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GENERAL SUPERPOSITIONS OF GAUSSIAN BEAMS
AND PROPAGATION ERRORS

HAILIANG LIU, JAMES RALSTON, AND PEIMENG YIN

ABSTRACT. Gaussian beams are asymptotically valid high frequency solutions
concentrated on a single curve through the physical domain, and superposition
of Gaussian beams provides a powerful tool to generate more general high
frequency solutions to PDEs. We present a superposition of Gaussian beams
over an arbitrary bounded set of dimension m in phase space, and show that
the tools recently developed in [Math. Comp. 82 (2013), pp. 919-952] can

N_d-m
be applied to obtain the propagation error of order k=2~ "7, where N is
the order of beams and d is the spatial dimension. Moreover, we study the
sharpness of this estimate in examples.

1. INTRODUCTION

In this paper we investigate issues related to the accuracy of Gaussian beam
approximations to high frequency wave propagation. This is related to recent results
on Gaussian beam methods in [5-11,13]. Our model equation is the acoustic wave
equation

(1.1) Pu = d%u(x,t) — c(x)*Au(z,t) =0, (z,t)e I x
where ¢(x) is a positive smooth function. The initial data are given by
(1'2) (u(m, 0)’ 6tu(x7 O)) = (Bo(l‘), kB (x))eikso x)’

where k£ > 1 and V.Sy # 0, so that the data are highly oscillatory. Propagation
of high frequency oscillations leads to mathematical and numerical challenges in
solving wave propagation problems.

We study the errors which arise when one approximates solutions to the initial
value problem (1.1) by superpositions of Gaussian beams. Our starting point is [9],
and we refer the reader to it for more references to earlier results on superpositions
of beams. In addition, some recent effort has also been made to extend the Gaussian
beam method to more complex settings such as symmetric hyperbolic systems with
polarized waves [3], the Schrodinger equation with discontinuous potentials [4], and
wave equations in bounded convex domains [1,2].
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676 HAILIANG LIU, JAMES RALSTON, AND PEIMENG YIN

To compare the results in [9] with what we do here we need to recall some
conventions. For a Gaussian beam

’U(Q?,t) = (ao(;(;,t) + k—lal(:&t) 4+ 4 ]{;_Pap(x7t))eik¢ x,t)

we say that v is an Nth-order approximation to a solution of Pu = 0 when the
sequence of equations (from geometric optics) L;(z,t) =0, j = 0,1,..., holds to
order N + 2 — 25 on the central ray path, where
p+1
[Pv](z,t) = e®¢ ™D N "R L(, ).
§=0
Analogously to [9] we use superpositions of the form

m

(1.3) ugp(x,t) = k:?/ v(z,t; Xo)dXo,
Ko

where Ky is a submanifold of dimension m in phase space that does not intersect
{(z,p) : p =0}, and the central ray for v(z, t; Xo) has initial data (x(0),p(0)) = Xo.
In this paper we are considering superpositions over submanifolds of 2d-phase space
of dimension at most d. Finally we use the unscaled energy norm

1 _
il =5 [ e @0l + V.l do

in place of the scaled energy norm in [9] which has an additional factor of k~!.
With these conventions the principal result of [9] becomes the following.

Theorem 11 ([9]) When u(z,t) is the exact solution to Pu = 0 with the initial
data of the superposition ugp of Gaussian beams of order N over a compact subset
Koy of dimension d in ¢ the error estimate

(1.4) lu(-t) —uen (- t)l|p < C(T)K N2
holds fort € [0, T].
In this note we extend that to the following.

Theorem 1 2 With the hypotheses in Theorem 1.1
(1.5) lu(-,8) = ugn (-, 1)||p < C(T)k' N2 mm/
when Ky is a bounded domain in phase space of dimension m.

Comparing Theorems 1.1 and 1.2 one sees that Theorem 1.1 is the special case
where Kj is a domain in % and hence m = d. In Theorem 1.2 the initial data is
not restricted to the “WKB  form in (1.2). In this paper we will always use super-
positions of the form (1.3) with beams that have leading amplitudes independent
of k. Later in this paper we sometimes fix the dependence of the error on k by
dividing by the energy norm of the initial data. The decrease in the error becomes
faster as m decreases. This might be counterintuitive, but it is consistent with the
results in §5 of [9] where for a single first order beam (N = 1 and m = 0) in 2
dimensions

lu(-t) —uap(t)|le < C(T)K
in the unscaled energy norm above.

Theorem 1.2 is sharp in some cases. In Section 4 we give an example with d = 3,
m = 2, and N = 1, where the error as a function of k decays no faster than the
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GAUSSIAN BEAMS 677

rate in (1.5). However, the initial data in this example is not of the form (1.2). A
question that was left open in [9] is whether (1.4) is sharp for data of that form.
Numerical evidence in [9] suggests that it is sharp when N is even, but that when N
is odd the exponent on k should be decreased by 1/2, giving a faster decrease in the
error as k increases. There are partial results on this conjecture. For superpositions
of first order beams (N=1) for the semiclassical Schrodinger equation a proof of the
faster decay of the error in L? is presented in [13],! based on ideas from [12].

For both the wave equation and the semiclassical Schrodinger equation, in [11]
the authors show that, away from caustics, the error has, uniformly, the faster decay
rate in the maximum norm. However, close to caustics, their estimate degenerates.

This paper is organized as follows: In Section 2 we derive a lower bound on
the error for approximation by beam superpositions using energy conservation. In
Section 3 we prove Theorem 1.2. In Section 4 we construct the example mentioned
above. In Section 5 we construct a superposition with N = 1 for the acoustic wave
equation with initial data of the form (1.2) that develops a focus caustic at the
origin. In a numerical study of this example we see the faster decay in the error
conjectured in [9]. In Section 6 we construct an example in two space dimensions
which develops a fold caustic on the unit circle. Here we again see numerically
the faster decay conjectured in [9] in the energy norm, but in the maximum norm
the decay is slower at some times. Section 7 is concerned with initial asymptotic
rates shown by the construction of various examples. These examples illustrate the
initial data that can arise from superpositions of the form (1.3) and their respective
energy norms. Some final remarks are given in Section 8.

Notation. Throughout this paper, we use the notation A B to indicate that A can
be bounded by B multiplied by a constant independent of the frequency parameter
k. A~ Bstands for A Band B A.

2. ENERGY CONSERVATION AND LOWER ERROR BOUND

Error estimates for Gaussian beam superpositions are based on the well-posed-
ness of the underlying equation. For an equation of the form

(2.1) Pu=0,
we recall the well-known results here (see, e.g., [9]).
Theorem 2 1 Let u be an exact solution of the wave equation (2.1) and let v be an

approximate solution of the same problem; then we have the generic well-posedness
estimate

(2.2) [(w = v)(t2)lls < [l(w—=v)(- ta)lls +qu/t 2 [Po(, 7) | L2dT.

These apply to both
e the wave equation with P = 07 — c*(x)A ¢ =0 and || - |5 is the energy
norm

1/2
lu(, e = (% /d C(;[;)_2|6tu($,t)|2 + \Vmu(w,t”?) dx)

1Zheng s method can be applied to estimate errors in Gaussian beam approximations for the
acoustic wave equation in the 2 and energy norms. This is consistent with the results in Tables
2 and 4.
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678 HAILIANG LIU, JAMES RALSTON, AND PEIMENG YIN

e and the Schridinger equation with g =1 €= %

€2
P = —ie@t + EA

and || - ||s is the standard L? norm.

The lower bound on approximation errors is a consequence of the conservation
law

(2.3) [ul-st2)lls = [luC- t)lls Vi, ta.

Theorem 2 2 Let ugp be a Gaussian beam superposition and let u be an exact
solution of Pu = 0. Assume that for some a > 3 > 0 there are times t; and ty and
positive constants C, ¢ such that for k> 1

Ok > l(u— ug) (- 1)ls and [|(u — uap) (- t2) s > ok ™;
then there are exact solutions wy and we and a co > 0 such that

(w1 —uep)(t)lls = 0 and || (w1 —ucp) (- t2)|ls = cok™”
and

(w2 —uar)(,t1)|ls > cok™ and ||(wa — ugp)(-,t2)lls = 0
for k sufficiently large.

Proof. Let wy(z,t) be the exact solution with data at ¢ = ¢; that agree with the
data of ugp(z,t) at t = t1. By (2.3) we have

[(w—w1)( t2)|ls = [(u—wi)(z, t1)|ls = (v —ueB) (- t1)|ls < CE™".
It follows that

lucs (-, t2) —wi(-t2)lls > [lugs (-, t2) —ul(- t2)|ls — [Jul:, t2) —wi(-, t2)|s
> kP — Ck™°.

For the other case, we argue in the following manner. Let ws(z,t) be the exact
solution with data at ¢ = t that agree with the data of ugp(x,t) at t = to. By
energy conservation we have

(= w2) (-, t1)lls = l(u — w2)(z, t2)lls = [I(u —ueB) (-, ta)||s > ck™’.
It follows that

lucs(,t1) —w2(-,t1)lls > [|u(- t1) —wa(, t)lls — lugs (- t1) —u(-, t1)lls
>ck™P —Ck™°.

O

Remark 2.1. This result may be used to identify the source of accuracy loss of the
Gaussian beam superposition or other types of approximate solutions.
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3. PROPAGATION ERROR OF (GAUSSIAN BEAM SUPERPOSITIONS

Let Ky be an arbitrary bounded set in phase space with dimension m. Given a
point Xy € Ky, we denote the Nth-order Gaussian beam as v(z,t; Xo). If we let
X range over K, we can form a superposition of Gaussian beams,

(3.1) ugp(z,t) = km/2/ v(z, t; Xo)dXo,

Ko
as an approximation to the exact solution for wave equation (2.1) with initial data
ugg(x,0).

We recall that the general form of the Nth-order Gaussian beam defined in [9]
is

[N/2]-1
v(z, t; Xo) = Z k™I py(x — 2(t; Xo))a;(t, x — z(t; Xo))ethe be—e t:Xo))
j=0
where p,(-) > 0 is a smooth cutoff function satisfying poc = 1 and

_ L1 =,
pn(z)—{o 12| > 21, 0<n<oo.

In this construction the parameter 7 is chosen as 7 = oo for the first order super-
position and it is taken small enough to make Im(¢(t,y)) > d|y|? for t € [0,7] and
ly| < 29 for higher order superpositions. For first order beams,

1
Ot,y) = S(t: Xo) + plt; Xo) -y + 5y - M(t; Xo)y,
associated with the first several ODEs defined by

&= aPH(va)’ p= —azH({E,p), (x(O),p(O)) = Xo,
S=p-0,H(x,p)— H, 5(0) = S(0; Xo),
M= —0:H — MO2,H — 0}, HM — MO} M, M(0) = M(0; Xo).

For equation (1.1), H(x,p) = =zc(z)|p|, for which two wave modes need to be
included in the superposition. We assume that Ky does not intersect {(x, p)| p = 0}.
No such assumption is needed for the Schrédinger equation with H(z,p) = %|p|2.
These construction details will not be used in our error analysis, but may be helpful
as a reference for reading examples constructed in Sections 4-6.

We now state the main result of the propagation error for superposition (3.1).

Theorem 3 1 Let ugp be the Gaussian beam superposition defined in (3.1) based
on Nth-order beams emanating from a compact subset of the m-dimensional man-
ifold Ko in phase space and let u be the exact solution to Pu = 0 subject to the
initial data ugp(x,0). We then have the following estimate on the propagation
error:

(3-2) lugs —ulls KN/ 4

where m is the dimension of the domain on which initial beams are sampled and d
is the spatial dimension.

Remark 3.1. Note that operator P is initially defined in (1.1), but also used for
Schrédinger operator in Section 2. This theorem includes the proof of Theorem 1.2,
but it is also valid for the Schrédinger equation due to the basic estimate (2.2) and
the estimate of || Pugg|| to be carried out in this section.
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We proceed to complete the proof of this theorem by following the general steps
as in the proof of [9, Theorem 1.1]. The main difference here is that the initial set
K can be rather arbitrary in phase space. The way that distance between beams
is measured must here be allowed to vary smoothly with the beam’s initial point in
phase space.

Before we outline the proof of the above result, we present a result, which shows
that the accuracy of the initial approximation can be treated separately.

Corollary 3 2 Let ugp be the Gaussian beam superposition defined in (3.1) based
on Nth-order beams and let u be the exact solution to Pu = 0 subject to a given
initial data u(z,0); then

(3.3) lugs () = u( s lluan(-0) = u(;,0)|s + k' =N/ d=m/4,

Proof. Let w be another exact solution with initial data ugp(z,0); then we have

d—m
luar (1) —w(t)|s kN2

The energy conservation tells us that

||u('7t) - w(-,f)Hs = Hu(v 0) - w('= O)”S = ||u('7 0) - uGB('7 O)HS‘
These combined with the triangle inequality

luas (1) —u(-t)lls < flu(- ) —w(- D)lls + [ues(-,t) —w(- )]s
lead to (3.3). O

In this section, we focus only on the residual error, where the residual can be

written (following the notation of Liu, Runborg, and Tanushev [9] and Liu, Ralston,
Runborg, and Tanushev [10]) in the form

(3.4) Pugp = k™/? / [Pu(z,t; Xo)]dXo,
Ko
where Pu(x,t; Xo) is a finite sum of terms of the form
fap =K g(z,t; Xo)(z — 7) e™® #6X0) 4 O(k™),
with bounds
1Bl <N +2, 2j <2- N+l

Here g is smooth and supported or at least bounded on

and ¢ is the Nth-order Gaussian beam phase. Here 7 is chosen as a small number
for first order beams, but can be taken as n for higher order beams. Moreover,
O(k~°°) indicates terms exponentially small in 1/k. After neglecting these terms
and using (3.4) we can bound the L? norm of Plugp] by

2
2-N+|B|
||P[“GB]||2Lg ka/K k™2 ek¢g(x—7)5dX0
0

L3

km+1—N/ / / I(t,z, Xo, X{)dXodX}dz,
4 JKo J Ky
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where the term I is of the form
I(w,t, Xo, Xg) = k' Hlethy w0X0.X0) g (a4 X§)g(x, t; Xo)
x (@@=’ @-v)", 1Bl<N+2

Here

(3.5) O(x,t, Xo, Xp) = bz, t; X{) — o(x, t; Xo).
The function g and its derivatives are bounded, for 0 <t¢ < T,
(3.6) sup 107 9(x,t; Xo)| < Ca.

Xo€EKo,zeQ 7;X0)

The rest of this section is dedicated to establishing the following inequality:

/ / / I(e,t, Xo, X)dXodXjdz|  K=0/27m/2]
gKO Ko

With this estimate we have

(3.7)

1_N/2_d=m
e

I1PlucslllLz

which together with the well-posedness estimate (2.2) leads to the desired estimate
(3.2).

Lemma 3 3 (Non-squeezing lemma) Let X = (z(t; Xo), p(t; Xo)) be the Hamil-
tonian trajectory starting from Xo € Ko with Ko bounded. Assume that X (0; Xo) €
C?(Ky). Then

(3-8) [ Xo — Xo| ~ |X(t, Xo) — X(t, Xo)| VX0, X € Ko.

The non-squeezing lemma [9] says that the distance in phase space between two
smooth Hamiltonian trajectories will not shrink from its initial distance. Here one
may take any [P distance since from X — X’ = (x — 2/,0) + (0,p — p’) we have

d(X,X') < d(z,2") +d(p,p').
We recall some main estimates from [9] for proving (3.7).
Lemma 3 4 (Phase estimates) Let 7 be small and x € D(1, Xo, X{;) with
D(ij, Xo, Xg) = Q(77, Xo) N Q7 X;)-

e For all Xo, X, € Ky and sufficiently small 7 there exists a constant §
independent of k such that

S (w,t, Xo, X¢) > 0[]z —+* + |z — 7"
o For |y(z,t; Xo) — y(z,t; X{)| < 0] Xo — X{)|
Vaotp(,t, Xo, Xg)| > C(0,7)| X0 — Xol,

where C(0,7) is independent of x and positive if 0 and 7 are sufficiently
small.

Decompose I as
I(x,t, X0, X() =11 + I,
with
I; = x;(x,t, Xo, XO)I (2, t, Xo, X4), X1+ x2 = 1,
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where x;(z,t, Xo, X)) € C™ is a partition of unity such that

1 when ‘V(IathO) - ’Y(l’,t,Xé” > 0|X0 - X6|a

3.9 ,t, Xo, Xp) =
(3.9 xu( 0, Xo) {0 when |5(z, ¢, Xo) — y(z, t, X})| < 10X — X{|.

We first estimate I7, which corresponds to the non-caustic region of the solution

/ / / Il(l‘,t,X(),Xé)dXQdX(l)dI
4 JKo /Ko
k1+w|/ / / x|z — |18 | |18l =5k la=r12 42~ ) gpa Xy d
Ko JKo D 1,X0,X,)
= o=y P+l |?) /

k xie Z dzdXodX,

Ko /Ko /D 1,X0,X,)
k/ / / yie~ T |z *+Hlz—y [?) o= Iy = 2 dzdXodX/,

Ko /Ko /D 1,X0,X,)

k/ / e*%GQIerXoP/ e~ % ety ) grax,dx;,.
Ko J Ko D 7,X0,X,)

Here we have used the fact that |y —+/| > 0| X — X{| on the support of x;. For
the inner integral over D = Q(7; Xo) N Q(7}; X{), we have

/ o=k o=z =y ) gy,
D 7},X0,X,)

< / % \w—vlz)dx/ o= lo= ) gy
Q 7;Xo) Q 7;X,)

k42,

Il =

1/2

From this it follows that
(3.10) 7|k HW/ / e FOIXo=Xol® gx0dX).
Ko J Ky

Letting A = supy, x ek, [Xo — X[ < oo be the diameter of Xo, we have

T kHV?/ / e FOIXo=Xol® g dX}
Ko J Ky

- 1 _kseZ 2
k2 d)/2/ Fm 1e 5T dr
0

pl—d/2—m/2
which concludes the estimate of 7.

In order to estimate Zo we use a version of the non-stationary phase lemma.

Lemma 3 5 (Non-stationary phase lemma) Suppose that u(z;() € C§°(Q x Z)
where Q and Z are compact sets and (x; () € C*°(O) for some open neighborhood
O of Q x Z. If Vo never vanishes in O then for any K =0,1,...

ik a;C) - |0 u(z; ¢ —kSY ;0)
/Q u(x; Qe Jdz| < Crk™ Z /Q|Vx1/) OPR- i © dx

la|<K

where Ck is a constant independent of (.
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We now define

IQ = / IQ(.’E,t,XQ,X(I))dJ?
d

x

= kP / Xae' DX X gt Xg)g(a,t; Xo) (z — 7)) (z = o") da.
D 7.X0.X,)

Non-stationary phase Lemma 3.5 can be applied to Zy with ¢ = (Xo, X{)) € Ko x K
to give

|Z5| LiIBl=K Z / |83 [({E - ’)’)f@(x — 7/)BX29/§] | Sk X
D #XoXy) |Vato(t,x, Xo, Xp)[2E 1o
1
(X0 = X0 V/y2E—Tal

loe| <K
kl_d/2

lo| <K

On the support of x2 the difference | Xy — X{| can be arbitrarily small, in which
case this estimate is not useful. Following [9], we use the fact that the estimate is
true also for K = 0 so that Z, can be bounded by the minimum of the K = 0 and
K > 0 estimates. Therefore,

1

|Z,| k%2 min |1, R Tal
i<k (1Xo = Xg1VR)

klfd/Q
—
1+ (|X0 - X6|\/E)

Finally, letting A = supy, x ek, [Xo—Xg| < oo be the diameter of Ko, we compute

_ 1
/ / T dXodX), k= —dXodX}
Ko J Ko Koxo 1 4 (1 — X§|VE)

5_d 1

kT/ — 7 ldr
o 14+ (rVEk)K

2—d—m o0 m—1

k2 d
/0 1™

2—d—m
k2

)

if we take K > m. This shows the Z, estimate, which proves claim (3.7).

4. EXAMPLE OF A GAUSSIAN BEAM SUPERPOSITION

Let r = |z|, * € 3. Then for any smooth function f,

u(z,t) = (f(t =r) = ft+r)/r
satisfies 92u = Au. Take f(r) = exp(—ikr — kr?/2)/k. Then

U(l’, O) = 27;S1nk(7f7‘)e—kr2/2 and atu(x, 0) =92 <M + COS(kT)) e_kT2/2~
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The exact solution here is a highly oscillatory spherical wave which concentrates on
r=|t|as k  oo. The Cauchy data of this solution at t = 0 can be approximated
very well by a superposition of Gaussian beams.

Note that
/ sk g :47T51n(kr)
S2

kr

since the integral is a radial solution of Aw + k?w = 0, which equals 47 at z = 0;
then we have

u(a:,O):/ v(x,0; )d

S2

where

(4.1) v(z, 0; ):QLexp(m- — k|z[2/2).
v

Let us approximate u(x,t) by a superposition of beams

UGB(J?,t):/S2 v(x,t; )d .

Hence ugp(z,0) = u(x,0). It will turn out, somewhat surprisingly, that d;ugp(z,0)
is very close to dyu(x,0). In fact, the first order Gaussian beam can be explicitly
given as

v(z, t; ) =a(t)er? »t ),
where
1+t

st Y=o~y (o0 0P+ gl - ),

and 2ma(t) = i(1 +it)~1. Note that 9,v = (ikO;pa + 0,a)e™*?, so

L) — k : 1 2 2 LY ik —k|z|?/2
o000 )= g (1ine + 5ol =@ )+ e .
Now we can compute
Orugp(x,0) = Opv(x,0;k, )d
S2
ko d 14 1 / -
e T 1 _ _ - ikx )
o <+dk+ Toae Tw) f.e
Using
d o cos(kr)  sin(kr)
= ike —4 _
T ”( K K2r )’
we have
sm(kr cos(kr) sin(kr), 72 sin(kr)
at“GB“TO%( kr PR e s
1d (cos(kr) sin(kr) sin(kr)\ _j2/0
ok ( 2 ) T e )¢
k in(k
n(kr) +cos (k) — cos](f ) n 51111(2:)))6”2/2.
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Note that the first two terms in that expression equal dyu(x,0). To estimate the
data we use the standard energy norm ||(u, diu)||% = [ 5 |0pul® +|Vul?dz. In that
norm the difference of the initial data satisfies

|[(u(0), 2:u(0)) — (ur(0), Bucr(0)||r ~ k=74, but [|(u(0), du(0))||s ~ k~1/4.

So the relative error in the initial data is O(k~3/2).
Now we get to the main point: How large is u(x,t) — ugp(z,t)? We need to
compute
i .
= — ik x,t; )d
uen(®) = o /Sze
Introducing spherical coordinates so that - = |z|cosp and d = sin pdpd¢ with
the domain of integration 0 < p < 7 and 0 < ¢ < 27 and setting |x| = =, this
becomes - after substituting s = cosp

- 1

7 .

ugp(w,t) = 1 —i—it/ etk ) s,
-1

where
¢(s) = [rs —t +tr?(2+26%) 71 (1 = s%)] + %[(rs — )2+ (142711 - 5?)].

Note that, for ¢ > 0, the real part of the exponent in the integrand is strictly
negative unless s = 1 and r = t. Moreover, for ¢t > 0 and r in a sufficiently small
neighborhood of ¢ the maximum of the real part of exponent for —1 < s < 1 is
assumed at s = 1. So we can find ugp(z,t), up to terms of order k=te=* "’t)2/2,
by using the leading term in the integration by parts expansion: Choosing p with
support near s =1 and p(1) =1,

1 1 ik 1) 1
ik ) _ d ey PS) e B ikqsi( p(s) >
/_16 p(s)d“/_l 5 k)™ = kW /_16 ds \iké/(s))

One continues this expansion by repeated integration by parts. In particular, the
integral term on the right is O(k=2e~* 7=9°/2). Since ¢(£1) = +r —t +i(r F 1)2/2
and

1 1 1+ ¢
JQ) 7 (1—z't+(r—t)(—t+z't2)) ’
hence for t > § > 0 and r close to t,
ik 1) 1

i 7 — 1 —k r—t)2
UGB(x,t)—U(%t):m—ﬁ(eml)—ew 1))+O(ﬁe ki) /2>

_ 1 t(r—1) ik r—t)—k T—1)2/2 L hr—n?)2
_k:r<1+t(t—r))e O 3z¢ '

At this point we want to obtain a lower bound on |lugp(-,t) — u(-,t)||g. The
dominant terms in the first derivatives of ugp(-,t) — u(-,t) come from the factor
exp(ik(r — t)) and bring down a factor of k. So, letting s = r — ¢, this leaves a
dominant term which is a non-vanishing multiple of se~ks®/ 2 and hence has L?
norm bounded below by a multiple of £~3/4. That implies ||ugp(-,t) — u(-, )|z ~
k—3/4. However, here the Gaussian beam superposition is missing a factor of k
compared to Theorem 1.2. Hence this example shows that Theorem 1.2 is sharp
whend =3, m=2,and N = 1.
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5. AN EXAMPLE FOR THE 3D ACOUSTIC WAVE EQUATION

This will be the construction of a Gaussian beam superposition for the initial
value problem

(5.1)  9*u—Au=0, u(zx,0) = a(|z])e*®l du(z,0)=0, (z,t)e 2x .,

x

where a(r) = 0 in a neighborhood of r = 0. From here on |z| = r will be used.
The exact solution to this initial value problem is

u(r,t) = %(f(t—&—r) — f(t—r)) where f(s) =
extended to by f(s) = —f(—s). Note that for ¢t > 0
AR (Gd))

r
and the solution has a strong peak at r = 0, when ¢ is in the support of a. We want
to see the effect of this caustic.

Following the “standard procedure for first order beams, the Gaussian beam
superposition will be

sa(s)

iks
e
2

u(0,t) = lim,. = (ikta(t) + a(t) + ta' (t))e™*,

1\ 3/2 4 ' -
(52) UGB (.’177 ﬁ) = (2_) / A+ (t; y)ezk<b+ z,t;y) + A (t, y)e’tk‘i’ ac,t,y)dy,
™ 3

where &1 (z,0;y) = & (2,0;y), P"(x,0;y) = —0; P (,0;y), and AT(0;y) =
A~ (0;y). So we have two families of Gaussian beams

Ui (l‘, t; y) — Ai(t; y)eikfbi x,t;y),

where both phases ®* are based on the initial phase S(x) = |z|, but the v* are
concentrated on the rays (z(t),t) = (y £ty/|y|, t); see, e.g., [7, superposition (3.1)].

From here on we will often use y = s , | | = 1. Again the standard construction
gives

1
O ty) = Fh sl (s£0) ) M(Ety)e— (s£1) ),

where M (0;y) = (1/|y|)P + +¢I and O;M + MP .M = 0. Here I — P . is the
orthogonal projection on the span of . A modest amount of computation shows

M(t;y) = b(t;s)P o+ +il,

where T
b(t;s):M.
(s+ist+1)
So
N .
ot (2, ty) = a- :Ft+b(2ﬂ(|x\2_(x. )2)+%(|:z:|2—2(s:|:t)x- +(s£1)?).

The amplitudes A* are given by
A*(t;s) = _a(;) (1£t(s™t+i))~ "

Since = appears in v* only as |z| and x - , we have ugg(x,t) = w(r,t). This can
be seen by integrating in spherical coordinates. Also dugp(x,0) = 0.

Now we need to determine the order of ||u(-,t) —ugp(,t)||z. The contributions
to ugp from [ AT (t;y) exp(ik®" (z,t;y))dy will be concentrated at z = (¢t +s) ,
and, since s > 0 and we consider ¢ > 0, they will be negligible near x = 0. Hence

This is a free offprint provided to the author by the publisher Copyright restrictions may apply



GAUSSIAN BEAMS 687

we will omit that term from all formulas from here on. Let v = = cos(). While

this is undefined at = = 0, substitution of v for 6 in (5.2) leads to an integral in
spherical coordinates that is well-behaved as * 0. Namely,

3/2 o0 1
ugp(z,t) =27 (2—> / A (¢, s)sts/ dv exp(ikCrv — ik Dr?v?)
™ 0 -1

(5.3) x exp(ik(t + Dr?) — k(r? + (s — t)?)/2),

where C = 1—i(s —t) and D = b(—t, s)/2. Presumably one could evaluate this
formula further, but that is a daunting calculation. Instead we offer the numerical
results in the next section.

5.1. Numerical results In this section and in the numerical results in Section 6.1
we will use relative norms to estimate errors, i.e., norms scaled by the corresponding
norm of the beam superposition. In these examples that has the effect of decreasing
the power of k in the energy norm by one, and leaving the power unchanged in the
L? norm, but Example 5 in Section 7 shows that this does not always happen. Since
the energy norm of the initial data is of order k£ in both cases and m = d, Theorem
1.2 predicts a relative error of order k~'/2 for first order beams. We will see that
the actual error is numerically of order k=1 as conjectured in [9].

We take a(s) = 4(s —rg)*(s —rq1)* for 7o < s <713 a(s) = 0 otherwise, here 1o =
0.1, r1 = 1.0. The evaluation of (5.2) is done using 80 x 80 meshes of [rg, r1] x [—1,1]
and 52 = 25 quadrature points in each element using the reduced integral (5.3) and
its counterpart with ¢ replaced by —t. At the focus x = 0, the results are reported
in Table 1, in which the errors are calculated by ep = |u — ugg|/|ucsl|, and the
orders of convergence are obtained by

Eoczlog2<e’“).

€2k

(5.4)
We also test the energy errors and orders of convergence at some ¢ in (0,1).

TABLE 1. 3D Gaussian beam single point errors and orders of convergence.

; k=320 k=640 k=1280 k=2560
error error order error order error order
0.4 | 0.109724 | 0.064004 | 0.78 | 0.0347248 | 0.88 | 0.0177462 | 0.97
0.55 | 0.0820207 | 0.0420894 | 0.96 | 0.0213659 | 0.98 | 0.0118253 | 0.85
0.7 | 0.0822853 | 0.0418797 | 0.97 | 0.0211195 | 0.99 | 0.0102407 | 1.04
The error in energy norm is calculated by ex = ||u — u||g/|uxl| =, with ||v]|% =

3 [ s lue|*+|Vyul|?dz, evaluated over the ball of radius 7 +t. The errors and orders
of convergence using (5.4) are reported in Table 2. The numerical results with the
gain in the order of convergence agree with the above asymptotic estimate.

The mechanism that leads to a relative error of order £~! in this example is prob-
ably the cancellation of terms of order k~!/2 in the Gaussian beam superposition
n (5.3). This is the result of the spherical symmetry in this superposition.
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TABLE 2. 3D Gaussian beam energy errors and orders of convergence.

k=320 k=640 k=1280 k=2560
error error order error order error order
0.4 | 0.111507 | 0.0671302 | 0.73 | 0.0354353 | 0.92 | 0.0185048 | 0.94
0.5 | 0.0716308 | 0.0388652 | 0.88 | 0.0193636 | 1.01 | 0.00994688 | 0.96
0.55 | 0.0825064 | 0.0429692 | 0.94 | 0.0213441 | 1.01 | 0.0108103 | 0.98
0.7 | 0.0834459 | 0.0427814 | 0.96 | 0.0211234 | 1.02 | 0.0106206 | 0.99
0.8 | 0.0458945 | 0.0242241 | 0.92 | 0.0100285 | 1.27 | 0.0053213 | 0.91

6. A 2D EXAMPLE WITH FOLD CAUSTICS

This section is devoted to the construction of a Gaussian beam superposition
with fold caustics for the 2D acoustic wave equation

(6.1) Oy i= 07u — Au = 0.
Let us consider a Gaussian beam superposition with ray paths given by
(z1(£:0,5), 22(t3 6, 5)),
where
z1(t;0,5) = V2cos(0 + 7/4) + (t + s) sin(6),
z9(t;0,5) = V2sin(f 4 w/4) — (t + s) cos(h).

These rays are tangent to the unit circle at (z1, z2) = (cos 6, sin §) and propagating
in the direction of the tangent (sin@, — cosf). That defines the parameter . The
parameter s is distance along the ray path, chosen so that s = 0 on 2% + 23 = 2
and s = 1 on 2% + 23 = 1. More precisely the relation between r and s is (by the
Pythagorean Theorem)

1+ (s—1)*=r?

ors=1—+vr2—1fors<1land s=14+r?2—1for s > 1. The phase function
associated with these ray paths, which was complicated in euclidian coordinates, is
quite simple in (6, s). It can be chosen as

S(21(0;0,8),22(0;0,8)) = —0 + s,

defined for 0 < s < 1, and —7 < 6 < w. The function exp(ikS(x1,x2)) will be
single-valued on the annulus bounded by the circles of radius 1 and v/2 only when
k is an integer. In the numerical examples we will take & to be an integer.

The Hessian of S(x1,x2) has to be a multiple of the orthogonal projection
P+ onto (cos®,sin@), the vector perpendicular to the ray path. We find that
at (21(0;6,s),22(0;6,s)),

(82 S 9?2 S’)_ 1 < cos? 6 cos@sin@)_ 1

121 122 - 5 _
s—1 \ sinfcosf sin® 6 s—1

92,8 2.9

12 22

PL(8).
The Hessian of the phase in the Gaussian beam, M(¢; 6, s), has to be given by
M = a(t,s)P(0) + b(t,s)PH(0),

where P =1 — P, 8,a =0, 8;b+b*> =0, and (a(0, s),b(0,5)) = (i,i + 1/(s — 1)).
So the Hessian of the phase is a lot like the Hessian in the 3D example. In fact,
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we have
bt s) = b(0,s) i+1/(s—1) _ 1+i(s—1) '
’ 14+tb(0,s) 1+it+t/(s—1) t+s—1+it(s—1)
The next step in the construction would be to find the amplitude, but for that one
needs the phase. That is,

d(x,t;0,8) = —0+ s+ (x —x(t;0,5)) - (sinf, — cos 9)

+ %(w —x(t;0,5)) - M(t;0,s)(x — x(t; 0, 5))

=—0—t+1+4+z-(sinf,—cosh)

+ %(m —x(t;0,5)) - M(t;0,s)(xz — x(t; 0, 5)).

That comes from formulas (1.5) and (1.6) in [9] with one small observation: the
function ¢g(t; z) with z = (6, s) does not depend on t. You can see that from the fact
that since the Hamiltonian H is homogeneous of degree one in p, &(t; 2) - p(t; 2) =
H(t,x(t; z), p(t; 2)), which forces éo(t; z) = 0 (see also equation (3.10c) in [11]).

Continuing, we have 9,¢ = —1 and O, ;¢ = —b(¢, s) when x = x(¢; 6, s). So the
solution of the transport equation, 24;¢; + (0y1¢)A = 0 is just

A(t; 0, 5) = A(0; 0, 5)(1 4 tb(0; 5)) /2.

So the complete Gaussian beam superposition will be

1 2m
(6.2) ugp(z,t) = %/0 ds/0 A(t; 0, s)ett® ©49:9) (1 — 5)de,

where 1 — s is the absolute value of the Jacobian of (x1(0;0,s),z2(0,0,s)) with
respect to (0, s). The contributions from beams built with the other choice, 8;¢ = 1,
propagate away from the disk {|z| < 1} as ¢ increases, and are negligible near the
caustics on the circle. Hence we have omitted those contributions from all formulas
and numerical results below. In the next section we will examine the accuracy of
the method numerically.

6.1. Numerical results In addition to estimates of accuracy in the energy norm,
we will also give numerical estimates in the maximum norm. The results in [11]
restricted to first order beams with O(1) initial data show that ||ugp(t)—u(t)||f <
Ck~! away from caustics; see [11, estimate (6.1)]. For domains including caustics
[11] gives the weaker estimate ||ugp(t) —u(t)||z~ < k'/2, and these estimates hold
in relative norms well. Our numerical results in Table 3 show that at caustics the
order of error is
lu = wrl|poe < Ok~ Vfu(-, 0) ] L

with «a(t) varying in (0.5,1). We see that the numerical order of error near caustics
is greater than the error away from caustics but much smaller than the bound in
[11].

We consider the 2D acoustic wave equation (6.1) on [0,7] x €, where Q =
[-L/2,L/2)? with L = 4, subject to initial data (u, du)(z,0) = (ugs, dugs)(z,0)
and periodic boundary conditions. For the Gaussian beam superposition (6.2) we
take initial amplitude

) _f (s—s0)%(s —s1)%, 80 < 8 < s1,
A(0;0,s) = { 0 otherwise,
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which is supported on 1+ (1 —s1)? < 22 + 22 < 1+ (1 — s0)? for sg,51 € (0,1),
since 1+ (s —1)2 = 2.

We use the fast Fourier transform to approximate the “exact solution , and
use it to determine the errors in the Gaussian beam superposition. For K large
enough, say K = 1024, we partition 2 by a uniform rectangular mesh Q =
[~L/2:h:L/2—h)? with h = L/K. We obtain the “exact solution and its
derivatives numerically using Matlab 2018a in the following steps:

e Step 1 (Initial preparation). We calculate the integrals in the Gaussian
beam superposition ugp(z,t); more specifically ugp(x,0), (ugp):(z,0) us-
ing integral with absolute tolerance 1078,

o Step 2 (Fast Fourier transform). The Fourier transform of (6.1) gives

OFu =i*(k? + K34,
(6.3) u(0) =t (K1, k2,0),
3t17(0) :(8{114/6—7‘\3)(’4!17 K2, 0)5

where (r1,/2) € [22(0,1,---,K/2—1,—K/2,—K/2+1,---,—1)]* is
adopted in the fast Fourier transform (fft ) in Matlab.
e Step 3 (Solving ODE). The exact solution of (6.3) is determined by

R Oru(0)t + u(0) if k1 = Ky =0,
Y= @(0)cos(y/K? + K3t) + % sin(\/k? + k3t)  otherwise.
o Step 4 (Inverse fast Fourier transform). We obtain the “exact solution w
and its derivatives O,u, 0z, u, Oy, u through the inverse fast Fourier transform
(ifft in Matlab) applied to @, O, ik14, ik21, respectively.

We test the case so = 0.25, s; = 0.75. With this choice, the wave propagates
within the entire computational domain € for ¢ < 7' = 0.8, and caustics appear
only for 0.25 =1—3s1 <t <1—s9=0.75.

In this example, u(z,0) = ug(x,0). A refined numerical test indicates that

i (5 )| oo ~ K7 O fful-, 0) | v,

where the rate 3(t), shown in Figure 1, is calculated over N x N meshes with
N = 2.5 x 10°, and of frequencies k = 40960 and k = 81920. From this figure, we
see that (t) ~ 0 when away from caustics, but () can go up to about 1/6 in the
presence of caustics. The experimental orders of convergence (EOC) are obtained
by

(6.4) EOC = log, < Ek > ,

€2k

where ey, is the relative error between the “exact solution wu(z,t) and uy := ugp.

Test case 1 Convergence in L> norm We first check the L*° errors and orders
of convergence from ¢ = 0.15 to ¢t = 0.8. The error in L° norm is approximated by

s t) — k)l
€ —

Hu(70)||L°° ) ||’UHL°C = ;g?é{ﬂ“’l)')

From the errors and orders of convergence reported in Table 3 obtained using
1024 x 1024 meshes, we find that the orders of accuracy are decreased in the presence
of fold caustics. At ¢t = 0.15 and 0.80, the orders of accuracy are increased when
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0 2The rate of the maximum norm of the Gaussian beam solution

FI1GURE 1. The rate of ||ug(-,t)||Ls/]|u(-,0)||L=~ of the Gaussian
beam solution.

k increases to 320, much closer to the desired first order since caustics are not
present.

TABLE 3. L* errors and orders of convergence of 2D Gaussian
beam superposition.

k=80 k=160 k=320

error error order error order
0.15 | 0.0134258 | 0.00775526 | 0.79 | 0.00390146 | 0.99
0.30 | 0.0349802 | 0.0205824 | 0.77 | 0.0119712 | 0.78
0.40 | 0.0439910 | 0.0253134 | 0.80 | 0.0155627 | 0.70
0.42 | 0.0469892 | 0.0241403 | 0.96 | 0.0155593 | 0.63
0.45 | 0.0514442 | 0.0258481 | 0.99 | 0.0147372 | 0.81
0.50 | 0.0578684 | 0.0296832 | 0.96 | 0.0161166 | 0.88
0.60 | 0.0694715 | 0.0371298 | 0.90 | 0.0184097 | 1.01
0.70 | 0.0795142 | 0.0437080 | 0.86 | 0.0229725 | 0.93
0.80 | 0.0878869 | 0.0485395 | 0.86 | 0.0254761 | 0.93

t

Test case 2 Convergence in energy norm We next check the energy errors
and orders of convergence from ¢t = 0.15 to 0.8. The error in energy norm is
approximated by

[u—uklle 2 1 2 2
- /Q fuel? + |V ufd.
The results in Table 4 show that the first order of accuracy in energy norm is
obtained regardless of the appearance of caustics. Note that in contrast to the
maximum norm, for energy norm |jux (-, t)||g = |Ju(-,0)||&.
The gain in order of accuracy in the energy norm indicates the contribution from
cancellations of first order beams, this is consistent with the numerical evidence

€L —
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TABLE 4. Energy errors and orders of convergence of 2D Gaussian
beam superposition.

k=80 k=160 k=320

error | error | order | error | order
0.15 | 0.0138 | 0.0071 | 0.96 | 0.0034 | 1.06
0.30 | 0.0274 | 0.0141 | 0.96 | 0.0068 | 1.05
0.40 | 0.0364 | 0.0187 | 0.96 | 0.009 | 1.06
0.42 | 0.0382 | 0.0196 | 0.96 | 0.0094 | 1.06
0.45 | 0.0408 | 0.021 | 0.96 | 0.0101 | 1.06
0.50 | 0.0452 | 0.0233 | 0.96 | 0.0112 | 1.06
0.60 | 0.054 | 0.0278 | 0.96 | 0.0134 | 1.05
0.70 | 0.0626 | 0.0323 | 0.95 | 0.0156 | 1.05
0.80 | 0.071 | 0.0367 | 0.95 | 0.0177 | 1.05

t

in [9]. However, the order of accuracy in L* norm can vary in time due to the
presence of caustics; while when away from caustics the uniform first order of
accuracy in L norm has been proven in [11].

7. EXAMPLES OF GENERAL SUPERPOSITIONS

In this section we discuss the growth rate in k of general superpositions,
ugp(z) = km/2/ v(x; Xo)dXo,
Ko

when measured in the energy norm. This will depend on the detailed description
of Ky, and we discuss by examples. To simplify presentation, we only estimate the
L? norm of V,u in all examples, instead of computing the whole energy norm. For
beams the L? norm of the spatial gradient is always comparable to the L? norm of
the initial time derivative.

Let Ky be parameterized by z € ¥ so that

Ko=A{(z,p)] z=u=(2),p=p(2), 2€XC ™}

Here listed are some typical examples.

Example 1 If the data is concentrated at one point (say, in the case of a point
source for stationary problems), one may consider

Ko={X=(x,p)] z(2)=0, pz)=2€8"1}, m=d-1
In the example presented in Section 4, we have
ugp(z,0) = ;—:r /S2 exp(iks - —k|z[?/2)d .
This corresponds to d = 3 and m = 2 with
Ky ={(0, ), € s?}.

The asymptotic rate of its energy norm is
lucn (- 0)] ~ k¥4 = k=57,
We may also consider the case m = d with

K():{(ﬂ?,p), z =0, p=z¢€ d}‘
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Let a(p) be a smooth function compactly supported in p, and
km/2
(27T)d/ 2

Hence ugp(z,0) = 14;771/2&(/m)e—k\a;F/z7 and

wan(w,0) = [ atv)exlib - KiaP/20dp.

d
|0aucn (- 0)||3: ~ k™ / K210y, alke) — (k) Pe T da

@ =1

d
~ R / > 10yaly) - yya(y) /k2e WKy ~ g2,
v j=1

d—m

This implies |[ugg(-,0)||z ~ k'~ = . This together with the result in Theorem 3.1
says that the relative error is no greater than k=V/2, as we expected.

Example 2 A more general example of a superposition.
Let z = (2 Y,2%) where 29 = (21,...,2,) € " and 22 = (241,..,%m) €
m=7_ Consider the superposition of Gaussian beams in ¢

ugn(z) = k2 [ ae)ethe ek e e s e g

m

3) d—m

Here z % = (Tyi1,..,Tq) € . We will take a(z) = e~1#I’/2 to make some
computations explicit. So a(z) nearly has compact support. We have
ugp(zr,0)

= k™/2(2)r 2=k I VP Hle D)2k D )?/2 / e~z PP/2—kle D=2 D)2, 2)

Since
2P+ kz? — 22 =(1+k)|z D2 =2kz? 2 ? +klz D
=|(14+k)Y222 kA + k) V22 D2+ kA + k)Y 23,
then
wes(, 0)=k™/2(2m )™/ (14k) T=™/2e=k & VP4le D) /2= e VP 2k 14k e 2,
We have
Vuep(@,0) = —(k(1+k)z Y, k(1 + k)2 ? ke P )ugp(x,0).
This gives
k™| Vugs(-,0)|[7:
= ek (L4 k)2 (k14 k)2 (k) (14 k)~ 7R 42
+ ek (14 k)2 k(1 + k)72 (k) (14 k)1 o2 A/
+ sk (1+ k)™ (k(1+ k)72 (k/ (1 + k)~ ™2 dmmf
e LA ) R S R ) R e e T O Y ) e

where ¢1, ¢ and c3 are powers of 2. The first term in that expression dominates,
and we have

IVugn(0)[Bx ~ K= ™72 or  |[Vugp(,0)||gz ~ k1= =4,

This is a free offprint provided to the author by the publisher Copyright restrictions may apply



694 HAILIANG LIU, JAMES RALSTON, AND PEIMENG YIN
Assuming that the L? norm of d;ugp(w,0) is of the same order, we can compare
that with ||u(-,t) — ugg(-,t)||g for which we have the estimate (for [¢| < T)
lu(-, 1) = ugr(-t)|[p < CkYZ™ 47/
for first order beams, and get the relative error estimate
lu(-, 1) = uan (- t)l[B/|lucn (- 0:k)||p < k™2
This shows what can happen when initial data is not of form (1.2).
Example 3 For wave equation (1.1) subject to the WKB initial data,
(u(x,0), dpu(x,0)) = (Ag(x, k), Bo(z, k)™ ),
d

compactly supported in Q C
Ko={(z,p), « € Q:=supp(Ag)Usupp(By), p= VaS0(z)}.

The superposition of the first order Gaussian beam is given by

, one may consider m = d with

km/? ‘ .
ugp(z,0) = / Ag(zo)e*d ©020) do
Q
where )
d(x,0;20) = So(zo) + po - (x — ) + 5(x —xg) - Mo(z — x0),
with pg = V,So(x0) and My = 92Sy(xg) + il. Note that

ikl+m/2
2

Hence the energy norm can be estimated as

/ (L+[a — zol)e M0 2da,
Q

Ozucp(z,0) ~ / Ao(20)(po + Mo(z — m9))e™*® ©050) dx.
Q

d—m

E—7 =k

10sus (-, 0)] K2

This upper bound is as expected.

Example 4 For the WKB data e ik—l)"”‘z/Q, we consider

ugp(z,0) = kd/2/ Giklal? /2= k/Dla—z[2 —[2/2,y,

d

Note that |z|?/2 = |2|2/2+ 2 (x — 2) + |# — 2|?/2, this superposition corresponds to
the case with p(z) = z, z(z) = z, initial phase Sy(z) = |z|?/2, and initial amplitude
e~171"/2 Since

|22 + K|z — 2|2 = (1 + k)|2|? — 2kz - = + k|z|?
=(1+k)|z—k(1+k) 22+ k(1 + k)" %
we have

ucs(z,0) = /2~ k/ 2k+2))|m|2+z‘k\z|2/2/ e 1/2) 1+k)|z—k 1+k)—1x\2dz
d

o\ @2
_ 2 <k2_+1) exp(—(k/(2k + 2))|z]? + ik|z]*/2).

This implies
lup(-,0)||z2 ~ k°,
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and passing to Vugpg(z,0) brings down a factor of order k. Hence,
IVus (- 0)|[r2 ~ k'
We may also consider
ucp(z,0) = kd/Q/ eik\z|2/27 k/2)|m7z\2a(z)dz’
d

where a is assumed to be smooth with compact support. This corresponds to the
case with p(z) = z, x(2) = 2, initial phase So(z) = |z|?/2, and initial amplitude
a(z) for

|z|2/2 = |2]2/2 + 2 - (x — 2) + |z — 2|?/2.
We have

UGB(ZE,O) _ kd/26ik|m\2/2/ e~ k/2)|zfx\2a(z)dz’
d

Ozugp(r,0) = k1+d/26ik|“"2/2/ (ix — (x — 2))e” km)lz*“’ﬁa(z)dz.

d
This implies
lun(0)le llallze,
d—m

10zucs (-, 0)llze  klaallze + kY22 al| e k' =&

Example 5 This example is a bit surprising.
Let

ugp(r,0) = k;d/z/ ik z— k/2)le—z2 ,—122/2 g,

d

In other words p(z) = z and x(z) = z. In this case it is easy to compute ugp(z,0).
Since

|22 + klz — 22 = (1 + k)|2|? — 2kz - 2 + k|z|?
=(1+k)|z—k(1+E) )+ k(1 + &),
we have
ugp(zx,0)

— k2= K/ 2k+2))|w\2/ pikrz— 1/2) 1+k)|2—k 1+k)’1w\2d2
d

= kY2 (1 4 k)~ Y2 exp(—k/(2k+2))|x|2+¢k2(1+k)—1\a:|2)/ AT mIE 12 ge
d

d/2 or \ 1.2 —19,.12 2
=k Pl exp(ik® (1 + k)~ |z]® — k/2|z|%).

We can see this implies
lucn (-, 0)llLe ~ k=,
and passing to Vugg(x,0) brings down factors of z; multiplied by factors of order
k. Hence,
[Vugs(-,0)||p2 ~ k244,
Note that here ||ugp(+,0)||g is not of order k. However, like Example 2, the initial
data here is not of form (1.2).
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We may consider a more general case in the form

ugp (@, 0) = kd/Q/ gikr-z= k/Dla== g7

d

where a is assumed to be smooth with compact support. Let n = z — = and the
integral becomes

ugp(x,0) = |2 ¢iklzl® / ethen= k/z)‘"‘2a(n + x)dn.
d
Using the Plancherel Theorem one can write

/d eikan— k/2)\77|2a(n + x)dy = C/d /2~ ke—€? 2k:)_1d(£)eia;.gd£.

Now, assuming that a(z) is smooth with compact support, |a(¢)] < Cn(1+£)%) N
for all N. So

d

lugs(@,0)| < Ay / e e€” 207N (1 g )N,

Now divide that integral into I; = f{|€\<k|w\/2} and I, = f{\£\>’flw|/2}' Then, taking

N large enough that [ ,(1+ [£]?) d¢ < oo, the contribution to |ugp(z,0)| from
I, is bounded by

2
Bye k|z| /87

and the contribution from I3 is bounded by

Io(z) = By (1+ €%~ Nde.
{IE|>k|z|/2}

Finally we split o into x{z>k-1 23(®)1o(%) + X{|z|<k-1 23(2)Io(z) (XE is the char-
acteristic function of F). Using that splitting and taking N sufficiently large
(N = N(M)), one ends up with for any M > 0 and a > 1,

luce (@, 0)] < [Cark™™ (1 +[2*) ™" + Brx(jajarr 2y (2)] + Bye M2,

That leads once more to

lucp (-, 0)|rz ~ k=Y.

8. FINAL REMARKS

We have presented results on superpositions of Gaussian beams of order N in
dimension d over arbitrary bounded sets of dimension m in phase space, and shown
that the error in the approximation of the exact solution with the same initial data is
O(k‘l_N/2_ d_m)/4) in energy norm. This result is sharp for general superpositions.
For exact solutions with WKB initial data, i.e., initial data of the form (1.2) our
numerical evidence in the case N = 1 and d = m indicates the stronger estimate
O(1), or O(k™1) in the relative energy norm as conjectured in [9]. However, the
numerical estimates in maximum norm are not uniform in time due to the presence
of caustics; while away from caustics we know the relative propagation error in
maximum norm is O(k~1) as has been proven in [11].
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