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\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . We introduce a new discretization of a mixed formulation of the incompressible
Stokes equations that includes symmetric viscous stresses. The method is built upon a mass con-
serving mixed formulation that we recently studied. The improvement in this work is a new method
that directly approximates the viscous fluid stress \sigma , enforcing its symmetry weakly. The finite ele-
ment space in which the stress is approximated consists of matrix-valued functions having continuous
``normal-tangential"" components across element interfaces. Stability is achieved by adding certain
matrix bubbles that were introduced earlier in the literature on finite elements for linear elastic-
ity. Like the earlier work, the new method here approximates the fluid velocity u using H(div)-
conforming finite elements, thus providing exact mass conservation. Our error analysis shows opti-
mal convergence rates for the pressure and the stress variables. An additional postprocessing yields
an optimally convergent velocity satisfying exact mass conservation. The method is also pressure
robust.
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\bfone . \bfI \bfn \bft \bfr \bfo \bfd \bfu \bfc \bft \bfi \bfo \bfn . In this work we introduce a new method for the discretization
of a steady incompressible Stokes formulation that includes symmetric viscous stresses.
Advantages of such a formulation are is its natural applicability to non-Newtonian
flows. Furthermore, a direct calculation of the viscous stresses is useful for flow
problems involving interactions with solid structures. Let \Omega \subset \BbbR d be a bounded
domain with d = 2 or 3 having a Lipschitz boundary \Gamma := \partial \Omega . Let u and p be the
velocity and the pressure, respectively. Given an external body force f : \Omega \rightarrow \BbbR d and
kinematic viscosity \~\nu : \Omega \rightarrow \BbbR , the velocity-pressure formulation of the Stokes system
is given by

\left\{     
 - div(2\~\nu \varepsilon (u)) +\nabla p = f in \Omega ,

div(u) = 0 in \Omega ,

u = 0 on \Gamma ,

(1.1)

where \varepsilon (u) = (\nabla u + (\nabla u)\mathrm{T})/2. By introducing a new variable \sigma = \nu \varepsilon (u) where
\nu := 2\~\nu , (1.1) can be reformulated to
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1

\nu 
dev(\sigma ) - \varepsilon (u) = 0 in \Omega ,(1.2a)

div(\sigma ) - \nabla p =  - f in \Omega ,(1.2b)

div(u) = 0 in \Omega ,(1.2c)

u = 0 on \Gamma .(1.2d)

Here, the deviatoric part of a matrix \sigma is defined by dev(\sigma ) := \sigma  - d - 1tr(\sigma ) Id, where

Id denotes the identity matrix and tr(\sigma ) :=
\sum d

i=1 \sigma ii denotes the matrix trace. We
shall call formulation (1.2) the mass conserving mixed formulation with symmetric
stresses, or simply the MCS formulation. Although formulations (1.1) and (1.2) are
formally equivalent, the MCS formulation (1.2) demands less regularity of the velocity
field u. Many authors have studied similar formulations previously [14, 15, 16, 17],
including us [24]. In [24], following several previous authors, we introduced a new
variable \sigma = \nu \nabla u, which is in general nonsymmetric, and considered an analogous
formulation (which was also called an MCS formulation). Other works using a pseu-
dostress tensor include [3, 8, 19, 20, 21]. In particular, [20] provides a rigorous analysis
of a Stokes formulation using a nonsymmetric pseudostress variable that includes a
hydrostatic part from the pressure. The elements presented in [24] can be utilized
for the formulation of [20] by adding a few scalar multiples of the identity to the
stress space. The main novelty in [24] was that \sigma = \nu \nabla u was set in a new function
space H(curl div,\Omega ) of matrix-valued functions whose divergence can continuously
act on elements of H0(div,\Omega ). Accordingly, the appropriate velocity space there was
H0(div,\Omega ), not H

1
0 (\Omega ,\BbbR d) as in the classical velocity-pressure formulation.

In contrast to [24], in this work we set \sigma = \nu \varepsilon (u), not \nu \nabla u. Our goal is to apply
what we learned in [24] to produce a new method that provides a direct approxi-
mation to the symmetric matrix function \sigma = \nu \varepsilon (u). Being the viscous stress, this
\sigma is practically more important than \nu \nabla u, especially when stress boundary condi-
tions are involved [22]. We shall seek \sigma in the same function space H(curl div,\Omega )
that we considered in [24]. We have shown in [24] that matrix-valued finite element
functions with ``normal-tangential"" continuity across element interfaces are natural
for approximating solutions in H(curl div,\Omega ). We shall continue to use such finite ele-
ments here. It is interesting to note that in the HDG (hybrid discontinuous Galerkin)
literature [13, 18] the potential importance of such normal-tangential continuity was
noted and arrived at through a completely different approach. Unlike some DG meth-
ods, the new method we develop here has the advantage (shared by [24]) that it has
no stabilization parameters.

The main point of departure in this work, stemming from the fact that the space
H(curl div,\Omega ) contains nonsymmetric matrix-valued functions, is that we impose the
symmetry of stress approximations weakly using Lagrange multipliers. This technique
of imposing symmetry weakly is widely used in finite elements for linear elasticity [1,
2, 4, 16]. In particular, our analysis is inspired by the early work of Stenberg [36],
who enriched the stress space by curls of local element bubbles. (In fact, this idea was
even used in a Stokes mixed method [17], but their resulting method is not pressure
robust.) These enrichment curls lie in the kernel of the divergence operator and are
only ``seen"" by the weak symmetry constraint, allowing them to be used to prove
discrete inf-sup stability. When using simplicial meshes, while in two dimensions
this technique only increases the local polynomial order by 1, this is not the case in
three dimensions. Years later [10, 23], it was realized that it is possible to retain the
good convergence properties of Stenberg's construction and yet reduce the enrichment
space. Introducing a ``matrix bubble,"" these works added just enough extra curls
needed to prove stability.
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We shall see in later sections that the matrix bubble can also be used to enrich
our discrete fluid stress space. This might seem astonishing at first. Indeed, an
enrichment space for fluid stresses must map well when using a specific map that is
natural to ensure normal-tangential continuity of the discrete stress space. Moreover,
the enrichment functions must lie in the kernel of a realization of the distributional
row-wise divergence used in MCS formulations (displayed in (3.4) below). It turns out
that these properties are all fulfilled by an enrichment using a double curl involving
matrix bubbles. Hence we are able to prove the discrete inf-sup condition. Stability
then follows in the same type of norms used in [36] and is a key result of this work.

Some comments on the choice of the discrete velocity space and its implications
are also in order here. As mentioned above, the velocity space within the MCS
formulation is V = H0(div,\Omega ). One of the main features of the first MCS method [24],
as well the new version with weakly imposed symmetry of this paper, is that we can
choose a discrete velocity space Vh \subset V using H(div)-conforming finite elements.
Therefore, our method is tailored to approximate the incompressibility constraint
exactly, leading to pointwise and exactly divergence-free discrete velocity fields. The
use of such H(div)-conforming velocities in Stokes flow is by no means new: for
the standard velocity-pressure formulation, one can find it in [11, 12], and for the
Brinkman problem in [26]. Therein, and also in the more recent works of [32, 31],
the H1-conformity is treated in a weak sense and an HDG method is constructed.
When employing H(div)-conforming finite elements, one has the luxury of choice.
In [24], we used the \scrB \scrD \scrM k+1 space [7] and added several local stress bubbles in
order to guarantee stability. In contrast, in this paper, we have chosen to take the
smaller Raviart--Thomas space [33] of order k, denoted by \scrR \scrT k. A similar choice was
made also in the work of [18], where they presented a hybrid method for solving the
Brinkman problem based off the work of [13]. Our current choice of the smaller space
\scrR \scrT k leads to a less accurate velocity approximation (compared to \scrB \scrD \scrM k+1), so in
order to recover the optimal convergence order of the velocity (measured in a discrete
H1-norm), we introduce a local elementwise postprocessing. Using the reconstruction
operator of [28, 29] this postprocessing can be done retaining the exact divergence-free
property.

The remainder of this paper is organized as follows. In section 2, we define
notation for common spaces used throughout this work and introduce an undiscretized
formulation. Section 3 presents the MCS method for Stokes flow including symmetric
viscous stresses. In section 4, we present the new discrete method including the
introduction of the matrix bubble. Section 5 proves a discrete inf-sup condition and
develops a complete a priori error analysis of the discrete MCS system. In section 6, we
introduce a postprocessing for the discrete velocity. The concluding section (section
7) reports various numerical experiments we performed to illustrate the theory.

\bftwo . \bfP \bfr \bfe \bfl \bfi \bfm \bfi \bfn \bfa \bfr \bfi \bfe \bfs . In this section, we introduce notation and present a weak
formulation for Stokes flow that includes symmetric viscous stresses.

Let \scrD (\Omega ) or \scrD (\Omega ,\BbbR ) denote the set of infinitely differentiable compactly sup-
ported real-valued functions on \Omega and let \scrD \ast (\Omega ) denote the space of distributions.
To differentiate between scalar, vector, and matrix-valued functions on \Omega , we include
the co-domain in the notation, e.g., \scrD (\Omega ,\BbbR d) = \{ u : \Omega \rightarrow \BbbR d| ui \in \scrD (\Omega )\} . Let
\BbbM denote the vector space of real d \times d matrices. This notation scheme is simi-
larly extended to other function spaces as needed. Thus, L2(\Omega ) = L2(\Omega ,\BbbR ) denotes
the space of square integrable \BbbR -valued functions on \Omega , while analogous vector and
matrix-valued function spaces are defined by L2(\Omega ,\BbbR d) :=

\bigl\{ 
u : \Omega \rightarrow \BbbR d

\bigm| \bigm| ui \in L2(\Omega )
\bigr\} 
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and L2(\Omega ,\BbbM ) :=
\bigl\{ 
\sigma : \Omega \rightarrow \BbbM 

\bigm| \bigm| \sigma ij \in L2(\Omega )
\bigr\} 
, respectively. Let \BbbK denote the vector

space of d \times d skew symmetric matrices, i.e., \BbbK = skw(\BbbM ), and let L2(\Omega ,\BbbK ) :=\bigl\{ 
\sigma : \Omega \rightarrow \BbbK 

\bigm| \bigm| \sigma ij \in L2(\Omega )
\bigr\} 
.

Recall that the dimension d in this work is either 2 or 3. Accordingly, depending
on the context, certain differential operators have different meanings. The ``curl""
operator, depending on the context, denotes one of the differential operators below:

curl(\phi ) = ( - \partial 2\phi , \partial 1\phi )\mathrm{T}, for \phi \in \scrD \ast (\Omega ,\BbbR ), d = 2,

curl(\phi ) = (\partial 2\phi 3  - \partial 3\phi 2, \partial 3\phi 1  - \partial 1\phi 3, \partial 1\phi 2  - \partial 2\phi 1)
\mathrm{T} for \phi \in \scrD \ast (\Omega ,\BbbR 3), d = 3,

where (\cdot )\mathrm{T} denotes the transpose and \partial i abbreviates \partial /\partial xi. For matrix-valued func-
tions in both d = 2 and 3 cases, i.e., for \phi \in \scrD \ast (\Omega ,\BbbM ), by curl(\phi ) we mean the
matrix obtained by taking curl row-wise. Unfortunately, this still does not exhaust
all the curl cases. In the d = 2 case, there are two possible definitions of curl(\phi ) for
\phi \in \scrD \ast (\Omega ,\BbbR 2),

curl(\phi ) =  - \partial 2\phi 1 + \partial 1\phi 2 or(2.1)

curl(\phi ) =

\biggl( 
\partial 2\phi 1  - \partial 1\phi 1
\partial 2\phi 2  - \partial 1\phi 2

\biggr) 
,(2.2)

and we shall have occasion to use both. The latter will not be used until (3.7) below,
so until then, the reader may continue assuming we mean (2.1) whenever we consider
curl of vector functions in \BbbR 2. The operator \nabla is to be understood from context as
an operator that results in either a vector whose components are [\nabla \phi ]i = \partial i\phi for
\phi \in \scrD \ast (\Omega ,\BbbR ), a matrix whose entries are [\nabla \phi ]ij = \partial j\phi i for \phi \in \scrD \ast (\Omega ,\BbbR d), or a third-
order tensor whose entries are [\nabla \phi ]ijk = \partial k\phi ij for \phi \in \scrD \ast (\Omega ,\BbbK ). Finally, in a similar

manner, we understand div(\phi ) as either
\sum d

i=1 \partial i\phi i for vector-valued \phi \in \scrD \ast (\Omega ,\BbbR d),

or the row-wise divergence
\sum d

j=1 \partial j\phi ij for matrix-valued \phi \in \scrD (\Omega ,\BbbM )\ast .

Let \~d = d(d  - 1)/2 (so that \~d = 1 and 3 for d = 2 and 3, respectively). In
addition to the standard Sobolev space Hm(\Omega ) for any m \in \BbbR , we shall use the well-
known space H(div,\Omega ) = \{ u \in L2(\Omega ,\BbbR d) : div(u) \in L2(\Omega )\} . By its trace theorem,
H0(div,\Omega ) = \{ u \in H(div,\Omega ) : u \cdot n| \Gamma = 0\} is a well-defined closed subspace, where n
denotes the outward unit normal on \Gamma . Its dual space [H0(div,\Omega )]

\ast , as proved in [24,
Theorem 2.1], satisfies

[H0(div,\Omega )]
\ast = H - 1(curl,\Omega ) = \{ \phi \in H - 1(\Omega ,\BbbR d) : curl(\phi ) \in H - 1(\Omega ,\BbbR \~d)\} .(2.3)

In this work, the following space is important:

H(curl div,\Omega ) := \{ \sigma \in L2(\Omega ,\BbbM ) : div(\sigma ) \in [H0(div,\Omega )]
\ast \} ,

where the name results from (2.3): indeed a function \sigma \in H(curl div,\Omega ) fulfills

curl div(\sigma ) \in H - 1(\Omega ,\BbbR \~d).
Next, let us derive a variational formulation of the system (1.2), which is based

on the mixed stress formulation (MCS) introduced in Chapter 3 in the work [24]. The
method is based on a weaker regularity assumption of the velocity as compared to the
standard velocity-pressure formulation (1.1). The velocity u and the pressure p now
belong, respectively, to the spaces

V := H0(div,\Omega ), Q := L2
0(\Omega ) :=

\biggl\{ 
q \in L2(\Omega ) :

\int 
\Omega 

q dx = 0

\biggr\} 
.
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Multiplying (1.2c) with a pressure test function q \in Q and integrating over the domain
\Omega ends up in the familiar equation (div(u), q)L2(\Omega ) = 0, which we write as the last
equation of the final Stokes system (2.5) written below. Here and throughout, the
inner product of a space X is denoted by (\cdot , \cdot )X . When X is the space of functions
whose components are square integrable functions on \Omega , we abbreviate (\cdot , \cdot )X to simply
(\cdot , \cdot ), as done in (2.5) below. Similarly, while we generally denote the norm and
seminorm on a Sobolev space X by \| \cdot \| X and | \cdot | X , respectively, to simplify notation,
we set \| f\| 2D := (f, f)D, where (f, g)D denotes L2(D,\BbbV ) inner product for any \BbbV \in 
\{ \BbbR ,\BbbR d,\BbbK ,\BbbM \} and any subset D \subseteq \Omega . Moreover, when D = \Omega , we omit the subscript
and simply write \| f\| for \| f\| .

To motivate the remaining equations of (2.5), note that \nu  - 1\sigma = \varepsilon (u), and thus
due to the incompressibility constraint div(u) = 0, we have the identity

dev(\nu  - 1\sigma ) = dev(\varepsilon (u)) = \varepsilon (u) - \nu 

d
tr(\varepsilon (u)) Id = \varepsilon (u) - 1

d
div(u) Id = \varepsilon (u).(2.4)

Since tr(\sigma ) = 0 and \sigma = \sigma \mathrm{T}, we define the stress space as the following closed subspace
of H(curl div,\Omega ):

\Sigma \mathrm{s}\mathrm{y}\mathrm{m} := \{ \tau \in H(curl div,\Omega ) : tr(\tau ) = 0, \tau = \tau \mathrm{T}\} .

Testing (1.2a) with a test function \tau \in \Sigma \mathrm{s}\mathrm{y}\mathrm{m} and integrating over the domain, we
have for the term including \varepsilon (u) the identity\int 

\Omega 

\varepsilon (u) : \tau dx =
1

2

\int 
\Omega 

\nabla u : \tau dx+
1

2

\int 
\Omega 

(\nabla u)\mathrm{T} : \tau dx

=
1

2

\int 
\Omega 

\nabla u : \tau dx+
1

2

\int 
\Omega 

\nabla u : \tau dx =

\int 
\Omega 

\nabla u : \tau dx .

Using the knowledge that the velocity u should be in H1
0 (\Omega ), we obtain

(\nu  - 1 dev(\sigma ),dev(\tau )) + \langle div(\tau ), u\rangle H0(\mathrm{d}\mathrm{i}\mathrm{v},\Omega ) = 0,

which is the first equation in the system (2.5) below. Here and throughout, when
working with elements f of the dual space X\ast of a topological space X, we denote
the action of f on an element x \in X by \langle f, x\rangle X , where we may omit the subscript X
when its obvious from context. Finally we also test (1.2b) with v \in V and integrate
the pressure term by parts. This results in the remaining equation of (2.5).

Summarizing, the weak problem is to find (\sigma , u, p) \in \Sigma \mathrm{s}\mathrm{y}\mathrm{m} \times V \times Q such that\left\{     
(\nu  - 1 dev(\sigma ),dev(\tau )) + \langle div(\tau ), u\rangle H0(\mathrm{d}\mathrm{i}\mathrm{v},\Omega ) = 0 for all \tau \in \Sigma \mathrm{s}\mathrm{y}\mathrm{m},

\langle div(\sigma ), v\rangle H0(\mathrm{d}\mathrm{i}\mathrm{v},\Omega ) + (div(v), p) =  - (f, v) for all v \in V,

(div(u), q) = 0 for all p \in Q.

(2.5)

In the ensuing section, we shall focus on a discrete analysis of a nonconforming scheme
based on (2.5). Although well-posedness of (2.5) is an interesting question, we shall
not comment further on it here since it is of no direct use in a nonconforming analysis.

\bfthree . \bfT \bfh \bfe \bfn \bfe \bfw \bfm \bfe \bft \bfh \bfo \bfd . In [24], we introduced an MCS method where \sigma was
an approximation to (the generally nonsymmetric) \nu \nabla u instead of (the symmetric)
\nu \varepsilon (u) considered above. Since there was no symmetry requirement in [24], there we
worked with the space \Sigma := \{ \tau \in H(curl div,\Omega ) : tr(\tau ) = 0\} instead of \Sigma \mathrm{s}\mathrm{y}\mathrm{m}. The
finite element space for \Sigma designed there can be reutilized in the current symmetric
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case (with some modifications), once we reformulate the symmetry requirement as a
constraint in a weak form.

To do so, we need further notation. Let \kappa : \BbbR \~d \rightarrow \BbbK be defined by

(3.1) \kappa (v) =
1

2

\biggl( 
0  - v
v 0

\biggr) 
if d = 2, \kappa (v) =

1

2

\left(  0  - v3 v2
v3 0  - v1
 - v2 v1 0

\right)  if d = 3.

When u represents the Stokes velocity, \omega = \kappa (curl(u)) represents the vorticity. Since
\nabla u = \varepsilon (u)+\omega , introducing \omega as a new variable, and the symmetry condition \sigma  - \sigma \mathrm{T} =
0 as a new constraint, we obtain the boundary value problem

1

\nu 
dev(\sigma ) - \nabla u+ \omega = 0 in \Omega ,(3.2a)

div(\sigma ) - \nabla p =  - f in \Omega ,(3.2b)

\sigma  - \sigma \mathrm{T} = 0 in \Omega ,(3.2c)

div(u) = 0 in \Omega ,(3.2d)

u = 0 on \Gamma .(3.2e)

In the remainder of this section, we introduce a discrete formulation approximat-
ing (3.2).

The method will be described on a subdivision (triangulation) \scrT h of \Omega consisting
of triangles in two dimensions and tetrahedra in three dimensions. For the analysis
later, we shall assume that the \scrT h is quasiuniform. By h we denote the maximum
of the diameters of all elements T \in \scrT h. Quasiuniformity implies that h \sim diam(T )
for all mesh elements T . Here and throughout, by A \sim B we indicate that there
exist two constants c, C > 0 independent of the mesh size h as well as the viscosity \nu 
such cA \leq B \leq cA. Similarly, we use the notation A \lesssim B if there exists a constant
C \not = C(h, \nu ) such that A \leq CB. All element interfaces and element boundaries
on \Gamma are called facets and are collected into a set \scrF h. This set is partitioned into
facets on the boundary \scrF \mathrm{e}\mathrm{x}\mathrm{t}

h and interior facets \scrF \mathrm{i}\mathrm{n}\mathrm{t}
h . On each facet we denote by

[[\cdot ]] the standard jump operator. On a boundary facet the jump operator is just
the identity. On all facets we denote by n a unit normal vector. When integrating
over boundaries of d-dimensional domains, the orientation of n is assumed to be
outward. On a facet with normal n adjacent to an mesh element T , the normal and
tangential traces of a smooth function \phi : T \rightarrow \BbbR d are defined by \phi n := \phi \cdot n and
\phi t = \phi  - \phi nn, respectively. Similarly, for a smooth \psi : T \rightarrow \BbbM , the (scalar-valued)
``normal-normal"" and the (vector-valued) ``normal-tangential"" components are defined
by \psi nn = \psi : (n\otimes n) = n\mathrm{T}\psi n and \psi nt = \psi n - \psi nnn, respectively.

For any integers m, k \geq 0, the following ``broken spaces"" are viewed as consisting
of functions on \Omega without any continuity constraints across element interfaces:

Hm(\scrT h) :=
\prod 

T\in \scrT h

Hm(T ), \BbbP k(\scrT h) :=
\prod 

T\in \scrT h

\BbbP k(T ).

For D \subset \Omega we use the notation (\cdot , \cdot )D for the inner product of L2(D) or its vec-
tor and tensor analogues such as L2(D,\BbbR d), L2(D,\BbbM ), L2(D,\BbbK ). Also let \| \cdot \| 2D =
(\cdot , \cdot )D. Next for each element T \in \scrT h let \BbbP k(T ) \equiv \BbbP k(T,\BbbR ) denote the set of
polynomials of degree at most k on T . The vector and tensor analogues such as
\BbbP k(T,\BbbR d),\BbbP k(T,\BbbM ),\BbbP k(T,\BbbK ) have their components in \BbbP k(T ). The broken spaces
\BbbP k(\scrT h,\BbbR d),\BbbP k(\scrT h,\BbbM ), and \BbbP k(\scrT h,\BbbK ) are defined similarly. We shall also use the
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conforming Raviart--Thomas space (see [5, 33]), \scrR \scrT k := \{ uh \in H(div,\Omega ) : uh| T \in 
\BbbP k(T,\BbbR d) + x\BbbP k(T,\BbbR ) for all T \in \scrT h\} .

\bfthree .\bfone . \bfV \bfe \bfl \bfo \bfc \bfi \bft \bfy , \bfp \bfr \bfe \bfs \bfs \bfu \bfr \bfe , \bfa \bfn \bfd \bfv \bfo \bfr \bft \bfi \bfc \bfi \bft \bfy \bfs \bfp \bfa \bfc \bfe \bfs . For any k \geq 1, we use

Vh := V \cap \scrR \scrT k, Qh := Q \cap \BbbP k(\scrT h), Wh := \BbbP k(\scrT h,\BbbK ),

for approximating the velocity, pressure, and vorticity, respectively.
Standard finite element mappings apply for these spaces. Let \^T be the unit

simplex (for d = 2 and 3), which we shall refer to as the reference element, and
let T \in \scrT h. Let \phi : \^T \rightarrow T be an affine homeomorphism and set F := \phi \prime . By
quasiuniformity, \| F\| \ell \infty \sim h, \| F - 1\| \ell \infty \sim h - 1, and | det (F )| \sim hd, estimates that we
shall use tacitly in our scaling arguments later. Such arguments proceed by mapping
functions on \^T to and from \^T . Given a scalar-valued \^qh, a vector-valued \^vh, and a
skew-symmetric matrix-valued \^\eta h on the reference element \^T , we map them to T by

(3.3) \scrQ (qh) = \^qh\circ \phi  - 1,\scrP (\^vh) := det(F ) - 1F (\^vh\circ \phi  - 1),\scrW (\^\eta h) := F - \mathrm{T}(\^\eta h\circ \phi  - 1)F - 1,

respectively, i.e., these are our mappings for functions in the pressure, velocity, and
vorticity spaces, respectively. The first is the inverse of the standard pullback, the
second is the standard Piola map, and the third is designed to preserve skew symmetry.

\bfthree .\bftwo . \bfS \bft \bfr \bfe \bfs \bfs \bfs \bfp \bfa \bfc \bfe . The definition of our stress space and the equations of our
method are motivated by the following result proved in [24, section 4].

Theorem 3.1. Suppose \tau is in H1(\scrT h,\BbbM ) and v \in H1(\scrT h,\BbbR d).
1. If the normal-tangential trace \tau nt is continuous across element interfaces, and
\tau nn| \partial T \in H1/2(\partial T ) for all T \in \scrT h, then \tau is in H(curl div,\Omega ).

2. If v \in H0(div,\Omega ), then

(3.4) \langle div(\tau ), v\rangle H0(\mathrm{d}\mathrm{i}\mathrm{v},\Omega ) =
\sum 
T\in \scrT h

\biggl[ \int 
T

div(\tau ) v dx - 
\int 
\partial T

\tau nnvn ds

\biggr] 
.

Clearly, matrix finite element subspaces having normal-tangential continuity are
suggested by Theorem 3.1. Technically, the theorem's sufficient conditions for full
conformity also include the condition \sigma nn| \partial T \in H1/2(\partial T ). This condition is very re-
strictive as it would enforce continuity at vertices and edges in two and three dimen-
sions, respectively. If this constraint is relaxed, much simpler, albeit nonconforming,
elements can be constructed. This was the approach we adopted in [24]. We continue
in the same vein here and define the nonconforming stress space

\Sigma h :=
\bigl\{ 
\tau h \in \BbbP k(\scrT h,\BbbM ) : tr(\tau h) = 0, [[(\tau h)nt]] = 0 for all F \in \scrF \mathrm{i}\mathrm{n}\mathrm{t}

h

\bigr\} 
.(3.5)

As mentioned in the introduction, we must enrich the above stress space \Sigma h to guaran-
tee solvability of the resulting discrete system due to the additional weak symmetry
constraints. We follow the approach of [36] and its later improvements [10, 23] to
construct the needed enrichment space.

Define a cubic matrix-valued ``bubble"" function as follows. On a d-simplex T with
vertices a0, . . . , ad, let Fi denote the face opposite to ai, and let \lambda i denote the unique
linear function that vanishes on Fi and equals one on ai, i.e., the ith barycentric
coordinate of T . Following [10, 23], we define B \in \BbbP 3(T,\BbbM ) by

B =

3\sum 
i=0

\lambda i - 3\lambda i - 2\lambda i - 1 \nabla \lambda i \otimes \nabla \lambda i if d = 3,(3.6a)

B = \lambda 0\lambda 1\lambda 2 if d = 2,(3.6b)
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where the indices on the barycentric coordinates are calculated mod 4 in (3.6a). Let
\BbbP k
\bot (T,\BbbV ) denote the L2-orthogonal complement of \BbbP k - 1(T,\BbbV ) in \BbbP k(T,\BbbV ) for \BbbV \in 

\{ \BbbR ,\BbbK \} , and let \BbbP k
\bot (\scrT h,\BbbV ) =

\prod 
T\in \scrT h

\BbbP k
\bot (T,\BbbV ). For any k \geq 1, define

\delta \Sigma h :=
\bigl\{ 
dev(curl(curl(rh)B)) : rh \in \BbbP k

\bot (\scrT h,\BbbK )
\bigr\} 

(3.7)

for d = 2 and 3, with the understanding that in the d = 2 case, the outer curl is
defined by (2.2), not (2.1). The total stress space is given by

\Sigma +
h := \Sigma h \oplus \delta \Sigma h, k \geq 1.

That functions in this space have normal-tangential continuity is a consequence of the
following property proved in [10, Lemma 2.3].

Lemma 3.2. Let q \in \BbbM and T \in \scrT h. The products qB and Bq have vanishing
tangential trace on \partial T , so the function curl(qB) has vanishing normal trace on \partial T .

Lemma 3.3. Any \sigma \in \delta \Sigma h has vanishing \sigma nt and [[\sigma nt]] on all facets F \in \scrF h.

Proof. Since (dev(\sigma ))nt = \sigma nt, this is a direct consequence of Lemma 3.2.

We also need a proper mapping for functions in \Sigma +
h that preserves normal-

tangential continuity. We continue to use the following map, first introduced in [24]:

\scrM (\^\sigma h) :=
1

det(F )
F - \mathrm{T}(\^\sigma h \circ \phi  - 1)F\mathrm{T}.(3.8)

As shown in [24, Lemma 5.3], on each facet, (\scrM (\^\sigma h))nt is a scalar multiple of (\^\sigma h)nt
and tr(\^\sigma h) = 0 if and only if tr(\scrM (\^\sigma h)) = 0. Degrees of freedom are discussed in
section 3.4 .

Remark 3.4. Note that in (3.6), B was given using barycentric coordinates as an
expression that holds on any simplex. Let \^B be defined by the same expression on the
reference element \^T after replacing \lambda i by reference element barycentric coordinates
\^\lambda i. Considering the obvious map that transforms \^\nabla \^\lambda i \otimes \^\nabla \^\lambda i to \nabla \lambda i \otimes \nabla \lambda i, we find
that the matrix bubble B on any simplex is given by

B := F - \mathrm{T}( \^B \circ \phi  - 1)F - 1.(3.9)

\bfthree .\bfthree . \bfE \bfq \bfu \bfa \bft \bfi \bfo \bfn \bfs \bfo \bff \bft \bfh \bfe \bfm \bfe \bft \bfh \bfo \bfd . For the derivation of the discrete variational
formulation we turn our attention back to the weak formulation (2.5) and identify
these forms:

a : L2(\Omega ,\BbbM )\times L2(\Omega ,\BbbM ) \rightarrow \BbbR , b1 : V \times Q\rightarrow \BbbR ,
a(\sigma , \tau ) := (\nu  - 1 dev(\sigma ),dev(\tau )), b1(u, p) := (div(u), p).

The definition of the remaining bilinear form is motivated by the definition of the
``distributional divergence"" given by (3.4). To this end we define b2 : \{ \tau \in H1(\scrT h,\BbbM ) :
[[\tau nt]] = 0\} \times 

\bigl( 
\{ v \in H1(\scrT h,\BbbR d) : [[vn]] = 0\} \times L2(\Omega ,\BbbM )

\bigr) 
\rightarrow \BbbR by

b2(\tau , (v, \eta )) :=
\sum 
T\in \scrT h

\int 
T

div(\tau ) \cdot v dx+
\sum 
T\in \scrT h

\int 
T

\tau : \eta dx - 
\sum 

F\in \scrF h

\int 
F

[[\tau nn]]vn ds .(3.10)

Integrating the first integral by parts, we find the equivalent representation

b2(\tau , (v, \eta )) =  - 
\sum 
T\in \scrT h

\int 
T

\tau : (\nabla v  - \eta ) dx+
\sum 

F\in \scrF h

\int 
F

\tau nt \cdot [[vt]] ds .(3.11)
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Using these forms, we state the method. For any k \geq 1, the discrete MCS method
with weakly imposed symmetry finds \sigma h, uh, \omega h, ph \in \Sigma +

h \times Vh \times Wh \times Qh such that\left\{     
a(\sigma h, \tau h) + b2(\tau h, (uh, \omega h)) = 0 for all \tau h \in \Sigma +

h ,

b2(\sigma h, (vh, \eta h)) + b1(vh, ph) = ( - f, vh) for all (vh, \eta h) \in Uh := Vh \times Wh,

b1(uh, qh) = 0 for all qh \in Qh.

(3.12)

Since Vh and Qh fulfill div(Vh) = Qh, the discrete velocity solution component uh
satisfies div(uh) = 0 pointwise, providing exact mass conservation.

Remark 3.5. Although we only consider homogeneous Dirichlet boundary condi-
tions in this work, we want to mention the method is applicable to deal with other
cases as well. A numerical investigation is given in Chapter 8.3 in [27].

\bfthree .\bffour . \bfD \bfe \bfg \bfr \bfe \bfe \bfs \bfo \bff \bff \bfr \bfe \bfe \bfd \bfo \bfm \bfo \bff \bft \bfh \bfe \bfn \bfe \bfw \bfs \bft \bfr \bfe \bfs \bfs \bfs \bfp \bfa \bfc \bfe . We need degrees of free-
dom (d.o.f.s) for the stress space that are well-suited for imposing normal-tangential
continuity across element interfaces. Since the bubbles in \delta \Sigma h have zero normal-
tangential continuity, we ignore them for this discussion and focus on d.o.f.s that
control \Sigma h.

Consider \Sigma T = \{ \tau | T : \tau \in \Sigma h\} on any mesh element T . Letting \BbbD denote the
subspace of matricesM \in \BbbM satisfyingM : Id = 0, we may identify \Sigma T with \BbbP k(T,\BbbD ).
Let us recall a basis for \BbbD that was given in [24]. Define

Si := dev
\bigl( 
\nabla \lambda i+1 \otimes curl(\lambda i+2)

\bigr) 
when d = 2,(3.13a)

Si
0 := dev

\bigl( 
\nabla \lambda i+1 \otimes (\nabla \lambda i+2 \times \nabla \lambda i+3)

\bigr) 
when d = 3,(3.13b)

Si
1 := dev

\bigl( 
\nabla \lambda i+2 \otimes (\nabla \lambda i+3 \times \nabla \lambda i+1)

\bigr) 
when d = 3,(3.13c)

taking the indices mod 3 and mod 4, respectively. We proved in [24, Lemma 5.1] that
the sets \{ Si : i = 0, 1, 2\} and \{ Si

q : i = 0, 1, 2, 3, q = 0, 1\} form a basis of \BbbD when
d = 2 and 3, respectively.

Our d.o.f.s for \Sigma T \equiv \BbbP k(T,\BbbD ) are grouped into two. The first group is associated
to the set of element facets (d - 1 subsimplices of T ), namely, for each facet F \in \partial T ,
we define the set of d.o.f.s

\Phi F (\tau ) :=

\int 
F

\tau nt \cdot r ds

for each r in any fixed basis for \BbbP k(F,\BbbR d - 1). The next group is the set of interior
d.o.f.s, defined by

\Phi 0(\tau ) :=

\int 
T

\tau : \varsigma dx

for all \varsigma in any basis of \BbbP k - 1(T,\BbbD ). We proceed to prove that the set of these d.o.f.s,
\Phi (T ) := \Phi 0(\tau ) \cup \{ \Phi F : F \subset \partial T\} , is unisolvent.

Theorem 3.6. The set \Phi (T ) is a set of unisolvent d.o.f.s for \Sigma T \equiv \BbbP k(T,\BbbD ).
Proof. Suppose \tau \in \Sigma T satisfies \phi (\tau ) = 0 for all d.o.f.s \phi \in \Phi (T ). We need to

show that \tau = 0. From the facet d.o.f.s we conclude that \tau nt vanishes on \partial T . By [24,
Lemma 5.2], \tau may be expressed as

\tau =

2\sum 
i=0

\mu i\lambda iS
i or \tau =

1\sum 
q=0

3\sum 
i=0

\mu q
i\lambda iS

i
q,(3.14)
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when d = 2 or 3, respectively, where \mu i, \mu 
0
i , \mu 

1
i \in \BbbP k - 1(T ). The interior d.o.f.s imply

that
\int 
T
\tau : sdx = 0 for any s \in \BbbP k - 1( \^T ,\BbbD ). Choosing for s the expression on the

right-hand side in (3.14) omitting the \lambda i, say, for the d = 2 case, we obtain\int 
T

2\sum 
i=0

\mu i\lambda iS
i :

2\sum 
i=0

\mu iS
i dx =

\int 
T

\lambda i

\bigm| \bigm| \bigm| \bigm| 2\sum 
i=0

\mu iS
i

\bigm| \bigm| \bigm| \bigm| 2 dx = 0,

yielding \mu i = 0, and thus \tau = 0. A similar argument in the d = 3 case yields the same
conclusion that \tau = 0.

To complete the proof, it now suffices to prove that dim(\Sigma T ) equals the number
of d.o.f.s, i.e., \#\Phi (T ). Obviously, dim(\Sigma T ) = dim\BbbP k(T,\BbbD ) = (d2  - 1) dim\BbbP k(T ).
The cardinality of \Phi (T ) equals the sum of the number of facet d.o.f.s (d + 1)(d  - 
1) dim\BbbP k(T ) and the number of interior d.o.f.s (d2  - 1) dim\BbbP k - 1(T ), which simplifies
to (d2  - 1)

\bigl( 
dim\BbbP k - 1(T ) + dim\BbbP k(F )

\bigr) 
, equaling dim(\Sigma T ).

Using these d.o.f.s, a canonical local interpolant IT (\tau ) in \Sigma T can be defined as
usual, by requiring that \psi (\tau  - IT \tau ) = 0, for all \psi \in \Phi (T ).

Lemma 3.7. For any \tau \in H1(T,\BbbD ), we have \scrM  - 1(IT \tau ) = I \^T (\scrM  - 1(\tau )).

Proof. This proceeds along the same lines as the proof of [24, Lemma 5.4].

The global interpolant I\Sigma h
is also defined as usual. On each element T \in \scrT h the

global interpolant (I\Sigma h
\tau )| T coincides with the local interpolant IT (\tau | T ).

Theorem 3.8. For any m \geq 1 and any \sigma \in \{ \tau \in Hm(\scrT h,\BbbD ) : [[\tau nt]] = 0\} , the
global interpolation operator I\Sigma h

satisfies for all s \leq min(k + 1,m)

\| \sigma  - I\Sigma h
\sigma \| 2 +

\sum 
F\in \scrF h

h\| (\sigma  - I\Sigma h
\sigma )nt\| 2F \lesssim h2s\| \sigma \| 2Hs(\scrT h)

.

Proof. This follows from a standard Bramble--Hilbert argument using Lemma
3.7.

\bffour . \bfA \bfp \bfr \bfi \bfo \bfr \bfi \bfe \bfr \bfr \bfo \bfr \bfa \bfn \bfa \bfl \bfy \bfs \bfi \bfs . In this section we first show the stability of the
MCS method with weakly imposed symmetry by proving a discrete inf-sup condition
(Theorem 4.14). We then prove consistency (Theorem 4.18), optimal error estimates
(Theorem 4.19), and pressure robustness (Theorem 4.21). For simplicity, the analysis
from now on assumes that \nu is a constant.

\bffour .\bfone . \bfN \bfo \bfr \bfm \bfs . In addition to the previous notation for norms (established in sec-
tion 2), here we also use \| \cdot \| 2h to abbreviate

\sum 
T\in \scrT h

\| \cdot \| 2T , a notation that also serves
to indicate that certain seminorms are defined using differential operators applied
element by element, not globally, e.g.,

\| \varepsilon (v)\| 2h :=
\sum 
T\in \scrT h

\| \varepsilon (v)\| 2T , \| curl(\gamma )\| 2h :=
\sum 
T\in \scrT h

\| curl(\gamma )\| 2T ,

\| v\| 21,h,\varepsilon := \| \varepsilon (v)\| 2h +
\sum 

F\in \scrF h

1

h

\bigm\| \bigm\| [[vt]]\bigm\| \bigm\| 2F ,
for v \in H1(\scrT h,\BbbR d) and \gamma \in H1(\scrT h,\BbbM ). Recall that Uh = Vh \times Wh. Our analysis is
based on norms of the type used in [36]. Accordingly, we will need to use the following
norms for vh \in Vh and \eta h \in Wh:

\| vh\| 2Vh
= \| vh\| 21,h,\varepsilon , \| (vh, \eta h)\| 2Uh

:= \| vh\| 21,h,\varepsilon + \| \kappa (curl vh) - \eta h\| 2h.

Lemma 4.8 below will show that the latter is indeed a norm.
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On the discrete space Uh, we will also need another norm defined using the fol-
lowing projections. On any mesh element T , let \Pi k - 1

T denote the L2(T,\BbbV ) orthogonal
projection onto \BbbP k(T,\BbbV ), where \BbbV is determined from context to be an appropriate
vector space such as \BbbR d, or \BbbM . When the element T is clear from context, we shall
drop the subscript T in \Pi k - 1

T and simply write \Pi k - 1. Also, on each facet F \in \scrF h,
we introduce a projection onto the tangent plane n\bot F : for any v \in L2(F, n\bot 

F ), the
projection \Pi 1

F v \in \BbbP 1(F, n\bot 
F ) is defined by (\Pi 1

F v, r)F = (v, r)F for all r \in \BbbP 1(F, n\bot 
F ).

Using these, define

\| (vh, \eta h)\| 2Uh,\ast :=
\sum 
T\in \scrT h

\| \Pi k - 1
T dev(\nabla vh  - \eta h)\| 2T +

\sum 
F\in \scrF h

1

h
\| \Pi 1

F [[(vh)t]]\| 2F .(4.1)

Lemma 4.7 below will help us go between this norm and \| (vh, \eta h)\| Uh
.

The remaining spaces \Sigma +
h and Qh are simply normed by the L2 norm \| \cdot \| . The

full discrete space is normed by

(4.2) \| (vh, \eta h, \tau h, qh)\| \ast :=
\surd 
\nu | | (vh, \eta h)| | Uh

+
1\surd 
\nu 
(\| \tau h\| + | | qh| | )

for any (vh, \eta h, \tau h, qh) \in Vh \times Wh \times \Sigma +
h \times Qh.

\bffour .\bftwo . \bfN \bfo \bfr \bfm \bfe \bfq \bfu \bfi \bfv \bfa \bfl \bfe \bfn \bfc \bfe \bfs . Next, we use the finite element mappings introduced
earlier---see (3.3) and (3.8)---to show several norm equivalences.

Lemma 4.1. Let \tau h \in \Sigma +
h . Then

hd\| \tau h\| 2T \sim \| \^\tau h\| 2\^T for all T \in \scrT h,(4.3)

hd+1\| (\tau h)nt\| 2F \sim \| (\^\tau h)\^n\^t\| 
2
\^F

for all F \in \scrF h,(4.4)

\| \tau h\| 2 \sim 
\sum 
T\in \scrT h

\| \tau h\| 2T +
\sum 

F\in \scrF h

h
\bigm\| \bigm\| (\tau h)nt\bigm\| \bigm\| 2F .(4.5)

Proof. The first two follow by a simple scaling argument. For the third, see the
proof of [24, Lemma 6.1].

In the proof of the next lemma, we use the space of rigid displacements \BbbE =
\BbbP 0(T,\BbbR d) + \BbbP 0(T,\BbbK )x. For each element T \in \scrT h, let \Pi \BbbE : H1(T ) \rightarrow \BbbE denote the
projector defined in [6]. Then, for any vh \in Vh, the projection \Pi \BbbE vh \in \BbbE fulfills the
properties (see [6, equation (3.3), (3.11)])

\| \nabla (vh  - \Pi \BbbE vh)\| T \sim \| \varepsilon (vh)\| T for all T \in \scrT h,(4.6) \bigm\| \bigm\| [[vh  - \Pi \BbbE vh]]
\bigm\| \bigm\| 2
F
\lesssim 

\sum 
T :T\cap F \not =\emptyset 

h\| \varepsilon (vh)\| 2T for all F \in \scrF h.(4.7)

We shall also use a global discrete Korn inequality, implied by [6, Theorem 3.1].
Namely, there is an h-independent constant cK such that

(4.8) c2K\| \nabla v\| 2h \leq \| \varepsilon (v)\| 2h +
\sum 

F\in \scrF h

h - 1
\bigm\| \bigm\| \Pi 1

F [[v]]
\bigm\| \bigm\| 2
F

for all v \in H1(\scrT h,\BbbR d).

Lemma 4.2. For all (vh, \eta h) \in Uh,

\| (vh, \eta h)\| 2Uh
\sim \| \varepsilon (vh)\| 2h + \| \kappa (curl vh) - \eta h\| 2h +

\sum 
F\in \scrF h

1

h

\bigm\| \bigm\| \Pi 1
F [[(vh)t]]

\bigm\| \bigm\| 2
F
.
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Proof. One side of the equivalence is obvious by the continuity of the \Pi 1
F . For

the other direction first note that

h - 1\| [[(vh)t]]\| 2F \leq 2h - 1\| \Pi 1
F [[(vh)t]]\| 2F + 2h - 1\| [[(vh  - \Pi 1

F vh)t]]\| 2F .

As \Pi \BbbE vh \in \BbbP 1(T,\BbbR d) we have again by the continuity of \Pi 1
F ,

\| [[(vh  - \Pi 1
F vh)t]]\| 2F = \| (Id - \Pi 1

F )[[(vh  - \Pi \BbbE vh)t]]\| 2F \leq \| [[(vh  - \Pi \BbbE vh)t]]\| 2F .

We conclude the proof using (4.7).

The following well-known property of Raviart--Thomas spaces (see, e.g.,
[9, Lemma 3.1]) is needed at several points.

Lemma 4.3. Let v \in \BbbP k(T,\BbbR d) + x\BbbP k(T,\BbbR ) and div(v) = 0. Then v \in \BbbP k(T,\BbbR d).

Lemma 4.4. For all T \in \scrT h and v \in \BbbP k(T,\BbbR d) + x\BbbP k(T,\BbbR ),

\| \varepsilon (v)\| 2T \sim \| \Pi k - 1 dev(\varepsilon (v))\| 2T + \| div(v)\| 2T ,(4.9)

\| (Id - \Pi k - 1)\kappa (curl v)\| 2T \lesssim \| div(v)\| 2T ,(4.10)

\| (Id - \Pi k - 1)\nabla v\| 2T \lesssim \| div(v)\| 2T .(4.11)

Proof. One side of the equivalence of (4.9) is obvious by the continuity of the
\Pi k - 1. For the other direction, we use the following equivalence on the reference
element \^T :

(4.12) \| \^\nabla (\^q\^x)\| \^T \sim \| \^div(\^q\^x)\| \^T for all \^q \in \BbbP k( \^T ,\BbbR ).

This follows by finite dimensionality, because by the Euler identity, if either one of
the above two terms is zero, then \^q = 0 (see, e.g., [30]). Consequently, given any
v \in \BbbP k(T,\BbbR d) + x\BbbP k(T,\BbbR ), setting \^v = \scrP  - 1(v), the following problem is uniquely

solvable: find \^b \in \BbbP k( \^T ,\BbbR ) such that\int 
\^T

\^div(\^x\^b) \^div(\^x\^q) dx =

\int 
\^T

\^div(\^v) \^div(\^x\^q) dx for all \^q \in \BbbP k( \^T ,\BbbR ).(4.13)

Since \^div(\^x\BbbP k( \^T ,\BbbR )) = \BbbP k( \^T ,\BbbR ), (4.13) implies that \^div(\^x\^b) = \^div(\^v). Put r =

\scrP  - 1(\^x\^b). Then, due to the properties of the Piola map \scrP , r is a function in \BbbP k(T,\BbbR d)+
x\BbbP k(T,\BbbR ) satisfying div(r) = div(v) in T , and a scaling argument using (4.12) implies

(4.14) \| \nabla r\| T \sim \| div(r)\| T .

Let a = v  - r \in \BbbP k(T,\BbbR d) + x\BbbP k(T,\BbbR ). Then div(a) = 0 and v = a + r in T .
Then we have

\| \varepsilon (v)\| T = \| \varepsilon (a+ r)\| T \lesssim \| dev(\varepsilon (a+ r))\| T + \| div(v)\| T
\leq \| dev(\varepsilon (a))\| T + \| \nabla r\| T + \| div(v)\| T
\lesssim \| dev(\varepsilon (a))\| T + \| div(v)\| T by (4.14).

Since Lemma 4.3 implies that a \in \BbbP k(T,\BbbR d),

\| \varepsilon (v)\| T = \| \Pi k - 1 dev(\varepsilon (a))\| T + \| div(v)\| T
\leq \| \Pi k - 1 dev(\varepsilon (v))\| T + \| \Pi k - 1 dev(\varepsilon (r))\| T + \| div(v)\| T
\lesssim \| \Pi k - 1 dev(\varepsilon (v))\| T + \| div(v)\| T by (4.14),

which proves (4.9).
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To prove (4.10), first note that due to the definition of \kappa (\cdot ), the equivalence
\| \kappa (curl v)\| T \sim \| curl(v)\| T holds. Thus, using the same decomposition as above,
namely, v = a+ r,

\| (Id - \Pi k - 1)\kappa (curl(v))\| T \leq \| (Id - \Pi k - 1)\kappa (curl(a))\| T + \| (Id - \Pi k - 1)\kappa (curl(r))\| T .

As curl(a) \in \BbbP k - 1(T,\BbbR \~d), the first term on the right vanishes. The last term satisfies

\| (Id - \Pi k - 1)\kappa (curl(r))\| T \lesssim \| curl(r)\| T \leq \| \nabla r\| T \lesssim \| div(r)\| T = \| div(v)\| T

due to (4.14). Hence (4.10) is proved.
The proof of (4.11) uses the same technique:

\| (Id - \Pi k - 1)\nabla v\| T \leq \| (Id - \Pi k - 1)\nabla a\| T + \| (Id - \Pi k - 1)\nabla r\| T \lesssim \| div(v)\| T ,

where we have used that a \in \BbbP k(T,\BbbR d) and (4.14).

Remark 4.5. The same technique shows that \| \nabla v\| 2T \sim \| \Pi k - 1[dev(\nabla v)]\| 2T +
\| div(v)\| 2T for all Raviart--Thomas functions v \in \BbbP k(T,\BbbR d)+x\BbbP k(T,\BbbR ). The technique
allows one to control the gradient of the highest-order terms of a Raviart--Thomas
function v by div(v). The same estimate does not hold for all v in \BbbP k+1(T,\BbbR d).

Lemma 4.6. For all T \in \scrT h and \eta h \in Wh,

\| \nabla \eta h\| T \sim \| curl \eta h\| T .

Proof. The proof is based on a scaling argument and equivalence of norms on
finite dimensional spaces on the reference element. Recall the map \phi and F = \phi \prime .
Calculations using the chain rule yield

\^curl
\bigl[ 
F\mathrm{T}(\eta h \circ \phi )F

\bigr] 
= F\mathrm{T}

\bigl[ 
curl(\eta h) \circ \phi 

\bigr] 
F - \mathrm{T} detF if d = 3,(4.15a)

\^curl
\bigl[ 
F\mathrm{T}(\eta h \circ \phi )F

\bigr] 
= F\mathrm{T}

\bigl[ 
curl(\eta h) \circ \phi 

\bigr] 
detF if d = 2.(4.15b)

We continue with the d = 3 case only (since the d = 2 case proceeds using (4.15b)
analogously). With \^\eta h = F\mathrm{T}(\eta h \circ \phi )F , standard estimates for F yield

\| curl(\eta h)\| 2T \sim h - 3\| \^curl(\^\eta h)\| 2\^T .(4.16)

Let \^v \in \BbbP k( \^T ,\BbbR d) and v \in \BbbP k(T,\BbbR d) be such that \^\eta h = \kappa (\^v) and \eta h = \kappa (v), where \kappa 
is as defined in (3.1). Then,

\| \nabla \eta h\| 2T \sim \| \nabla v\| 2T \sim h - 3\| \^\nabla \^v\| 2\^T \sim h - 3\| \^\nabla \^\eta h\| 2\^T .(4.17)

In view of (4.16) and (4.17), to complete the proof, it suffices to establish the
reference element estimate

(4.18) \| \^curl(\kappa (\^v))\| \^T \sim \| \^\nabla \^v\| \^T

by proving that one side is zero if and only if the other side is zero. Note these two
identities: \^curl\kappa (\^v) = ( \^\nabla \^v)\mathrm{T}  - \^div(\^v) Id, and \^curl\kappa (\^v) : Id =  - 2 div(\^v). If \^curl\kappa (\^v) =

0, then the latter identity implies \^div(\^v) = 0, which when used in the former identity
yields \^\nabla \^v = 0. Combined with the obvious converse, we have established (4.18).
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Lemma 4.7. For all T \in \scrT h and (vh, \eta h) \in Uh,

\| \varepsilon (vh)\| 2T + \| \kappa (curl vh) - \eta h\| 2T
\sim \| \Pi k - 1 dev(\nabla vh  - \eta h)\| 2T + h2\| curl(\eta h)\| 2T + \| div(vh)\| 2T .

Proof. Since the decomposition \nabla vh = \varepsilon (vh) + \kappa (curl(vh)) is orthogonal in the
Frobenius inner product, so is \nabla vh - \eta h = \varepsilon (vh)+[\kappa (curl(vh) - \eta h]. Application of the
deviatoric and \Pi k - 1 preserves this orthogonality. Hence, by the Pythagoras theorem,\bigm\| \bigm\| \Pi k - 1dev(\nabla vh  - \eta h)

\bigm\| \bigm\| 2
T
=

\bigm\| \bigm\| \Pi k - 1dev(\varepsilon (vh))
\bigm\| \bigm\| 2
T
+
\bigm\| \bigm\| \Pi k - 1[\kappa (curl(vh)) - \eta h]

\bigm\| \bigm\| 2
T
.(4.19)

We shall now prove the result using (4.19) and Lemma 4.4.
Proof of ``\lesssim "". Since

\| \varepsilon (vh)\| 2T \lesssim \| \Pi k - 1 dev(\varepsilon (vh))\| 2T + \| div(vh)\| 2T by Lemma 4.4,

\leq 
\bigm\| \bigm\| \Pi k - 1 dev(\nabla vh  - \eta h)

\bigm\| \bigm\| 2
T
+ \| div(vh)\| 2T by (4.19),

it suffices to prove that

(4.20) \| \kappa (curl(vh)) - \eta h\| 2T \lesssim 
\bigm\| \bigm\| \Pi k - 1 dev(\nabla vh  - \eta h) + h2\| curl(\eta h)\| 2T + \| div(vh)\| 2T ,

which we do next. Since the projection r1 = \Pi k - 1(\kappa (curl(vh)) - \eta h) can be bounded
using (4.19), we focus on the remainder r2 = (Id - \Pi k - 1)(\kappa (curl(vh)) - \eta h).

\| r2\| 2T \leq \| (Id - \Pi k - 1)\kappa (curl(vh))\| 2T + \| (Id - \Pi k - 1)\eta h\| 2T
\leq \| div(vh)\| 2T + h2\| \nabla \eta h\| 2T by (4.10), Lemma 4.4,

\lesssim \| div(vh)\| 2T + h2\| curl(\eta h)\| 2T by Lemma 4.6.

When this estimate for r2 is used in \| \kappa (curl(vh)) - \eta h\| 2T = \| r1\| 2T + \| r2\| 2T , and r1 is
bounded using (4.19), we obtain (4.20).

Proof of ``\gtrsim "". The last term of the lemma obviously satisfies \| div(vh)\| 2T \lesssim 
\| \varepsilon (vh)\| 2T , while the first term satisfies (by (4.19)).

\| \Pi k - 1 dev(\nabla vh  - \eta h)\| 2T \leq \| \varepsilon (vh)\| 2T + \| \kappa (curl(vh)) - \eta h\| 2T .

It remains to bound h2\| curl(\eta h)\| 2T . As curl[\kappa (curl(\Pi \BbbE vh))] = 0, we obtain using an
inverse inequality for polynomials

h2\| curl \eta h\| 2T = h2\| curl(\eta h  - \kappa (curl(\Pi \BbbE vh)))\| 2T \lesssim \| \eta h  - \kappa (curl \Pi \BbbE vh)\| 2T
\leq \| \eta h  - \kappa (curl(vh))\| 2T + \| \kappa (curl(vh)) - \kappa (curl \Pi \BbbE vh)\| 2T
\sim \| \eta h  - \kappa (curl(vh))\| 2T + \| curl(vh  - \Pi \BbbE vh)\| 2T
\lesssim \| \eta h  - \kappa (curl(vh))\| 2T + \| \varepsilon (vh)\| 2T ,

where we used (4.6) in the last step.

Lemma 4.8. For any vh \in Vh and \gamma h \in Wh,

h\| \nabla \gamma h\| 2h \lesssim inf
vh\in Vh

\| (vh, \gamma h)\| Uh
\leq \| \gamma h\| 2, \| vh\| 1,h,\varepsilon = inf

\eta h\in Wh

\| (vh, \eta h)\| Uh
.(4.21)

While the first estimate in (4.21) involves only the local constants from Lemmas 4.6
and 4.7, using the global constant cK , we also have

(1 + cK) - 1\| \gamma h\| \leq inf
vh\in Vh

\| (vh, \gamma h)\| Uh
.(4.22)
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Proof. To prove the first estimate of (4.21),

\| (vh, \gamma h)\| \geq \| \varepsilon (vh)\| 2h + \| \kappa (curl vh) - \gamma h\| 2h \gtrsim h2\| curl \gamma h\| 2h by Lemma 4.7

\gtrsim h2\| \nabla \gamma h\| 2h by Lemma 4.6.

Taking infimum over vh \in Vh, we obtain the lower estimate of (4.21). The upper
bound of the first infimum obviously follows by choosing vh = 0.

To prove the equality in (4.21), observe that the infimum over \eta h \in Wh cannot be
larger than \| vh\| 1,h,\varepsilon because we may choose \eta h = \kappa (curl vh). The reverse inequality
also holds since \| (vh, \eta h)\| Uh

\geq \| vh\| 1,h,\varepsilon for any \eta h \in Wh, so the equality must hold.
Finally, to prove (4.22), we use the triangle inequality to get

\| \gamma h\| \leq \| \kappa (curl vh) - \gamma h\| h + \| curl vh\| h \leq \| (vh, \gamma h)\| Uh
+ \| \nabla vh\| h.

Applying the Korn inequality (4.8) and noting that the jump of the normal compo-
nents are zero for functions in vh \in H0(div,\Omega ), the proof is complete.

\bffour .\bfthree . \bfS \bft \bfa \bfb \bfi \bfl \bfi \bft \bfy \bfa \bfn \bfa \bfl \bfy \bfs \bfi \bfs . The next three lemmas lead us to a discrete inf-sup
condition.

Lemma 4.9. Let \mu \in \BbbP k(T,\BbbM ) for some arbitrary element T \in \scrT h and define
\tau = (detF ) dev(curl(curl(\mu )B)). Then for d = 3, 2,

\| \tau \| T \sim h3 - d\| curl(\mu )\| T .

Proof. If curl\mu = 0, then obviously \tau = 0. We claim that the converse is also
true. Indeed, if \tau = 0, then putting s = d - 1tr(curl(curl(\mu )B)), we have

(4.23) curl(curl(\mu )B) = s Id .

Taking divergence on both sides, we find that \nabla s = 0, so s must be a constant
on T . Then, taking normal components of both sides of (4.23) on each facet, we
find that sn = 0, so s = 0. Hence curl(curl(\mu )B) = 0, which in turn implies that
0 = (curl(curl(\mu )B,\mu )T = (curl(\mu )B, curl(\mu ))T = 0. Therefore, by [10, Lemma 2.2],
curl(\mu ) = 0. Thus \tau = 0 if and only if curl\mu = 0.

Applying this on the reference element \^T for \^\mu = F\mathrm{T}(\mu \circ \phi )F \in \BbbP k(T,\BbbM ) and

\^\tau = dev( \^curl( \^curl(\^\mu ) \^B)), where \^B is in Remark 3.4, by finite dimensionality, we have

(4.24) \| \^\tau \| \^T \sim \| \^curl(\^\mu )\| \^T .

We will now show that \tau = (detF ) dev(curl(curl(\mu )B)) is related to \^\tau by

(4.25) \tau = \scrM (\^\tau ).

By the definition of \scrM ,

(detF )\scrM (\^\tau ) \circ \phi = F - \mathrm{T} dev( \^curl( \^curl(\^\mu ) \^B))F\mathrm{T} = dev(F - \mathrm{T} \^curl( \^curl(\^\mu ) \^B)F\mathrm{T})

as trace is preserved under similarity transformations. Focusing on the part of the
last term inside the deviatoric, in the d = 3 case,

F - \mathrm{T} \^curl( \^curl(\^\mu ) \^B)F\mathrm{T} = F - \mathrm{T} \^curl
\bigl[ 

\^curl(F\mathrm{T}(\mu \circ \phi )F )F\mathrm{T}(B \circ \phi )F
\bigr] 
F\mathrm{T} by (3.9),

= F - \mathrm{T} \^curl
\bigl[ 
F\mathrm{T}[curl(\mu ) \circ \phi ]F - \mathrm{T}(detF )F\mathrm{T}(B \circ \phi )F

\bigr] 
F\mathrm{T} by (4.15),

= (detF )F - \mathrm{T} \^curl
\bigl[ 
F\mathrm{T}[curl(\mu )B] \circ \phi F

\bigr] 
F\mathrm{T}

= (detF )2F - \mathrm{T}F\mathrm{T}
\bigl[ 
curl(curl(\mu )B) \circ \phi 

\bigr] 
F - \mathrm{T}F\mathrm{T} by (4.15).
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This proves that

F - \mathrm{T} \^curl( \^curl(\^\mu ) \^B)F\mathrm{T} = (detF )2 curl(curl(\mu )B) \circ \phi 

when d = 3. The same identity holds in the d = 2 case: the argument is similar
after changing the definitions of the curls and the mapping of B appropriately. Thus,
\scrM (\^\tau ) \circ \phi = (detF ) dev(curl(curl(\mu )B)) \circ \phi and (4.25) is proved.

Finally, the result follows from (4.25) by scaling arguments: indeed (4.24) implies,
by (4.3) and (4.15), that

h3\| \tau \| 2T \sim h3\| curl\mu \| 2T if d = 3,

h2\| \tau \| 2T \sim h4\| curl\mu \| 2T if d = 2,

from which the result follows.

Lemma 4.10. For any \gamma h \in Wh, there is a \tau h \in \Sigma +
h such that

(\tau h, \gamma h)\Omega \gtrsim h\| curl \gamma h\| h \| \tau h\| .(4.26)

Furthermore, for any vh \in Vh, the same \gamma h, \tau h pair satisfies

b2(\tau h, (vh, \gamma h)) \gtrsim 
\Bigl[ 
h\| curl(\gamma h)\| h  - \| div(vh)\| h

\Bigr] 
\| \tau h\| .(4.27)

Proof. Given a \gamma h \in Wh, set \tau h element by element by

\tau h| T = (detF ) dev(curl(curl(\gamma h| T )B)).

Clearly, dev(curl(curl(\Pi k - 1\gamma h)B)) is in \Sigma h. Since dev(curl(curl(\gamma h  - \Pi k - 1\gamma h)B)) is
in \delta \Sigma h, we conclude that \tau h \in \Sigma +

h . Since \gamma h is trace-free, there holds the equivalence
(\tau h, \gamma h)T = (curl(curl(\gamma h| T )B), \gamma h)T detF, which in turn implies, after integrating by
parts and applying Lemma 3.2, (\tau h, \gamma h)T = (curl(\gamma h)B, curl \gamma h)T detF .

In the d = 3 case, this yields

(4.28) (\tau h, \gamma h)T = detF

\int 
T

3\sum 
i=0

\lambda i - 3\lambda i - 2\lambda i - 1| curl(\gamma h)\nabla \lambda i| 2 dx .

Noting that \nabla \lambda i =  - ni/hi, where hi is the distance from the ith vertex to the facet
of the simplex opposite to it, and that the \ell 2-norm of any matrix m \in \BbbM is equivalent
to the sum of \ell 2-norms of mni, a local scaling argument with m = curl(\gamma h) and (4.28)
imply

(\tau h, \gamma h)T \gtrsim (detF )h - 2\| curl(\gamma h)\| 2T .

Therefore, (\tau h, \gamma h)\Omega \gtrsim h\| curl(\gamma h)\| 2h \gtrsim h\| curl(\gamma h)\| h \| \tau h\| , by Lemma 4.9. This
proves (4.26) in the d = 3 case. In the d = 2 case, the analogue of (4.28) gives
(\tau h, \gamma h)T \gtrsim (detF ) \| curl(\gamma h)\| 2T \gtrsim h2\| curl(\gamma h)\| 2T \geq h\| curl(\gamma h)\| T \| \tau h\| , where we
have used Lemma 4.9 again. This completes the proof of (4.26).

To prove (4.27), we use (3.11). The last sum in

b2(\tau h, (vh, \gamma h)) =  - 
\sum 
T\in \scrT h

\int 
T

\tau h : (\nabla vh  - \gamma h) dx+
\sum 

F\in \scrF h

\int 
F

(\tau h)nt \cdot [[(vh)t]] ds
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vanishes due to Lemma 3.3. Hence by (4.26),

b2(\tau h, (vh, \gamma h)) \gtrsim h\| curl \gamma h\| h \| \tau h\|  - 
\sum 
T\in \scrT h

(\tau h,\nabla vh)T .(4.29)

To handle the last term, note that

1

detF
(\tau h,\nabla vh)T = (curl(curl(\gamma h)B),\nabla vh)T  - (d - 1tr(curl(curl(\gamma h)B)) Id,\nabla vh)T

=  - (d - 1tr(curl(curl(\gamma h)B)),div(vh))T

because (curl(curl(\gamma h)B),\nabla vh)T = 0. This follows by integrating one of the curls by
parts, observing that the resulting volume term is zero (since curl(\nabla vh) = 0) and
so is the resulting boundary term (due to Lemma 3.2). Continuing, we apply the
Cauchy--Schwarz inequality and an inverse inequality to get

| (\tau h,\nabla vh)T | \lesssim | detF | h - 1\| B\| L\infty (T )\| curl(\gamma h)\| T \| div(vh)\| T
\lesssim \| \tau h\| T \| div(vh)\| T

by Lemma 4.9. Returning to (4.29) and using this estimate, the proof is complete.

Remark 4.11. The message of Lemmas 4.9 and 4.10 is that it is possible to choose
a \tau h in the form of a deviatoric of a curl of a bubble to bound (from below) the term
arising from the weak symmetry constraint. If \tau h was just a curl, it would not be seen
by the equilibrium equation and the bound in (4.27) would not have the \| div(vh)\| -
term, but our \tau h is a deviatoric (of a curl), thus necessitating this term.

Lemma 4.12. For any (vh, \gamma h) \in Uh, there is a \tau h \in \Sigma h such that

b2(\tau h, (vh, \gamma h)) \gtrsim \| (vh, \gamma h)\| Uh,\ast \| \tau h\| .

Proof. We only present the proof in two dimensions, as the three-dimensional case
is similar. From the local element basis exhibited in (3.13) (see also [24, section 5.5]
for a more detailed discussion), its clear that on any facet F \in \scrF h, there exists a
constant trace-free function SF with the property that SF

nt \in \BbbP 0(F, n\bot 
F ), \| SF

nt\| 2 = 1
on the facet F, and SF

nt equals (0, 0) on all other facets in \scrF h. Given any (vh, \gamma h) \in Uh,
define

\tau 0h :=
\sum 
T\in \scrT h

\sum 
F\in \scrF h

 - (SF : \Pi k - 1 dev(\nabla vh  - \gamma h))\lambda 
F
T S

F , \tau 1h :=
\sum 

F\in \scrF h

1\surd 
h
\Pi 1([[(vh)t]]) S

F ,

where \lambda FT is the unique barycentric coordinate function on the element T opposite to
the facet F (so that \lambda FT S

F is an nt-bubble). Clearly, \tau 0h and \tau 1h are in \Sigma h. Using the
norm equivalences stated in (4.5) and the mappings for vh and \gamma h given in (3.3), a
scaling argument yields

\| \tau 0h\| 2 \lesssim 
\sum 
T\in \scrT h

\| \Pi k - 1 dev(\nabla vh  - \gamma h))\| 2T and \| \tau 1h\| 2 \lesssim 
\sum 

F\in \scrF h

1

h
\| \Pi 1[[(vh)t]]\| 2F .

Setting \tau h = \alpha 0\tau 
0
h +\alpha 1\tau 

1
h and selecting the constants \alpha 0, \alpha 1 appropriately, the rest of

the proof proceeds along the same lines as the proof of [24, Lemma 6.5].

Remark 4.13. It is interesting to contrast Lemma 4.12 with [24, Lemma 6.5],
which also gives a similar LBB-condition. The differences are (i) the velocity space in
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[24] is H0(div,\Omega )\cap \BbbP k+1(\scrT h,\BbbR d), (ii) the velocity norm is a discrete H1-norm defined
using \nabla in place of \varepsilon (\cdot ), (iii) there is no weak symmetry constraint and no associated
space Wh in [24], and (iv) the stress space in [24] equals the \Sigma h in (3.5) plus certain
nt-bubbles of degree k+1 (different from our \delta \Sigma h here). Lemma 4.12 shows that the
inf-sup condition in [24, Lemma 6.5] continues to hold even if the nt-bubbles there are
removed and H0(div,\Omega ) \cap \BbbP k+1(\scrT h,\BbbR d) is replaced by our Raviart--Thomas velocity
space Vh. This observation can be extended to prove the convergence of the MCS
formulation in [24] with so modified spaces.

Theorem 4.14 (discrete LBB-condition). Let vh \in Vh and \gamma h \in Wh. Then,

sup
(\tau h,qh)\in \Sigma +

h \times Qh

b1(vh, qh) + b2(\tau h, (vh, \gamma h))

\| \tau h\| + \| qh\| 
\gtrsim \| (vh, \gamma h)\| Uh

.(4.30)

If vh is in the divergence-free subspace V 0
h := \{ zh \in Vh : div(zh) = 0\} , then

sup
\tau h\in \Sigma +

h

b2(\tau h, (vh, \gamma h))

\| \tau h\| 
\gtrsim \| (vh, \gamma h)\| Uh

.(4.31)

Proof. By Lemmas 4.10 and 4.12, for any given (vh, \gamma h) \in Uh, there are \tau 1h , \tau 
2
h \in 

\Sigma +
h satisfying

b2(\tau 
1
h , (vh, \gamma h)) \gtrsim 

\Bigl[ 
h\| curl(\gamma h)\| h  - \| div(vh)\| 

\Bigr] 
\| \tau 1h\| ,(4.32)

b2(\tau 
2
h , (vh, \gamma h)) \gtrsim \| (vh, \gamma h)\| Uh,\ast \| \tau 2h\| .(4.33)

Clearly, the same inequalities hold when \tau 1h and \tau 2h are scaled by any nonzero factor,
so we may assume without loss of generality that they have been scaled so that
\| \tau 1h\| = h\| curl \gamma h\| h and \| \tau 2h\| = \| (vh, \gamma h)\| Uh,\ast . Set \tau h = \alpha \tau 1h + \tau 2h , where \alpha \in \BbbR is to
be chosen shortly. It follows from (4.32) and (4.33) that

(4.34) b2(\tau h, (vh, \gamma h)) \gtrsim \alpha h2\| curl \gamma h\| 2h  - \alpha h\| div(vh)\| h\| curl \gamma h\| h + \| (vh, \gamma h)\| 2Uh,\ast .

Next, we choose qh \in Qh so that qh = \beta div(vh), where \beta \in \BbbR is another constant
to be chosen shortly. Then (4.34) implies

b1(vh, qh) + b2(\tau h, (vh, \gamma h)) = \beta \| div(vh)\| 2h + \alpha h2\| curl \gamma h\| 2h + \| (vh, \gamma h)\| 2Uh,\ast 

 - \alpha h\| div(vh)\| h\| curl \gamma h\| h.

Choose any \alpha > 1 and \beta > \alpha 2/2. Then, using Young's inequality for the last term,

b1(vh, qh) + b2(\tau h, (vh, \gamma h)) \gtrsim \| div(vh)\| 2h + h2\| curl \gamma h\| 2h + \| (vh, \gamma h)\| 2Uh,\ast .

Recalling that we also have

\| \tau h\| 2\Sigma +
h

+ \| qh\| 2 \lesssim \| div(vh)\| 2h + h2\| curl \gamma h\| 2h + \| (vh, \gamma h)\| 2Uh,\ast ,

we can now conclude the proof of (4.30) using the norm equivalence of Lemma 4.7.
The proof of (4.31) is similar (and in fact simpler since all terms involving div(vh)
vanish).
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\bffour .\bffour . \bfE \bfr \bfr \bfo \bfr \bfe \bfs \bft \bfi \bfm \bfa \bft \bfe \bfs . In this subsection we show that the error in the discrete
MCS solution converges at optimal order. As we have chosen polynomials of degree
k for the stress space \Sigma h, the optimal rate of convergence for \| \sigma  - \sigma h\| is \scrO (hk+1).
However, the optimal rate for the velocity error in our discrete H1-like norm, namely,
\| u - uh\| 1,h,\varepsilon , is only \scrO (hk) (since the Raviart--Thomas velocity space Vh only contains
\BbbP k(T,\BbbR d) within each mesh element T ). Nevertheless, we are still able to prove the
optimal convergence rate of the stress error by using an appropriate interpolation op-
erator and deducing that the stress error is independent of the velocity error. Another
important property we shall conclude in this subsection is the pressure robustness of
the method.

Lemma 4.15 (continuity). The bilinear forms a, b1 and b2 are continuous:

a(\varsigma h, \tau h) \lesssim 
\bigl( 
\nu  - 1/2\| \varsigma h\| 

\bigr) \bigl( 
\nu  - 1/2\| \tau h\| 

\bigr) 
for all \varsigma h, \tau h \in \Sigma +

h ,

b1(vh, qh) \lesssim \| (vh, 0)\| Uh
\| qh\| for all vh \in Vh, qh \in Qh,

b2(\tau h, (vh, \eta h)) \lesssim \| \tau h\| \| (vh, \eta h)\| Uh
for all \tau h \in \Sigma +

h , (vh, \eta h) \in Uh.

Proof. The continuity of a and b1 follow by the Cauchy--Schwarz inequality. For
b2, we use (3.11) and \nabla vh = \varepsilon (vh) + \kappa (curl vh) to get

b2(\tau h, (vh, \eta h)) = - 
\sum 
T\in \scrT h

\int 
T

\tau :
\bigl[ 
\varepsilon (vh) + (\kappa (curl vh) - \eta h)

\bigr] 
dx+

\sum 
F\in \scrF h

\int 
F

\tau nt \cdot [[(vh)t]] ds .

Now, the Cauchy--Schwarz inequality and (4.5) of Lemma 4.1 finish the proof.

Lemma 4.16 (coercivity in the kernel). For all (\tau h, qh) in the kernel

Kh := \{ (\tau h, qh) \in \Sigma h \times Qh : b1(vh, qh) + b2(\tau h, (vh, \eta h)) = 0 for all (vh, \eta h) \in Uh\} ,

we have \nu  - 1
\bigl( 
\| \tau h\| + \| qh\| 

\bigr) 2
\lesssim a(\tau h, \tau h).

Proof. By [31, Theorem 2.2], for any qh \in Qh, there is a vh \in Vh such that
\| qh\| 2 \lesssim (div(vh), qh) and a discrete H1-norm of vh is bounded by \| qh\| . The latter
bound implies, in particular, that \| vh\| 1,h,\varepsilon \lesssim \| qh\| and also that \eta h = \kappa (curl vh)
satisfies \| (vh, \eta h)\| Uh

\lesssim \| qh\| . This together with Lemma 4.15 implies

\| qh\| 2 \lesssim b1(vh, qh) =  - b2(\tau h, (vh, \eta h)) \lesssim \| \tau h\| \| (vh, \eta h)\| Uh
\lesssim \| \tau h\| \| qh\| 

yielding the needed bound for \| qh\| .
We are now ready to conclude an inf-sup condition for the bilinear form

B(vh, \eta h,\tau h, qh; \~vh, \~\eta h, \~\tau h, \~qh)

:= a(\tau h, \~\tau h) + b1(vh, \~qh) + b1(\~vh, qh) + b2(\tau h, (\~vh, \~\eta h)) + b2(\~\tau h, (vh, \eta h)).

Corollary 4.17. Let \tau h \in \Sigma +
h , vh \in Vh, \eta h \in Wh, and qh \in Qh. There holds

\| (vh, \eta h, \tau h, qh)\| \ast \lesssim sup
\~vh\in Vh, \~\eta h\in Wh

\~\tau h\in \Sigma +
h , \~qh\in Qh

B(vh, \eta h, \tau h, qh; \~vh, \~\eta h, \~\tau h, \~qh)

\| (\~vh, \~\eta h, \~\tau h, \~qh)\| \ast 
,(4.35)

so, in particular, there is a unique solution for the discrete MCS system (3.12). More-
over, if vh is restricted to V 0

h , we also have

\| (vh, \eta h, \tau h, 0)\| \ast \lesssim sup
\~vh\in V 0

h , \~\eta h\in Wh, \~\tau h\in \Sigma +
h

B(vh, \eta h, \tau h, 0; \~vh, \~\eta h, \~\tau h, 0)

\| (\~vh, \~\eta h, \~\tau h, 0)\| \ast 
.(4.36)
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Proof. The first inf-sup condition follows from the standard theory of mixed meth-
ods [5], using Theorem 4.14 (the inf-sup condition for b1 and b2 given by (4.30)),
Lemma 4.15 (continuity of forms), and Lemma 4.16 (coercivity in the kernel).

The second inf-sup condition also follows in a similar fashion, but now using the
other inequality (4.31) of Theorem 4.14.

Theorem 4.18 (consistency). The MCS method with weakly imposed symme-
try (3.12) is consistent in the following sense. If the exact solution of the Stokes prob-
lem (3.2) is such that u \in H1(\Omega ,\BbbR d), \omega \in L2(\Omega ,\BbbM ), \sigma \in H1(\Omega ,\BbbD ), and p \in L2

0(\Omega ,\BbbR ),
then

B(u, \omega , \sigma , p; vh, \eta h, \tau h, qh) = ( - f, vh)\Omega 

for all vh \in Vh, \eta h \in Wh, qh \in Qh, and \tau h \in \Sigma h.

The proof of Theorem 4.18 is easy (see, e.g., the similar proof of [24, Theorem
6.2]), so we omit it. We now have all the ingredients to prove the following convergence
result. Let IVh

denote the standard Raviart--Thomas interpolator (see, e.g., [5]) and
let \| (u, \omega , \sigma , p)\| \nu ,s = \nu  - 1\| \sigma \| Hs(\scrT h,\BbbD )+\nu 

 - 1\| p\| Hs(\scrT h,\BbbR )+\| \omega \| Hs(\scrT h,\BbbK )+\| u\| Hs+1(\scrT h,\BbbR d).

Theorem 4.19 (optimal convergence). Let u \in H1(\Omega ,\BbbR d) \cap Hm(\scrT h,\BbbR d), \sigma \in 
H1(\Omega ,\BbbD )\cap Hm - 1(\scrT h,\BbbD ), p \in L2

0(\Omega ,\BbbR )\cap Hm - 1(\scrT h,\BbbR ), and \omega \in L2(\Omega ,\BbbK )\cap Hm - 1(\scrT h,
\BbbK ) be the exact solution of the mixed Stokes problem (3.2), let uh, \sigma h, \omega h, and ph
solve (3.12), and let s = min(m - 1, k + 1). Then,
(4.37)

1

\nu 
(\| \sigma  - \sigma h\| + \| p - ph\| ) + \| (\omega h  - \Pi k\omega , uh  - IVh

u)\| Uh
\lesssim hs\| (0, \omega , \sigma , p)\| \nu ,s.

Proof. Let e\sigma h = I\Sigma h
\sigma  - \sigma h, euh = IVh

u - uh, e\omega h = \Pi k\omega  - \omega h, e
p
h = \Pi kp - ph (where

the two occurrences of \Pi k represent projections onto two different discrete spaces per
our prior notation). Denoting the analogous approximation errors by a\sigma = I\Sigma h

\sigma  - \sigma ,
au = IVh

u - u, a\omega = \Pi k\omega  - \omega , and ap = \Pi kp - p, observe that Theorem 4.18 implies

B(euh,e
\omega 
h , e

\sigma 
h, e

p
h; vh, \eta h, \tau h, qh) = B(au, a\omega , a\sigma , ap; vh, \eta h, \tau h, qh)(4.38)

for any vh \in Vh, \eta h \in Wh, \tau h \in \Sigma +
h , and qh \in Qh. The right-hand side above is a sum

of five terms (\nu  - 1a\sigma , \tau h)+b1(a
u, qh)+b1(vh, a

p)+b2(\tau h, (a
u, a\omega ))+b2(a

\sigma , (vh, \eta h)). The
second term vanishes: b1(a

u, qh) = (div(IVh
u - u), qh) = (\Pi k div(u) - div(u), qh) = 0

as div(u) = 0. The third term also vanishes: b1(vh, a
p) = (div(vh),\Pi 

kp - p) = 0 since
div(vh) \in \BbbP k(\scrT h). The fourth term, due to (3.10), is

b2(\tau h, (a
u, a\omega )) = (\tau , a\omega ) +

\sum 
T\in \scrT h

(div(\tau h), IVh
u - u)T  - 

\sum 
E\in \scrF h

([[(\tau h)nn]], (IVh
u - u) \cdot n)E ,

where the last two terms vanish by the properties of the Raviart--Thomas d.o.f.s that
define IVh

, i.e., b2(\tau h, (a
u, a\omega )) = (\tau h, a

\omega ). The fifth term, due to (3.11), is

b2(a
\sigma , (vh, \eta h)) = (a\sigma , \eta h  - \nabla vh) +

\sum 
E\in \scrF h

(a\sigma nt, [[(vh)t]])E .
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Writing (a\sigma , \eta h  - \nabla vh) = (a\sigma , \eta h) + (a\sigma , (\Pi k - 1  - Id)\nabla vh) - (a\sigma ,\Pi k - 1\nabla vh), note that
by the d.o.f.s of Theorem 3.6, the last term (a\sigma ,\Pi k - 1\nabla vh) is zero, and moreover,
(a\sigma , \eta h) = (a\sigma , \eta h - \Pi 0\eta h). Incorporating these observations on each term into (4.38),
we obtain

(4.39)

B(euh, e
\omega 
h , e

\sigma 
h, e

p
h; vh, \eta h, \tau h, qh) = (\nu  - 1a\sigma , \tau h) + (\tau h, a

\omega ) +
\sum 

F\in \scrF h

(a\sigma nt, [[(vh)t]])F

+ (a\sigma , \eta h  - \Pi 0\eta h) + (a\sigma , (\Pi k - 1  - Id)\nabla vh).

We proceed with the right-hand side of (4.39). By (4.21) and Lemma 4.4,

\| \eta h  - \Pi 0\eta h\| \lesssim h\| \nabla \eta h\| h \lesssim inf
\~vh\in Vh

\| (\~vh, \eta h)\| Uh
\leq \| (vh, \eta h)\| Uh

,

\| (\Pi k - 1  - Id)\nabla vh\| h \lesssim \| div(vh)\| 2 \lesssim \| \varepsilon (vh)\| 2h \leq \| (vh, \eta h)\| Uh
.

Using these after an application of the Cauchy--Schwarz inequality, (4.39) yields

B(euh,e
\omega 
h , e

\sigma 
h, e

p
h; vh, \eta h, \tau h, qh)

\lesssim 

\biggl[ 
1

\nu 

\biggl( 
\| a\sigma \| 2 +

\sum 
F\in \scrF h

h\| a\sigma nt\| 2F
\biggr) 
+ \nu \| a\omega \| 2

\biggr] 1/2 \biggl( 
1

\nu 
\| \tau h\| 2 + \nu \| (vh, \eta h)\| 2Uh

\biggr) 1/2

\lesssim 

\biggl( 
1\surd 
\nu 
hs\| \sigma \| Hs(\scrT h) +

\surd 
\nu hs\| \omega \| Hs(\scrT h)

\biggr) 
\| (vh, \eta h, \tau h, qh)\| \ast ,(4.40)

where we have used Theorem 3.8 and the approximation property of \Pi k.
To complete the proof, we apply the triangle inequality starting from the left-hand

side of (4.37), to get

1

\nu 

\Bigl( 
\| \sigma  - \sigma h\| + \| p - ph\| 

\Bigr) 
+ \| (euh, e\omega h)\| Uh

\leq 1

\nu 

\bigl( 
\| a\sigma \| + \| ap\| + \| e\sigma h\| + \| eph\| 

\bigr) 
+ \| (euh, e\omega h)\| Uh

\lesssim 
hs

\nu 

\bigl( 
\| \sigma \| Hs(\scrT h) + \| p\| Hs(\scrT h)

\bigr) 
+

1\surd 
\nu 
\| (euh, e\omega h , e\sigma h, e

p
h)\| \ast (4.41)

again using Theorem 3.8. Bounding the last term above using (4.35) and (4.40), the
proof is complete.

Remark 4.20 (convergence in standard norms). Using also Lemma 4.8's esti-
mate (4.22), a consequence of the global discrete Korn inequality, (4.37) implies

1

\nu 
\| \sigma  - \sigma h\| +

1

\nu 
\| p - ph\| + \| \omega  - \omega h\| + \| uh  - IVh

u\| Vh
\lesssim hs\| (0, \omega , \sigma , p)\| \nu ,s(4.42)

under the assumptions of Theorem 4.19. Note that even though the optimal rate
for \| u  - uh\| 1,h,\varepsilon is only \scrO (hk), (4.42) gives a superconvergent rate of \scrO (hk+1) for
\| uh  - IVh

u\| 1,h,\varepsilon when the solution is regular enough.
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Theorem 4.21 (pressure robustness). Under the same assumptions as Theo-
rem 4.19 there holds

1

\nu 
\| \sigma  - \sigma h\| + \| \omega  - \omega h\| + \| uh  - IVh

u\| Vh
\lesssim hs\| (0, \omega , \sigma , 0)\| \nu ,s.

Proof. Proceeding along the lines of the proof of Theorem 4.19, omitting the
pressure error, we obtain, instead of (4.41),

1

\nu 
\| \sigma  - \sigma h\| + \| (euh, e\omega h)\| Uh

\lesssim 
hs

\nu 
\| \sigma \| Hs(\scrT h) +

1\surd 
\nu 
\| (euh, e\omega h , e\sigma h, 0)\| \ast .

We may now complete the proof as before by using (4.36) instead of (4.35).

\bffive . \bfP \bfo \bfs \bft \bfp \bfr \bfo \bfc \bfe \bfs \bfs \bfi \bfn \bfg . In this section we describe and analyze a postprocessing for
the discrete velocity. While for the raw solution uh, we may only expect \| u - uh\| 1,h,\varepsilon 
to go to zero at the rate \scrO (hk), we will show that a locally postprocessed velocity
u\ast h has error \| u  - u\ast h\| 1,h,\varepsilon that converges to zero at the higher rate \scrO (hk+1) for
sufficiently regular solutions. The key to obtain this enhanced accuracy, as in [36],
is the O(hk+1)-superconvergence of \| uh  - IVh

u\| 1,h,\varepsilon ---see Remark 4.20. Finally, we
shall also show that u\ast h retains the prized structure preservation properties of exact
mass conservation and pressure robustness.

The crucial ingredient is a reconstruction operator (see [28, 29]) whose properties
are summarized in the next lemma. Let

V \ast 
h = H0(div,\Omega ) \cap \BbbP k+1(\scrT h,\BbbR d) and

V \ast , - 
h = \{ vh \in \BbbP k+1(\scrT h,\BbbR d) : \Pi k[[(vh)n]] = 0 for all F \in \scrF h\} 

denote the \scrB \scrD \scrM space (one order higher) and its ``relaxed"" analogue, respectively.
The next result is a consequence of [28, Lemmas 3.3 and 4.8] and the Korn inequal-
ity (4.8).

Lemma 5.1. There exists an operator \scrR : V \ast , - 
h \rightarrow V \ast 

h , whose application is com-
putable element by element, satisfying

1. \| \scrR vh\| 1,h,\varepsilon \lesssim \| vh\| 1,h,\varepsilon , for al vh \in V \ast , - 
h ,

2. \scrR v\ast h = v\ast h for all v\ast h \in V \ast 
h , and

3. whenever the local (elementwise) property div(vh| T ) = 0 holds for all T \in \scrT h
and all vh \in V \ast , - 

h , the global property div(\scrR vh) = 0 holds.

A simple choice of \scrR is given by a (DG) generalization of the classical \scrB \scrD \scrM 
interpolant. This was used in [25]. Another choice of \scrR , given in [28], based on a
simple averaging of coefficients, is significantly less expensive for high orders.

The postprocessed solution u\ast h \in V \ast 
h is given in two steps as follows. First, using

the computed \sigma h and uh, solve the local (see Remark 5.3) minimization problem

u\ast , - h := argmin
v\ast , - 
h \in V \ast , - 

h

IVh
(v\ast , - 

h )=uh

\| \nu \varepsilon (v\ast , - h ) - \sigma h\| 2T .(5.1)

Second, apply the reconstruction and set u\ast h := \scrR (u\ast , - h ).
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Theorem 5.2. Suppose the assumptions of Theorem 4.19 hold. Then u\ast h \in V \ast 
h ,

div(u\ast h) = 0, and for s = min(m - 1, k+1) we have the pressure robust error estimate

\| u - u\ast h\| 1,h,\varepsilon \lesssim hs\| (u, \omega , \sigma , 0)\| \nu ,s.

Proof. On any T \in \scrT h, the condition IVh
(u\ast , - h ) = uh implies that the Raviart--

Thomas d.o.f.s applied to u\ast , - h and uh coincide. Hence, for all qh \in \BbbP k(T,\BbbR ),

(div(u\ast , - h ), qh)T =  - (u\ast , - h ,\nabla qh)T + (u\ast , - h \cdot n, qh)\partial T
=  - (uh,\nabla qh)T + (uh \cdot n, qh)\partial T = (div(uh), qh) = 0

as div(uh) = 0. Thus, Lemma 5.1 implies that uh \in V \ast 
h and div(u\ast h) = 0.

It only remains to prove the error estimate. Let IV \ast 
h

be the standard \scrB \scrD \scrM k+1

interpolator. Then, u\ast h = \scrR u\ast , - h satisfies

\| u - u\ast h\| 1,h,\varepsilon \leq \| u - IV \ast 
h
u\| 1,h,\varepsilon + \| \scrR (IV \ast 

h
u - u\ast , - h )\| 1,h,\varepsilon by Lemma 5.1. 2,

\lesssim \| u - IV \ast 
h
u\| 1,h,\varepsilon + \| u - u\ast , - h \| 1,h,\varepsilon by Lemma 5.1. 1.

Since standard approximation estimates yield \| u - IV \ast 
h
u\| 1,h,\varepsilon \lesssim hs\| (u, 0, 0, 0)\| \nu ,s, we

focus on the last term. A triangle inequality (where we add and subtract different
functions in the element and facet terms) yields

(5.2)

\| u - u\ast , - h \| 21,h,\varepsilon \lesssim 
\sum 
T\in \scrT h

1

\nu 2
\| \nu \varepsilon (u) - \sigma h\| 2T +

\sum 
T\in \scrT h

1

\nu 2
\| \sigma h  - \nu \varepsilon (u\ast , - h )\| 2T

+
\sum 

F\in \scrF h

1

h
\| [[(u - IV \ast 

h
u)t]]\| 2F +

\sum 
F\in \scrF h

1

h
\| [[(IV \ast 

h
u - u\ast , - h )t]]\| 2F .

Naming the four sums on the right as s1, s2, s3 and s4, respectively, we proceed to
estimate each. Obviously s1 = \nu  - 1\| \sigma  - \sigma h\| \lesssim hs\| (0, \omega , \sigma , 0)\| \nu ,s by Theorem 4.21.

To bound s2, note that for any wh in the admissible set of the minimization
problem (5.1), we have s2 \leq \nu  - 2\| \sigma h - \nu \varepsilon (wh)\| 2. We choose wh = IV \ast 

h
u+uh - IVh

u \in 
V \ast 
h \subset V \ast , - 

h . Since IVh
IV \ast 

h
u = IVh

u implies IVh
wh = uh, the chosen wh is in the

admissible set. Hence,

s2 \leq \nu  - 2\| \sigma h  - \nu \varepsilon (wh)\| 2 \leq \nu  - 2
\bigl( 
\| \sigma h  - \nu \varepsilon (IV \ast 

h
u)\| + \| \nu \varepsilon (uh) - \nu \varepsilon (IVh

u)\| 
\bigr) 2

\lesssim \nu  - 2\| \sigma h  - \nu \varepsilon (u)\| 2 + \nu  - 2\| \nu \varepsilon (u) - \nu \varepsilon (IV \ast 
h
u)\| 2 + \nu  - 2\| \nu \varepsilon (uh) - \nu \varepsilon (IVh

u)\| 2

= \nu  - 2\| \sigma h  - \sigma \| 2 + \| u - IV \ast 
h
u\| 21,h,\varepsilon + \| uh  - IVh

u\| 21,h,\varepsilon ,

so a standard approximation estimate and Theorem 4.21 yield s2 \lesssim hs\| (u, \omega , \sigma , 0)\| \nu ,s.
The same standard approximation estimate for IV \ast 

h
also gives the estimate s3 \leq 

\| u  - IV \ast 
h
u\| 1,h,\varepsilon \lesssim hs\| (u, \omega , \sigma , 0)\| \nu ,s. Hence it only remains to bound s4. Observe

that IV \ast 
h
u  - u\ast , - h = IVh

(IV \ast 
h
u  - u\ast , - h ) + (Id - IVh

)(IV \ast 
h
u  - u\ast , - h ) = (IVh

u  - uh) +

(Id - IVh
)(IV \ast 

h
u  - u\ast , - h ), because IVh

IV \ast 
h
u = IVh

u and IVh
u\ast , - h = uh. Defining a =

(Id - IVh
)(Id - \Pi \BbbE )(IV \ast 

h
u  - u\ast , - h ), the identity IV \ast 

h
u  - u\ast , - h = (IVh

u  - uh) + a holds
because (Id - IVh

)\BbbE = 0 (as k \geq 1). Hence

s4 \lesssim \| IVh
u - uh\| 21,h,\varepsilon +

\sum 
F\in \scrF h

h - 1
\bigm\| \bigm\| [[at]]\bigm\| \bigm\| 2F .(5.3)
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Since the first term can be bounded by Theorem 4.21, let us study the last term. On

any facet F adjacent to a mesh element T , a trace inequality yields h - 1
\bigm\| \bigm\| [[at]]\bigm\| \bigm\| 2F \leq 

h - 1\| at\| 2\partial T \lesssim \| \nabla a\| 2T + h - 2\| a\| 2T . Hence,

h - 1
\bigm\| \bigm\| [[at]]\bigm\| \bigm\| 2F \lesssim \| \nabla (Id - \Pi \BbbE )(IV \ast 

h
u - u\ast , - h )\| 2T + h - 2\| (Id - \Pi \BbbE )(IV \ast 

h
u - u\ast , - h )\| 2T

\lesssim \| \varepsilon (IV \ast 
h
u - u\ast , - h )\| 2T ,

where we have used the continuity properties of IVh
, scaling arguments, (4.6), and an

estimate analogous to (4.7). Using the triangle inequality and returning to (5.3),

s4 \lesssim \| IVh
u - uh\| 21,h,\varepsilon + \| \varepsilon (IV \ast 

h
u - u)\| 2h + \nu  - 2\| \nu \varepsilon (u) - \sigma h\| 2h + \nu  - 2\| \sigma h  - \nu \varepsilon (u\ast , - h )\| 2h.

The last two terms are s1 and s2, respectively. Hence the prior estimates, the standard
approximation estimate for IV \ast 

h
, and Theorem 4.21 show s4 \lesssim hs\| (u, \omega , \sigma , 0)\| \nu ,s.

Remark 5.3. The restriction of the minimizer of (5.1) to an element T , which
we denote by u\ast , - T \equiv u\ast , - h | T , can be computed using the following Euler--Lagrange
equations. Letting \Lambda \ast 

h(T ) = \{ \lambda : \lambda | F \in \BbbP k(F,\BbbR ) on all facets F \subset \partial T\} , the function
u\ast , - T is the unique function in \BbbP k+1(T,\BbbR d), which together with \ell \ast h \in \BbbP k - 1(T,\BbbR d) and
\lambda \ast h \in \Lambda \ast 

h(T ) satisfies

(\nu \varepsilon (u\ast , - T ), \varepsilon (v))T + (\ell \ast h, v)T + (\lambda \ast h, v \cdot n)\partial T = (\sigma h, \varepsilon (v))T ,

(u\ast , - T , \wp )T = (uh, \wp )T ,

(u\ast , - T \cdot n, \mu )\partial T = (uh \cdot n, \mu )\partial T

for all v \in \BbbP k+1(T,\BbbR d), \wp \in \BbbP k - 1(T,\BbbR d), and \mu \in \Lambda \ast 
h(T ). The last two equations are

another way to express the constraint IVh
u\ast , - h = uh in (5.1).

\bfsix . \bfN \bfu \bfm \bfe \bfr \bfi \bfc \bfa \bfl \bfe \bfx \bfa \bfm \bfp \bfl \bfe \bfs . In this last section we present two numerical exam-
ples to verify our method. All examples were implemented within the finite element
library NGSolve/Netgen; see [34, 35] and www.ngsolve.org. The computational do-
main is given by \Omega = [0, 1]d and the velocity field is driven by the volume force
determined by f =  - div(\sigma ) +\nabla p with the exact solution given by

\sigma = \nu \varepsilon (curl(\psi 2)), and p := x5 + y5  - 1

3
for d = 2

\sigma = \nu \varepsilon (curl(\psi 3, \psi 3, \psi 3)), and p := x5 + y5 + z5  - 1

2
for d = 3.

Here \psi 2 := x2(x  - 1)2y2(y  - 1)2 and \psi 3 := x2(x  - 1)2y2(y  - 1)2z2(z  - 1)2 defines a
given potential in two and three dimensions, respectively, and we choose the viscosity
\nu = 10 - 3.

In Tables 1(a) and 1(b) we report the errors in all the computed solution compo-
nents for varying polynomial orders k = 1, 2, 3 in the two- and the three-dimensional
case, respectively. As predicted by Theorems 4.19 and 5.2 the corresponding errors
converge at optimal order. Furthermore, the L2-norm of error of the (postprocessed)
velocity error converges at one order higher. Note that in three dimensions the er-
rors are already quite small on the coarsest mesh. It appears that to get out of the
preasymptotic regime and see the proper convergence rate, it takes several steps.

www.ngsolve.org
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Table 1
Convergence rates for the postprocessed velocity and all other solution components for \nu = 10 - 3.

| \scrT | \| \nabla u - \nabla u\ast 
h\| h (eoc) \| u - u\ast 

h\| (eoc) \| \sigma  - \sigma h\| (eoc) \| p - ph\| (eoc) \| \omega  - \omega h\| (eoc)

k = 1
20 9.9\cdot 10 - 3 ( -- ) 8.4\cdot 10 - 4 ( -- ) 1.0\cdot 10 - 2 ( -- ) 3.4\cdot 10 - 2 ( -- ) 8.8\cdot 10 - 3 ( -- )
80 3.5\cdot 10 - 3 (1.5) 1.7\cdot 10 - 4 (2.3) 3.6\cdot 10 - 3 (1.5) 9.4\cdot 10 - 3 (1.9) 3.2\cdot 10 - 3 (1.5)
320 9.5\cdot 10 - 4 (1.9) 2.4\cdot 10 - 5 (2.8) 9.4\cdot 10 - 4 (1.9) 2.4\cdot 10 - 3 (2.0) 9.2\cdot 10 - 4 (1.8)
1280 2.5\cdot 10 - 4 (1.9) 3.4\cdot 10 - 6 (2.8) 2.5\cdot 10 - 4 (1.9) 6.0\cdot 10 - 4 (2.0) 2.6\cdot 10 - 4 (1.8)
5120 6.5\cdot 10 - 5 (1.9) 4.6\cdot 10 - 7 (2.9) 6.3\cdot 10 - 5 (2.0) 1.5\cdot 10 - 4 (2.0) 6.9\cdot 10 - 5 (1.9)

k = 2
20 2.2\cdot 10 - 3 ( -- ) 1.0\cdot 10 - 4 ( -- ) 1.8\cdot 10 - 3 ( -- ) 3.7\cdot 10 - 3 ( -- ) 1.5\cdot 10 - 3 ( -- )
80 5.0\cdot 10 - 4 (2.1) 1.1\cdot 10 - 5 (3.2) 3.7\cdot 10 - 4 (2.3) 5.3\cdot 10 - 4 (2.8) 2.8\cdot 10 - 4 (2.4)
320 6.7\cdot 10 - 5 (2.9) 7.7\cdot 10 - 7 (3.8) 5.1\cdot 10 - 5 (2.9) 6.7\cdot 10 - 5 (3.0) 4.1\cdot 10 - 5 (2.7)
1280 8.4\cdot 10 - 6 (3.0) 4.9\cdot 10 - 8 (4.0) 6.4\cdot 10 - 6 (3.0) 8.5\cdot 10 - 6 (3.0) 5.2\cdot 10 - 6 (3.0)
5120 1.0\cdot 10 - 6 (3.0) 3.1\cdot 10 - 9 (4.0) 8.0\cdot 10 - 7 (3.0) 1.1\cdot 10 - 6 (3.0) 6.4\cdot 10 - 7 (3.0)

k = 3
20 4.1\cdot 10 - 4 ( -- ) 1.4\cdot 10 - 5 ( -- ) 2.4\cdot 10 - 4 ( -- ) 7.2\cdot 10 - 5 ( -- ) 2.2\cdot 10 - 4 ( -- )
80 4.8\cdot 10 - 5 (3.1) 8.4\cdot 10 - 7 (4.1) 2.7\cdot 10 - 5 (3.1) 5.7\cdot 10 - 6 (3.7) 2.6\cdot 10 - 5 (3.1)
320 3.0\cdot 10 - 6 (4.0) 2.6\cdot 10 - 8 (5.0) 1.7\cdot 10 - 6 (4.0) 3.6\cdot 10 - 7 (4.0) 1.7\cdot 10 - 6 (3.9)
1280 1.9\cdot 10 - 7 (4.0) 8.3\cdot 10 - 10 (5.0) 1.1\cdot 10 - 7 (4.0) 2.3\cdot 10 - 8 (4.0) 1.1\cdot 10 - 7 (3.9)
5120 1.2\cdot 10 - 8 (4.0) 2.6\cdot 10 - 11 (5.0) 7.1\cdot 10 - 9 (4.0) 1.4\cdot 10 - 9 (4.0) 7.3\cdot 10 - 9 (4.0)

(a) The d = 2 example.

| \scrT | \| \nabla u - \nabla u\ast 
h\| h (eoc) \| u - u\ast 

h\| (eoc) \| \sigma  - \sigma h\| (eoc) \| p - ph\| (eoc) \| \omega  - \omega h\| (eoc)

k = 1
28 1.5\cdot 10 - 3 ( -- ) 1.4\cdot 10 - 4 ( -- ) 1.5\cdot 10 - 3 ( -- ) 7.5\cdot 10 - 2 ( -- ) 1.1\cdot 10 - 3 ( -- )
224 8.1\cdot 10 - 4 (0.9) 5.4\cdot 10 - 5 (1.3) 8.1\cdot 10 - 4 (0.8) 3.1\cdot 10 - 2 (1.3) 6.7\cdot 10 - 4 (0.7)
1792 3.2\cdot 10 - 4 (1.4) 1.3\cdot 10 - 5 (2.0) 3.2\cdot 10 - 4 (1.4) 9.5\cdot 10 - 3 (1.7) 3.2\cdot 10 - 4 (1.1)
14336 9.2\cdot 10 - 5 (1.8) 1.9\cdot 10 - 6 (2.8) 9.0\cdot 10 - 5 (1.8) 2.5\cdot 10 - 3 (1.9) 9.1\cdot 10 - 5 (1.8)
114688 2.4\cdot 10 - 5 (1.9) 2.5\cdot 10 - 7 (3.0) 2.3\cdot 10 - 5 (2.0) 6.4\cdot 10 - 4 (2.0) 2.3\cdot 10 - 5 (1.9)

k = 2
28 5.0\cdot 10 - 4 ( -- ) 4.3\cdot 10 - 5 ( -- ) 5.8\cdot 10 - 4 ( -- ) 6.7\cdot 10 - 3 ( -- ) 4.9\cdot 10 - 4 ( -- )
224 2.1\cdot 10 - 4 (1.3) 9.7\cdot 10 - 6 (2.2) 1.6\cdot 10 - 4 (1.9) 1.6\cdot 10 - 3 (2.1) 1.4\cdot 10 - 4 (1.9)
1792 5.7\cdot 10 - 5 (1.9) 1.5\cdot 10 - 6 (2.7) 3.9\cdot 10 - 5 (2.0) 2.6\cdot 10 - 4 (2.6) 3.6\cdot 10 - 5 (1.9)
14336 7.9\cdot 10 - 6 (2.9) 1.1\cdot 10 - 7 (3.8) 5.4\cdot 10 - 6 (2.8) 3.5\cdot 10 - 5 (2.9) 5.2\cdot 10 - 6 (2.8)
114688 1.0\cdot 10 - 6 (2.9) 7.0\cdot 10 - 9 (3.9) 7.1\cdot 10 - 7 (2.9) 4.5\cdot 10 - 6 (3.0) 7.0\cdot 10 - 7 (2.9)

k = 3
28 1.8\cdot 10 - 4 ( -- ) 1.3\cdot 10 - 5 ( -- ) 1.7\cdot 10 - 4 ( -- ) 2.4\cdot 10 - 3 ( -- ) 1.3\cdot 10 - 4 ( -- )
224 5.8\cdot 10 - 5 (1.6) 2.4\cdot 10 - 6 (2.4) 4.4\cdot 10 - 5 (1.9) 2.5\cdot 10 - 4 (3.2) 3.0\cdot 10 - 5 (2.1)
1792 6.8\cdot 10 - 6 (3.1) 1.7\cdot 10 - 7 (3.8) 5.0\cdot 10 - 6 (3.2) 3.0\cdot 10 - 5 (3.1) 3.6\cdot 10 - 6 (3.0)
14336 5.7\cdot 10 - 7 (3.6) 7.3\cdot 10 - 9 (4.5) 4.1\cdot 10 - 7 (3.6) 2.1\cdot 10 - 6 (3.9) 3.0\cdot 10 - 7 (3.6)
114688 4.0\cdot 10 - 8 (3.9) 2.5\cdot 10 - 10 (4.9) 2.8\cdot 10 - 8 (3.9) 1.3\cdot 10 - 7 (4.0) 2.0\cdot 10 - 8 (3.9)

(b) The d = 3 example.
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