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ABSTRACT

Energy footprinting has the potential to raise awareness of energy
consumption and lead to energy saving behavior. However, current
methods are largely restricted to single buildings; these methods
require energy and occupancy monitoring sensor deployments,
which can be expensive and difficult to deploy at scale. Further,
current methods for estimating energy consumption and population
cannot provide fine enough temporal or spatial granularity for a
reasonable personal energy footprint estimate. In this work, we
present CityEnergy, a data-driven system for city-wide estimation of
personal energy footprints. CityEnergy takes advantage of existing
sensing infrastructure and data sources in urban cities to provide
energy and population estimates at the building level, even in built
environments that do not have existing or accessible energy or
population data.
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1 INTRODUCTION

In urban cities such as New York City, buildings are responsible
for up to 75% of total greenhouse gas emissions, and up to 94% of
total energy consumption [28]. A significant portion of the energy
consumed is to directly service humans such as in retail, commercial,
and residential buildings. In addition to buildings, transportation
is also responsible for large amounts of energy consumption. As
sustainability increasingly becomes an important factor in modern
society, energy consumption in the built environment is one area
where reduction can have a major impact.
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Figure 1: Top: Energy and population are estimated at the
building level; personal energy footprints are provided to
each person depending on their location traces (red and blue
traces). Bottom: Two real city-wide energy footprints. Labels

below denote energy source.

In [6], the authors show that certain feedback mechanisms given
to occupants raises awareness and can lead to energy saving behav-
ior. One such mechanism is by notifying the occupant in real-time of
their numerical energy consumption, or energy footprint. However,
many areas of the built environment do not have the capabilities
to measure personal energy consumption, much less notify peo-
ple of their personal energy responsibility. Although companies
such as Nest and recent research studies have begun to address this
challenge through energy footprinting in single residential and com-
mercial buildings, there are still many difficulties to scaling these
solutions to the city-scale. Most notably, there is a lack of energy
and population data with high temporal and spatial granularity.
Without sensors to measure this data, or models to estimate this
data, energy footprinting is not possible.

In this work, we present CityEnergy, a scalable, real-time system
for computing personal energy footprint estimates. As shown in
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Figure 1, CityEnergy estimates the energy consumption and pop-
ulation for each building in real-time; these estimates are used
to calculate the per capita energy footprint at the building level.
CityEnergy is able to provide personal energy footprints to people
who provide their location data through a mobile application.

An example city-wide personal energy footprint generated by
CityEnergy is shown in Figure 1. In this example, a CityEnergy user,
Stephen, (A) begins the day in a residential building. CityEnergy
uses a detailed model of the particular built environment Stephen
is in, and computes the energy and occupancy level to estimate the
individual energy that Stephen is responsible for.

Stephen’s commute consists of (B1) walking to the subway sta-
tion, (B2) riding the subway downtown, and (B3) walking from
the subway station to the office building; for each of the modes of
transportation, CityEnergy associates the relevant energy consump-
tion to Stephen’s personal energy footprint. After arriving at the
office, (C) Stephen works until the lunch break. During this period,
CityEnergy may interface with the local energy footprinting system
to determine Stephen’s personal footprint, or rely on energy and
occupancy models to estimate Stephen’s footprint. Finally, Stephen
leaves the office and (D) walks to the local deli, where he spends
an hour to eat lunch.

In this work, we present the following contributions:

e We create an energy and occupancy digital twin of the city,
with a focus on major aspects of the built environment in-
cluding buildings and transportation.

e We present the design and implementation of CityEnergy, a
city-scale energy footprinting system that utilizes the city’s
digital twin to provide real-time energy footprints with
a focus on 100% coverage.

e We deploy CityEnergy in New York City, utilize local data
sources to develop energy and population models, and collect
and evaluate the accuracy of real world personal energy
footprint data.

o We have developed a number of tools and applications such
as mobile and web applications to provide citizens with in-
sights into their everyday energy consumption, and city
planners with important information at the city-scale.

CityEnergy is a tool for estimating an individual’s energy foot-
print at any location in the city, at any time. Due to the data sources
available, the energy footprint estimate may not be accurate for any
one person. However, we believe that CityEnergy is an important
step towards realizing city-wide energy footprinting.

2 RELATED WORKS

There are a number of recent works addressing topics such as
building energy consumption estimation, population estimation,
transportation detection, and energy footprinting.

Predicting energy consumption of a building normally consti-
tutes one of three approaches: building level regression, software
modeling, or city-wide energy estimation. For building level re-
gression, historical energy consumption data is typically collected
with fine temporal granularity (minute to hourly frequency). Once
the data is collected, a regression model [12, 14, 38, 40] or neural
network [12, 15, 38] is trained on the data. After training, the model
is validated on a different dataset from the same building. These
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models tend to produce low error rates (< 10 MAE), but require a
large amount of data. At a city-scale level, these methods are im-
practical without data already collected from a major entity, such
as a government project.

Another method for predicting energy consumption in a building
is through software modeling. EnergyPlus [5] is a popular program
for simulating energy consumption in custom buildings under vari-
ous internal and external conditions. [23, 31] are two recent works
which utilize EnergyPlus to model specific buildings. However, En-
ergyPlus is a complex program which requires careful modeling of
the building to provide an accurate estimate. For larger number of
buildings, this becomes increasingly difficult to scale.

Recently, a number of studies have explored energy estimation
from city-wide datasets. In Rotterdam, [21] utilized a Geographical
Information System (GIS) to “downscale” the energy consumption
in the city to individual residential buildings. A multiple linear
regression model was able to achieve a Mean Absolute Percent-
age Error (MAPE) of 9% for electricity prediction. Similarly, [17]
and [11] utilize city-level energy consumption data in New York
City, along with regression models to predict energy consumption
at the block level and building level. CityEnergy builds on these
works by incorporating population estimates to compute personal
energy footprints.

There are additionally a number of methods for estimating popu-
lation in a city. A recent study [20] proposed a model for estimating
dynamic populations of communities from subway smart card data.
In [30], the authors study flow from multiple transportation modal-
ities using different machine learning models. CityEnergy utilizes
similar broad ideas to estimate dynamic populations from subway
and vehicle transportation modalities, but further develops the ideas
towards a more granular population estimate.

Transportation mode recognition using mobile devices is a well
studied problem, and primarily relies on GPS, accelerometer, and gy-
roscope sensor data. Examples of studies using mobile sensor data
include [27, 41], which only utilize GPS data and classifiers such
as decision trees to determine the mode of transportation; [10, 13],
which utilize accelerometer and gyroscope data along with sup-
port vector machines; and [37] which utilizes GPS, accelerometer,
and gyroscope data. While CityEnergy incorporates transportation
mode detection, we do not claim any novelty in this area.

Recently, the field of personal energy footprinting has begun
to grow, with a number of studies combining energy monitoring,
occupant localization, and energy apportionment to estimate real-
time personal energy footprints. In residential homes and apart-
ment buildings, [18] and [29] deployed energy monitoring sensors
to detect energy consumption of each occupant. For commercial
buildings, [32, 33] presented a scalable system to apportion energy
consumption using different policies; [36] expanded on this system
to additionally deliver energy saving recommendations. However,
the main difficulties in scaling these works to multiple buildings is
the cost of deployment. Most buildings require retrofitting of energy
and occupant monitoring systems to enable energy footprinting.
Building on our previous work [34], CityEnergy is the first city-scale
energy footprinting system which does not require such monitoring
systems.
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3 CHALLENGES

The goal of CityEnergy is to provide “full coverage” for a person’s
energy footprint. Coverage in this application broadly refers to
the percentage of time and locations for which our system can
provide a reasonable personal energy footprint estimate. We noted
three desirable characteristics to maximize coverage: high spatial
granularity, high temporal granularity, and high accuracy. In the
design of CityEnergy, the two most critical components which must
adhere to these characteristics are energy estimation and population
estimation.

3.1 Energy Estimation

To enable a real-time energy footprint estimate, a system must
be capable of producing an energy consumption estimate for any
building at any time of day. The main challenge is in achieving
both high temporal granularity as well as high spatial granularity,
without sacrificing accuracy. We demonstrate this challenge by
comparing two types of energy estimation methods frequently
seen in literature.

Building level regression models, which use historical data of a
building to predict energy consumption, can achieve high accuracy
for different levels of temporal granularity [12, 14, 38, 40? ]. How-
ever, energy data at sub-daily or sub-hourly time scales is difficult to
obtain for even a single building, much less at the city-scale. There
are two main obstacles to extending this method to the city-scale.
Firstly, fine temporal energy data is often proprietary, and can-
not be easily accessed through public datasets. Secondly, this data
is often obtained for specific purposes, meaning that most build-
ings will not have accessible historical energy data. Thus, while
building level regression models are a good option for localized
energy consumption studies, they are difficult to generalize to the
city-scale.

City-wide energy estimation, which uses data containing energy
consumption of a sample of buildings, has been used to estimate
energy consumption at the city-scale [11, 17, 21]. However, the
data is often collected at the yearly or monthly scale, and thus does
not achieve sufficient temporal granularity. The main obstacle to
“downscaling” the monthly or yearly energy consumption data to
a finer temporal granularity, is the lack of knowledge about the
specific behavior of the building for different environmental con-
ditions (weather, time of day, day of week, etc.). City-wide energy
estimation is able to achieve the necessary spatial granularity, but
requires additional information to achieve temporal granularity.

3.2 Population Estimation

Similarly to energy estimation, a system must be capable of pro-
ducing a population estimate with high spatial and temporal gran-
ularity. The most common form of population estimation is from
mobility models; however, these models typically require GPS traces
or cellular information from base stations, which are often not ac-
cessible by the public due to privacy concerns. Another method of
population estimation is by studying the different types of trans-
portation and inferring dynamic population.

According to [4], of the 4.8 million commuters in New York
City, 38.7% ride the subway and 26.9% drive in vehicles. Thus,
by estimating these two modalities of transportation, 67% of the
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dynamic population due to commuting can be accounted for. The
remaining challenges are how to estimate each of these modes
of transportation, and how these estimates translate to dynamic
population.

Each of these modes presents unique challenges in both spatial
and temporal granularity. For subways in New York City, there
exists historical data at four hour intervals describing the number
of people exiting and entering the station through the turnstiles;
however, finer temporal granularity, as well as the changes in pop-
ulation of the surrounding area, needs to be modeled.

For motor vehicles, New York City traffic cameras can be utilized
to determine the density of vehicles. Three challenges are how to
determine density of vehicles from traffic cameras, how to infer
vehicle density of unobserved roads, and translating vehicle density
to dynamic population.

4 CITY-WIDE ENERGY ESTIMATION

4.1 Data Sources

As discussed in Section 3, one major challenge to estimating energy
consumption is a lack of data at a sufficiently granular level. In New
York City, there are no public datasets of energy consumption at
the building level. This poses a problem, as many energy estimation
techniques rely on such data.

However, in [17], the authors demonstrate a method for estimat-
ing the energy use intensity of any building in New York City by
training a machine learning model on the energy benchmarking
dataset from New York City’s Local Law 84 [16]; this type of dataset
is also collected in other cities with benchmarking laws such as Los
Angeles and San Francisco. This dataset, however, only includes
buildings greater than 50, 000 square feet. One disadvantage of this
dataset is that due to the size of the buildings benchmarked, most
of the included buildings are commercial; this excludes residential
buildings.

We chose to further incorporate an energy dataset of residential
buildings from the New York City Housing Authority (NYCHA) [24].
This dataset contains energy consumption data of over 2, 400 res-
idential buildings at a monthly scale, and is home to 1 in 14 New
Yorkers. We reasoned that including a residential dataset would
increase the overall model accuracy for energy estimation.

In addition to the Local Law 84 and NYCHA datasets, we also
incorporated hourly energy traces from the Department of Energy’s
(DOE) reference buildings [7]. This dataset contains baseline energy
consumption values for 16 building types covering commercial
and residential buildings. We utilize this dataset drill down from
monthly to hourly energy estimation.

Finally, to account for out-of-sample buildings, we utilize fea-
tures derived from the Primary Land Use Tax Lot Output (PLUTO)
datsaet [25]. This dataset contains numerous features of every build-
ing in New York City, including building age, gross floor area, and
floor area for different use types. We derive many of the input
parameters of our energy consumption model from the PLUTO
dataset.

4.2 Energy Consumption Model

As discussed in Section 3.1, an energy consumption model should
have high spatial and temporal granularity. To achieve this, we
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Figure 2: Diagram of the energy estimation pipeline.

developed a two stage model, as shown in Figure 2. In the first
stage, a regression model is trained on monthly energy consumption
data; this enables prediction of energy consumption of individual
buildings. The second stage is a fitting model to downscale monthly
energy consumption to hourly energy consumption.

To enable monthly energy estimation of any building in New
York City, we trained a machine learning model on energy consump-
tion data from the Local Law 84 and NYCHA datasets. As inputs
to the model, we extracted parameters from the PLUTO dataset
that represented important features of each building. As described
in [17], features such as gross floor area, year built, office floor area,
residential floor area, and borough are the best predictors of energy
consumption. In addition to these parameters, we also included
weather data, office floor area, retail floor area, garage floor area,
and factory floor area.

The first stage outputs a monthly energy consumption estimate
for each building; however, CityEnergy also requires fine time granu-
larity. To transform monthly energy consumption to hourly energy
consumption, we construct a model building based on the Depart-
ment of Energy Commercial Reference Buildings [7]. The Reference
Buildings consist of 16 building types, and provide hourly energy
simulations in EnergyPlus.

For each building in New York City, the PLUTO dataset provides
the floor areas by usage type; these roughly correspond to com-
mon building types in the DOE Reference Buildings. The model
for each building is constructed via a linear combination of the
Reference Building energy traces, with the weights corresponding
to the percentage floor area of each type of building. An example
is provided in Figure 3; a New York City building which is 50%
apartment floor area, 30% office floor area, and 20% retail floor area
is modeled by combining the respective percentages of the DOE
Reference Buildings energy traces.

Finally, to incorporate the monthly energy consumption estimate
from the first stage, we scale the model trace to equal the monthly
energy consumption estimate. When a client requests an energy
footprint of the building, the hourly energy footprint of the building
is used in the computation of the personal energy footprint. An
illustration of the average building energy footprint by block is
shown in Figure 4. We evaluate the accuracy of this approach in
Section 7.1.
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Figure 3: One example model building combination from
the DOE Reference Buildings using weights corresponding
to floor area for this building,.
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Figure 4: Heatmap of average building energy footprint in
Manhattan by block.

5 CITY-WIDE POPULATION ESTIMATION

Another critical source of information for CityEnergy is real-time
population estimation. A estimate of the number of people in a
particular building, coupled with the energy estimate, is enough
information to provide a real-time energy footprint. Unfortunately,
there are no public datasets detailing population counts at any
spatial granularity. In addition, the population varies throughout
the day and week due to the large number of commuters; this
further complicates modeling of real-time building population.

As stated in Section 3.2, 67% of dynamic population due to com-
muters can be estimated from subway ridership and driving. By
combining dynamic population estimates from different modes of



Energy and Population Estimation for City-Wide Energy Footprinting

transportation, a real-time population estimate can be built. CityEn-
ergy utilizes data from the U.S. Census as a baseline population
model, and uses real-time and historical data from the New York
City Metropolitan Transportation Authority (MTA) and NYC traffic
cameras to estimate dynamic population.

5.1 Baseline Population

A preliminary baseline model was constructed using the US Census
dataset as initial populations for each block. As population data at
the building level is not available from the Census, we downscaled
the block level population to the building level through a simple
model. We assume that people only reside in residential floor area;
the residential floor area of each building in the block is collected
from the PLUTO dataset. The estimated static population of building
x can then be computed by Equation 5.1, as the ratio of the floor
area of the building (FAy) to the aggregate floor area of the census
block times the census block population Pcp.

FAx

> FAp
BECB

Py =Pcp

5.2 Dynamic Population

To estimate real-time population dynamics, we analyze two of the
most common modes of transportation in New York City: subway
and motor vehicle. Estimates of the two modes of transportation
are combined with Google Places data and population models to
estimate dynamic population, as shown in Figure 5.

il

r

Building
Parameters

Subway

Population Dynamic
Model Population
—> Estimate
Motor Vehicle
Google
Location

Figure 5: Illustration of the dynamic population estimation
pipeline.

5.2.1 Subway. Every week, the New York City MTA publishes
a new dataset detailing the commuter throughput for turnstiles
in NYC subway stations at four hour intervals [2]. Each subway
station has multiple turnstiles, each of which records the number
of commuters entering as well as exiting the subway station.

To estimate the number of people entering or exiting from a
station, we construct time series data from the past 6 weeks, which
is used to train a regression model. The parameters used in the
training include: historical commuter flow, hour, day of week, and
weather conditions.

One consideration is that commuters enter a subway station at
more uniform frequencies than they exit. The reason is that exiting
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commuters usually correspond to arrivals of subway trains. The
regression model can estimate commuter throughput for four hour
intervals; however, by using real-time data, the temporal granularity
can be improved. To achieve this, CityEnergy utilizes the subway
data feeds [1] from the NYC MTA, which provide the real-time
locations of all running subway trains.
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Figure 6: Illustration of the subway turnstile data and the
subway throughput estimation.

When a subway reaches a stop, a number of commuters are
estimated to leave the station; the estimated distribution of these
commuters to the surrounding buildings is discussed in 5.3. An illus-
tration of the whole subway estimation pipeline is shown in Figure 6.
Evaluation of different regression models for hourly throughput
are presented in Section 7.2.1.

5.2.2  Motor Vehicles. Besides the subway, the second most fre-
quently used mode of transportation by commuters is by motor
vehicle. For CityEnergy, we estimate motor vehicle commuting by
analyzing real-time footage from traffic cameras, building on the
work in [35]. Real-time image feeds are publicly available from the
New York City Department of Transportation, which provides 752
real-time traffic cameras covering major intersections.
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Figure 7: Pipeline for determining dynamic population at
the block level from traffic cameras.

The estimate of dynamic population from traffic cameras is set in
two stages as shown in Figure 7. First, the density of motor vehicles
throughout the city is estimated through computer vision methods.
Second, the vehicle density, along with city information of parking
spaces, is used to estimate population change at the block level. The
traffic camera streams present two main challenges: low resolution
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Detection Pipeline

Background
Masking

Figure 8: Computer vision pipeline for detecting vehicles. A) the background is masked from the incoming video stream image,
and B) an object detection network extracts the candidate bounding boxes.

and low frame-rate. The stream resolution is 352x240 pixels, and
are updated at a frequency between 0.3 — 1 Hz. Thus, to determine
motor vehicle density, we implement a vehicle detection pipeline
composed of two parts: background masking and object detection
as shown in Figure 8. Initially, the background of the images of the
video stream are masked as in [39]. This ensures that low resolution
patterns in the background will not be falsely detected as vehicles.

The masked image is then fed to an object detection network.
To increase accuracy, we utilize training data from two sources: the
CityCam dataset [39], and a custom hand labeled dataset compris-
ing of two thousand images and approximately five thousand vehi-
cles. We use transfer learning to tune a pre-trained SSD-Mobilenet
model [19] to better recognize vehicles at low resolution. Transfer
learning is achieved by freezing all layers except for the final layer,
and retraining the neural network. Once trained, the network pro-
vides an approximate vehicle density for the roads in view of the
traffic camera.

Even with the large number of deployed traffic cameras, a ma-
jority of the streets remain unobserved. To provide full spatial
coverage, we query the Here location framework API! (similar to
the Google Maps API) which provides indications of traffic density
on road segments not covered by traffic cameras.

Vehicle density, however, is not sufficient to predict dynamic
population. For example, there are roads with high vehicle density
but low dynamic population, such as highways. Unfortunately, there
is no available data describing the relationship between vehicle
density and population dynamics. There is, however, a dataset
describing millions of taxi trips and destinations, which is sufficient
to give a frequency of transfer to specific areas. The traffic data
is then used to scale the population dynamics of the surrounding
buildings, as shown in Figure 7.

5.2.3 Google Places API. Google’s Places API? provides informa-
tion about the popularity and the current estimated occupancy
(“live” data) of many retail locations in New York City. When current
estimated occupancy is available, this value is used as an estimate
for the retail location; otherwise, the popularity is used.

5.3 Population Models

Given dynamic population estimates from the subway and motor
vehicles, we estimate the dynamic population in buildings by using

!https://developer.here.com/
Zhttps://developers.google.com/places/web-service/search
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a population model. First, we define “catchment area” in this appli-
cation as the spatial regions which are serviced by a transportation
hub (a subway station, parking space/lot). Catchment area is de-
fined by a Voronoi diagram, where distance is defined by street
distance. The catchment areas of the subway stops in New York
City are shown in Figure 9.

The catchment area determines the buildings which are serviced
by either a subway station or parking lot. However, the different
buildings receive a disproportionate number of people for differ-
ent times of the day; for example, the probability that a person is
traveling to the office rather than home is higher in the morning,
and the reverse for the afternoon. We utilize the Citywide Mobility
Survey [26], which provides the destinations of a sample population
in New York City for different modes of transportation, including
motor vehicles and subway. From this survey, we extracted the
following distributions for trip destinations as shown in Table 1.

Office | School | Retail | Errand | Medical
Motor Vehicle | 32.5% | 4.9% | 45.1% | 14.1% 4.3%
Subway 61.6% | 4.6% | 21.9% | 7.8% 4.0%

Table 1: Distribution of traveler destinations by mode of
transportation, extracted from the NYC DOT Citywide Mo-
bility Survey.
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Figure 9: Illustration of catchment areas of subway stops in
New York City.
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Figure 10a shows a heatmap of the real-time population in Man-
hattan at the block level. To our knowledge, this is the highest
granularity temporal-spatial mapping of population using dynamic
estimation from vehicle modalities.

6 DESIGN AND IMPLEMENTATION

Our system is composed of four connected subsystems: energy
estimation, population estimation, transportation mode detection,
and energy footprinting. As described in Sections 4 and 5, the en-
ergy and population estimation subsystems provide corresponding
estimates for each building at fine temporal granularity. The trans-
portation mode detection subsystem uses sensor data from the
user’s mobile device to determine mode of transportation, and to
provide an energy estimate. Lastly, the energy footprinting module
combines the results from the other three subsystems to produce
an energy footprint estimate. Energy footprinting information is
relayed to the user via a mobile application. The system architecture
is shown in Figure 11.

CityEnergy is deployed in New York City, which is an ideal
testbed for two reasons. Firstly, the city publishes a number of rele-
vant datasets containing information about energy consumption in
the built environment and population mobility for various modes
of transportation. The abundance of datasets makes possible the
study of energy footprinting at a city scale, while presenting new
challenges in data representation, cleaning, and modeling.

Secondly, there is a wide variety of buildings and people in
New York City. These variations lead to interesting differences
in energy usage and mobility. For example, the age of buildings
in New York City varies tremendously, which can correlate with
energy usage differences due to the available building management
systems (BMS) technology. On the other hand, the number of people
in Manhattan varies greatly between weekdays and weekends due
to people commuting from outside of the city, according to NYU
Wagner [22]. These variations lead to interesting challenges in the
design of a city-scale energy footprinting system.

6.1 Transit Estimation

To complete the idea of “full coverage” for energy consumption,
CityEnergy includes a transit estimation module. This module is
responsible for analyzing location information from the users, deter-
mine whether the user is in transit, and provide the corresponding
personal energy footprint. If the user is determined not to be in
transit, the personal energy footprint is based on apportioned en-
ergy, as described in Section 6.2; otherwise, the personal energy
footprint is based on the specific mode of transportation of the
user. We do not claim any novelty in this section, but it is critical to
maintain high temporal granularity of the user’s energy footprint.

6.1.1 Transportation Mode Detection. We focused on classifying
the two main modes of transportation estimated in Section 5, as
well as walking. Detection of the mode of transportation relies on
the location traces collected from the user’s mobile device. A few
simple thresholds are used to separate the modes of transportation.
If the location change between multiple samples is below a lower
threshold, L1, the user is considered to be stationary. Above the
lower threshold L1 and below an upper threshold L2, the user is
considered to be walking; and above L2, the user is considered
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Mode of Transport | Estimated Power Consumption
Subway (Weekday) 36.7 Wh
Subway (Weekend) 72.2 Wh
Bus 587 Wh/km

Vehicle 874 Wh/km

Walking 0.0 W

Table 2: In-sample mean absolute error and mean root
squared error of different machine learning regressors on
historical turnstile data.

to be in a vehicle. Finally, due to the nature of the NYC subway
system being primarily underground, the location traces create
large jumps, which separates subway transportation from motor
vehicle transportation. This section is not the primary focus of this
work, and we do not claim any novelty.

6.1.2  Transit Energy Footprint. If an occupant is in transit, CityEn-
ergy provides an energy footprint depending on the mode of trans-
portation. Because of the lack of relevant real-time information
such as whether a motor vehicle is electric or gasoline, or how
many people are sharing a subway car/bus/motor vehicle, we can
only offer high level methods for energy consumption estimates.
In future works, it may be possible to obtain better transit energy
estimates by incorporating various sensors or user feedback.

An energy footprint estimate for a user on the NYC subway
can be computed as the average energy of the entire NYC subway
system, divided by the average ridership (weekday or weekend) [1].

) Esubway

Esubwa =
y Rweekday/weekend

An energy estimate per kilometer for a user on a NYC bus is com-
puted as the energy consumption per kilometer over the average
number of riders per trip (Epkm is energy per kilometer) [1, 8].

Epkm

p bus

Epk bus ~ ridership
trips

Lastly, to compute the energy estimate per kilometer for a user
in a motor vehicle, we divide the approximate energy potential of
gasoline by the US average distance per gallon of gasoline (FE is
average fuel efficiency) [3].

Epkmecar

Epkmzcjar ==

FE
A summary of energy consumption estimates used in CityEnergy
are provided in Table 2.

6.2 Apportionment

Once an estimate for a building’s energy consumption and pop-
ulation are calculated, a user’s personal energy footprint can be
estimated by applying an apportionment policy. From [9], different
apportionment policies can be applied depending on the situation.
The simplest apportionment policy is uniform apportionment, such
that the total energy consumption is distributed uniformly over the
number of people. The energy consumption per capita for a typical
morning in Manhattan is shown in Figure 10b.
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Figure 10: Energy Footprinting of Manhattan on a typical weekday at 8 AM.
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Figure 11: System architecture block diagram.

6.3 User Applications

Mobile Energy Footprinting: To provide energy footprints and
other actionable feedback to everyday users, we developed a mo-
bile application for iOS. The application is responsible for sensing
location data, such as GPS and WiFi information, which is then
encoded and sent to the server. Once CityEnergy has localized the
user and determined an energy footprint estimate, corresponding
data is returned and displayed to the user in real-time. Screenshots
of the mobile application are shown in Figure 12.

City Planner Applications: We also plan to make public web
applications displaying city-wide information about energy and
population estimates at the block level, such as in Figures 4, 10a
and 10b. These tools can be useful for a variety of applications such
as transportation planning and energy planning.

7 EVALUATION

We conducted the evaluation of CityEnergy in three parts: energy
estimation, population estimation, and as a complete system.

PDATE SETTINGS

Location Update Rate 1 Minute
S 2 Daily Energy Footprint 15.2 kWh
Total Transit Time 17 Minutes
; 1
f
|
—
[
s =

Figure 12: Screenshots of the CityEnergy iOS application.
Left: User’s recent estimated energy footprint and location
trace. Right: Settings screen.

7.1 Energy Estimation

As described in Section 4, energy consumption is estimated by
passing building parameters through a trained regression model,
and downscaled to the hourly scale by using a model building de-
rived from the DOE Reference Buildings. To evaluate the energy
estimation pipeline, we evaluated in-sample estimation with dif-
ferent regression models. In addition, we gathered data from a few
representative buildings over two months to assess out-of-sample
estimation. Note that evaluation uses the logarithm of energy con-
sumption, as in [17].

7.1.1  In-Sample Estimation. We tested a few different machine
learning models in an effort to improve prediction accuracy. Support
vector regression, random forest, and linear regression models were



Energy and Population Estimation for City-Wide Energy Footprinting

BuildSys ’19, November 13-14, 2019, New York, NY, USA

Model In-Sample MAE | In-Sample MRSE | R? Model In-Sample MAE | In-Sample MRSE | R?
SVR 0.74 1.11 0.28 SVR 0.27 0.44 0.80
Linear Regression 0.77 1.06 0.34 Linear Regression 0.74 0.93 0.13
Random Forest 0.30 0.48 0.86 Random Forest 0.24 0.43 0.81

Table 3: In-sample mean absolute error and mean root
squared error of different machine learning regressors on
the Local Law 84 and NYC Housing Authority datasets.

trained on the Local Law 84 and NYCHA datasets using five-fold
cross validation. The mean absolute error and mean root squared
error for each model are shown in Table 3.

Model SVR Linear Regression | Random Forest
MAE | RMSE | MAE RMSE MAE | RMSE
Residential | 0.66 0.69 1.48 1.49 0.87 0.93
Commercial | 1.62 1.65 2.47 2.49 0.47 0.48
Retail 0.93 1.08 2.0 2.07 2.61 2.67

Table 4: Comparison of regression models for out-of-sample
energy estimation of four ground truth buildings.

7.1.2 Out-of-Sample Estimation. To evaluate the generalizability of
the trained energy regression models to the city-scale, we gathered
data from one residential building, one commercial building, and
one retail building over the course of two months. We generated
energy estimation traces for these buildings using CityEnergy, and
calculated the MAE and MRSE against the ground truth in Table 4.
As described in [17], linear regression can produce low MAE
for both in-sample and out-of-sample energy estimation; however,
in our experiments, support vector regression yields the lowest
MAE and MRSE. Although the accuracy is low (especially for com-
mercial buildings), the model can still provide reasonable energy
estimates at the city-scale. More complex models can be used to
further improve the accuracy of energy estimation in CityEnergy.

7.2 Population Estimation

To evaluate the population estimation in CityEnergy, we individu-
ally evaluate the subway estimates. Instead of evaluating vehicle to
population dynamics, we evaluate the total population estimates
on 5 ground truth buildings throughout New York City to assess
the correctness of the population models.

7.2.1 Subway. A regression model is trained for each subway sta-
tion on the previous six weeks of turnstile data. We tested three
different regression models to determine the best in-sample MAE
and MRSE, as shown in Table 5. From our experiments, random
forest provides the highest accuracy. Evaluation uses the logarithm
of the outflow and inflow populations.

7.2.2  Population Models. Finally, we evaluated the full dynamic
population pipeline. For 4 different buildings (two residential, one
commercial and one retail), we manually counted the number of
occupants in a building as ground truth. We combined the dy-
namic population estimates from the subway and motor vehicles
as described in Section 5.3, and scaled the total to account for the
remaining 33% from other transportation modalities.
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Table 5: In-sample mean absolute error and mean root
squared error of different machine learning regressors on
historical turnstile data.

Using our population model, we were able to achieve an MAE of
0.7 for the 4 test buildings. We found that the error varied greatly
depending on the type of building, time of day, and other factors.
Although the population models used were sufficient for CityEnergy,
we believe that covering additional modes of transportation and
increasing the existing models can produce a model with much
higher accuracy.

7.3 Energy Footprinting Estimation

The most important characteristic for CityEnergy is coverage; how-
ever, the energy footprint estimate should also be accurate enough
to approximate a ground truth energy footprint.

To demonstrate the potential accuracy of CityEnergy, we col-
lected a real energy footprint as ground truth. The real energy
footprint consisted of three building locations: one residential loca-
tion, one retail location, and one commercial building. The ground
truth energy footprint is collected as follows:

o In the residential location, personal energy footprint is deter-
mined using a set of plugmeters and light sensors to measure
the energy consumption.

o In the retail location, a camera was deployed to monitor
the building’s energy meter; the population was recorded
manually.

o In the commercial building location, a combination of plug-
meters, light sensors, and building management system data
was utilized to determine the personal energy footprint.
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Figure 13: Semi-log plot of the measured real-time energy
footprint of a user, and the energy footprint estimate from
CityEnergy.

A comparison of the ground truth energy footprint and the
CityEnergy energy footprint is shown in Figure 13. CityEnergy is
able to achieve a MAE of 1.7 kWh. For different buildings and dif-
ferent energy footprints, CityEnergy may achieve higher or lower
accuracy. However, better energy estimation and population esti-
mation models can help reduce error in future works.
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CONCLUSION

In this work, we present CityEnergy, a personal energy footprinting
system which uses energy and population models to provide cover-
age throughout an urban environment. CityEnergy can be easily
extended to other urban cities by interchanging available energy
and population data specific to the urban city. CityEnergy is, to
our knowledge, the first system to address the problem of personal
energy footprinting at the city-scale without relying on building
specific energy and population monitoring deployments.
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