. (Rolls) The numerical solutions with parameters ¢ = 0.3, g = 0 are shown
in Fig. 4, from which we see periodic rolls for different times. We observe that the pattern
evolves approaching the steady-state after r > 60, as also evidenced by the energy evolution
plot in Fig. 5.

Test case 2. (Hexagons) The numerical solutions with ¢ = 0.1, g = 1.0 are reported in
Fig. 6, while the snapshots from ¢t = 0 to r = 198 reveal vividly the formation and evo-
lution of the hexagonal pattern. The pattern evolution looks slow in the beginning, similar
to that of rolls as shown in Fig. 4. However, we observe that at a certain point, before
t = 20 in this case, lines break up giving way to single droplets that take hexagonal
symmetry, as also observed in [8,21]. A stable hexagonal pattern is taking its shape after
t > 40, and the steady state is approached. The energy evolution in Fig. 7 clearly confirms
this.

Example 4.6 This example is to compare the numerical performance of three different time
discretization techniques when applied to our mixed DG method (see also [18] for details in
its semi-discrete formulation), including

(1) the second order IEQ-DG scheme (3.12);
(i1) the DG scheme (3.1), which was introduced in [18]; and
(iii) the second order time discretization in [11], for which one finds (1}, g;) € Vi, x V)
such that
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P2, N=128 x 128, A t=0.01, T=198
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Fig.5 Energy evolution dissipation

<”Z+1 _”Z’qj) _A(g] n+1/2 . $)

At
1 n+l1 /s n ( ! MZ)Z I, n

(2 (q> @t + @ (uh)> Tab ), ¢ (4.52)

(qy, ) = A(uy, V), (4.5b)

for all ¢, Y € V.

Though all three satisfy certain energy dissipation law, (ii) and (iii) have to be solved by
appropriate iterative techniques. We recall that for the SH equation (1.5),

4

€ g 3 U

D 2oy
) = 2u 3u 4

The iterative scheme used in [18] for (3.1) is the following

un—i—l,l-i—l _ un LIt 1
(hT ¢>>+ SA@TL9) = —2 AL 9)

(Gl(u”Hl h) n+1,0+1 + Gy (un+11 ul) ¢) (4.6)
A( n+1,04+1 w) ( n+1,l4+1 w) -0
n+1,0 n+l,0 n+1,l—1
where Gl(uh cup) = Gy(uy, uy), the iteration stops as ||u, u, | < n for

certain/ = L (L > 1) and some tolerance n > 0. Then we update by setting u”+1 = uZH L

Here
& 8 L5 2
Gl(w,v)_————(w—i—v)—l——(w + wv + v°),

2
e 1 5
Gz(w,v)z—iv—3v —|—Zv
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Fig.7 Energy evolution P2, N=128 x 128, A t=0.01, T=198
dissipation 4000 . : : : : . . .
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The scheme (4.5) can still be solved iteratively by (4.6) if one can decompose the nonlinear
term in (4.5a) as

1 (un-H _ un)Z
E (CD/(MZJFI) + CD’(MZ)) _ ~h > h CDW(MZ) — GI(MZ+], MZ)MZJFI + GZ(MZ+], uz)

We consider two decompositions:

1 1
Gi(w, v) =7 (—e = gw = w?) — 7w 20)(6v — 2g),

1 | 4.7
Ga(w, v) =§c1>/(v) - E1;2(611 —2g9),
and | .
Gi(w,v) ==(—& —gw — 3w2) — —(w —2v)(6v — 2g),
2 12 4.8)

1 1
Ga(w, v) =2 ®'(v) — v (6v = 2¢) — w?,
Test case 1. We consider the SH equation (1.5) with a source
fx,y,t)=—ev— gv2 + 03,

where v = ¢~ *%/%45in(x/2) sin(y/2), and parameters ¢ = 0.025, ¢ = 0.05. For initial
data (4.3), and boundary condition d,u = d,Au = 0, (x,y) € 92, where domain is
Q=[-2m, 271]2, we have an exact solution given by

u(x, y, 1) = e P sin(x/4)sin(y/4), (x,y) € Q.
We test schemes (i)—(iii) based on P2 polynomials with
1
S (G o)+ £, 1" 9)),

added to the right hand side of (3.12c), (3.1a) and (4.5a), respectively. For (ii) and (iii), we
take the tolerance n = 10712,
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Table 7 TIterations and CPU time (bold if the expected pattern is observed) in seconds at 7 = 10 with meshes
64 x 64

Method At 272 273 24 273 276 277
@) Iterations 1 1 1 1 1 1
CPU time 842 1128 1557 2320 3717 6042
(ii) Iterations 20 13 10 8 7 6
CPU time 7874 7024 7774 9818 13652 20542
(iii)-(4.7) Iterations 18 12 9 8 7 6
CPU time 6478 6229 7296 9587 13497 20383
(iii)-(4.8) Iterations 13 11 9 7 7 6
CPU time 5748 6223 7595 9673 13526 20483

We compute the numerical solution at 7 = 2 with mesh size 32 x 32 and time steps
At =2"""for2 <m <5, the Lz, L errors and orders of convergence in time are shown
in Table 6, and these results show that schemes (i)—(iii) are all of second order accuracy in
time.

Test case 2. We attempt to recover the pattern observed in Example 4.4 at T = 10 by using
schemes (i)—(iii) with meshes 64 x 64 and time steps At = 27" for 2 < m < 7. For scheme
(i), we take B = 10* since we observe that larger B can give better approximation, such effect
seems visible only for larger At. For both (ii) and (iii), we take the tolerance n = 10~ 10 and
use the same preconditioner and solver as for (i).

For schemes (i)—(iii) both the maximum number of iterations at each time step and the total
CPU time from t = 0 to t = T are presented in Table 7; the CPU time is highlighted when
the expected pattern is observed. The results show that scheme (i) uses the least number of
iterations and the least CPU time to obtain the expected pattern, and hence the most efficient
one among three schemes.

5 Concluding Remarks

The Swift-Hohenberg equation is a higher-order nonlinear partial differential equation
endowed with a gradient flow structure. We proposed fully discrete discontinuous Galerkin
(DG) schemes that inherit the nonlinear stability relationship of the continuous equation irre-
spectively of the mesh and time step sizes. The spatial discretization is based on the mixed
DG method introduced by us in [18], and the temporal discretization is based on Invariant
Energy Quadratization (IEQ) approach introduced in [31] for the nonlinear potential. Cou-
pled with a proper projection, the resulting IEQ-DG algorithm is explicit without resorting
to any iteration method, and proven to be unconditionally energy stable. We present several
numerical examples to assess the performance of the schemes in terms of accuracy and energy
stability. The numerical results on two dimensional pattern formation problems indicate that
the method is able to deliver comparable patterns of high accuracy.

Pattern formation is the result of self-organization systems and there are many examples
of this phenomenon, in spite of the different mechanisms that trigger and amplify the insta-
bility. The present method should be applicable to a wide variety of processes and can be
variationally improved if necessary.
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