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A MASS CONSERVING MIXED STRESS FORMULATION FOR
STOKES FLOW WITH WEAKLY IMPOSED STRESS SYMMETRY*
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Abstract. We introduce a new discretization of a mixed formulation of the incompressible
Stokes equations that includes symmetric viscous stresses. The method is built upon a mass con-
serving mixed formulation that we recently studied. The improvement in this work is a new method
that directly approximates the viscous fluid stress o, enforcing its symmetry weakly. The finite ele-
ment space in which the stress is approximated consists of matrix-valued functions having continuous
“normal-tangential” components across element interfaces. Stability is achieved by adding certain
matrix bubbles that were introduced earlier in the literature on finite elements for linear elastic-
ity. Like the earlier work, the new method here approximates the fluid velocity u using H(div)-
conforming finite elements, thus providing exact mass conservation. Our error analysis shows opti-
mal convergence rates for the pressure and the stress variables. An additional postprocessing yields
an optimally convergent velocity satisfying exact mass conservation. The method is also pressure
robust.
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1. Introduction. In this work we introduce a new method for the discretization
of a steady incompressible Stokes formulation that includes symmetric viscous stresses.
Advantages of such a formulation are is its natural applicability to non-Newtonian
flows. Furthermore, a direct calculation of the viscous stresses is useful for flow
problems involving interactions with solid structures. Let Q@ C R? be a bounded
domain with d = 2 or 3 having a Lipschitz boundary I" := 9. Let uw and p be the
velocity and the pressure, respectively. Given an external body force f : Q — R? and
kinematic viscosity 7 : 2 — R, the velocity-pressure formulation of the Stokes system
is given by

—div(20e(u)) + Vp=f inQ,

(1.1) div(u) =0 in £,
u=0 onT,
(Vu + (Vu)T)/2. By introducing a new variable ¢ = ve(u) where

where e(u)

v := 20, (1.1) can be reformulated to
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(1.2a) %dev(a) —e(u)=0 inQ,
(1.2b) div(e) - Vp=—f inQ,
(1.2¢) div(u) =0  in Q,
(1.2d) u=0 onl.

Here, the deviatoric part of a matrix o is defined by dev(c) := o —d~tr(o) Id, where
Id denotes the identity matrix and tr(o) := 25:1 oy denotes the matrix trace. We
shall call formulation (1.2) the mass conserving mized formulation with symmetric
stresses, or simply the MCS formulation. Although formulations (1.1) and (1.2) are
formally equivalent, the MCS formulation (1.2) demands less regularity of the velocity
field u. Many authors have studied similar formulations previously [14, 15, 16, 17],
including us [24]. In [24], following several previous authors, we introduced a new
variable ¢ = vVu, which is in general nonsymmetric, and considered an analogous
formulation (which was also called an MCS formulation). Other works using a pseu-
dostress tensor include [3, 8, 19, 20, 21]. In particular, [20] provides a rigorous analysis
of a Stokes formulation using a nonsymmetric pseudostress variable that includes a
hydrostatic part from the pressure. The elements presented in [24] can be utilized
for the formulation of [20] by adding a few scalar multiples of the identity to the
stress space. The main novelty in [24] was that o = vVu was set in a new function
space H (curldiv, ) of matrix-valued functions whose divergence can continuously
act on elements of Hy(div,{2). Accordingly, the appropriate velocity space there was
Hy(div, Q), not H} (2, R?) as in the classical velocity-pressure formulation.

In contrast to [24], in this work we set o = ve(u), not ¥Vu. Our goal is to apply
what we learned in [24] to produce a new method that provides a direct approxi-
mation to the symmetric matrix function o = ve(u). Being the viscous stress, this
o is practically more important than vVu, especially when stress boundary condi-
tions are involved [22]. We shall seek o in the same function space H(curldiv, ()
that we considered in [24]. We have shown in [24] that matrix-valued finite element
functions with “normal-tangential” continuity across element interfaces are natural
for approximating solutions in H (curldiv, 2). We shall continue to use such finite ele-
ments here. It is interesting to note that in the HDG (hybrid discontinuous Galerkin)
literature [13, 18] the potential importance of such normal-tangential continuity was
noted and arrived at through a completely different approach. Unlike some DG meth-
ods, the new method we develop here has the advantage (shared by [24]) that it has
no stabilization parameters.

The main point of departure in this work, stemming from the fact that the space
H (curldiv, Q) contains nonsymmetric matrix-valued functions, is that we impose the
symmetry of stress approximations weakly using Lagrange multipliers. This technique
of imposing symmetry weakly is widely used in finite elements for linear elasticity [1,
2, 4, 16]. In particular, our analysis is inspired by the early work of Stenberg [36],
who enriched the stress space by curls of local element bubbles. (In fact, this idea was
even used in a Stokes mixed method [17], but their resulting method is not pressure
robust.) These enrichment curls lie in the kernel of the divergence operator and are
only “seen” by the weak symmetry constraint, allowing them to be used to prove
discrete inf-sup stability. When using simplicial meshes, while in two dimensions
this technique only increases the local polynomial order by 1, this is not the case in
three dimensions. Years later [10, 23], it was realized that it is possible to retain the
good convergence properties of Stenberg’s construction and yet reduce the enrichment
space. Introducing a “matrix bubble,” these works added just enough extra curls
needed to prove stability.
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We shall see in later sections that the matrix bubble can also be used to enrich
our discrete fluid stress space. This might seem astonishing at first. Indeed, an
enrichment space for fluid stresses must map well when using a specific map that is
natural to ensure normal-tangential continuity of the discrete stress space. Moreover,
the enrichment functions must lie in the kernel of a realization of the distributional
row-wise divergence used in MCS formulations (displayed in (3.4) below). It turns out
that these properties are all fulfilled by an enrichment using a double curl involving
matrix bubbles. Hence we are able to prove the discrete inf-sup condition. Stability
then follows in the same type of norms used in [36] and is a key result of this work.

Some comments on the choice of the discrete velocity space and its implications
are also in order here. As mentioned above, the velocity space within the MCS
formulation is V' = Hy(div, ). One of the main features of the first MCS method [24],
as well the new version with weakly imposed symmetry of this paper, is that we can
choose a discrete velocity space V;, C V using H(div)-conforming finite elements.
Therefore, our method is tailored to approximate the incompressibility constraint
exactly, leading to pointwise and exactly divergence-free discrete velocity fields. The
use of such H(div)-conforming velocities in Stokes flow is by no means new: for
the standard velocity-pressure formulation, one can find it in [11, 12], and for the
Brinkman problem in [26]. Therein, and also in the more recent works of [32, 31],
the H'-conformity is treated in a weak sense and an HDG method is constructed.
When employing H (div)-conforming finite elements, one has the luxury of choice.
In [24], we used the BDM**! space [7] and added several local stress bubbles in
order to guarantee stability. In contrast, in this paper, we have chosen to take the
smaller Raviart-Thomas space [33] of order k, denoted by RT*. A similar choice was
made also in the work of [18], where they presented a hybrid method for solving the
Brinkman problem based off the work of [13]. Our current choice of the smaller space
RT* leads to a less accurate velocity approximation (compared to BDMkH), S0 in
order to recover the optimal convergence order of the velocity (measured in a discrete
H'-norm), we introduce a local elementwise postprocessing. Using the reconstruction
operator of [28, 29] this postprocessing can be done retaining the exact divergence-free
property.

The remainder of this paper is organized as follows. In section 2, we define
notation for common spaces used throughout this work and introduce an undiscretized
formulation. Section 3 presents the MCS method for Stokes flow including symmetric
viscous stresses. In section 4, we present the new discrete method including the
introduction of the matrix bubble. Section 5 proves a discrete inf-sup condition and
develops a complete a priori error analysis of the discrete MCS system. In section 6, we
introduce a postprocessing for the discrete velocity. The concluding section (section
7) reports various numerical experiments we performed to illustrate the theory.

2. Preliminaries. In this section, we introduce notation and present a weak
formulation for Stokes flow that includes symmetric viscous stresses.

Let D(2) or D(£2,R) denote the set of infinitely differentiable compactly sup-
ported real-valued functions on  and let D*(Q2) denote the space of distributions.
To differentiate between scalar, vector, and matrix-valued functions on 2, we include
the co-domain in the notation, e.g., D(Q,R?) = {u : Q — R w; € D(Q)}. Let
M denote the vector space of real d x d matrices. This notation scheme is simi-
larly extended to other function spaces as needed. Thus, L?(Q2) = L?(Q,R) denotes
the space of square integrable R-valued functions on €2, while analogous vector and
matrix-valued function spaces are defined by L?(Q,R?) := {u: Q — R%| u; € L*(Q)}
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and L2(Q,M) = {0 : Q = M| 0y; € L*(Q)}, respectively. Let K denote the vector
space of d x d skew symmetric matrices, i.e., K = skw(M), and let L?(Q,K) :=
{o: Q= K|oy e L*Q)}.

Recall that the dimension d in this work is either 2 or 3. Accordingly, depending
on the context, certain differential operators have different meanings. The “curl”
operator, depending on the context, denotes one of the differential operators below:

curl

(b) = (_82¢a 81¢)T7 fOf ¢ S D*(QvR)7 d = 23
@) = (Dagp3 — D3p2, D301 — D13, D19 — Dagpy)T  for ¢ € D*(Q,R?),d = 3,

(
curl(
where (-)T denotes the transpose and §; abbreviates 9/0x;. For matrix-valued func-
tions in both d = 2 and 3 cases, i.e., for ¢ € D*(Q,M), by curl(¢) we mean the
matrix obtained by taking curl row-wise. Unfortunately, this still does not exhaust
all the curl cases. In the d = 2 case, there are two possible definitions of curl(¢) for
¢ € D*(Q,R?),

(21) Curl(qﬁ) = 762¢1 + 81(7252 or
(021 —O1¢1
(2.2) curl(g) = (82¢2 —81¢2) ,

and we shall have occasion to use both. The latter will not be used until (3.7) below,
so until then, the reader may continue assuming we mean (2.1) whenever we consider
curl of vector functions in R?. The operator V is to be understood from context as
an operator that results in either a vector whose components are [V¢]; = 0;¢ for
¢ € D*(Q,R), a matrix whose entries are [V¢l;; = 0;¢; for ¢ € D*(Q,R?), or a third-
order tensor whose entries are [V¢|;jr = Or¢;; for ¢ € D*(Q,K). Finally, in a similar
manner, we understand div(¢) as either E‘Ll 0;¢; for vector-valued ¢ € D*(Q,R?),
or the row-wise divergence Z;l:l 0;¢i; for matrix-valued ¢ € D(Q, M)*.

Let d = d(d —1)/2 (so that d = 1 and 3 for d = 2 and 3, respectively). In
addition to the standard Sobolev space H™((2) for any m € R, we shall use the well-
known space H(div,Q) = {u € L*(Q,R?) : div(u) € L?(Q2)}. By its trace theorem,
Hy(div, Q) = {u € H(div,Q) : u-n|r = 0} is a well-defined closed subspace, where n
denotes the outward unit normal on I'. Its dual space [Hp(div, 2)]*, as proved in [24,
Theorem 2.1], satisfies

(2.3)  [Ho(div,Q)]* = H ' (curl, Q) = {¢ € H(Q,R?) : curl(p) € H1(Q,RY)}.
In this work, the following space is important:
H(curldiv, Q) := {o € L*(Q,M) : div(c) € [Ho(div,Q)]*},

where the name results from (2.3): indeed a function o € H(curldiv,Q) fulfills
curldiv(c) € H-1(Q,RY).

Next, let us derive a variational formulation of the system (1.2), which is based
on the mixed stress formulation (MCS) introduced in Chapter 3 in the work [24]. The
method is based on a weaker regularity assumption of the velocity as compared to the
standard velocity-pressure formulation (1.1). The velocity w and the pressure p now
belong, respectively, to the spaces

V := Hp(div, ), Q:=L3Q) = {q € L*(Q): /qum = 0} :
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Multiplying (1.2¢) with a pressure test function ¢ € @ and integrating over the domain
Q2 ends up in the familiar equation (div(u),q)r2(q) = 0, which we write as the last
equation of the final Stokes system (2.5) written below. Here and throughout, the
inner product of a space X is denoted by (-,-)x. When X is the space of functions
whose components are square integrable functions on 2, we abbreviate (-, -) x to simply
(,+), as done in (2.5) below. Similarly, while we generally denote the norm and
seminorm on a Sobolev space X by ||-||x and |-|x, respectively, to simplify notation,
we set || f||% = (f, f)p, where (f,g)p denotes L?(D,V) inner product for any V €
{R, R¢ K, M} and any subset D C Q. Moreover, when D = ), we omit the subscript
and simply write || f|| for || f]|-

To motivate the remaining equations of (2.5), note that v~!o = &(u), and thus
due to the incompressibility constraint div(u) = 0, we have the identity

(2.4)  dev(v'o) = dev(e(u)) = e(u) — gtr(s(u)) Id = e(u) — édiv(u) Id = e(u).

Since tr(c) = 0and o = 0¥

of H(curldiv,Q):

, we define the stress space as the following closed subspace

Y™ .= {7 € H(curldiv,Q) : tr(7) =0, 7 =7 }.

Testing (1.2a) with a test function 7 € X%™ and integrating over the domain, we
have for the term including e(u) the identity

1

1
/E(u):Td,T:*/VUZTd.’L‘—‘r /(Vu)T:de
Q 2 2 Ja

Q
1 1
:7/Vu:de—&—*/Vu:de:/Vu:de.
2 Jo 2 Jo Q

Using the knowledge that the velocity u should be in H}(Q2), we obtain
(v~dev(o), dev(7)) + (div(7), u) 5, (aiv,0) = 0,

which is the first equation in the system (2.5) below. Here and throughout, when
working with elements f of the dual space X* of a topological space X, we denote
the action of f on an element z € X by (f,x)x, where we may omit the subscript X
when its obvious from context. Finally we also test (1.2b) with v € V' and integrate
the pressure term by parts. This results in the remaining equation of (2.5).
Summarizing, the weak problem is to find (o,u,p) € Z™ x V x @ such that

(v'dev(o),dev(T)) + (div(7), u) o (div,) = 0 for all 7 € ¥¥™,
(25) <div(0)7U>Ho(div,Q) + (le(”U),p) = _(fa U) for all v € ‘/7
(div(u),q) =0 for all p € Q.

In the ensuing section, we shall focus on a discrete analysis of a nonconforming scheme
based on (2.5). Although well-posedness of (2.5) is an interesting question, we shall
not comment further on it here since it is of no direct use in a nonconforming analysis.

3. The new method. In [24], we introduced an MCS method where o was
an approximation to (the generally nonsymmetric) ¥Vu instead of (the symmetric)
ve(u) considered above. Since there was no symmetry requirement in [24], there we
worked with the space ¥ := {r € H(curldiv,Q) : tr(r) = 0} instead of X%™. The
finite element space for ¥ designed there can be reutilized in the current symmetric
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case (with some modifications), once we reformulate the symmetry requirement as a
constraint in a weak form. }
To do so, we need further notation. Let x : R* — K be defined by

0 —vV3 (%)
1 — 1
(3.1) k(v)= 3 (2 O”) ifd=2, Kk(v) = 5| vs 0 —v | ifd=3.
—7V3 U1 0

When u represents the Stokes velocity, w = k(curl(u)) represents the vorticity. Since
Vu = ¢(u)+w, introducing w as a new variable, and the symmetry condition 0 —oT =
0 as a new constraint, we obtain the boundary value problem

1
(3.2a) ;dev(a) —Vu+w=0 in{,
(3.2b) div(e) = Vp=—f in Q,
(3.2¢) c—oc'=0 inQ,
(3.2d) diviu) =0  in Q,
(3.2¢) u=0 onT.

In the remainder of this section, we introduce a discrete formulation approximat-
ing (3.2).

The method will be described on a subdivision (triangulation) 7, of Q consisting
of triangles in two dimensions and tetrahedra in three dimensions. For the analysis
later, we shall assume that the 7, is quasiuniform. By h we denote the maximum
of the diameters of all elements T' € Tj,. Quasiuniformity implies that A ~ diam(T")
for all mesh elements T. Here and throughout, by A ~ B we indicate that there
exist two constants ¢, C' > 0 independent of the mesh size h as well as the viscosity v
such cA < B < cA. Similarly, we use the notation A < B if there exists a constant
C # C(h,v) such that A < CB. All element interfaces and element boundaries
on I are called facets and are collected into a set Fj,. This set is partitioned into
facets on the boundary F7** and interior facets Fi"*. On each facet we denote by
[-] the standard jump operator. On a boundary facet the jump operator is just
the identity. On all facets we denote by m a unit normal vector. When integrating
over boundaries of d-dimensional domains, the orientation of n is assumed to be
outward. On a facet with normal n adjacent to an mesh element 7', the normal and
tangential traces of a smooth function ¢ : T — R? are defined by ¢,, := ¢ - n and
¢+ = ¢ — ¢pnn, respectively. Similarly, for a smooth ¢ : T — M, the (scalar-valued)
“normal-normal” and the (vector-valued) “normal-tangential” components are defined
by Ynn =¥ : (n®n) = nTYn and ¥,y = Yn — P,nn, respectively.

For any integers m, k > 0, the following “broken spaces” are viewed as consisting
of functions on €2 without any continuity constraints across element interfaces:

H™(T) = [ H™T),  PT) = [] B*@).

TETh TeThH

For D C Q we use the notation (-,-)p for the inner product of L?(D) or its vec-
tor and tensor analogues such as L%(D,R%), L2(D,M), L?(D,K). Also let || - |3 =
(,-)p. Next for each element T € Tj let P*(T) = P*(T,R) denote the set of
polynomials of degree at most k on T. The vector and tensor analogues such as
P*(T,R%), P*(T, M), P*(T,K) have their components in P*(T). The broken spaces
P* (75, RY), PR (T, M), and P*(T5,,K) are defined similarly. We shall also use the
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conforming Raviart-Thomas space (see [5, 33]), RT" := {uy € H(div,Q) : up|r €
P*(T,R%) + 2P*(T,R) for all T € T }.

3.1. Velocity, pressure, and vorticity spaces. For any k > 1, we use
Vi=VART',  Qu=QnP"Tw),  Wy:=P"TyK),

for approximating the velocity, pressure, and vorticity, respectively.

Standard finite element mappings apply for these spaces. Let T be the unit
simplex (for d = 2 and 3), which we shall refer to as the reference element, and
let T € Tp. Let ¢ : T — T be an affine homeomorphism and set F := ¢/. By
quasiuniformity, ||F||¢= ~ h, |[F~||s ~ h~1, and | det (F)| ~ h9, estimates that we
shall use tacitly in our scaling arguments later. Such arguments proceed by mapping

functions on 7" to and from 7. Given a scalar-valued qn, a vector-valued vy, and a
skew-symmetric matrix-valued 7j, on the reference element 7', we map them to T' by

(3.3) Qlan) = Gnod™ ", P(0n) := det(F) ' F(dno¢™ ), W(in) := F~ " (fpo¢ " )F 1,

respectively, i.e., these are our mappings for functions in the pressure, velocity, and
vorticity spaces, respectively. The first is the inverse of the standard pullback, the
second is the standard Piola map, and the third is designed to preserve skew symmetry.

3.2. Stress space. The definition of our stress space and the equations of our
method are motivated by the following result proved in [24, section 4].

THEOREM 3.1. Suppose T is in H' (T, M) and v € H'(Ty,RY).
1. If the normal-tangential trace T,; is continuous across element interfaces, and
Tunlor € HY2(OT) for all T € Ty, then 7 is in H(curldiv, Q).
2. Ifv € Hy(div, ), then

(3.4) (div(7), 0) myaivi) = Y [ /T div(r) v da — /8 | Tunn ds].

TE,]-}L

Clearly, matrix finite element subspaces having normal-tangential continuity are
suggested by Theorem 3.1. Technically, the theorem’s sufficient conditions for full
conformity also include the condition o,,|or € H'/?(0T). This condition is very re-
strictive as it would enforce continuity at vertices and edges in two and three dimen-
sions, respectively. If this constraint is relaxed, much simpler, albeit nonconforming,
elements can be constructed. This was the approach we adopted in [24]. We continue
in the same vein here and define the nonconforming stress space

(3.5) S = {m, € P*(Th, M) : tx(m,) = 0, [(7)ne] = O for all F € Fi**}.

As mentioned in the introduction, we must enrich the above stress space ¥y, to guaran-
tee solvability of the resulting discrete system due to the additional weak symmetry
constraints. We follow the approach of [36] and its later improvements [10, 23] to
construct the needed enrichment space.

Define a cubic matrix-valued “bubble” function as follows. On a d-simplex T" with
vertices ao, ..., aq, let F; denote the face opposite to a;, and let \; denote the unique
linear function that vanishes on F; and equals one on a;, i.e., the ith barycentric
coordinate of T. Following [10, 23], we define B € P3(T,M) by

3
(3.63) B = Z Ai—3Ai_oNi_1 VA, @ VA, if d =23,
i=0
(3.6b) B = XA 2 ifd=2,



MCS FORMULATION WITH WEAKLY IMPOSED SYMMETRY 713

where the indices on the barycentric coordinates are calculated mod 4 in (3.6a). Let
P (T,V) denote the L2-orthogonal complement of P*~1(T,V) in P*(T,V) for V €
{R,K}, and let PX (75,,V) = [rer, P% (T, V). For any k > 1, define

(3.7 6%y, = {dev(curl(curl(ry)B)) : 7, € }P”j_(ﬁ“K)}

for d = 2 and 3, with the understanding that in the d = 2 case, the outer curl is
defined by (2.2), not (2.1). The total stress space is given by

EZ =2 D OXy, k>1.
That functions in this space have normal-tangential continuity is a consequence of the
following property proved in [10, Lemma 2.3].

LEMMA 3.2. Let ¢ € M and T € Tp,. The products ¢B and Bq have vanishing
tangential trace on T, so the function curl(¢B) has vanishing normal trace on OT.

LEMMA 3.3. Any o € §%y, has vanishing ont and [ont] on all facets F € Fy,.
Proof. Since (dev(0))nt = ont, this is a direct consequence of Lemma 3.2. d

We also need a proper mapping for functions in Zz that preserves normal-
tangential continuity. We continue to use the following map, first introduced in [24]:

1

(3.8) M(on) == — (F)

F~ TG00 Y)FT.

As shown in [24, Lemma 5.3], on each facet, (M(64))nt is a scalar multiple of (6 )nt
and tr(6p,) = 0 if and only if tr(M(6,)) = 0. Degrees of freedom are discussed in
section 3.4 .

Remark 3.4. Note that in (3.6), B was given using barycentric coordinates as an
expression that holds on any simplex. Let B be defined by the same expression on the
reference element 7" after replacing A; by reference element barycentric coordinates
i Considering the obvious map that transforms Vi @ V; to VA ® Vi, we find
that the matrix bubble B on any simplex is given by
(3.9) B:=F YBo¢ HF!

3.3. Equations of the method. For the derivation of the discrete variational
formulation we turn our attention back to the weak formulation (2.5) and identify
these forms:

a: L*(Q,M) x L*(Q,M) — R, bV xQ — R,
a(o, 1) := (v dev(o),dev(T)), b1 (u,p) := (div(u), p).

The definition of the remaining bilinear form is motivated by the definition of the
“distributional divergence” given by (3.4). To this end we define by : {T € H'(T;,M) :
[0 = 0} x ({v € H'(Th, RY) : [vn] = 0} x L*(Q,M)) — R by

(3.10) ba(T Z / div(7) - vdz + Z / 7:ndr— Z / [Trn]on ds.
TETh TETh FeFn
Integrating the first integral by parts, we find the equivalent representation

(3.11) bo (T, Z/ (Vo—n)de+ Y /Tm v

T€Th FeFy
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Using these forms, we state the method. For any k > 1, the discrete MCS method
with weakly imposed symmetry finds oy, up, wp, pp € Z;‘; X Vi, x Wy, x Qp, such that

a(on, 7h) + ba(Th, (un,wn)) =0 for all 7, € B,
(312) bg(O’}“ (’Uh,T]h)) + bl(’l)}“ph) = (—f, Uh) for all (’Uh,nh) S Uh = Vh X Wh,
bi(un,qn) =0 for all gn, € Q.

Since Vj, and @y, fulfill div(V}) = @y, the discrete velocity solution component wuy,
satisfies div(up) = 0 pointwise, providing exact mass conservation.

Remark 3.5. Although we only consider homogeneous Dirichlet boundary condi-
tions in this work, we want to mention the method is applicable to deal with other
cases as well. A numerical investigation is given in Chapter 8.3 in [27].

3.4. Degrees of freedom of the new stress space. We need degrees of free-
dom (d.o.f.s) for the stress space that are well-suited for imposing normal-tangential
continuity across element interfaces. Since the bubbles in 6%, have zero normal-
tangential continuity, we ignore them for this discussion and focus on d.o.f.s that
control Xy,.

Consider X = {7|r : 7 € )} on any mesh element T. Letting D denote the
subspace of matrices M € M satisfying M : Id = 0, we may identify Y with P*(T, D).
Let us recall a basis for D that was given in [24]. Define

(3.13a) S i=dev (VA1 ® curl(Ai42)) when d = 2,
(3.13b) Sg = dev(VAip1 ® (VAiga x VAigs)) when d = 3,
(3.13¢) St = dev(VAip2 ® (VAigs x VAiq1)) when d = 3,

taking the indices mod 3 and mod 4, respectively. We proved in [24, Lemma 5.1] that
the sets {S* : i = 0,1,2} and {Sé :1=0,1,2,3, ¢ = 0,1} form a basis of D when
d = 2 and 3, respectively.

Our d.o.f.s for ¥y = P*(T, D) are grouped into two. The first group is associated
to the set of element facets (d — 1 subsimplices of T'), namely, for each facet F' € 9T,
we define the set of d.o.f.s

<I>F(7') ::/Tnt-rds
F

for each r in any fixed basis for P*(F,R?~!). The next group is the set of interior
d.o.f.s, defined by

®0(7) ::/Tr:cdx

for all ¢ in any basis of P*~1(T, D). We proceed to prove that the set of these d.o.f.s,
®(T) := ®°(7) U {®F : F C 9T}, is unisolvent.

THEOREM 3.6. The set ®(T) is a set of unisolvent d.o.f.s for Xp = P*(T, D).

Proof. Suppose T € Y satisfies ¢(7) = 0 for all d.o.f.s ¢ € ®(T). We need to
show that 7 = 0. From the facet d.o.f.s we conclude that 7,,; vanishes on 0T. By [24,
Lemma 5.2], 7 may be expressed as

1 3

2
(3.14) T = ZuiAiSi or T= Z Z,uf)\iS;
i=0

q=0 i=0
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when d = 2 or 3, respectively, where p;, ¥, ut € P*=1(T). The interior d.o.f.s imply
that [, 7 : sdz = 0 for any s € P*"*(T,D). Choosing for s the expression on the
right-hand side in (3.14) omitting the \;, say, for the d = 2 case, we obtain

2 2 2
T =0 i=0 T Ti=o

yielding p; = 0, and thus 7 = 0. A similar argument in the d = 3 case yields the same
conclusion that 7 = 0.

To complete the proof, it now suffices to prove that dim(Xr) equals the number
of d.o.f.s, i.e., #®(T). Obviously, dim(Xr) = dimP*(T,D) = (d? — 1) dim P*(T).
The cardinality of ®(T) equals the sum of the number of facet d.o.f.s (d + 1)(d —
1) dimP*(T) and the number of interior d.o.f.s (d? — 1) dim P*~1(T’), which simplifies
to (d? — 1)(dimP*~1(T) + dim P*(F)), equaling dim (7). O

Using these d.o.f.s, a canonical local interpolant I7(7) in X7 can be defined as
usual, by requiring that ¢(r — I77) = 0, for all ¢ € ®&(T).

LEMMA 3.7. For any 7 € H'(T,D), we have M~ (Ir7) = L#(M™(7)).
Proof. This proceeds along the same lines as the proof of [24, Lemma 5.4]. O

2
dx =0,

The global interpolant Iy, is also defined as usual. On each element T" € T}, the
global interpolant (I, 7)|7 coincides with the local interpolant Ir(7|7).

THEOREM 3.8. For any m > 1 and any 0 € {r € H™(Ty,D) : 1] = 0}, the
global interpolation operator Ix, satisfies for all s < min(k + 1,m)

lo = I, ol + > hll(o = Is,0)ullz S P> llolfe (7
FeFn

Proof. This follows from a standard Bramble-Hilbert argument using Lemma
3.7. O

4. A priori error analysis. In this section we first show the stability of the
MCS method with weakly imposed symmetry by proving a discrete inf-sup condition
(Theorem 4.14). We then prove consistency (Theorem 4.18), optimal error estimates
(Theorem 4.19), and pressure robustness (Theorem 4.21). For simplicity, the analysis
from now on assumes that v is a constant.

4.1. Norms. In addition to the previous notation for norms (established in sec-
tion 2), here we also use | - [|3; to abbreviate Yo || - [|7, a notation that also serves
to indicate that certain seminorms are defined using differential operators applied
element by element, not globally, e.g.,

le@)i = > lle@)F,  lewl(IE = Y [ewl()llz,

TeTh TeTh

1
ol e = eI + D2 5 [Tl [

FeFy,

for v € HY(T,,R%) and v € H' (T, M). Recall that U, = Vj;, x Wj,. Our analysis is
based on norms of the type used in [36]. Accordingly, we will need to use the following
norms for vy, € V}, and np, € Wh:

lonll%;, = llvnlli nes I Cons )i, = llonllf e + lls(curlon) — mulf7.-

Lemma 4.8 below will show that the latter is indeed a norm.
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On the discrete space Uy, we will also need another norm defined using the fol-
lowing projections. On any mesh element T, let H’%‘l denote the L?(T, V) orthogonal
projection onto P*(T,V), where V is determined from context to be an appropriate
vector space such as R%, or M. When the element 7T is clear from context, we shall
drop the subscript T in Hi}_l and simply write IT*~1. Also, on each facet F € Fy,,
we introduce a projection onto the tangent plane ng: for any v € L?(F,ngy), the
projection IThv € PL(F,nf) is defined by (IlLv,r)r = (v,7)F for all r € PY(F,ng).

Using these, deﬁne

@) Nnm)lf, = D I dev(Von —mw) |17 + Z LTk [on) D2
TeTh FE]:h

Lemma 4.7 below will help us go between this norm and || (v, nn) v, -
The remaining spaces X and Q) are simply normed by the L? norm || - ||. The
full discrete space is normed by

1
(4.2) 1wns 1y o @) 1 = VY| (vny mw) [, + = Il + llanl])

for any (vn, . Thy qn) € Vi X Wi X F X Q.

4.2. Norm equivalences. Next, we use the finite element mappings introduced
earlier—see (3.3) and (3.8)—to show several norm equivalences.

LEMMA 4.1. Let 7, € . Then

We\mal3 ~ |73 for all T € Th,
hd+1”(7—h)nt”%‘ ~ | (Th) pz for all F € Fy,

(4.5) Il ~ S il + S Al )5

TETh FeFy

Proof. The first two follow by a simple scaling argument. For the third, see the
proof of [24, Lemma 6.1]. d

In the proof of the next lemma, we use the space of rigid displacements E =
PO(T,R?) + P°(T,K) 2. For each element T' € Ty, let II® : HY(T) — E denote the
projector defined in [6]. Then, for any vj, € Vj, the projection IT¥v;, € E fulfills the
properties (see [6, equation (3.3), (3.11)])

(4.6) |V (v, — T || ~ |le(vn) |7 for all T € Ty,
2
(4.7 | [von — H]Evh}]HF < Z h|le(vp)||3  for all F € Fp.
T TOF£0

We shall also use a global discrete Korn inequality, implied by [6, Theorem 3.1].
Namely, there is an h-independent constant cx such that

(4.8) Vo7 < Jle()||7 + Z hH|TE o] HF for all v € H'(T;,,RY).
FeFy

LEMMA 4.2. For all (vy,np) € Up,

[, m)liZ, ~ lle(on)llf, + llx(curlog) — a7 + Z HHF[[ (on)]|[
F€.7:h
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Proof. One side of the equivalence is obvious by the continuity of the IIL. For

the other direction first note that
R [wn)edIE < 2k HITE[(vn)elllF + 2R [[(vn — Ipon).]|f%-
As TTEv;, € PY(T,R?) we have again by the continuity of Ik,
1T(on = o) 7 = 1(1d ~105) [(on — IF0n)e] |5 < [I[(vn — IFo0n).] |15
We conclude the proof using (4.7). ad

The following well-known property of Raviart-Thomas spaces (see, e.g.,
[9, Lemma 3.1]) is needed at several points.

LEMMA 4.3. Let v € P*(T,RY) + 2P*(T,R) and div(v) = 0. Then v € P*(T,R%).
LEMMA 4.4. For all T € Ty, and v € P*(T,R?) + 2P*(T,R),

(4.9) lle(@)l7 ~ [TT*~ dev(e(v)) |7 + || div(v)[|7,
(4.10) 1(1d ~I* ) s(curl v)|[7 < || div(v)||7,
(4.11) 1(1d ~I*=H) V|7 < [l div(v)]7.

Proof. One side of the equivalence of (4.9) is obvious by the continuity of the
k-1, For the other direction, we use the following equivalence on the reference
element T

(4.12) IV (d2)|l7 ~ |[div(g@)|l s for all § € P¥(T,R).

This follows by finite dimensionality, because by the Euler identity, if either one of
the above two terms is zero, then ¢ = 0 (see, e.g., [30]). Consequently, given any
v € P*(T,R?Y) + 2P*(T,R), setting © = P~!(v), the following problem is uniquely
solvable: find b € P¥(T',R) such that

(4.13) / div(2b) div(iq) do = / div(?) div(2§) dz for all § € P*(T,R).
T T
Since div(ZP*(T,R)) = P*(T,R), (4.13) implies that div(£b) = div(d). Put r =
P~1(2b). Then, due to the properties of the Piola map P, r is a function in P* (T, R%) +
2P (T, R) satisfying div(r) = div(v) in T, and a scaling argument using (4.12) implies
(4.14) IVl ~ [|div(r)||7.
Let a = v —r € P*¥(T,R?) + 2P*(T,R). Then div(a) = 0 and v = a+r in T.
Then we have
le()llr = lle(a+r)llz < | dev(e(a+ )l + ([ div(v) |z
< || dev(e(a)llr + IVrllz + [ div(v)|
S l[dev(e(a)llr + || div(v)[lz by (4.14).
Since Lemma 4.3 implies that a € P*(T,R%),
le(@)llz = [T*~ dev(e(a))llz + || div(v)llx
< || dev(e(v)) |z + [T dev(e(r)) |l + [ div(v) |z
< II*tdev(e(w) |z + || div(v) |z by (4.14),

which proves (4.9).
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To prove (4.10), first note that due to the definition of k(-), the equivalence
||c(curlv)||p ~ ||curl(v)|lz holds. Thus, using the same decomposition as above,
namely, v =a + 7,

1(1d ~T1* Y (curl(v)) [l < [ (1d ="~ s(curl(a)) |7 + | (Id =11~ s(curl(r) | .
As curl(a) € PE=1(T,RY), the first term on the right vanishes. The last term satisfies
1(dd 1Y) s(curl(r))llz < [l eurl(r) |z < [Vrlz | div(r)llz = || div(v) |

due to (4.14). Hence (4.10) is proved.
The proof of (4.11) uses the same technique:

|(1d~11*) Vol < | (1d ~T")Vallp + | (1d ~T Vel S | div(o)]|z,

where we have used that a € P¥(T,R?) and (4.14). O

Remark 4.5. The same technique shows that [|[Vo||% ~ |[ITF=![dev(Vv)]|% +
|| div(v)||% for all Raviart-Thomas functions v € P¥(T, R?)+xP*(T,R). The technique
allows one to control the gradient of the highest-order terms of a Raviart—-Thomas
function v by div(v). The same estimate does not hold for all v in P*+1(T, R?).

LEMMA 4.6. For all T € Ty, and ny, € W,

IVl ~ [ curl |7

Proof. The proof is based on a scaling argument and equivalence of norms on
finite dimensional spaces on the reference element. Recall the map ¢ and F = ¢'.
Calculations using the chain rule yield
(4.15a) curl [FT(nh 0 p)F| = F* [curl(ny) o QS]F_T det I if d=3,
(4.15D) curl [FT (1, 0 ) F] = FT [curl(ny) o ¢] det F if d=2.

We continue with the d = 3 case only (since the d = 2 case proceeds using (4.15b)
analogously). With 7, = FT(n, o ¢)F, standard estimates for F yield

(4.16) [l eurl(m )17 ~ b2 |curl(7a) 3.

Let © € P*(T,R%) and v € P*(T,R?%) be such that 7, = () and 7, = x(v), where &
is as defined in (3.1). Then,

(4.17) IVaml7 ~ [VollF ~ B2 VolZ ~ b2 Vill5.

In view of (4.16) and (4.17), to complete the proof, it suffices to establish the
reference element estimate

(4.18) lerl(k (@)l ~ VOl

by proving that one side is zero if and only if the other side is zero. Note these two
identities: curl x(9) = (V)T —div(9) Id, and curlk(9) : Id = —2div(d). If curl k(9) =

0, then the latter identity implies div(9) = 0, which when used in the former identity
yields Vi = 0. Combined with the obvious converse, we have established (4.18). 0O
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LEMMA 4.7. For all T € Ty, and (vp,ny) € Uy,

le(wn)lI7 + [lx(curlvy) — mn 17
~ I dev(Vor — nu) |17 + b2 || curl(nu) |17 + || div(vn) |7

Proof. Since the decomposition Vv, = e(vp,) + k(curl(vy,)) is orthogonal in the
Frobenius inner product, so is Vop, —np = €(vp,) + [s(curl(vp) —np]. Application of the
deviatoric and IT¥~! preserves this orthogonality. Hence, by the Pythagoras theorem,

(4.19) Hkaldev(Vvh - nh)||2T = Hﬂkfldev(s(vh))ni + ||Hk*1[/£(cur1(vh)) - 77h”|2T

We shall now prove the result using (4.19) and Lemma 4.4.
Proof of “<”. Since

lle(vn) 17 S 11"+ dev(e(vn)) 17 + || div(on) |7 by Lemma 4.4,
< | dev(Von —m) |5+ [ div(on) 3 by (4.19),
it suffices to prove that
(4.20) [lw(curl(vp)) =l < [[IT* ! dev(Von —n) + B2 | curl(nn) |7 + || div(vn) |7,

which we do next. Since the projection r; = II¥~1(k(curl(vy)) — 1) can be bounded
using (4.19), we focus on the remainder ro = (Id —IT*~1)(k(curl(vy)) — np)-

27 < [[(1d ~I1*" 1) w(curl(op)) |7 + [|(1d ~I1* 1) |17

< || div(vp)||F + B2 Vsl by (4.10), Lemma 4.4,
S| div(vn)||F + R3[| curl(ny) |17 by Lemma 4.6.
When this estimate for ro is used in ||k(curl(vy)) — nu|% = ||r1]|% + [|r2]|3, and 7y is

bounded using (4.19), we obtain (4.20).
Proof of “Z”. The last term of the lemma obviously satisfies || div(vy)[% <
lle(vn)||%, while the first term satisfies (by (4.19)).

T dev(Von = m)lF < le(n) 7 + Ix(curl(vn)) = a5

It remains to bound h?|| curl(n,)||3.. As curl[x(curl(IT®v,))] = 0, we obtain using an
inverse inequality for polynomials

h2|| curlny |7 = h? | curl(gn, — s(curl (o)) 17 < [l — s(curl ITPuy) |17
< [l — w(curl(vn)[|7 + [[K(curl(vn)) — r(curl ;) 7
~ lnn = s(curl(vn) 17 + || curl(on, — o) |17
< llnw = s(eurl(vn) 17 + lle(on) 7,
where we used (4.6) in the last step. o
LEMMA 4.8. For any vy, € Vi, and v, € Wh,

4.21) IVl S inf (lvnw)llo, < Il llonlluee = i [[(on,50) o, -
vp €V nnLEWH

While the first estimate in (4.21) involves only the local constants from Lemmas 4.6
and 4.7, using the global constant cx, we also have

(4.22) (14 cr) Ml < inf [(va, ) [l
vp €V
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Proof. To prove the first estimate of (4.21),

[(ons ya)ll = le(on)ll;, + K(cwrlon) = ynllz Z h?[lcurlyalz by Lemma 4.7
2 h2HV’Yh||% by Lemma 4.6.

Taking infimum over v;, € V},, we obtain the lower estimate of (4.21). The upper
bound of the first infimum obviously follows by choosing v, = 0.

To prove the equality in (4.21), observe that the infimum over 7, € W}, cannot be
larger than |lvp||1,5,e because we may choose 1y, = k(curlvy). The reverse inequality
also holds since ||(vn, mn)llv, = llvnll1,h,e for any n, € Wh, so the equality must hold.

Finally, to prove (4.22), we use the triangle inequality to get

[l < [[5(curlvn) = ynlln + [l curlon|[n < [[(vn, ) llv, + IV OR]ln-

Applying the Korn inequality (4.8) and noting that the jump of the normal compo-
nents are zero for functions in vy € Hy(div,2), the proof is complete. ]

4.3. Stability analysis. The next three lemmas lead us to a discrete inf-sup
condition.

LEMMA 4.9. Let p € P*(T,M) for some arbitrary element T € T;, and define
T = (det F) dev(curl(curl(p)B)). Then for d = 3,2,

I7llz ~ B~ curl ()| 7.

Proof. If curl p = 0, then obviously 7 = 0. We claim that the converse is also
true. Indeed, if 7 = 0, then putting s = d~*tr(curl(curl(u)B)), we have

(4.23) curl(curl(p)B) = s Id.

Taking divergence on both sides, we find that Vs = 0, so s must be a constant
on T. Then, taking normal components of both sides of (4.23) on each facet, we
find that sn = 0, so s = 0. Hence curl(curl(u)B) = 0, which in turn implies that
0 = (curl(curl(p) B, p)r = (curl(p)B, curl(p))r = 0. Therefore, by [10, Lemma 2.2],
curl(s) = 0. Thus 7 = 0 if and only if curl u = 0.

Applying this on the reference element 7" for i = FT (o ¢)F € P*(T,M) and
7 = dev(curl(curl(1) B)), where B is in Remark 3.4, by finite dimensionality, we have
(4.24) 17l ~ lleurl(a)ll -
We will now show that 7 = (det F') dev(curl(curl(p)B)) is related to 7 by
(4.25) 7= M(%).
By the definition of M,

(det F) M(7) 0 ¢ = F~T dev(curl(curl(2) B))FT = dev(F~Teurl(curl() B)FT)

as trace is preserved under similarity transformations. Focusing on the part of the
last term inside the deviatoric, in the d = 3 case,

F~Teurl(curl(3) B)FT = F~Tcurl[curl(FT (o ¢)F) FT(Bo ¢)F]FT by (3.9),
= F~ewrl[F"[curl(p) 0 ¢] F~"(det F) FT (B o ¢)F| F" by (4.15),
= (det F)F~Tcurl [FT[curl(u)B] o ¢ F]F™*
= (det F)>?F~TF" [ curl(curl(p)B) o | F~TFT by (4.15).



MCS FORMULATION WITH WEAKLY IMPOSED SYMMETRY 721

This proves that
F~Teurl(curl(2) B)FT = (det F)? curl(curl(p) B) o ¢

when d = 3. The same identity holds in the d = 2 case: the argument is similar
after changing the definitions of the curls and the mapping of B appropriately. Thus,
M(7) o ¢ = (det F) dev(curl(curl(p)B)) o ¢ and (4.25) is proved.

Finally, the result follows from (4.25) by scaling arguments: indeed (4.24) implies,
by (4.3) and (4.15), that

W77 ~ WPl eurl 7 if d = 3,
R2||7||2 ~ Y| curl |3 if d = 2,

from which the result follows. 0

LEMMA 4.10. For any vy, € Wy, there is a 1, € EZ such that
(4.26) (T, ) 2 hllcurlyalln ([7all-

Furthermore, for any vy, € Vi, the same ~yp, Ty, pair satisfies

(4.27) ba(Th, (v, vn)) 2 | Bl carl(yn)l[n — [ div(va) | | 174 ]-
Proof. Given a vy, € Wy, set 13, element by element by
71|17 = (det F') dev(curl(curl(~y|r)B)).

Clearly, dev(curl(curl(IT¥=14;)B)) is in ¥, Since dev(curl(curl(y;, — II¥~1v;,)B)) is
in 625, we conclude that 75, € Z;. Since ~y;, is trace-free, there holds the equivalence
(th,vn)T = (curl(curl(yn|7r)B),vn)r det F, which in turn implies, after integrating by
parts and applying Lemma 3.2, (75, vn)7 = (curl(yy)B, curl v, )1 det F.

In the d = 3 case, this yields

3
(4.28) (Th, )T = det F / Z Xi—3Ai—2Xi—1] Curl(Vh)V/\i|2 dx.
T

Noting that VA; = —n;/h;, where h; is the distance from the ith vertex to the facet
of the simplex opposite to it, and that the /2-norm of any matrix m € M is equivalent
to the sum of £2-norms of mn;, a local scaling argument with m = curl(y;,) and (4.28)
imply

(7, )7 2 (det F)h™2| curl ()1 7-

Therefore, (7h,vn)a 2 bl curl(vs)||7 = Al curl(ys) ||k ||7nll, by Lemma 4.9. This
proves (4. 26) in the d = 3 case. In the d = 2 case, the analogue of (4.28) gives
(o m)r 2 (det F) [leurl(m)l3 2 A2l cwl(n)l3 > Al curl(ya) i I7all, where we
have used Lemma 4.9 again. This completes the proof of (4.26).

To prove (4.27), we use (3.11). The last sum in

b (7h, (0n, ) = = > /Th (Von =) de+ Y / (h)nt - [(vn):] ds

T€Th FeFn



722 J. GOPALAKRISHNAN, P. L. LEDERER, AND J. SCHOBERL

vanishes due to Lemma 3.3. Hence by (4.26),

(4.29) ba(7h, (vn,v0)) 2 Al curlynln 7all = Y (74, Vou) 7.
TeTh

To handle the last term, note that

Th, Vop)r = (curl(curl(y4) B), Vou ) — (d ' tr(curl(curl(y,) B)) Id, Vop )1
= —(d"*tr(curl(curl(yy,) B)), div(vy))

detF(

because (curl(curl(y,)B), Vup)r = 0. This follows by integrating one of the curls by
parts, observing that the resulting volume term is zero (since curl(Vuv,) = 0) and
so is the resulting boundary term (due to Lemma 3.2). Continuing, we apply the
Cauchy—Schwarz inequality and an inverse inequality to get

[(7h, Vor)r| S [det FIh™|Bl| oo ¢y || curl(yn) || 7]l div(va) |7

S i llzll div(vs) ||z

by Lemma 4.9. Returning to (4.29) and using this estimate, the proof is complete. O

Remark 4.11. The message of Lemmas 4.9 and 4.10 is that it is possible to choose
a 7, in the form of a deviatoric of a curl of a bubble to bound (from below) the term
arising from the weak symmetry constraint. If 7, was just a curl, it would not be seen
by the equilibrium equation and the bound in (4.27) would not have the || div(vp)]|-
term, but our 7, is a deviatoric (of a curl), thus necessitating this term.

LEMMA 4.12. For any (vh,vn) € Uy, there is a 7, € ¥y, such that

ba(Th, (v ) Z 1 (0ns Y llor [l 7l

Proof. We only present the proof in two dimensions, as the three-dimensional case
is similar. From the local element basis exhibited in (3.13) (see also [24, section 5.5]
for a more detailed discussion), its clear that on any facet F' € Fy, there exists a
constant trace-free function S with the property that SI, € PO(F,ny), ||SE|2 =1
on the facet F, and SI, equals (0, 0) on all other facets in F,. Given any (vp,vs) € Uy,
define

_ 1
T = Z Z —(SF I dev(Vuy, —yp)) ML ST, 1= Z Tﬂl([[(vh)t]]) St
TeTh FEFH FeFn

where AL is the unique barycentric coordinate function on the element T’ opposite to
the facet F' (so that AFST" is an nt-bubble). Clearly, 70 and 7! are in ¥j. Using the
norm equivalences stated in (4.5) and the mappings for v;, and 5 given in (3.3), a
scaling argument yields

_ 1
17207 < D I dev(Vor, =) lI7 and 7l <D E“Hl[[(vh)t]]”%~
TETh FeFp

Setting 7, = aoT,? + 0417'}1 and selecting the constants ag, a1 appropriately, the rest of
the proof proceeds along the same lines as the proof of [24, Lemma 6.5]. ]

Remark 4.13. Tt is interesting to contrast Lemma 4.12 with [24, Lemma 6.5],
which also gives a similar LBB-condition. The differences are (i) the velocity space in
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[24] is Ho(div, Q) NP*+1 (T, RY), (ii) the velocity norm is a discrete H!-norm defined
using V in place of (+), (iii) there is no weak symmetry constraint and no associated
space W}, in [24], and (iv) the stress space in [24] equals the 3, in (3.5) plus certain
nt-bubbles of degree k+ 1 (different from our §%j here). Lemma 4.12 shows that the
inf-sup condition in [24, Lemma 6.5] continues to hold even if the nt-bubbles there are
removed and Hy(div, Q) N P¥+1(T,, R?) is replaced by our Raviart-Thomas velocity
space V. This observation can be extended to prove the convergence of the MCS
formulation in [24] with so modified spaces.

THEOREM 4.14 (discrete LBB-condition). Let vy, € V}, and v, € Wy,. Then,

b b
(430) sup 1(Uh7 qh) + 2(777«7 (Uh7 ’Yh))

2 M, ye) o, -
(Th,an)EE] X Qn 76l + llgnll ’ "

If vy, is in the divergence-free subspace V) := {z, € V}, : div(zy,) = 0}, then

(431) Sup bQ(Thv(vha’yh)) z ||(

v, ) oy -
mest 75l ’ "

Proof. By Lemmas 4.10 and 4.12, for any given (vp,ys) € Uy, there are 71,77 €
EZ satisfying

(4.32) ba (7, (vhs 1)) 2 | hll curl(yn) [l — | diV(vh)ll} 7l
(4.33) ba (7 (0, 1)) 2 11 (wrs v [l s |7 -

Clearly, the same inequalities hold when 7,1 and T;f are scaled by any nonzero factor,
so we may assume without loss of generality that they have been scaled so that
7L = hll curl v ||n and [|[77]] = |[(vn, Ya) lU, .« Set T = a1} + 77, where « € R is to
be chosen shortly. It follows from (4.32) and (4.33) that

(4.34) ba(7h, (vh,yn)) 2 oh®|| curl vy |7 — k| div(vp) sl curlyslln + | (vn, Y0 ) 1, -

Next, we choose gp, € Qp, so that ¢, = Sdiv(vy), where 8 € R is another constant
to be chosen shortly. Then (4.34) implies

b1 (vns qn) + ba(Th, (vn, ) = Bl div(on) |7 + ab®|| curlys |7 + [|(on, Y017,
— ah|| div(vp)||n ]l curl yp |-

Choose any a > 1 and 8 > a?/2. Then, using Young’s inequality for the last term,
b1(ns an) + b2 (T, (v, ) 2 1 div(on) [, + B2 curlyallf + | (on, )13, -
Recalling that we also have
17allSs + llgnll® < Il divon) i + B2l eurlyu IE + [[(on, 1) 5,
we can now conclude the proof of (4.30) using the norm equivalence of Lemma 4.7.

The proof of (4.31) is similar (and in fact simpler since all terms involving div(vy)
vanish).
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4.4. Error estimates. In this subsection we show that the error in the discrete
MCS solution converges at optimal order. As we have chosen polynomials of degree
k for the stress space X, the optimal rate of convergence for || — ay| is O(hF+1).
However, the optimal rate for the velocity error in our discrete H!-like norm, namely,
lu—unl|1,p.e, is only O(h¥) (since the Raviart-Thomas velocity space V}, only contains
P*(T,R?) within each mesh element T'). Nevertheless, we are still able to prove the
optimal convergence rate of the stress error by using an appropriate interpolation op-
erator and deducing that the stress error is independent of the velocity error. Another
important property we shall conclude in this subsection is the pressure robustness of
the method.

LEMMA 4.15 (continuity). The bilinear forms a,b; and by are continuous:

a(sn, ™) S (V_1/2||§h||)(V_1/2||7'hH) for all ¢p, 7 € 3},
b1(vh, qn) S [0k, 0)||u, lanll for all vy, € Vi, qn € Qn,
ba(7h, (vhs 1)) S Nl (v n) o), for all 7, € SF (v, mn) € Un.

Proof. The continuity of a and b; follow by the Cauchy—Schwarz inequality. For
by, we use (3.11) and Vuy, = e(vp) + k(curlvy) to get

ba(Th, (VR, M) :—Z /TT : [e(vn) + (k(curlvy) — mp)] d —I—Z /Frm [(vp)e] ds.

TETh FeFy
Now, the Cauchy—Schwarz inequality and (4.5) of Lemma 4.1 finish the proof. |

LEMMA 4.16 (coercivity in the kernel). For all (13, qp) in the kernel
Ky = {(Th,qn) € Xn X Qp = b1(vn, qn) + ba(Th, (vn,nmn)) = 0 for all (vp, ) € Un},

2
we have v (|7l + llanl))” S a(7h, 7).

Proof. By [31, Theorem 2.2], for any qn, € Qp, there is a v, € Vj such that
llgnll* < (div(vp),qn) and a discrete H-norm of vy, is bounded by ||qs||. The latter
bound implies, in particular, that ||vp|l1,ne S |lgn]] and also that n, = x(curlwvy)
satisfies ||(vn,mn)llv, < |lgnll- This together with Lemma 4.15 implies

lanll* < b1(vn, an) = =ba(7h, (vn,1m)) S 7ol l(wnsmm) o, < 7wl llan |
yielding the needed bound for ||gp]|. |

We are now ready to conclude an inf-sup condition for the bilinear form

B(vhvnhﬂ-}HQh;f}haﬁhv%th}L)
= a(7h, Th) + b1(Vn, Gn) + b1(On, qn) + b2(Th, (On, 7)) + b2 (Th, (U, 7).
COROLLARY 4.17. Let 13, € ZZ, vy, € Vi, nn € Wh, and qp, € Q. There holds
< B(vh, M, Ths Qh Ons T Thy Gn)
(4.35) I (Ony s Thy an) [l S sup

Op€Vh, MhEW} ||(5h7ﬁh>%ha6h)||*
€S, GhEQn

)

so, in particular, there is a unique solution for the discrete MCS system (3.12). More-
over, if vy, is restricted to V,?, we also have

B 0: B, i, T, 0
(4.36) 1l (vns mis T, 0) |+ < sup ('Uhanfi;Thj + O s Th )
BrEV, inEWn, Fn €} [1(@n 7in, T, 0) [«
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Proof. The first inf-sup condition follows from the standard theory of mixed meth-
ods [5], using Theorem 4.14 (the inf-sup condition for b; and by given by (4.30)),
Lemma 4.15 (continuity of forms), and Lemma 4.16 (coercivity in the kernel).

The second inf-sup condition also follows in a similar fashion, but now using the
other inequality (4.31) of Theorem 4.14. O

THEOREM 4.18 (consistency). The MCS method with weakly imposed symme-
try (3.12) is consistent in the following sense. If the exact solution of the Stokes prob-
lem (3.2) is such that u € HY(Q,R?), w € L2(Q,M), o0 € H'(Q,D), and p € L(Q,R),
then

B(U,W,U,p; UhsMhy Th, qh) = (_f? Uh)Q

for all vy, € Viy,nn € Wi, qn € Qn, and 13, € X,.

The proof of Theorem 4.18 is easy (see, e.g., the similar proof of [24, Theorem
6.2]), so we omit it. We now have all the ingredients to prove the following convergence
result. Let Iy, denote the standard Raviart—Thomas interpolator (see, e.g., [5]) and

let [|(u, @, 0,p)llv.s = v ol me(7.0) + v Pl ae (75 0) + 1l (75 ) + ull 701 (7, 2

THEOREM 4.19 (optimal convergence). Let u € H'(Q,R?) N H™(T,,RY), o €
HYQ,D)NH™ YT, D), p € LEQ,R)NH™ (T, R), and w € L2(Q,K)NH™ (T,
K) be the exact solution of the mized Stokes problem (3.2), let up, oy, wp, and pp,
solve (3.12), and let s = min(m — 1,k + 1). Then,

(4.37)
—(llo = onll +llp = pall) + | (wn = Tw, up = I, w)llv, S B 1(0,w,0,p)][us-
Proof. Let ef = I, 0 —op, €} = Iy, u—uy, e = TFw —wp, eh = I¥p —py, (where

the two occurrences of 1% represent projections onto two different discrete spaces per

our prior notation). Denoting the analogous approximation errors by a” = I, 0 — o,

a = Iy,u —u, a® = I*w — w, and a? = II*p — p, observe that Theorem 4.18 implies

u w o _P. — u w o .
(438) B(eh7eh7eh7€h7 Uh777haTh7Qh) _B(a ,a ,a 7a’pa Uhanh7Th7Qh)

for any vy, € Vi, np € Wy, 1 € E:, and g € Qp. The right-hand side above is a sum
of five terms (v~1a?, 7,)+b1 (a%, qn)+b1 (vp, aP)+bao(1h, (a*,a*))+bz(a’, (vn,nn)). The
second term vanishes: by (a%, q;) = (div(Iy, u — u), q) = (¥ div(u) — div(u), qn) =0
as div(u) = 0. The third term also vanishes: b; (vy,,a?) = (div(vs), [I¥p — p) = 0 since
div(vs) € P*(T3). The fourth term, due to (3.10), is

ba(mn, (a*,a¥)) = (r,a%) + Y (div(m), I, u = w)z =Y ([(t)an], (Ivi,u — ) - ) g,

TETh EcFy

where the last two terms vanish by the properties of the Raviart—Thomas d.o.f.s that
define Iy, , i.e., ba(7h, (a*,a®)) = (1h,a*). The fifth term, due to (3.11), is

b2(aga (vha nh)) = (aovnh - Vvh) + Z (G‘Ztv [[(vh)tﬂ)E'
EcFy
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Writing (a”,n, — V) = (a%,mp) + (a, (TF—1 —1d) V) — (e, TT*~1Vuvy,), note that
by the d.o.f.s of Theorem 3.6, the last term (a”,II*~!Vuvy,) is zero, and moreover,

(a%,nn) = (a®,mn —11%,;). Incorporating these observations on each term into (4.38),
we obtain

B(€Z7 eafia 627 61})1; UhsMhy Thy Qh) = (V_lagv Th) + (Th7 aw) + Z (G’Zta H(Uh)tﬂ)F
(4.39) FEFn
+ (a%,nn — %) + (a®, (ITF= —1d)Vuy,).
We proceed with the right-hand side of (4.39). By (4.21) and Lemma 4.4,

I = Tl < Rl Vom0 < sinf. 1@ns ) [[v, < Nl (wnsmn) 0,

1At = 1d)Von|ln < Nl div(on)l* S lle(n)li < ll(wnsmm)llu,-
Using these after an application of the Cauchy—Schwarz inequality, (4.39) yields

u  w o _D.
B(ehaehve}m €n5 Uh, Th, Th#]h)

1 12,y 1/2
S0+ 3 wlaty) e (ml? + lnmnl,
FeFy,
1 S S
(440) 5 (bl + Vol ) o 7).

where we have used Theorem 3.8 and the approximation property of II¥.
To complete the proof, we apply the triangle inequality starting from the left-hand
side of (4.37), to get

1 u w
(Il = anll + llp = pal) + (e ) o,

1 (e g u w
< =~ (la”ll + lla”ll + Nlef | + llekll) + lI(ek, ei)llon
< h* 1 u w o P
(4.41) S — ol + plae ) + ﬁ\\(eh,eh,eh,eh)ll*

again using Theorem 3.8. Bounding the last term above using (4.35) and (4.40), the
proof is complete. O

Remark 4.20 (convergence in standard norms). Using also Lemma 4.8’s esti-
mate (4.22), a consequence of the global discrete Korn inequality, (4.37) implies

1 1 )
(442)  —lo —onl + ~llp = pull + llw = wnll + [lun — L ullvi, S B0, 0, 0. p) s

under the assumptions of Theorem 4.19. Note that even though the optimal rate
for ||u — up||1.ne is only O(RY), (4.42) gives a superconvergent rate of O(h**+1) for
lup, — Iy, ull1,n,e When the solution is regular enough.
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THEOREM 4.21 (pressure robustness). Under the same assumptions as Theo-
rem 4.19 there holds

1
~ o =onll +llw = wnll + llun = Iy, ullvi, S 770, w,0,0)|u,s.
Proof. Proceeding along the lines of the proof of Theorem 4.19, omitting the
pressure error, we obtain, instead of (4.41),

1 u w hs 1 u w o
;HU —onll + l(er, ei)llv, < 7HUHHS(77L) + WII(ehaemeh,O)H*«

We may now complete the proof as before by using (4.36) instead of (4.35). d

5. Postprocessing. In this section we describe and analyze a postprocessing for
the discrete velocity. While for the raw solution wy, we may only expect ||u—up||1,n.e
to go to zero at the rate O(h¥), we will show that a locally postprocessed velocity
u} has error ||u — u}|l1,nc that converges to zero at the higher rate O(hF*1) for
sufficiently regular solutions. The key to obtain this enhanced accuracy, as in [36],
is the O(h**1)-superconvergence of ||us, — Iv; ul|1 5 .—see Remark 4.20. Finally, we
shall also show that uj retains the prized structure preservation properties of exact
mass conservation and pressure robustness.

The crucial ingredient is a reconstruction operator (see [28, 29]) whose properties
are summarized in the next lemma. Let

Vi = Hy(div, Q) N P*T1(T;,, R?Y) and
VT = {up, € PPTH(TL,RY) : TF[(vp)n] =0 for all F € F}

denote the BDM space (one order higher) and its “relaxed” analogue, respectively.
The next result is a consequence of [28, Lemmas 3.3 and 4.8] and the Korn inequal-
ity (4.8).

LEMMA 5.1. There exists an operator R : V,"~ — V;¥, whose application is com-
putable element by element, satisfying
L |Runll1,ne S Nonlline, for alv, € Vo7,
2. Rvj = vy, for all vy € V}¥, and
3. whenever the local (elementwise) property div(vy|r) = 0 holds for all T € Ty,
and all v, € V", the global property div(Rup) = 0 holds.

A simple choice of R is given by a (DG) generalization of the classical BDM
interpolant. This was used in [25]. Another choice of R, given in [28], based on a
simple averaging of coefficients, is significantly less expensive for high orders.

The postprocessed solution uj € V,* is given in two steps as follows. First, using
the computed o}, and up, solve the local (see Remark 5.3) minimization problem
(5.1) uy” = argmin  ||lve(vyT) — oplF.

v T EVT

Ivh (v;’f):uh

Second, apply the reconstruction and set u} := R(u;").
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THEOREM 5.2. Suppose the assumptions of Theorem 4.19 hold. Then uj € V',
div(u}y) = 0, and for s = min(m — 1, k+ 1) we have the pressure robust error estimate

||U - u;||17h'75 5 h5||(u,w, a, O)Hl/as'

Proof. On any T € Ty, the condition Iy, (u;’~ ) = wj, implies that the Raviart—
Thomas d.o.f.s applied to u;’~ and wy, coincide. Hence, for all g, € P*(T,R),

(div(u;i), Qh)T = 7(“2’77 th)T + (uz’i - n, Qh)aT
= —(un, Van)r + (un - 1, qn)or = (div(up),qn) =0

as div(up) = 0. Thus, Lemma 5.1 implies that uj, € V;* and div(u}) = 0.
It only remains to prove the error estimate. Let Iy be the standard BDMFH1
interpolator. Then, uj = Ru;ﬁ satisfies

lu =il ne < llw—=Tvyullune + (IR u =)

1,h,e by Lemma 5.1. 2,
Sllu—=Tvsulline + [lu—up " [[1ne by Lemma 5.1. 1.

~

focus on the last term. A triangle inequality (where we add and subtract different
functions in the element and facet terms) yields

Since standard approximation estimates yield |[u — Iy ull1ne S h°||(u,0,0,0)], s, we

_ 1 1 _
e —uy (e € D2 splve(w) —onlli+ D —5lon —ve(uy )7

TETh TETh
(5.2) 1 , 1 o
+ > 7 1w = Iy w)e]lle + > 7 v w =y )l
FeFy, FeFn

Naming the four sums on the right as s, s, s3 and s4, respectively, we proceed to
estimate each. Obviously s; = v71||o — o] < h*|(0,w,,0)]|,.s by Theorem 4.21.

To bound so, note that for any wy in the admissible set of the minimization
problem (5.1), we have sy < v=2|lo), —ve(wy)||?. We choose wy, = Ivsu+up — Iy, u €
Vir C Vh*’*. Since IVthh*u = Iy, u implies Iy, wy = up, the chosen wy, is in the
admissible set. Hence,

_ _ 2
52 < v 2o — ve(w)|* < v2(loy, — ve(Iypw)| + llve(un) — ve(Iy, u)])

S v2llon —ve(u)|* + v 2 |lve(u) — ve(Tvpu)||* + v~ |lve(un) — ve(Iy, )|

= v 2llon = ol|* + llu— Ty ullf o + llun = Ty, ullf 5 s

so a standard approximation estimate and Theorem 4.21 yield so < h%||(u,w, 0,0)||u,s-

The same standard approximation estimate for Iy+ also gives the estimate s3 <
lu = Ivsulline S P°ll(u,w,0,0)],s. Hence it only remains to bound s4. Observe
that IVJU - uZ’_ = Ivh(IVh*u — u;;’_) + (Id—[vh>(lvh*u — u;;’_) = (Ivhu - Uh) +
(Id —1Iv, ) (I u — uy ™), because Iy, Iyvsu = Iy,u and Iy, uy~ = up. Defining a =
(Id Iy, ) (Id =1I*) (Iy,sw — uy ™), the identity Iveu — uy™ = (Iy,u — up) + a holds
because (Id —Iy, )E =0 (as k > 1). Hence

(5.3) 51 S v —unllpe + S b7 |ad|%e
FeF,
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Since the first term can be bounded by Theorem 4.21, let us study the last term. On
any facet F' adjacent to a mesh element T, a trace inequality yields h’1||[[at]]||2F <
h™Haell3r < [IVallF + h=2|alZ. Hence,

— 2 *,— _ . —
W= lael [ < IV Ad =T (Typu = w17 + A72(1(1d ~T1%) (T w = ugy "),

S llelvru—up )7,

where we have used the continuity properties of Iy, , scaling arguments, (4.6), and an
estimate analogous to (4.7). Using the triangle inequality and returning to (5.3),

sa S v, u—unlli e + le(vpu—w)llh +v=2ve(u) — oull; +v=2llon — ve(uy7)ll5-

The last two terms are s; and ss, respectively. Hence the prior estimates, the standard
approximation estimate for Iy«, and Theorem 4.21 show s4 < h°(|(u,w,0,0),s. O

Remark 5.3. The restriction of the minimizer of (5.1) to an element T, which
we denote by uy” = u,’ |7, can be computed using the following Euler-Lagrange
equations. Letting A} (T) = {\: A|p € P*(F,R) on all facets F' C 9T}, the function
wy is the unique function in P*+1(7,R), which together with ¢; € P*~1(T,R¢) and
A} € Aj(T) satisfies

(ve(uz™),e(v))r + (G, v)r + (A4, v - n)or = (on,€(v))T,
(u?_’p)T = (uhvﬁ)Ta

(uy™ -n,par = (up - n, wor

for all v € PM1(T RY), o € PF~1(T,R%), and p € A} (T). The last two equations are
another way to express the constraint Iy, u;’” = uy, in (5.1).

6. Numerical examples. In this last section we present two numerical exam-
ples to verify our method. All examples were implemented within the finite element
library NGSolve/Netgen; see [34, 35] and www.ngsolve.org. The computational do-
main is given by Q = [0,1]% and the velocity field is driven by the volume force
determined by f = —div(o) + Vp with the exact solution given by

1
o =ve(curl(¢pp)), and p:=az°+y° — 3 for d =2

1
o = ve(curl(vs, ¥3,13)), and p:=az° +y° +2° — 3 for d = 3.

Here 1o := 22(x — 1)%¢%(y — 1)? and 93 := 2%(x — 1)%y?(y — 1)?22(2 — 1)? defines a
given potential in two and three dimensions, respectively, and we choose the viscosity
v=1073.

In Tables 1(a) and 1(b) we report the errors in all the computed solution compo-
nents for varying polynomial orders k = 1,2, 3 in the two- and the three-dimensional
case, respectively. As predicted by Theorems 4.19 and 5.2 the corresponding errors
converge at optimal order. Furthermore, the L2-norm of error of the (postprocessed)
velocity error converges at one order higher. Note that in three dimensions the er-
rors are already quite small on the coarsest mesh. It appears that to get out of the
preasymptotic regime and see the proper convergence rate, it takes several steps.
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TABLE 1
Convergence rates for the postprocessed velocity and all other solution components for v = 1073,

IT| [ IVu = Vuj|ln (eoc) [u—ujll (eoc) ”U_O'hH (eoc) [lp = pall (eoc) |lw — wal| (eoc)
k=
20 9.9-1073  (-) 84-107* (- ) 1. 0 1072 (- )3.4-1072 ( — ) 88-1073 ( —)
80 3.5-1073  (1.5) 1.7-107* (2.3) 3.6- 1073 (1.5) 9.4- 1073 (1.9) 3.2-1073 (1.5)
320 9.5-107%  (1.9) 2.4-107° (2.8) 9.4-1074 (1.9) 2.4- 1073 (2.0) 9.2- 1074 (1.8)
1280 2.5-107%  (1.9) 3.4-10% (2.8) 2.5-107% (1.9) 6.0- 10~* (2.0) 2.6- 10~* (1.8)
5120| 6.5-1075  (1.9) 4.6-1077 (2.9) 6.3-107° (2.0) 1.5-10~* (2.0) 6.9- 1075 (1.9)
k=
20 221073 (-) 1.0-107% ( -) 18 1073 (-)3.7-1073 (- ) 1.5-1073 ( —)
80 5.0-10~%  (2.1) 1.1-107% (3.2) 3.7-10~* (2.3) 5.3-10~* (2.8) 2.8-107% (2.4)
320 6.7-107°  (2.9) 7.7-107 (3.8) 5.1-107° (2.9) 6.7-107° (3.0) 4.1- 107° (2.7)
1280 8.4-107% (3.0) 4.9-1078 (4.0) 6.4-1076 (3.0) 8.5- 1076 (3.0) 5.2- 1076 (3.0)
5120 1.0-107% (3.0) 3.1-1072 (4.0) 8.0-10~7 (3.0) 1.1- 1076 (3.0) 6.4-10~7 (3.0)
k=3
20 41-100% (- ) 1.4-107° (= )24-107* (- ) 7.2-107% ( — ) 221074 ( - )
80 4.8-1075 (3.1) 8.4-1077 (4.1) 2.7-107° (3.1) 5.7- 1076 (3.7) 2.6- 1075 (3.1)
320 3.0-107%  (4.0) 2.6-10~% (5.0) 1.7-1076 (4.0) 3.6- 107 (4.0) 1.7- 1075 (3.9)
1280 1.9-1077  (4.0) 8.3-10710 (5.0) 1.1-10~7 (4.0) 2.3- 1078 (4.0) 1.1-10~7 (3.9)
5120 1.2-107%  (4.0) 2.6- 10711 (5.0) 7.1- 1072 (4.0) 1.4- 1079 (4.0) 7.3- 1079 (4.0)
(a) The d = 2 example.
1T [IVu = Vugln (eoc) |lu—up|l (eoc) [lo = anll (eoc) |lp —paull (eoc) [lw — wh]| (eoc)
k=1
28 15-1073  (-) 14-107% (- ) 1.5-1073 (- ) 7.5-1072 (- ) 1.1- 1073 ( - )
224 8.1-107% (0.9) 5.4-107° (1.3) 8.1-107* (0.8) 3. 1 1072 (1.3) 6.7-107% (0.7)
1792 3.2-107%  (1.4) 1.3-1075 (2.0) 3.2-107% (1.4) 9.5- 1073 (1.7) 3.2-10™% (1.1)
14336 9.2-1075  (1.8) 1.9-1076 (2.8) 9.0- 1072 (1.8) 2.5- 1073 (1.9) 9.1- 1075 (1.8)
114688 | 2.4-1075  (1.9) 2.5-1077 (3.0) 2.3-107° (2.0) 6.4-10~% (2.0) 2.3- 1075 (1.9)
k=2
28 5.0-107%  (—) 4.3-1075 (- )58-107*( —)6.7-1073 ( — ) 4.9-1074 (- )
224 2.1-107%  (1.3) 9.7-1076 (2.2) 1.6-107% (1.9) 1.6- 1073 (2.1) 1.4-10~% (1.9)
1792 5.7-107°  (1.9) 1.5-1076 (2.7) 3.9-107° (2.0) 2.6- 10~* (2.6) 3.6-107° (1.9)
14336 | 7.9-1076  (2.9) 1.1-10~7 (3.8) 5.4- 1076 (2.8) 3.5-107° (2.9) 5.2- 1076 (2.8)
114688 | 1.0-107%  (2.9) 7.0-107° (3.9) 7.1-10~7 (2.9) 4.5- 1076 (3.0) 7.0-10~7 (2.9)
k=3
28 1.8-107% (- ) 1.3-107% (=) 1.7-107* (- )24-1073 ( - ) 1.3-107* ( - )
224 5.8:107° (1.6) 2.4-1076 (2.4) 4.4.107° (1.9) 2.5-10~* (3.2) 3.0- 1072 (2.1)
1792 6.8-1076  (3.1) 1.7-10~7 (3.8) 5.0- 10— (3.2) 3.0-10~? (3.1) 3.6- 106 (3.0)
14336 5.7-1077  (3.6) 7.3-1079 (4.5) 4.1-1077 (3.6) 2.1- 1076 (3.9) 3.0-10~7 (3.6)
114688 | 4.0-10=%  (3.9) 2.5-10710 (4.9) 2.8- 1078 (3.9) 1.3-10~7 (4.0) 2.0-10~8 (3.9)

(b) The d = 3 example.
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