
This article has been accepted for publication in a future issue of IEEE Transactions on Network Science and Engineering Citation information: DOI 10.1109/TNSE.2020.2987919

1

On the Blockchain-Based Decentralized Data
Sharing for Event Based Encryption to Combat

Adversarial Attacks
Ronald Doku, Danda B. Rawat and Chunmei Liu

Abstract—It is human nature to anticipate events in the future
and plan accordingly. As such, the possibility of letting future
events trigger the decryption of a message is a form of an
encryption mechanism we deem to be significant in today’s
information age. In this paper, we propose a variant of Attribute-
Based Encryption (ABE), called Event-Based Encryption (EBE),
that will help avoid adversarial attacks. In EBE, we attempt to
decrypt the messages in the future after an event is confirmed.
We illustrate how EBE can be employed by presenting a scenario
where a will is decrypted when an individual has been confirmed
dead. To achieve this, we introduce a decentralized data sharing
network powered by the blockchain technology that ensures data
undergoes a thorough vetting process before it is accepted to
the network. This vetted data is useful in determining the facts
needed for the confirmation of the occurrence of events and is also
helpful in restricting adversarial attacks. Our approach utilizes
multi-authority ABE schemes, Natural Language Processing
(NLP) techniques, and a decentralized data-sharing platform
to achieve our goal. The main contribution of this research is
the enabling of multiple parties, each with thoroughly vetted
proprietary data, to collaborate to confirm the occurrence of an
event. This event confirmation should trigger the decryption of a
message. We highlight the various applications of our approach
and illustrate the practical and secure nature of EBE using
numerical results.

Index Terms—Decentralized data sharing, blockchain, event
based encryption, adversarial attacks.

I. INTRODUCTION

A will is a legal document that allows a person to express
their wishes of how they would like to distribute their wealth
and property at death. The possibility of writing a will usually
raises many unexpected emotions such as the fear of death,
the anxiety of possibly creating discord in the family, and
the financial difficulties incurred for the formulation of a will
by a lawyer. Though we can not ease the fears and anxieties
associated with the inevitability of death, or settle the strife
the death of a relative might trigger in a family after, we are
motivated to use EBE to eliminate the intermediary (lawyer)
in a situation such as this. EBE might help in lessening the
financial burden of the person writing the will. By this, EBE
aims to decrypt a message (will) when an event occurs (death),
without the need for an intermediary (lawyer).

Manuscript received Day Month Year.
Authors are with the Data Science & Cybersecurity Center (DSC2),

Department of Electrical Engineering and Computer Science at Howard
University, Washington, DC 20059, USA. Corresponding E-mail:
danda.rawat@howard.edu.

A. Motivation and Potential Applications

This research aims to propose a reliable approach that can
predict the occurrence of an event, which consequently leads
to the decryption of an associated message. EBE is a network
of multiple entities collaborating to confirm the occurrence of
an event. These entities are part of a decentralized network,
with the blockchain as its underlying technology, that serves
as a repository for validated data. The network is segmented
into teams that share similar interests. These teams are known
as Interest Groups (IG). A data owner’s membership into an
IG is guaranteed after the data owner’s data has gone through
a vetting phase to ensure the data is of relevance. This process
verifies the integrity of the data utilized in the decryption
process. We highlight a few examples of the various ways in
which we believe EBE can be employed, consequently, serving
as a motivational factor for the undertaking of this work.

1) Privacy Preserving Future Message Decryption: We
introduce an encryption mechanism that only decrypts data
when an event is confirmed. Such a mechanism can be helpful
in situations such as trust funds and wills. This approach
removes intermediaries and presents a decentralized method
of encrypting data by ensuring the power to decrypt a message
does not reside in the hands of a single entity. Furthermore,
by removing a middle-man, we can make such undertakings
more accessible and affordable, which in turn can increase its
adoption by the general public.

2) Verification of Events: In situations where a person has
to prove that an event occurred, EBE provides an avenue
where that event can be confirmed to have occurred in a
trustworthy manner. EBE relies on trusted data collected from
multiple sources, all confirming the occurrence of an event. For
example, entities such as hospitals and multiple government
agencies can collaborate to confirm the birth of an individual.
Another potential use-case is situations involving insurance
claims where insurance companies can employ EBE during
their investigation process. In this scenario, a claim can only
be settled if trusted entities such as the police department,
hospital, or even eyewitness accounts collaborate to ascertain
the authenticity of a claim through the data they own.

B. Contribution

In this work, we introduce a setting where Alice wishes
to send Bob an encrypted message that Bob can only decrypt
after an event that Alice has specified has occurred. To achieve
this, various entities in our network must work together to help

2

in the decryption phase. As mentioned before, decryption only
happens when an event is confirmed to have occurred. For the
event confirmation process, we employ the collaboration of
appropriate entities in the network for the confirmation of the
occurrence of an event through the data they possess. This
event confirmation process is divided into two stages. The
initial phase requires Alice to provide enough information
about the event that needs to be confirmed. The network then
checks to see if it has the data required to prove that the event
has or will happen. If the required data is present, the network
creates an access policy that will be employed to encrypt the
message, which it sends to Alice.

For the second stage, Alice must encrypt the message using
the access policy derived from the first stage, and then send the
newly encrypted message back to the network. The network
then anticipates the confirmation of this event. When the
event gets confirmed, it then sends the message along with
the decryption key to Bob. Bob can now be able to decrypt
this message. The contribution of this research is evident in
the main objectives: i) Enable multiple parties, each with
thoroughly vetted proprietary data, to collaborate to confirm
the occurrence of an event which avoids adversarial attacks;
ii) The confirmation of an event triggers the decryption of
a message which was stored for future events, and iii) The
encrypted message, along with the keys, is sent to the recipient
after an event has been confirmed.

C. Organization

In this section, we discuss how the paper is organized.
Section II discusses the work that has been done, which is
similar to this research. Section III talks about the underlying
network on which the system is built. It discusses the key
technologies and assumptions used to implement the network.
Section IV presents the proposed approach of the network,
which addresses the stages involved in the encryption; event
confirmation, and decryption processes. Section V goes into
detail on how the system is implemented. Section VI presents
the performance evaluation of our approach, and Section VII
is the conclusion.

II. RELATED WORK

In this section, we highlight various works that are similar
to our approach. We also discuss ABE schemes and Smart
contracts which we believe share similarities with this work.

A. Turing-Complete Blockchain Systems or Smart-Contracts

A smart contract is intended to ensure that an agreement
between two parties is honored. An example of such a
system is the Ethereum project [1], which aims to facilitate
the completion of legitimate transactions without the need
for intermediaries. The blockchain technology ensures the
execution of smart contracts through a decentralized method
of honoring contracts among qualified parties. The similarities
between our approach and a smart contract system intersect
in the desire to eliminate third-parties for a contract to be
honored. However, our approach ventures to solve an entirely
different problem that smart contracts do not solve.

B. Attribute Based Encryption Schemes

Functional encryption [2] is a framework for flexible data
sharing that ensures that different recipients of data see differ-
ent portions of data. A classic example of functional encryp-
tion is ABE [3], which is associated with access formulas. In
ABE, a user determines the set of attributes that can decrypt a
message in terms of a formula over attributes. For example, a
user can encrypt a message that ensures that only students that
attend Howard University can decrypt it. A popular example
of an ABE is Ciphertext- Policy Attribute-Based Encryption
scheme (CP-ABE) [4]. In CP-ABE, the secret keys are associ-
ated with attributes, meaning each attribute possesses its key.
The decryption process allows a key to decrypt the ciphertext
when a set of attributes satisfy the formula the ciphertext (CT)
was encrypted under. For instance, if a CT was encrypted
under the formula (A∧B)∨C, a key that has the attributes
A,C, satisfies the formula and can decrypt the message. Our
approach is a variant of ABE. However, the novelty of our
system lies in the incorporation of nodes with trusted data
needed to collaborate in order to confirm the occurrence of
an event. Furthermore, the decryption of a message in our
approach is solely dependent on the occurrence of a future
event, which in reality may or may not happen. Thus, the
decryption of a message in our system is not a certainty.

C. Time Lock Encryption Schemes

We also draw inspiration from an earlier work done by [5],
where they attempt to implement a Time-Lapse capsule. Our
work differs from [5] in the manner that they try to decrypt a
message. Their approach involves the decryption of a message
after a certain time has passed. However, we decrypt a message
based on the confirmation of an event. The similarities of both
approaches rest on the fact that they both rely on future events;
however, their approach is solely temporal. On the other hand,
we rely on the occurrence of a future event happening, which
is not always a certainty. We also employ a decentralized
data sharing system to confirm an event, which again, is a
novel approach in the encryption world. Other approaches
that encrypt messages until a specific time in the future have
also been attempted. [6] propose such a system in their paper
but rely on a third party time server. Rivest and Shamir [7]
proposed a time-lock cryptographic puzzle where a trusted
third party is responsible for key generation and distribution.

D. Decentralized Data Sharing

There have been various research works involving the use of
a decentralized data-sharing framework. The Enigma project,
for instance, [8] is being developed to provide a platform
where different parties can co-operate to store and perform
computations on data, which is kept secure and private. This
project is a peer-to-peer venture aimed to be the first decentral-
ized platform that securely stores data and provides privacy-
preserving computation. A modified distributed hash-table is
employed for data storage. Cybervein [9] is a decentralized
platform that manages complex datasets. These datasets can
be traded, interconnected, and transformed into structured

3

knowledge. Their architecture can store large amounts of data.
Other research works try to combine machine learning and
blockchain. OpenMined [10] is another platform that does
secure, privacy-preserving machine learning. In this environ-
ment, Machine learning models are trained anonymously and
in secure environments. Data is uploaded to the platform,
where members anonymously download and train the data.
Members get rewarded based on their contribution to improv-
ing the performance of the final model. Numer.ai [11] is a
machine learning-based competition platform where privately
secured financial data is used to predict hedge funds. In [12],
they use neural networks and homomorphic encryption for
predictions without sacrificing prediction accuracy and data
privacy. [13] uses alternative proof of work approach called
proof of useful work. This was proposed to reward miners
based on their contributions. The goal of this approach is
aimed at better resource utilization. Users make data available,
and the network is divided into machine learning competitions
with committees trying to solve the competition.

Our approach, however, is reliant on a decentralized data
sharing framework for the decryption of a message. Further-
more, the data-sharing framework utilized in our approach dif-
fers from other such frameworks in the manner in which it vets
and accepts data. We describe in detail how our decentralized
data-sharing framework works in the next section.

III. THE DECENTRALIZED DATA-SHARING NETWORK

A. Blockchain

The efficient utilization of this service hinges on the suc-
cessful implementation of a decentralized data-sharing net-
work that houses relevant data needed for the confirmation
of an event. [14] propose such a system where the under-
lying technology behind their approach is the blockchain.
The blockchain technology has been around for at least a
decade now. The world first took notice of the blockchain
when it was employed in the Bitcoin cryptocurrency [15]. The
success of its employment in Bitcoin instigated the widespread
adoption of the blockchain as it helped solve the infamous
double-spending problem in digital currency back in 2009
[16]. Its adoption in Bitcoin ensured the blockchain guaranteed
data integrity and validity through a computational process
known as mining. Mining involved the process of solving a
computationally-intensive cryptographic puzzle known as the
proof-of-work (PoW). Through the mining process, a new
block gets appended to the current blockchain. The PoW
determined a hash value that connects the previous blocks
to the newly mined block. Subsequently, the result is then
broadcast to other nodes in the network for validation. The
new block gets appended if the majority of nodes involved in
the PoW process reach a consensus.

The blockchain technology has been adopted in various
avenues since its usage in Bitcoin. However, scalability issues
remain a challenge that has garnered the attention of re-
searchers in the blockchain domain [17]. An approach devised
to solve this predicament is sharding. Sharding in simple
terms can be explained as dividing a blockchain network into
multiple teams [18]. Each team is referred to as a shard. Each

shard has its ledger and can validate transactions [19]. By
splitting the network in this fashion, the network’s efficiency
is enhanced. These shards collaborate in parallel to maximize
the performance of the network [20]. In [14], they propose a
new sharding technique that divides the network into teams
they call an Interest Group (IG).

B. Data Vetting and the PoCI

Work in [14] focused on addressing the issue of the scarcity
of relevant data by devising a novel consensus mechanism
known as the Proof of Common Interest (PoCI). The goal
of the PoCI was to sieve out relevant data from irrelevant
ones. They proposed a network that employed the PoCI to vet
and accept data that is relevant. In this section, we build on
this work done in [14], as the service we intend to provide
is essentially maintained by such a network. The network is
divided into teams known as IGs. IGs are created to store data
from nodes that share similar interests or data. The reputation
of an IG depends on how relevant the data that its members
own is. As such, the data of a potential member (PM) of
the IG must be vetted thoroughly before that node can be
accepted to join the IG. This vetting process is made possible
by the PoCI. The PoCI process ensures that nodes accepted
into the IG must share similar interests with the other members
of the IG. This is enforced by members of the IG that are
randomly selected to perform the PoCI on the data of a PM.
The PoCI process involves the selected nodes solving a small
computational work (PoCI) where they verify that a PM’s data
aligns with the interests of the IG. The process works by
having a genesis data which acts as a yardstick for similarity
reference. Similarity reference in this scenario means the data
of PMs must share a certain level (set threshold) of similarity
with the genesis data. This genesis data is usually owned by
an expert in the area of interest, with this expert usually being
the originator or creator of the IG.

In our approach, however, certain established entities do
not need to be a part of an IG, as their data do not need to
be vetted. These entities are established organizations such as
Government agencies, hospitals, etc. Such entities are regarded
as Tier 1 entities, and their data is deemed to be of the highest
quality. However, other nodes in the network are ranked into
Tiers based on their reputation in the network. We delve deeper
into how the ranking system works for such nodes later on in
the paper.

The PoCI process demands the calculation of a unique
hash function known as the MinHash of the PM’s data. The
MinHash is a unique signature of a node’s document that can
be used to determine the similarities between two documents.
To compute the PoCI, we need to find the similarities between
the MinHash of the PMs and the members of the IG randomly
selected to participate in the PoCI process (Approvers). Each
PM is assigned an Approver. For the first set of PMs to be
added to an IG, the approver is the owner of the genesis
data. An Approver computes the PoCI by comparing its
MinHash with the PM’s MinHash. This calculation can be
done by counting the number of components present in the two
signatures. That gives the similarity score for the comparison

4

of any two documents. If the Approvers confirm that the PM’s
data passed the PoCI, this indicates the PM has proved that it
owns relevant data, and as such, can be part of the IG.

IV. PROPOSED APPROACH

Our approach has two stages; the data verification stage
and the event confirmation stage. The first stage requires that
we verify that we have the necessary data to confirm the
occurrence of an event. After that is done, the next phase is
the event confirmation stage. For the data verification stage,
suppose Alice wants to send a message to Bob that needs to be
encrypted until a specified event occurs. Alice initially sends
a Client Request (CR), which consists of the conditions that
must be satisfied in order for the message to be decrypted.
The CR is assigned to a facilitator. The facilitator’s job during
this stage is to ensure that the network has the data needed to
decrypt the message. After this is established, the second stage
is the event confirmation stage. During this stage, the facilitator
sends and an access policy to Alice. Alice encrypts the data
using the access policy and sends it back to the facilitator. The
facilitator must now gather the keys that can satisfy the access
policy. These keys are sent to the facilitator when the nodes
confirm the occurrence of the event. The facilitator then sends
the encrypted message along with the decryption key to Bob,
who can now decrypt the message.

The data verification stage uses NLP techniques to achieve
its goal. The initial step in this problem is considered an
information retrieval problem. The goal is to discover the
nodes that own appropriate data that could potentially help
confirm an event’s occurrence. We call these sets of nodes
delegates. The next step in the process attempts to determine if
the delegates can confirm an event. This stage of the problem is
treated as a Question and Answer System (QAS). If the results
of this step are not satisfactory, the facilitator sends an error
message to Alice detailing how the network does not possess
the necessary data to determine the occurrence of that event.
In the case of a successful outcome, the result of this stage
is the generation of a set of nodes known as the Answer Set
(AS). The AS are the nodes that have been selected from the
delegates to be part of the confirmation process. The facilitator
generates the Facts Access Policy (FAP) based on the nodes in
the AS. The FAP is the access policy that determines the set of
attributes on which the message is going to be encrypted. The
FAP is then sent to Alice for message encryption. After Alice
encrypts the message, she sends it back to the facilitator. This
signals the commencement of the next stage, which is the event
confirmation stage. Each node in the AS is now an authority
that is capable of distributing attributes. They send attributes to
the facilitator after they have confirmed an event. We describe
these processes in detail later on. Below are the terminologies
we advise the reader to be familiar with to comprehend the
process fully:
• Client Request (CR): A Client Request (Fig 1) consti-

tutes a detailed description of the conditions specifiying
the event that needs to happen and the ‘5 Ws and 1 H’.

• Facilitator: Each CR gets assigned a facilitator. The
facilitator assumes the ‘point’ role and is responsible for

handling the processes that verify the data and confirm
an event.

• Query: Queries are derived from the description part of
the CR. A query is used by the facilitator to determine the
delegates. The facilitator sends a query to each member
node of the IG, where the nodes that return suitable
documents become delegates.

• Delegates: Delegates nodes are the top k ranked nodes
retrieved from the querying process.

• Answer Set (AS): The final set of delegate nodes that
have showed they have the required data to prove the
occurrence of an event. They are used in the generation
of the FAP.

• Facts Access Policy (FAP): This is the access policy used
to encrypt the message.

• Facts-Checking (FC): This is the confirmation of a fact
by a delegate node.

• Event: An event is what needs to be confirmed.
• Interest Group (IG): The network is segmented into IGs.

An IG consists of a set of nodes that share relevant data
on a topic of interest.

V. HOW THE NETWORK WORKS

We now proceed to explain how the network achieves the
EBE process by highlighting the various processes involved
in the data confirmation stage and event confirmation stage.

A. The Data Verification Stage

We begin by describing the processes involved in the data
verification stage.

1) Client Request: A user sending a CR to the network
(specifying which IG) is the first step in this process. The
user fills out a CR which has the ‘5 Ws and 1 H’ segment
and the description segment. The ‘5 Ws and 1 H’ fields should
be filled out or left blank if that field(s) is non-applicable. Fig
1 illustrates a filled out CR that pertains to a will. In Fig 1,
the ‘who’ field demands the name of the person involved, and
‘what’ field requests the event that must happen. The other
fields can be left blank if no more information is required.
However, there is a strict requirement that, at least one field
has to be filled out. The answers from the ‘5 Ws and 1 H’
segment of the CR is utilized during the QAS process. The last
segment in the CR is the verbal description of the event that
needs to happen. The client/user is advised to be as detailed
as possible when writing this section, as this part is what is
used by the facilitator as a query to find the delegates.

2) Facilitator: The facilitator is the ‘point guard’ of the
EBE process. After an IG receives a CR, the CR is assigned
a facilitator. The facilitator takes the description aspect of the
CR and turns it into a query. The facilitator sends the query
to all the nodes in the IG. The result is a list of top 10 ranked
documents called delegates. The next step is the QAS segment,
where the facilitator must determine if the delegates possess
the knowledge capable of confirming the occurrence of an
event based on the answers they give to the ‘5 Ws and 1
H’ questions. The AS (delegate nodes that successfully pass
the QAS segment) play a key role in the generation of the

5

Figure 1. Client Request

FAP that will be used to encrypt the message. After the FAP
gets generated, the facilitator sends the FAP to the client. The
client then encrypts the message using that FAP and sends it
back to the facilitator. The final stage in the process involves
the facilitator gathering the attributes from the AS. A node
in the AS sends an attribute after it confirms a fact. The
facilitator keeps curating these attributes until it gathers the
set of attributes that can satisfy the FAP. Once such a set
is discovered, this depicts the successful confirmation of an
event. The message can now be sent to the recipient along
with the attributes encoded in the secret key.

3) Query and Document Ranking: Our goal in this proce-
dure is to measure the similarity between the query sent to the
nodes by the facilitator and the documents the data owners
own. This process is achieved by using word occurrences
and a vector space model that tries to model everything
(documents, words, and queries) as a vector in some high
dimensional space where individual words are the dimensions.
For example, three distinct words have three vector spaces.
The bag of words model we employ ignores the order of
words in a document, thus documents containing the same
words but in a different order end up at the same point on
the vector space model. Everything (document or query) is a
point in vector space, and our goal is to measure the similarity
between two points. To compare documents to queries, we
need to determine the distance between these two points
in the vector space model. This can be calculated as the
euclidean or angle distance between the vectors. The dot
product is the building block for all similarity functions in
the vector space model. It is the approach used to measure
the similarity between two vectors, say A and B, which can
be represented as: a = [a1,a2, ...ad],b = [b1,b2, ...,bd] and
aT b = a1b1 +a2b2 + ...adbd = ∑i aibi.

4) Term Weighting: Term Weighting endeavors to find the
relative importance of a word (w) in a document (D). Dw
represents the coordinate of D along the dimension w. Relating
this to queries and documents, the similarity of a query Q to
a document D usually takes the form of a dot product. Qw
is the weight of the word w in Q, and Dw is the weight of
the word w in the document. The weight of the word can be
viewed as the coordinate, which is how far Dw is from the

document D on the coordinate that corresponds to the word
w. This similarity function can be written as:

S(Q,D) = ∑
w

Qw.Dw (1)

We, however, need to set weights that lead to a good
similarity function. To achieve this, we need to take into
consideration the presence or absence of words. A binary
vector that sets a word that is present to 1, and 0 if otherwise
is utilized. This approach does not take into consideration how
many times a word appears. It just sets it to 1. It simply looks
out for common words that are between the query and the
document without counting repetitions. It is also worth noting
that keywords tend to be repeated in documents. Hence, let
t fw,D be the number of times w occurred in D. If a word
occurs multiple times, the assumption is that it is important.
As such, we want the number of occurrences to be a direct
reflection of the importance of that word. We call this Term
Frequency (tf), and it becomes the weight of the word:

S(Q,D) = ∑
w

t fw,Q.t fw,D (2)

However, this approach tends to be biased towards long
documents as they contain more words. Because of this, we
have to normalize by document length |D|. Thus, for the
weight Dw, we use the term frequency of WD × |D|. This
is, however, only done to the document, not the query. The
reason for this is because we only have one query and many
documents. And these documents vary in size; thus, what
matters more is how these documents get ranked because the
query always remains constant from document to document.

5) Inverse Document Frequency: Rare words carry more
meaning than words that occur too frequently. As such, we
would like to make such words important by giving them more
weights. Rare words usually carry the content but are also not
encountered too often. To determine the meaningful words in
a text would mean observing the frequency of all the words in
a large body of text. If a word is mentioned once, it could be a
‘typo’. However, if it is mentioned three or five times, it might
be a very specific word. Inverse Document Frequency (idf) is
an approach used to give weight to words. It is thought of
as the probability of a randomly picked document containing
the word w, which is usually a small number for rare words.
To make it more effective, it is done by giving more weight
to rare words using: log |c|d fw

, where |c| represents the number
of documents in the collection and |d fw| is the number of
documents containing w. The log is used to put id f on the
same scale as the t f component. With this, we can create a
new similarity formula:

S(Q,D) = ∑
w

t fw,Q.
t fw,D

|D|
.log
|c|

d fw
(3)

6) Frequency Normalization: Documents diminished with
high idf words usually propagate up to the top if they happen
to match the query, which turns out not to be a desirable trait.
To remedy this, we make the first occurrence of a word more
important than a repeat occurrence. This is because words are
contagious. If you see a word once, you are likely to see it

6

Figure 2. The Data Confirmation Process

again. The level of surprise decreases as the word frequency
increases. This can be encoded to the ranking formula by
using a squash function. This is done to squash the growth
of the term frequency. A higher contribution is given to the
occurrence of the first word, and a lesser contribution to the
second occurrence and more diminishing returns to further
occurrences of the word. An effective squashing technique is

x
x+k which asymptotes to 1 at high values of term frequen-
cies. k is a meta parameter, and it is used to control how
aggressive the squashing needs to be. However, the frequency
of terms still needs to be taken into account, especially in
long documents. Long documents must have large values of k
(squashing factor) because the function needs to grow steadily.
To make k dynamic, we take the document length and the term
that needs to be ranked. Each document is compared to the
average document length in the collection, and if it is a much
longer document, then k is adjusted to be big. If it is shorter,
the approach is to view it as a step-like function, which is
either 1 or 0. This then becomes:

t fw,D

t fw,D + k|D|
avg|D|

(4)

7) Final Formula: Combining all of these together gives a
formula that can be used to rank documents against a query.
The ranking formula then becomes:

S(Q,D) = ∑
w

t fw,Q.
t fw,D

t fw,D + k|D|
avg|D|

.log
|c|

d fw
(5)

The facilitator selects the top 10 documents returned by this
formula. These documents become the delegates that will
participate in the next step.

8) Question and Answer Based System: This section strives
to find documents that have data that could possibly answer
factoid questions. Factoid questions are questions that can
be answered by a simple fact. These questions are usually
questions about locations, names, etc. Our approach requires
that we find a suitable answer to the ‘5 Ws and 1 H’ questions
in the CR by examining the delegate documents. From the
‘5 Ws and 1 H’, we generate a supervised machine learning
algorithm that has been trained to formulate questions based
on the answers from the CR. For instance, for the scenario
in Fig. 1, the question the supervised model generated is
’Is John Smith dead?’. This factoid question incorporated the
‘who’ and ‘what’ answers of the CR to frame a question that
needs a specific type of answer. The desired answer should
have a named entity of type ‘person’ and an event of type
‘death’. This information would be used to probe the delegate
documents for answers. From these delegate documents, we
extract passages that will be processed in an answer processor
to scan for the right answer. This process has three main steps:

1) Question Processing: Formulates the question and deter-
mines the answer type.

2) Passage Retrieval: Break delegate documents into suitable
passages.

3) Answer Processing: Extract candidates’ answers and rank
candidates.

The initial step is to figure out what the question is about.

7

This approach determines the answer type we are looking
for. For that, we use an answer type taxonomy from Li
and Roth [21]. Li and Roth have six coarse classes, which
are: Abbreviations, Human, Location, Entity, Description, and
Numeric. Inside those 6 coarse classes are more specific
classes (50 finer classes). For example, for the coarse class
location, the finer classes are city, country, mountain; for
human, we have group, individual, title, description as the finer
classes; etc. To detect the answer type, we train a machine
learning model for various question types and then train them
on classifiers using some rich set of features. These features
include rules, questions and word phrases, named entities, and
semantically related words.

The next step is to segment the documents from the delegate
set into shorter units. Paragraphs are appropriate chunks, and
a paragraph break is a good ‘segmentor’. We then re-rank the
passages based on the answer types we are expecting. This
passage ranking can be done by using certain features. For
example, these features could be how many named entities of
the answer type occur in the passage, how many query words
occur in the passage (in overall relation to the document).
To process the answer, a Named Entity Tagger is run on the
passages. For the scenario above, the full answer type we seek
should contain the name of a person and the event. However,
we should only expect the full answer at the event confirmation
stage. For this stage, we believe partial answers would give us
a fair indication of the possibility of getting a full answer. For
instance,‘Jane Doe is dead’ is regarded as a partial answer,
whereas ‘John Smith is dead’ is a full answer. This is because
the partial answer only contains a fragment of the answer type
we seek. However, even though ‘Jane Doe’ does not match the
name we are looking for, we can deduce this delegate node
is likely to have the information we are looking for should it
happen in the future since it has succeeded in predicting the
two named entities that make up the final answer. This because
the ‘Jane Doe’ is a name and ‘John Smith’” is a name as well.
This matches the semantics of the answer type we desire. After
picking the delegates that satisfy these conditions, the next
step is to rank them. We count how often a node’s document
has the desired answer type we want. That is, we take into
account how often ‘x is dead’ is answered by the node, where
x is the name of a person. We call this count C. Furthermore,
a node’s reputation in the network plays a part in the ranking
of the answers. We describe in the next section how a node’s
reputation is calculated. We also use Mean Reciprocal Rank
(MRR), which returns a ranked list of M candidate answers
for each query. The score of that query is 1

Rank of the first
right answer or 0 if no right answer is found. We then take
the mean of those ranks over all N queries. This then becomes
the formula for ranking:

MR3C =
∑

N
i=1

1
ranki

N
×RC (6)

.
We pick the nodes whose score meets a threshold. These

nodes are then deemed to have the ability to successfully
confirm the occurrence of an event should it happen, and these
nodes become the AS.

9) Tiers, Reputation, and Facts Access Policy: To calculate
the reputation of the node in the system, we take into account
the number of times it has participated in the PoCI process
and the number of PoCI processes that happened after the
node became a member of an IG. This is essential since we
use that to gauge a node’s involvement or inactivity in the
network. Every node is expected to keep track of any new
member that is added, their PoCI activities, and the overall
number of PoCIs that have occurred since their arrival. We can
calculate the Activity Rate (AR) of members in the network
by simply keeping track of the number of times they have
participated in the PoCI process since their addition to the
IG. To calculate the AR of a node i, we take the number
of participations (NP) over the number of PoCI processes (P)
which becomes (AR = NP

P). All the nodes are expected to have
the same score for the node i. To confirm the right answer, we
employ a consensus mechanism that chooses an answer that
is backed by at least 2

3 majority of the members. Members
are expected to participate in this process to enhance their
credibility in the network.

In our network, the likelihood of a node moving up a tier
is dependent on its participation in 16 event confirmation
processes. This leads to the generation of a relevance vector.
The relevance vector is what determines whether a node gets
promoted or not. To achieve this, we adopt the approach
by [22], where they choose a k-bit length vector. In our
case, we chose k to be 16 (the steps required) because we
conducted experiments that showed 16 delegation processes
worked better than the other alternatives (8, 24, and 32). Thus,
we have a 16-bit length binary vector where a bit of 1 in the
16-bit sequence denotes a node’s data has been selected to be a
delegate, and 0 denoting failure to get selected during 16 data
verification processes. Attached to each relevance vector is a
number m, which represents the number of most significant
bits. The m significant bits are found by counting bits to the
right. To evaluate the score of a relevance vector, we count
up to the mth significant bit and then convert it to an integer.
After this is done, we divide it by 2m. For instance, if we
want to get the score for a relevance vector for a node i from
node j, with the relevance vector of rvi j = 1110011000000000
where m= 7. The score it represents can be calculated as:
(1110011)

27 = 115
128 = 0.8984. This gives us a value between [0 to

1). Everyone in the IG is expected to calculate this value. We
also keep track of a non-relevance vector, which is just the
complement of the relevance-vector. We subtract this from the
final score of the ranking as a way to deter malicious activities
by penalizing falsification. Also, the reward of 0.05 is added
to the score of each node that is selected to be part of the
AS. This rewards nodes with quality data by expediting their
process of moving up a level with extra points.

The next step is the calculation of credibility. A node earns
credibility by accurately providing a relevance vector score
when the system requests it. A credibility vector is created
using the same approach that we used for the relevance vector.
Each node is required to have a credibility vector of all the
other nodes in the network. To determine the correct credibility
score of a node, we follow the 2

3 majority consensus approach.
The nodes that do not have this score correct are penalized

8

with a 0, whereas nodes that pass are given a score of 1.
Nodes that are not confident in their score and do not wish
to be penalized can choose not to participate in providing a
credibility score. However, non-participation does not augur
well for such nodes as it leads to a low credibility score which
prolongs their chances of getting into the next level.

Putting all of these together, the formula to determine the
reputation score of a node is:

r =
√

AR · ∑
k
i=1(ciri)−ni

k
(7)

where AR is the activity weight. To diminish the influence
AR has on the overall score by giving it less weight, we take its
square-root. ci and ri are the credibility and relevance vector
scores, respectively. We subtract ni (non-relevance score) from
the score as a way to punish falsification.

Nodes are grouped into tiers based on their score and
their status. For instance, institutions such as hospitals, and
government agencies are deemed to be trustworthy and, as
such, automatically fall in the highest Tier (1) level. There
are 4 Tiers in all. A node is only legible to move to the next
Tier if its score after 16 data verification processes satisfy the
threshold. Nodes that have a reputation score of .80− 1 fall
in Tier 1 which is the highest, .60− .79 is Tier 2, .25− .59 is
Tier 3 and 0− .24 is Tier 4, the final tier. Every node in the
network maintains a reputation table.

The FAP formula is generated by employing Tiers as
attributes. For instance, if users want a resilient access policy
for their data, they can choose an access policy that requires a
formula (T1∨T1)∧ (T2∨T2∨T3∨T3). This would require two
authorities in the Tier 1 level or two authorities in Tier 2 and
two authorities in Tier 3 to partake in the key generation phase.
Formulating a FAP with those requirements would compel us
to know how many nodes in the AS belong to the different
levels of Tiers. For instance, if the AS does not have any Tier 1
level node, we can not create a FAP that requires a Tier 1 level
node to be part of the boolean formula. On the other hand,
if the answer set has four Tier 1 level nodes, an appropriate
FAP can either demand one, two, three, or four Tier 1 level
nodes depending on how strict the FAP is required to be. In
this manner, a strict FAP reflects a high level of confidence
in a confirmed event. Thus, the presence of more Tier 1 level
nodes in the FAP assures a more confident and secure event
confirmation.

After the FAP is decided on, the facilitator sends a success
message to the client that the network can confidently handle
the request. It also sends multiple FAPs based on difficulty
levels (permutations consisting of how many different tier
levels should be present) to the client. Higher tier levels in
the FAP assures a more confident result. Clients choose the
FAP policy they desire and then encrypt the message with it.
The encrypted message is then sent back to the facilitator.

B. The Event Confirmation Stage

This section describes the final stage of the EBE process,
which is the event confirmation stage.

1) Event Confirmation: Event confirmation occurs when
the answer type gets upgraded from a partial to a full answer.
For instance, for the example above, the correct answer to ‘Is
John Smith dead?’ is ‘John Smith is dead’. In this scenario,
our ‘who’ and ‘what’ questions are answered completely and
not partially. When this happens, every node in the AS that can
successfully produce a full answer must send its attribute (T1,
T2 , T3 or T4) to the facilitator. The facilitator then checks to
see if the attributes it has gathered satisfies the FAP.

2) Attribute Based Encryption: Conventional public-key
cryptography requires that a message be encrypted for a
particular recipient utilizing the receiver’s public key. Identity-
based encryption (IBE) transformed the conventional percep-
tion of public-key cryptography by allowing the public-key to
be an arbitrary string. Consequently, ABE can be explained
as a public key encryption mechanism that allows for the
encryption and decryption of messages based on the attributes
of the receiver. ABE was first introduced by Sahai and Waters,
and is also known as Fuzzy-Identity based encryption (a
variant of Identity Based Encryption [3]). The classic scenario
for the application of ABE was in the area of using fingerprints
in Identity Based Encryption. This was because fingerprints
have peculiar characteristics that make it unique. For example,
a fingerprint may have a set of 40 characteristics and not all
of these characteristics may match. Consequentially, this may
fail to decrypt a message. The approach to address this was the
Fuzzy-Identity Based encryption. In this approach, a threshold
is set for d many characteristics. Hence, if there are d or more
matches in the fingerprint, then the message should able to be
decrypted.

The modern form of ABE, however, pushes the envelope
by defining identity as a set of attributes that allows messages
to be encrypted to this set of attributes (key-policy ABE
[23]) or a policy generated over a specified set of attributes
(ciphertext-policy ABE [4]). This approach requires that an
entity should only decrypt a ciphertext when the attributes of
the keys match the attributes of the ciphertext. In most cases,
a central authority issues user keys. In a recent form of ABE
[4], private-keys are connected with a set of attributes, and a
ciphertext defines an access policy over a specified universe
of attributes within the system. A user decrypts a ciphertext
if the attributes he/she has collected satisfy the policy of that
ciphertext.

In most ABE systems, there is usually a single authority
distributing the keys. Keys reflecting attributes are distributed
to users in the system by a central authority based on the
attributes a user possesses. Because there is one central au-
thority responsible for giving out all the keys, such a system
does well to fend off collusion attacks. However, because of
its centralized nature, such a system is also susceptible to
Denial of Service (DOS) attacks and bottleneck performance
issues. Lewko and Waters [24] propose a system to remedy
these issues wherein they aim to decentralize ABE. In their
approach, an entity encrypts a message for an access policy
formulated over attributes given by various authorities. Their
principal contribution is that each authority can independently
distribute keys on their own without any interference from a
central authority.

9

Our problem can now be relegated to the work done by
[24], which tries to decentralize CP-ABE. In our approach,
the nodes in the AS become authorities that give out keys
that reflect their attributes to the facilitator. The facilitator’s
penultimate role is to gather the keys that satisfy the FAP.
The universe of attributes is defined to be T 1,T 2,T 3, and T 4.
A node in the AS only sends out a key reflecting its attribute to
the facilitator whenever it finds the full answer that confirms an
event. The facilitator must keep collecting the attributes until
it attains the attributes that satisfy the access policy chosen by
the user. For example, if a ciphertext is encrypted employing
the policy (T 2∨T 3)∧T 1, the facilitator must keep collecting
attributes until it has {T 1,T 2} or {T 1,T 3}.

3) Message Encryption and Decryption Process: The flex-
ibility [24] gives is that any entity can become an authority
by generating a public key and distributing private keys to any
user that reflect their attributes. In our approach, the facilitator
can reflect all the four attributes, and as such, can gather
the keys needed to formulate a decryption key. Furthermore,
global identifiers also link the private keys that were distributed
to the facilitator by the AS nodes [25]. We proceed to describe
how the algorithm encrypts and decrypts messages employing
the following steps below.
• Global Setup (λ)→GP: This step uses a security param-

eter λ as input and produces global parameters.
• Authority Setup (GP)→SK,PK: Each authority (a node in

the AS) controls its authority setup. The setup algorithm
takes the global parameters and the node’s characteristic
attributes as input. Then, for each attribute that the node
controls, the node produces a secret key SK and the
corresponding public key PK. The public key is shared
with the facilitator.

• Encrypt (M, FAP, GP, PK) → CT: The facilitator gets
the public keys from the nodes in the AS. The facilitator
then generates various FAPs based on the nodes in the
AS, and communicates it to the client, along with the
global parameters. The client selects a desirable FAP,
encrypts the message with the FAP into a ciphertext. The
ciphertext is then sent back to the facilitator.

• KeyGen(GP, GID, SK, t) → Kt,GID: When an answer has
been found, the node in the AS that found it commences
the key generation process. Each node in the AS must
maintain its attribute and must be able to distribute a
key reflecting that attribute to the facilitator. The keygen
algorithm demands an identity GID, the global parameter,
the attribute t belonging to the AS node, and the SK for
that node. It produces the key Kt,GID that reflects the Tier
it belongs to and sends it to the facilitator.

• Decrypt (CT, GP, Kt,GID)→ M: Once the facilitator gath-
ers the attributes that match the FAP, it sends the global
parameters, the ciphertext, and the keys corresponding
to the attributes to the recipient. The recipient can now
decrypt the message.

VI. PERFORMANCE EVALUATION

In this section, we present the results for the proposed mech-
anism. We test this by conducting an extensive simulation.

Figure 3. Tier Collaboration

Figure 4. Misdetection

Our experiments were implemented in python and conducted
on a workstation with intel 3.40 GHz CPU and 32 GB RAM
running windows operating system. We simulate a network of
5 IGs (IoT, Stock, Sports, Food, Politics) where various nodes
are accepted to the network based on the data they own. Each
IG owns data that can be used to determine facts. As explained
earlier, the nodes in the network have been ranked into Tiers
based on the scoring process described in Section V. We ran
experiments to detect false alarms, misdetections, and the time
it takes for the collaboration between the nodes given an access
policy. From Fig. 3, the experiment was to determine the time
it takes for the collaboration between nodes in the same Tiers
for the decryption of a message. We observe that nodes in Tier
1 take longer to collaborate with each other. The explanation
for this is because Tier 1 level nodes are the least number of
nodes in the network. As a consequence, this becomes a supply
and demand issue, as the data of Tier 1 nodes are the most
sought after. However, the ability of Tier 1 nodes to supply
their services is hampered by their meager numbers. Fig. 4
aims to show the probability of misdetection by highlighting
the outcomes of having various amounts of nodes belonging to

10

Figure 5. False Alarm

different Tiers present in the access policy. From the results,
if the access policy contains nodes that are primarily from
Tier 1, the chances of misdetection are significantly reduced.
This represents a trade-off that shows that having more Tier
1 nodes in your FAP guarantees a higher confidence in the
confirmation of an event, but this event confirmation process
will not be confirmed right away or in real time. In Fig. 5, the
false alarm reinforces the point of having higher Tier attributes
in the FAP. From the plot, we determine that nodes with lower
reputations may tend to assume their data can determine a
fact. This is, however, usually not the situation as a FAP with
only T4 attributes may not be able to confirm a fact. The plot
shows that a higher amount of Tier 4 nodes in the answer
set can result in the message never getting decrypted as these
nodes might not have the full answer needed to decrypt the
message even though they might have had the partial answers.
This was a common theme when the threshold for the score
employed in the acceptance of a node into the AS is lowered.
A higher threshold connotes placing higher confidence in a
node’s ability to confirm an event accurately. Such trustworthy
nodes are usually the nodes from Tier 1 and Tier 2. The
prevalence of such nodes in the AS reduces the false alarm
rate. As a result, an FAP that has primarily T1 or T2 nodes
are more resilient to adversarial attacks (data falsification).

VII. CONCLUSION

In this work, we presented a variant of ABE, called EBE that
aims to decrypt messages in the future when the occurrence
of an event is confirmed. We illustrate how EBE can be
employed by presenting a scenario where a will is decrypted
when an individual has been confirmed dead. We discuss
the decentralized data sharing approach on which EBE is
implemented on. This decentralized data-sharing network is
powered by the blockchain technology which ensures data
undergoes a thorough vetting process before it is accepted to
the network to avoid adversarial attacks. Specifically, we used
the vetted data as a knowledge base in our work to confirm
the occurrence of an event. We incorporated various NLP

techniques and modified an existing ABE scheme to design
this variant of ABE we call EBE.

ACKNOWLEDGMENTS

This work is partly supported by the U.S. NSF under
grants CNS 1650831, CCF-0939370 and HRD 1828811, and
by the U.S. Department of Homeland Security under grant
DHS 2019-ST-062-000003. However, any opinion, finding,
and conclusions or recommendations expressed in this docu-
ment are those of the authors and should not be interpreted as
necessarily representing the official policies, either expressed
or implied, of the funding agencies.

REFERENCES

[1] G. Wood et al., “Ethereum: A secure decentralised gener-
alised transaction ledger,” Ethereum project yellow paper,
vol. 151, no. 2014, pp. 1–32, 2014.

[2] D. Boneh, A. Sahai, and B. Waters, “Functional encryp-
tion: Definitions and challenges,” in Theory of Cryptog-
raphy Conference, pp. 253–273, Springer, 2011.

[3] A. Sahai and B. Waters, “Fuzzy identity-based encryp-
tion,” in Annual International Conference on the Theory
and Applications of Cryptographic Techniques, pp. 457–
473, Springer, 2005.

[4] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-
policy attribute-based encryption,” in 2007 IEEE sym-
posium on security and privacy (SP’07), pp. 321–334,
IEEE, 2007.

[5] M. O. Rabin and C. Thorpe, “Time-lapse cryptography,”
2006.

[6] I. F. Blake and A. C.-F. Chan, “Scalable, server-passive,
user-anonymous timed release public key encryption
from bilinear pairing.,” IACR Cryptology ePrint Archive,
vol. 2004, p. 211, 2004.

[7] R. L. Rivest, A. Shamir, and D. A. Wagner, “Time-lock
puzzles and timed-release crypto,” 1996.

[8] G. Zyskind, O. Nathan, and A. Pentland, “Enigma:
Decentralized computation platform with guaranteed pri-
vacy,” arXiv preprint arXiv:1506.03471, 2015.

[9] J. Ge, J. Ning, and A. Yu, “Cybervein: A dataflow
blockchain platform,” 2018.

[10] OpenMined, “Openmined: Building safer artificial intel-
ligence.,” 2018.

[11] R. Craib, R. Bradway, X. Dunn, and J. Krug, “Numeraire
: A cryptographic token for coordinating machine intel-
ligence and preventing overfitting,” 2017.

[12] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter,
M. Naehrig, and J. Wernsing, “Cryptonets: Applying
neural networks to encrypted data with high throughput
and accuracy,” in International Conference on Machine
Learning, pp. 201–210, 2016.

[13] H. Turesson, A. Roatis, H. Kim, and M. Laskowski,
“Deep learning models as proof-of-useful work: A
smarter, utilitarian scheme for achieving consensus on
a blockchain,” 2018.

[14] R. Doku, D. B. Rawat, and C. Liu, “Towards federated
learning approach to determine data relevance in big

11

data,” in 2019 IEEE 20th International Conference on
Information Reuse and Integration for Data Science
(IRI), pp. 184–192, 2019.

[15] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash
system. bitcoin,” 2009.

[16] D. B. Rawat, V. Chaudhary, and R. Doku, “Blockchain:
Emerging applications and use cases,” arXiv preprint
arXiv:1904.12247, 2019.

[17] Y. Sompolinsky and A. Zohar, “Accelerating bitcoin’s
transaction processing,” Fast Money Grows on Trees, Not
Chains, 2013.

[18] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost,
J. J. Furman, S. Ghemawat, A. Gubarev, C. Heiser,
P. Hochschild, et al., “Spanner: Google’s globally dis-
tributed database,” ACM Transactions on Computer Sys-
tems (TOCS), vol. 31, no. 3, p. 8, 2013.

[19] L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert,
and P. Saxena, “A secure sharding protocol for open
blockchains,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security,
pp. 17–30, ACM, 2016.

[20] M. Zamani, M. Movahedi, and M. Raykova, “Rapid-
chain: A fast blockchain protocol via full sharding,”

[21] X. Li and D. Roth, “Learning question classifiers,” in
Proceedings of the 19th international conference on
Computational linguistics-Volume 1, pp. 1–7, Association
for Computational Linguistics, 2002.

[22] A. A. Selcuk, E. Uzun, and M. R. Pariente, “A reputation-
based trust management system for p2p networks,” in
IEEE International Symposium on Cluster Computing
and the Grid, 2004. CCGrid 2004., pp. 251–258, IEEE,
2004.

[23] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-
based encryption for fine-grained access control of en-
crypted data,” in Proceedings of the 13th ACM confer-
ence on Computer and communications security, pp. 89–
98, 2006.

[24] A. Lewko and B. Waters, “Decentralizing attribute-based
encryption,” in Annual international conference on the
theory and applications of cryptographic techniques,
pp. 568–588, Springer, 2011.

[25] M. Chase, “Multi-authority attribute based encryption,”
in Theory of Cryptography Conference, pp. 515–534,
Springer, 2007.

