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A CONSERVATIVE DISCONTINUOUS GALERKIN METHOD FOR
NONLINEAR ELECTROMAGNETIC SCHR\"ODINGER EQUATIONS\ast 

NIANYU YI\dagger , YUNQING HUANG\ddagger , AND HAILIANG LIU\S 

Abstract. Many problems in solid state physics and quantum chemistry require the solution
of the Schr\"odinger equation in the presence of an electromagnetic field. In this paper, we construct,
analyze, and numerically validate conservative discontinuous Galerkin (DG) schemes for the nonlinear
magnetic Schr\"odinger equation. Both mass and energy conservation are shown for the semidiscrete
DG scheme, and optimal L2 error estimates are obtained in the full nonlinear setting. For the time
discretization a second order Strang splitting is applied while mass is still conserved. A number of
numerical tests are given to demonstrate the method's accuracy and robustness, and both mass and
energy are well preserved over long time simulations.
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1. Introduction. Many problems in solid state physics and quantum chemistry
require the solution of the Schr\"odinger equation in the presence of an electromagnetic
field. The physical significance in such settings is particularly well known in non-
linear optics and Bose--Einstein condensate (BEC), where the magnetic structure is
involved in scattering, superfluid, quantized vortices as well as the derivative nonlinear
Schr\"odinger equation in plasma physics; see, e.g., [29, 8].

The aim of this paper is to design and analyze conservative discontinuous Galerkin
(DG) schemes for the nonlinear Schr\"odinger (NLS) equation in the presence of an
electromagnetic field, with particular attention on preservation of both mass and
energy at the discrete level.

Our model equation is of the form

(1.1) iut =  - 1

2
\Delta Au+\Phi (x)u+ \mu | u| p - 1u,

where the unknown u = u(x, t) is the quantum complex-valued wave function, \Delta A =
\nabla 2

A with \nabla A = \nabla  - iA, \Phi : Rd \rightarrow R induces the electric field  - \nabla \Phi , and A =
(A1, . . . , Ad) induces the magnetic field \nabla \wedge A = (\partial jAi  - \partial iAj)d\times d with d = 2, 3.
The linear operator L =  - 1

2\Delta A+\Phi is an essentially self-adjoint Schr\"odinger operator

\ast Submitted to the journal's Computational Methods in Science and Engineering section Febru-
ary 1, 2019; accepted for publication (in revised form) September 4, 2019; published electronically
December 18, 2019.

https://doi.org/10.1137/19M124229X
Funding: The work of the first author was partially supported by NSFC Project 11671341 and

Hunan Provincial NSF Project 2019JJ20016. The work of the second author was partially supported
by Project of Scientific Research Fund of Hunan Provincial Science and Technology Department
2018WK4006. The work of the third author was partially supported by the National Science Foun-
dation under grant DMS-1812666 and the NSF Research Network grant RNMS11-07291(KI-Net).

\dagger Hunan Key Laboratory for Computation and Simulation in Science and Engineering, School of
Mathematics and Computational Science, Xiangtan University, Xiangtan 411105, People's Republic
of China (yinianyu@xtu.edu.cn).

\ddagger Corresponding author. Hunan Key Laboratory for Computation and Simulation in Science and
Engineering, School of Mathematics and Computational Science, Xiangtan University, Xiangtan
411105, People's Republic of China (huangyq@xtu.edu.cn).

\S Department of Mathematics, Iowa State University, Ames, IA 50011 (hliu@iastate.edu).

B1389

https://doi.org/10.1137/19M124229X
mailto:yinianyu@xtu.edu.cn
mailto:huangyq@xtu.edu.cn
mailto:hliu@iastate.edu


B1390 NIANYU YI, YUNQING HUANG, AND HAILIANG LIU

with an electromagnetic potential (\Phi , A). The nonlinear term F (u) = \mu | u| p - 1u, where
1 < p < \infty ; the constant \mu accounts for the attractive (\mu < 0) or repulsive (\mu > 0)
interaction, whose sign depends on the chemical elements. Our results are mostly
valid for general F = g(| u| 2)u, which has the property Im(u\ast F (u)) = 0, where u\ast is
the complex conjugate of u.

The model problem has rich mathematical structures; for example, it is completely
integrable when p = 3 and \Phi = 0, it has Hamiltonian structure, and the solution can
blow up. The Hamiltonian E =

\int 
1
2 | \nabla Au| 2 + \Phi | u| 2 + 2\mu 

p+1 | u| 
p+1 generates nonlinear

system (1.1) by

(1.2) iut =
1

2

\delta E

\delta u\ast 
.

When p = 3, we find the Gross--Pitaevskii equation (GPE), which is regarded as a
Ginzburg--Landau model in string theory. The GPE describes the macroscopic wave
functions u of the condensate in the presence of the electromagnetic potential (\Phi , A).
The nonlinear term results from the mean field interaction between atoms. Well-
posedness for the initial value problem with L2 data has been studied by several
authors; see, e.g., [8, 27, 28, 38, 10].

In this work we set the boundary condition as either the periodic boundary con-
dition or the homogeneous Dirichlet boundary condition

u(x, t) = 0, x \in \partial \Omega .

With such boundary conditions and initial data u(x, 0) = u0(x), one can prove that
both mass and energy remain conserved throughout its lifespan:

M(t) :=

\int 
\Omega 

| u(x, t)| 2dx =M(0),

E(t) :=

\int 
\Omega 

1

2
| \nabla Au| 2 +\Phi | u| 2 + 2\mu 

p+ 1
| u| p+1dx = E(0).

When designing numerical methods, we would like our numerical approximations
to respect the mass and energy conservation property, not only because it makes
the numerical approximation physically meaningful, but also because it makes the
numerical scheme more robust, since numerical methods without these properties
may result in substantial shape errors after long time simulation. It is also desirable
to observe numerical results that can experimentally verify the BEC theory and the
magnetic effects.

In recent years, the DG schemes have been actively designed and applied for
solving Schr\"odinger equations; see, e.g., [24, 33, 34, 35, 37, 25, 15, 36, 17, 13]. Xu and
Shu [33] developed a local DG (LDG) method to solve the generalized NLS equation.
For linearized Schr\"odinger equations, they proved the error estimate of order k+ 1/2
for polynomials of degree k. The optimal error estimate was further proved in [34]
by using special local projections. A mass-preserving LDG method was introduced in
[24] for numerically solving linear Schr\"odinger equations. In contrast, mass-preserving
DG schemes presented in [35, 37] are based on the direct DG (DDG) method, which
was originally proposed by Liu and Yan [20, 21] for diffusion problems. For the
LDG method to solve the two-dimensional NLS equation we refer the reader to [36],
where the authors showed that the method can satisfy the discrete mass and energy
conserving laws. Liang, Khaliq, and Xing [15] studied a mass-preserving LDG method
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combined with the fourth order exponential time differencing Runge--Kutta method.
Hong, Ji, and Liu [13] proposed a conservative LDG method with upwind-biased
numerical fluxes. In [25], Lu, Huang, and Liu developed a high-order mass-conserving
DG method to find numerical solutions for

(1.3) iut +\Delta u - | u| 2u = 0.

A key observation in [25] is that the conservation property remains valid independent
of the size of the penalty parameter. The optimal L2 error estimate was also ob-
tained in [25] for one-dimensional linear Schr\"odinger equations. An extension to the
multidimensional setting was further carried out in [17], which presents two different
approaches to handling both structured and unstructured meshes. For rectangular
meshes, the error analysis is based on the tensor product of polynomials using the
explicit projection constructed in [25], while a superconvergence result is used to re-
cover the optimal L2 error estimate. Moreover, the obtained result is valid with or
without a flux parameter. For unstructured shape-regular meshes, the optimal error
analysis is based on a global projection and its approximation error [3, 16]. The main
advantage of such a method is its capacity to eliminate troublesome jump terms in
the error equation, and it has been well applied to conservative DG methods for other
dispersive PDEs---for instance, in [5] for the generalized KdV equation, in [18] for the
Burgers--Poisson system, and in [19] on a Hamiltonian-preserving DG method to the
generalized KdV equation.

In this paper, we extend the ideas in [25, 17] to develop a novel conservative DG
method to find numerical solutions for (1.1). The DG method is known to enjoy
mathematically provable high-order accuracy and stability, and the discontinuous
feature of its approximation space makes it a good fit for parallel implementation and
for handling unstructured meshes; see, e.g., [12, 30, 31]. Our focus is on constructing
a spatially high-order conservative DG scheme so that conservation properties are
preserved even in the presence of both magnetic and electric fields.

The main conclusion is that the semidiscrete schemes can preserve both mass
and energy independent of the size of the flux parameter. Furthermore, the optimal
L2 error estimate is proved for nonlinear equation (1.1). For time discretization we
follow our earlier work [25] in adopting the classical Strang splitting method [32], so
that the resulting fully discrete scheme still preserves mass and is second order in
time. Interested readers are referred to [4, 11, 26, 23, 14] for time splitting methods
explored in solving the Schr\"odinger equation. In this paper, the proposed Strang
splitting is realized by recording solution values only on quadrature points, and is
hence inexpensive and easy to implement. It not only preserves the mass and high-
order spatial accuracy but also makes the numerical scheme more robust.

Finally, we should point out that splitting the magnetic Schr\"odinger equation for
the purpose of its numerical solution into three subproblems has been explored by
several authors; see, e.g., [14, 6], in which different semi-Lagrangian approaches are
used for the solution of the advection step. In such a method mass is conserved only
when A is divergence-free. Our treatment does not require such an assumption or
use of the Coulomb gauge transformation to make it so. We remark that electric
field E =  - \nabla \Phi  - \partial tA and magnetic field H = \nabla \times A do not change at all under the
transformation u = Uei\lambda with A replaced by A - \nabla \lambda and \Phi replaced by \Phi +\partial t\lambda ; such
gauge freedom may be used to simplify the model as needed---for instance, to make
\nabla \cdot A = 0, which is called the Coulomb gauge.

The remainder of the paper is organized as follows. In section 2, we start with
the semidiscrete DG discretization of (1.1) for the problem with periodic or Dirichlet
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boundary conditions, respectively; conservation properties for both mass and energy
are further verified. Optimal L2 error estimates are given in section 3. In section 4,
we present the Strang splitting method for time discretization, which is shown to still
preserve mass unconditionally. In section 5, we present numerical results to illustrate
both focusing and defocusing nonlinear effects on the wave function of BEC subject
to various anisotropic potentials, and the effects from the magnetic potentials. In
particular, we study how well the considered numerical algorithms preserve mass and
energy. Finally, concluding remarks are given in section 6.

Throughout this paper, we adopt standard notation for Sobolev spaces such as
Wm,p(D) on subdomain D \subset \Omega equipped with the norm \| \cdot \| m,p,D and seminorm
| \cdot | m,p,D. When D = \Omega , we omit the index D; and if p = 2, we setWm,p(D) = Hm(D),
\| \cdot \| m,p,D = \| \cdot \| m,D, and | \cdot | m,p,D = | \cdot | m,D. We also denote \partial \Omega as the boundary of
\Omega . We use the notation C \lesssim B to indicate that C can be bounded by B multiplied
by a constant independent of the mesh size h. C \sim B stands for C \lesssim B and B \lesssim C.
Also, we use (\cdot )+ to denote max(\cdot , 0), and (\cdot ) - = min(\cdot , 0).

2. The direct DG method. We are interested in the high-order numerical
approximation of the solution to (1.1) in multiple dimensions.

2.1. Scheme formulation. For simplicity, we assume the domain \Omega to be a
union of rectangular meshes

\Omega = \cup N
\alpha =1K\alpha ,

where \alpha = (\alpha 1, . . . , \alpha d), N = (N1, . . . , Nd). We use rectangular meshes \{ K\} \subset \scrT h,
with K\alpha = I1\alpha 1

\times \cdot \cdot \cdot \times Id\alpha d
, where Ii\alpha i

= [xi\alpha i - 1/2, x
i
\alpha i+1/2] for \alpha i = 1, . . . , Ni. Denote

hi = max1\leq \alpha i\leq Ni
| Ii\alpha i

| , with h = max1\leq i\leq d hi.
We define the DG space as the space of tensor products of piecewise polynomials

of degree at most k in each variable on every element, i.e.,

Vh = \{ v : v \in Qk(K\alpha ), \alpha = 1, . . . , N\} ,

where Qk is the space of tensor products of one-dimensional polynomials of degree up
to k. For the one-dimensional case, we have Qk(K) = P k(K), which is the space of
polynomials of degree at most k defined on K. Hence the traces of functions in Vh are
double-valued on \Gamma 0

h := \Gamma h\setminus \partial \Omega and single-valued on \Gamma \partial 
h = \partial \Omega , where \Gamma h = \Gamma 0

h \cup \Gamma \partial 
h.

We also introduce some trace operators that will help us to define the interface
terms. Let K1 and K2 be two neighboring cells with a common edge e; for w defined
on \partial Ki, i = 1, 2, we define the average \{ w\} and the jump [w] as follows:

\{ w\} =
1

2
(w1 + w2), [w] = w2  - w1 on e = \=K1 \cap \=K2,

where the jump is calculated as a forward difference along the normal direction n,
which is defined to be oriented from K1 to K2, with wi = w| \partial Ki .

Note that
\Delta Au = \nabla \cdot (\nabla u - 2iAu) + (i\nabla \cdot A - | A| 2)u.

Let v\ast denote the complex conjugate of v, and let the inner product be defined as

\langle u, v\rangle K =

\int 
\Omega 

uv\ast dx, \langle u, v\rangle \partial K =

\int 
\partial K

uv\ast ds.

First we apply the DG approximation to
\int 
K
\Delta Auv

\ast dx on each element K \in \scrT h to
obtain

\langle \Delta Au, v\rangle K \sim  - \langle (\nabla  - 2iA)uh,\nabla v\rangle K + \langle (i\nabla \cdot A - | A| 2)uh, v\rangle K
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+ \langle \partial nuh  - 2iA \cdot n\widetilde uh, v\rangle \partial K + \langle uh  - \widehat uh, \partial nv\rangle \partial K \forall uh, v \in Vh,

with the numerical fluxes taken as

(2.1) \partial nuh = \beta h - 1
e [uh] + \{ \partial nuh\} , \widehat uh = \widetilde uh = \{ uh\} ,

where, on the interface with xi = xi\alpha i+1/2,

he =
1

2
(| Ii\alpha i

| + | Ii\alpha i+1
| ).

Note that for uniform meshes we have he = hi. These numerical fluxes are single-
valued on the edge of elementK as the approximation of \partial nu. The choice of parameter
\beta will be discussed later.

Note that for \partial K \in \Gamma \partial 
h, when subject to a homogeneous boundary condition, we

choose \widehat uh = 0, \widetilde uh = uh/2,(2.2)

\partial nuh =  - \beta h - 1
e uh + \partial nuh.(2.3)

With this we have the DG scheme

(2.4) i

\int 
\Omega 

uhtv
\ast dx =

1

2
BA(uh, v) +

\int 
\Omega 

\bigl( 
\Phi (x) + \mu | uh| p - 1

\bigr) 
uhv

\ast dx,

where the bilinear functional

BA(uh, v) = B0
A(uh, v) +Bb

A(uh, v)

with

B0
A(uh, v) =

\sum 
K\in \scrT h

\bigl( 
\langle \nabla uh  - 2iAuh,\nabla v\rangle K  - \langle (i\nabla \cdot A - | A| 2)uh, v\rangle K

\bigr) 
+
\sum 
e\in \Gamma 0

h

\langle \partial nuh  - 2iA \cdot n\{ uh\} , [v]\rangle e + \langle [uh], \{ \partial nv\} \rangle e,(2.5)

and Bb
A(uh, v) is given below for each respective type of boundary condition:

for periodic case Bb
A(uh, v) =

1

2

\int 
\partial \Omega 

(\partial nuh  - 2iA \cdot nuh)[v\ast ] + [uh]\{ \partial nv\ast \} ds,

(2.6a)

for Dirichlet condition Bb
A(uh, v) =

\int 
\partial \Omega 

((\beta h - 1
e uh  - \partial nuh + iA \cdot nuh)v\ast  - uh\partial nv

\ast )ds.

(2.6b)

Note that the factor 1/2 in (2.6a) is used to indicate that for the periodic boundary
condition only one end in the xi direction should be counted. Here he = hi at each
interface xi\alpha i+1/2 for \alpha i = 1, . . . , Ni. Note that in formulation (2.5) the choice of n on

the edge e \in \Gamma 0
h (pointing to K1 or K2) does not affect the products A \cdot n\{ uh\} [v\ast ],

\partial nuh[v
\ast ], and [uh]\{ \partial nv\ast \} . Hence both \{ \partial nu\} and \{ \partial nv\} are defined based on a fixed

choice of n on e. However, on e \in \Gamma \partial 
h, n is taken as the usual outside normal unit to

\partial \Omega \cap e.
The initial data for the obtained semidiscrete DG scheme is given as

uh(x, 0) = \Pi u0,

where \Pi is the standard piecewise L2 projection.



B1394 NIANYU YI, YUNQING HUANG, AND HAILIANG LIU

2.2. Conservation properties. In order to establish the conservation proper-
ties of the scheme, we prepare the following lemma.

Lemma 2.1. Let a, b be complex polynomials in Vh; then

BA(a, b) = BA(b, a).(2.7)

Proof. We verify this for the case with Dirichlet boundary data. The periodic
case is even simpler, and so details are omitted. Note that

BA(a, b) =
\sum 

K\in \scrT h

\int 
K

((\nabla a - 2iAa) \cdot \nabla b\ast + ( - i\nabla \cdot A+ | A| 2)ab\ast )dx

+
\sum 
e\in \Gamma 0

h

\int 
e

\bigl( 
(\beta h - 1

e [a] + \{ \partial na\}  - 2iA \cdot n\{ a\} )[b\ast ] + [a]\{ \partial nb\ast \} 
\bigr) 
ds

+

\int 
\partial \Omega 

\bigl( 
(\beta h - 1

e a - \partial na+ iA \cdot na)b\ast  - a\partial nb
\ast \bigr) ds.

This allows us to evaluate

BA(a, b) - BA(b, a) =
\sum 

K\in \scrT h

\int 
K

( - 2iA \cdot \nabla b\ast a - 2iA \cdot \nabla ab\ast  - 2i\nabla \cdot A(ab\ast ))dx

+
\sum 
e\in \Gamma 0

h

\int 
e

( - 2iA \cdot n(\{ a\} [b\ast ] + \{ b\ast \} [a])) ds+
\int 
\partial \Omega 

(2iA \cdot nab\ast ) ds

=  - 2i

\left[  \sum 
K\in \scrT h

\int 
K

\nabla \cdot (Aab\ast )dx+
\sum 
e\in \Gamma 0

h

\int 
e

A \cdot n[ab\ast ]ds - 
\int 
\partial \Omega 

A \cdot nab\ast ds

\right]  
= 0,

as desired.

Denote

(2.8) \| v\| 2E :=
\sum 

K\in \scrT h

\| \nabla Av\| 2K +
\sum 
e\in \Gamma h

h - 1
e | [v]| 2e.

For the semidiscrete DG scheme (2.4), we have the following conservation property
for both mass and energy at the discrete level.

Theorem 2.1. The semidiscrete DG scheme (2.4) for any \beta \in R satisfies two
discrete conservation laws:

Mh(t) :=

\int 
\Omega 

| uh(x, t)| 2dx =Mh(0),

Eh(t) :=
1

2
BA(uh, uh) +

\int 
\Omega 

\biggl( 
\Phi | uh| 2 +

2\mu 

p+ 1
| uh| p+1

\biggr) 
dx = Eh(0).

Furthermore, there exist \Gamma > 0 and \alpha \in (0, 1) such that if \beta > \Gamma , then

BA(v, v) \geq \alpha \| v\| 2E .(2.9)

Proof. Take v = uh in (2.4) to obtain

i

\int 
\Omega 

uhtu
\ast 
hdx =

1

2
BA(uh, uh) +

\int 
\Omega 

\bigl( 
\Phi (x) + \mu | uh| p - 1

\bigr) 
| uh| 2dx.
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Hence, using (2.7), we have

d

dt
\| uh\| 2 =

1

2i

\Bigl( 
BA(uh, uh) - BA(uh, uh)

\Bigr) 
= 0.

Furthermore, we choose v = uht in (2.4), so that

i

\int 
\Omega 

| uht| 2dx =
1

2
BA(uh, uht) +

\int 
\Omega 

\bigl( 
\Phi (x) + \mu | uh| p - 1

\bigr) 
uhu

\ast 
htdx.

This upon adding its conjugate gives

d

dt

\biggl( 
1

2
BA(uh, uh) +

\int 
\Omega 

\Phi | uh| 2 +
\mu 

p+ 1
| uh| p+1

\biggr) 
= J,

where, by (2.7),

J =
1

2

\Bigl( 
BA(uht, u

\ast 
h) - BA(uh, u\ast ht)

\Bigr) 
= 0.

Finally we show (2.9). Regrouping terms, we rewrite

BA(v, v) =
\sum 

K\in \scrT h

\int 
K

(| \nabla v| 2  - 2i(A \cdot \nabla )v\ast v  - (i\nabla \cdot A - | A| 2)| v| 2)dx

+
\sum 
e\in \Gamma 0

h

\int 
e

\bigl( 
\beta h - 1

e | [v]| 2 + \{ \partial nv\} [v\ast ] + [v]\{ \partial nv\ast \}  - 2iA \cdot n\{ v\} [v\ast ]
\bigr) 
ds

+

\int 
\partial \Omega 

\bigl( 
\beta h - 1

e | v| 2  - \partial nvv
\ast  - v\partial nv

\ast + iA \cdot nvv\ast 
\bigr) 
ds

=
\sum 

K\in \scrT h

\int 
K

| \nabla Av| 2dx+

\int 
\partial \Omega 

\bigl( 
\beta h - 1

e | v| 2  - \partial nvv
\ast  - v\partial nv

\ast \bigr) ds
+
\sum 
e\in \Gamma 0

h

\int 
e

\bigl( 
\beta h - 1

e | [v]| 2 + \{ n \cdot \nabla Av\} [v\ast ] + [v]\{ n \cdot \nabla Av\} 
\bigr) 
ds.

Further, with the notation \partial A = n \cdot \nabla A, we have

BA(v, v) =
\sum 

K\in \scrT h

\int 
K

| \nabla Av| 2dx+
\sum 
e\in \Gamma h

\beta 

he

\int 
e
| [v]| 2ds+ 2

\sum 
e\in \Gamma h

Re

\int 
e
(\{ \partial Av\} [v\ast ])ds

\geq 
\sum 

K\in \scrT h

\int 
K

| \nabla Av| 2dx+
\sum 
e\in \Gamma h

\beta 

he

\int 
e
| [v]| 2ds - 

\left(  \sum 
e\in \Gamma h

\int 
e
| \{ \partial Av\} | 2ds

\right)  1/2 \left(  \sum 
e\in \Gamma h

\int 
e
| [v]| 2ds

\right)  1/2

\geq 
\sum 

K\in \scrT h

\int 
K

| \nabla Av| 2dx - 
\epsilon 

2

\sum 
e\in \Gamma h

he

\int 
e
| \{ \partial Av\} | 2ds+

\biggl( 
\beta  - 

1

2
\epsilon  - 1

\biggr) \sum 
e\in \Gamma h

h - 1
e

\int 
e
| [v]| 2ds.

Set

(2.10) \Gamma \geq 1

4
sup
v\in Vh

\sum 
e\in \Gamma h

he
\int 
e
| \{ \partial Av\} | 2ds\sum 

K\in \scrT h

\int 
K
| \nabla Av| 2dx

.

We have
(2.11)

BA(v, v) \geq (1 - 2\epsilon \Gamma )
\sum 

K\in \scrT h

\int 
K

| \nabla Av| 2dx+

\biggl( 
1 - 1

2\beta \epsilon 

\biggr) \sum 
e\in \Gamma h

\beta h - 1
e

\int 
e

| [v]| 2ds \geq \alpha \| v\| 2E ,
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where \alpha = (1 - 2\epsilon \Gamma )min\{ 1, \beta \} with

1 - 2\epsilon \Gamma = 1 - 1

2\beta \epsilon 
= 1 - 

\sqrt{} 
\Gamma 

\beta 
> 0,

provided \epsilon = 1
2 (\Gamma \beta )

 - 1/2 and \beta > \Gamma . This completes the proof.

Remark 2.1. The condition \beta > \Gamma with \Gamma implicitly given is only a sufficient
condition. In most cases of our numerical tests, \beta can be chosen as zero or a small
fixed number.

3. Optimal \bfitL \bftwo error estimates. In this section, we derive the optimal error
estimates for the conservative DDG method proposed in section 2.1 for

(3.1) iut =  - 1

2
\Delta Au+\Phi (x)u+ \mu | u| p - 1u.

We will give error estimates in the L2 norm for this model with periodic boundary
condition. Error estimates with other boundary conditions can be obtained as well in
a similar fashion; details are omitted.

For v \in V = Vh +H2(\Omega ), we define the DG norm as

(3.2) | | | v| | | 2 =
\sum 

K\in \scrT h

\| \nabla Av\| 2K +
\sum 

K\in \scrT h

h2K | v| 22,K +
\sum 
e\in \Gamma h

h - 1
e | [v]| 2e,

where he is the characteristic length of the edge e. One can verify that

(3.3) | BA(w, v)| \leq \Lambda | | | w| | | \cdot | | | v| | | \forall w, v \in V,

where \Lambda is called the continuous constant. Furthermore, for v \in Vh, we have

(3.4) \| v\| 2E \leq | | | v| | | 2 \leq C0\| v\| 2E

for a constant C0 > 1. Actually we can show this using the following fact.

Lemma 3.1. There exists C > 0 such that

(3.5) \| \nabla v\| 2K \leq C\| \nabla Av\| 2K \forall v \in Vh.

Proof. It suffices to show that if \nabla v - iAv = 0, then v = 0 for v \in Vh. To see this,
let v = a+ ib, with a and b real polynomials in Vh. From \nabla v  - iAv = 0, we obtain\Biggl\{ 

\nabla a =  - Ab,
\nabla b = Aa.

Then
1

2
\nabla (a2 + b2) = a\nabla a+ b\nabla b =  - Aba+Aab = 0,

which yields
a2 + b2 \equiv const.

Hence a = 0 and b = 0. Noticing that \nabla v = \nabla Av + iAV , we obtain

\| \nabla v\| 2K \leq 2\| \nabla Av\| 2K + 2\| Av\| 2K \leq C\| \nabla Av\| 2K .
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3.1. Projection and approximation properties. We first introduce a pro-
jection and then present its approximation properties. Define the projection \Pi of a
function w into space Vh as follows:

(3.6)

\int 
\Omega 

(w  - \Pi w)v\ast dx+BA(w  - \Pi w, v) = 0 \forall v \in Vh.

This projection is uniquely defined; since for w = 0 with v =  - \Pi w we have

0 = \| v\| 2 +BA(v, v) \geq \| v\| 2 + \alpha \| v\| 2E \forall v \in Vh,

where we have used the coercivity (2.9), and hence v \equiv 0. This says that such a
projection is well defined.

Theorem 3.1. For w \in Hk+1 and h suitably small, we have the following pro-
jection error:

(3.7) \| w  - \Pi w\| \leq Chk+1| w| k+1 and | | | w  - \Pi w| | | \leq Chk| w| k+1,

where C depends on k, d, 1/\alpha , and \Lambda .

Proof. We carry out the proof in two steps.
Step 1. We first bound the projection error R := w  - \Pi w in the following way:

for any v \in Vh, we have

C - 1
0 \alpha | | | v  - \Pi w| | | 2 \leq \alpha \| v  - \Pi w\| 2E \leq BA(v  - \Pi w, v  - \Pi w)

= BA(v  - w, v  - \Pi w) +

\int 
\Omega 

(\Pi w  - w)(v  - \Pi w)\ast dx

\leq \Lambda | | | v  - w| | | \cdot | | | v  - \Pi w| | | + \| R\| \cdot \| v  - \Pi w\| .

By this and the triangle inequality we obtain

| | | R| | | 2 \leq 2 inf
v\in Vh

(| | | v  - w| | | 2 + | | | v  - \Pi w| | | 2)

\leq C inf
v\in Vh

(| | | v  - w| | | 2 + | | | v  - w| | | \cdot | | | v  - \Pi w| | | + \| R\| \cdot \| v  - \Pi w\| )

\leq C(| | | Qw  - w| | | 2 + | | | Qw  - w| | | \cdot | | | Qw  - \Pi w| | | + \| R\| \cdot \| Qw  - \Pi w\| ),

where C = 2max\{ 1, C0\Lambda /\alpha ,C0/\alpha \} . Here we have taken v = Qw \in Vh to be the usual
interpolant polynomial such that

\| \partial mx (w  - Qw)\| K \leq Chk+1 - m
K | w| k+1,K ,

where C depends on k, d; see [7].
This when combined with the estimate

| w| 20,\partial K \leq C(h - 1
K | w| 20,K + hK | w| 21,K)

yields

(3.8) | | | w  - Qw| | | 2 \leq Ch2k| w| 2k+1,\Omega .

Therefore,

| | | R| | | 2 \leq C(h2k| w| 2k+1 + hk| w| k+1| | | R| | | + hk+1| w| k+1\| R\| + \| R\| 2)
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\leq (C + 1/2)h2k| w| 2k+1 +
1

2
| | | R| | | 2 + C

2
h2k+2| w| 2k+1 +

3C

2
\| R\| 2.

Hence

(3.9) | | | R| | | 2 \leq (1 + 2C + Ch2)h2k| w| 2k+1 + 3C\| R| | 2.

Step 2. We proceed to obtain \| R\| by coupling with a duality argument. Define
the auxiliary function \psi as the solution of the adjoint problem

(3.10)

\Biggl\{ 
\psi  - \Delta A\psi = R in \Omega ,

\psi satisfies the periodic boundary condition on \partial \Omega .

This problem has a unique solution and admits the following regularity estimate for
\psi \in H2(\Omega ):

(3.11) \| \psi \| 2 \leq \| R\| .

We then have
(3.12)

\| R\| 2 =
\sum 

K\in \scrT h

\int 
K

R\ast (\psi  - \Delta A\psi )dx

=
\sum 

K\in \scrT h

\int 
K

R\ast \psi dx+
\sum 

K\in \scrT h

\int 
K

(\nabla R\ast \cdot \nabla \psi  - 2iA \cdot \nabla R\ast \psi + (| A| 2  - i\nabla \cdot A)R\ast \psi )dx

+
\sum 

K\in \scrT h

\int 
\partial K

\biggl( 
 - R\ast \partial \psi 

\partial n
+ 2iA \cdot nR\ast \psi 

\biggr) 
ds

=
\sum 

K\in \scrT h

\int 
K

R\ast \psi dx+
\sum 

K\in \scrT h

\int 
K

(\nabla R\ast \cdot \nabla \psi  - 2iA \cdot \nabla R\ast \psi + (| A| 2  - i\nabla \cdot A)R\ast \psi )dx

+
\sum 
e\in \Gamma h

\int 
e

\biggl( 
\beta 

he

\int 
e

[R\ast ][\psi ] + \{ \partial nR\ast \} [\psi ] - 2iA \cdot n[R\ast ]\{ \psi \} + [R\ast ]\{ \partial n\psi \} 
\biggr) 
ds

=

\int 
\Omega 

R\ast \psi dx+BA(\psi ,R)

=

\int 
\Omega 

R\psi \ast dx+BA(R,\psi ).

For k \geq 1, we take \psi h \in Vh to be a piecewise linear interpolant of \psi so that

\| \partial mx (\psi  - \psi h)\| \leq Ch2 - m| \psi | 2, m = 0, 1, 2.

From (3.6) it follows that
\int 
\Omega 
Rvdx+BA(R, v) = 0 for any v \in Vh. Using this formula

with v = \psi h, we obtain

(3.13)

\| R\| 2 =

\int 
\Omega 

R\psi \ast dx+BA(R,\psi ) =

\int 
\Omega 

R(\psi \ast  - \psi \ast 
h)dx+BA(R,\psi  - \psi h)

\leq \| R\| \cdot \| \psi  - \psi h\| + \Lambda | | | R| | | \cdot | | | \psi  - \psi h| | | 
\leq Ch2| \psi | 2\| R\| + Ch| \psi | 2| | | R| | | 
\leq C(h2\| R\| + h| | | R| | | )\| R\| ,
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where we have used (3.11). Hence

(3.14) \| R\| \leq Ch(h\| R\| + | | | R| | | ).

For h \leq 1/
\surd 
2C, (3.14) yields

\| R\| \leq Ch

1 - Ch2
| | | R| | | \leq 2Ch| | | R| | | .

This upon substitution into (3.9) gives

(1 - 12C3h2)| | | R| | | 2 \leq (1 + 2C + Ch2)h2k| w| 2k+1.

Further taking h2 \leq 1
24C3 we have

| | | R| | | 2 \leq (3 + 4C)h2k| w| 2k+1.

Hence, for h suitably small,

\| R\| \leq Chk+1| w| k+1 and | | | R| | | \leq Chk| w| k+1.

The proof is now complete.

We collect a few very basic inequalities, in which the bounding coefficients are
easy to figure out in one dimension, yet often more involved in the case of several
dimensions.

(1) Note that if w \in H3(K) and e is an edge of element K, we have [2, (2.4) and
(2.5)] the following trace inequalities:

\| v\| 20,e \leq C(h - 1
e \| v\| 20,K + he| v| 21,K),(3.15a)

\| \partial nv\| 20,e \leq C(h - 1
e | v| 21,K + he| v| 22,K),(3.15b)

\| \partial 2nv\| 20,e \leq C(h - 1
e | v| 22,K + he| v| 23,K),(3.15c)

where the constant C can depend on several geometric features of K, but it does not
depend on the size of K and e.

(2) Inverse inequality. In a finite dimensional space, all norms are equivalent. For
every polynomial of degree \leq k, there exists C depending on k such that

(3.16) | v| 2s,K \leq Ch
 - 2(s - m)
K | v| 2m,K for s,m integers with s > m.

Moreover, for any function v \in Vh, the following inverse inequalities hold:

\| v\| \Gamma h
\leq Ch - 1/2\| v\| ,(3.17a)

\| v\| \infty \leq Ch - d/2\| v\| ,(3.17b)

where d is the spatial dimension, and \| v\| 2\Gamma h
:=
\sum 

e\in \Gamma h

\int 
e
v2ds. For more details of

these inverse properties, we refer the reader to [7].

3.2. Error estimates. In order to obtain the error estimates for solutions to
the mass-conserving DG scheme, we first give the error equations. Notice that this
DG scheme is also satisfied when the numerical solution uh is replaced by the exact
solutions u (due to consistency of the DG method). The error equation becomes

(3.18) i

\int 
\Omega 

(ut  - uht)v
\ast dx =

1

2
BA(u - uh, v) +

\int 
\Omega 

\Phi (u - uh)v
\ast dx+H[v]
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for all v \in Vh. Here

H[v] := \mu 

\int 
\Omega 

(| u| p - 1u - | uh| p - 1uh)v
\ast dx.

Set \xi = \Pi u - u, \eta = \Pi u - uh, and v = \eta ; we have

(3.19) i

\int 
\Omega 

\eta t\eta 
\ast dx = i

\int 
\Omega 

\xi t\eta 
\ast dx+

1

2
BA(\eta , \eta ) - 

1

2
BA(\xi , \eta ) +

\int 
\Omega 

\Phi (\eta  - \xi )\eta \ast dx+H[\eta ].

Thus

(3.20)
d

dt
\| \eta \| 2 = 2Re

\biggl( \int 
\Omega 

\xi t\eta 
\ast dx

\biggr) 
 - Im(BA(\xi , \eta )) - 2Im

\biggl( \int 
\Omega 

\Phi \xi \eta \ast dx

\biggr) 
 - 2ImH[\eta ].

Note that BA(\xi , \eta ) =  - 
\int 
\Omega 
\xi \eta \ast dx, and the first three terms on the right are bounded

from above by
(3.21)
2\| \xi t\| \cdot \| \eta \| +2\| \xi \| \cdot \| \eta \| +2\| \Phi \| \infty \| \xi \| \cdot \| \eta \| \leq (2\| \xi t\| +2\| \xi \| +2\| \Phi \| \infty \| \xi \| )\| \eta \| \leq Chk+1\| \eta \| ,

where C depends on | u| k+1, | ut| k+1, and \| \Phi \| \infty . We proceed to estimate the nonlinear
term as follows:

2| H[\eta ]| =2\mu 

\bigm| \bigm| \bigm| \bigm| \int 
\Omega 

\biggl( \int 1

0

d

ds

\bigl( 
| us| p - 1us

\bigr) 
ds

\biggr) 
\eta \ast dx

\bigm| \bigm| \bigm| \bigm| (us := su+ (1 - s)uh)

=2\mu 

\bigm| \bigm| \bigm| \bigm| \int 
\Omega 

\int 1

0

p| us| p - 1(u - uh)\eta 
\ast dsdx

\bigm| \bigm| \bigm| \bigm| 
\leq 2\mu p

\bigm| \bigm| \bigm| \bigm| \int 
\Omega 

\int 1

0

| su+ (1 - s)uh| p - 1| u - uh| | \eta \ast | dsdx
\bigm| \bigm| \bigm| \bigm| 

=2\mu p

\bigm| \bigm| \bigm| \bigm| \int 
\Omega 

| u+ (1 - s\ast )(\xi  - \eta )| p - 1| \xi  - \eta | | \eta | dx
\bigm| \bigm| \bigm| \bigm| (s\ast \in (0, 1))

\leq 2\mu p\| u+ (1 - s\ast )(\xi  - \eta )\| p - 1
\infty 

\int 
\Omega 

| \eta  - \xi | | \eta | dx

\leq 2p\mu p(\| u\| p - 1
\infty + \| \xi  - \eta \| p - 1

\infty )(\| \eta \| + \| \xi \| )\| \eta \| .

Using the Sobolev embedding result, we have for k > d
2  - 1

\| u\| \infty \leq C\| u\| k+1.

Using the approximation results (3.7), we have for small h

\| \xi  - \eta \| \infty \leq \| \xi \| \infty + \| \eta \| \infty \leq C(hk + h - d/2\| \eta \| ),

where we have used (3.17b) and the following fact:

\| \xi \| \infty \leq \| u - uI\| \infty + \| uI  - \Pi u\| \infty 
\leq C(hk + h - 1\| uI  - \Pi u\| )
\leq Chk,

where uI is a local interpolation polynomial to approximate u. Hence (3.20) reduces
to

d

dt
\| \eta \| 2 \leq Chk+1\| \eta \| +Cp - 122p - 1\mu p(\| u\| p - 1

k+1+h
 - (p - 1)d/2\| \eta \| p - 1+hk)(\| \eta \| +hk+1)\| \eta \| .
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Set B = \| \eta \| 
hk+1 , so that for h < 1,

\epsilon = h(k+1 - d/2)(p - 1) < 1,

and we have

d

dt
B \leq C(\epsilon Bp - 1 + 1)(B + 1),(3.22)

where hk+1 - d/2 < 1 has been used. Note that at t = 0 we have

\eta (x, 0) = \Pi u0(x) - uh(x, 0) = \xi (x; 0) + u0(x) - uh(x, 0);

hence \| \eta (\cdot , 0)\| 2 \leq C1h
2k+2 by (3.7) and the L2-projection error, with C1 depending

on \| u0\| k+1. Thus B(0) = \| \eta (\cdot , 0)\| /hk+1 \leq C1.
Integration of (3.22) gives

G(B(t)) \leq G(B(0)) + CT, G(s) :=

\int s

1

dz

(\epsilon zp - 1 + 1)(z + 1)

for t \in [0, T ]. If B(t) \leq 1, then the proof is done. Otherwise, for B(t) > 1, we bound
G from below as follows:

G(B) \geq 1

2

\int B

1

dz

z(1 + \epsilon zp - 1)

=
1

2

\int B\epsilon 
1

p - 1

\epsilon 
1

p - 1

dy

y(1 + yp - 1)
(set \epsilon zp - 1 = yp - 1)

=
1

2(1 - p)
log(1 +B1 - p/\epsilon ) - 1

2(1 - p)
log(1 + 1/\epsilon ).

Hence we have

1

2(1 - p)
log(1 +B1 - p/\epsilon ) - 1

2(1 - p)
log(1 + 1/\epsilon ) \leq G(B(0)) + CT,

from which we are able to derive

B(t) \leq 
\biggl[ 

ea

1 - \epsilon (ea  - 1)

\biggr] 1
p - 1

, a = 2(p - 1)(G(B0) + CT ).

It suffices to choose h suitably small so that \epsilon \leq 1
2(ea - 1) , and as a result we have

B(t) \leq [2ea]
1

p - 1 = 2
1

p - 1 e2(G(B0)+CT ) = C\ast .

We thus conclude B(t) \leq max\{ 1, C\ast \} . Hence \| \eta (\cdot , t)\| \leq max\{ 1, C\ast \} hk+1, which
when combined with the triangle inequality \| u(\cdot , t)  - uh(\cdot , t)\| \leq \| \eta \| + \| \xi \| leads to
the desired error estimate.

The main result can now be summarized as follows.

Theorem 3.2. Let uh be the solution to the semidiscrete DG scheme (2.4), (2.5)
with \beta > \Gamma , which depends on degree k of polynomial elements, and let u be the
smooth solution of (3.1) subject to periodic boundary conditions. If k > d/2 - 1 and
h is suitably small, then we have the following error estimate:

\| u(\cdot , t) - uh(\cdot , t)\| \leq Chk+1, 0 \leq t \leq T,

where C depends on | u| k+1, | ut| k+1, \| \Phi \| \infty , T , \beta , and \| u0\| k+1 but is independent of
h.
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Remark 3.1. The above results can be generalized to the case with other boundary
conditions. For example, for the Dirichlet boundary condition with u(x, t) = 0 for
x \in \partial \Omega , the corresponding DG scheme becomes

i

\int 
\Omega 

uhtv
\ast dx =

1

2
BA(uh, v) +

\int 
\Omega 

\Phi (x)uhv
\ast dx+

\int 
\Omega 

\mu | uh| p - 1uhv
\ast dx,

where

BA(uh, v) =
\sum 

K\in \scrT h

\int 
K

(\nabla uh  - 2iAuh) \cdot \nabla v + (| A| 2  - i\nabla \cdot A)uhv dx

+
\sum 
e\in \Gamma 0

h

\int 
e

((\beta h - 1
e [uh] + \{ \partial nuh\}  - 2iA \cdot n\{ uh\} )[v] + [uh]\{ \partial nv\} )ds

 - 
\sum 
e\in \Gamma \partial 

h

\int 
e

((\beta h - 1
e (0 - uh) + \partial nuh  - iA \cdot nuh)v + (uh  - 0)\partial nv)ds.

Here, the boundary condition is weakly enforced in such a way that the boundary
data are used whenever available; otherwise the trace of the numerical solution in
corresponding boundary faces will be used.

Remark 3.2. Our analysis so far shows that for any parameter \beta \in R, the DG
scheme (2.4) preserves the two conservation properties. Moreover, the optimal conver-
gence is ensured if \beta > 0 is sufficiently large. We should point out that in numerical
simulations other choices of \beta can also lead to optimal convergence, as extensively
tested in [17].

4. Time discretization. In this section, we present a second order Strang split-
ting method to solve ODE system (2.4), for which mass remains conserved.

From time t = tn to tn+1, Schr\"odinger equation (1.1) is solved in three steps: we
solve

iut = fu, f = f(x, | u| ) := \Phi (x) + \mu | u| p - 1(4.1)

for a half time step, and then solve

iut =  - 1

2
\Delta Au(4.2)

for one time step; we follow this by solving (4.1) for another half time step. Here we
solve ODE (4.1) exactly and solve (4.2) by the DG method presented in section 2.

Algorithm 4.1. The Strang splitting algorithm is as follows:
Step 1: Initialization:

u0h(x) = u0(x) \forall x \in S,

where S is the set of all quadrature points from each element Kj,

S = \{ x\alpha j \in Kj , \alpha = 1, . . . , Q; j = 1, . . . , N\} ,

which is used in the algorithm's implementation.
Step 2: Given values of unh on S, the solution of ODE (4.1) after a half time step is
given by

w = unh exp ( - if(x, | unh| )\Delta t/2) on S.(4.3)
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Step 3: Find wh \in Vh, by the DG method

i

\int 
\Omega 

wh  - w

\Delta t/2
v\ast dx =

1

2
BA(wh, v), v \in Vh,(4.4)

where
\int 
\Omega 
wv\ast dx is understood as its numerical integration using only values of wv on

S.
We then define

\~w = 2wh  - w on S.

Step 4: The solution of ODE (4.1) with initial data \~w is further given by

un+1
h = \~w exp ( - if(x, | \~w| )\Delta t/2) on S.(4.5)

Return to Step 2.

For this algorithm, we have the following result.

Theorem 4.1. The fully discrete Strang splitting DG algorithm (4.1) satisfies the
discrete mass conservation law,

M [un+1
h ] =M [unh],

where the discrete mass is defined by

M [v] :=

N\sum 
j=1

| Kj | 
Q\sum 

\alpha =1

| v(x\alpha j )| 2.

Proof. From (4.3) and (4.5) we see that

| unh| = | w| , | \~w| = | un+1
h | on S.

Hence
M [unh] =M [w], M [ \~w] =M [un+1

h ].

It suffices to show M [w] = M [ \~w] holds in Step 3. Take v = wh \in Vh in (4.4), and
notice that wh = \~w+w

2 ; then

i
N\sum 
j=1

| Kj | 
Q\sum 

\alpha =1

\~w(x\alpha j ) - w(x\alpha j )

\Delta t
\cdot 
\~w\ast (x\alpha j ) + w\ast (x\alpha j )

2
=

1

2
BA(wh, wh).

Using (2.7), and upon separation of real and imaginary parts, we conclude

M [ \~w] =M [w].

Remark 4.1. One may also design a time-stepping scheme so that both mass and
energy remain preserved. One option is that
(4.6)

i

\int 
\Omega 

Dtuhv
\ast dx =

1

2
BA(u

n+1/2
h , v)+

\int 
\Omega 

\biggl( 
\Phi (x) +

\int 1

0

g(\theta | un+1
h | 2 + (1 - \theta )| un

h| 2)d\theta 
\biggr) 
u
n+1/2
h v\ast dx.

Here

Dtu
n
h =

un+1
h  - unh

\tau 
, u

n+1/2
h = (un+1

h + unh)/2,
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and g(s) = \mu s(p - 1)/2. Against testing function v = u
n+1/2
h and v = Dtu

n
h, respectively,

upon separation of real and imaginary parts, we obtain that

Mn+1
h =Mn

h , En+1
h = En

h

for any n \geq 0, where Mn
h =

\int 
\Omega 
| unh| 2dx and

En
h =

1

2
BA(u

n
h, u

n
h) +

\int 
\Omega 

\Biggl( 
\Phi | unh| 2 +

\int | un
h | 

2

0

g(s)ds

\Biggr) 
dx.

Noting that (4.6) is nonlinear, we can update to get un+1
h the following way: find

wh \in Vh by iteratively solving

\langle (i+\Phi (x) + \^gl)w
l+1
h , v\rangle  - \tau 

4
BA(w

l+1
h , v) = i\langle unh, v\rangle \forall v \in Vh,

where

\^gl :=

\int 1

0

g
\bigl( 
\theta | 2wl

h  - unh| 2 + (1 - \theta )| unh| 2
\bigr) 
d\theta ,

with l = 0, 1, . . . , L, provided \| wL
h  - wL - 1

h \| \leq \delta , with some tolerance level \delta ; then

un+1
h = 2wh  - unh.

We refer the reader to [9] for a recent study on this sort of time discretization for NLS
equations without magnetic forces.

We also remark that, instead of using the formula

Eh(t) :=
1

2
BA(uh, uh) +

\int 
\Omega 

\biggl( 
\Phi | uh| 2 +

2\mu 

p+ 1
| uh| p+1

\biggr) 
dx

as the discrete energy, one may use

\~Eh(t) :=
1

2

\int 
\Omega 

| qh| 2dx+

\int 
\Omega 

\biggl( 
\Phi | uh| 2 +

2\mu 

p+ 1
| uh| p+1

\biggr) 
dx,

where qh \in Vh as an approximation to \nabla u - iAu is determined by\int 
\Omega 

qhv
\ast dx =  - 

\sum 
K\in \scrT h

(\langle uh,\nabla \cdot v\ast \rangle K + i\langle Auh, v\rangle K) - 
\sum 
e\in \Gamma 0

h

\langle \{ \partial nuh\} [v\ast ]\rangle e

for the periodic case.

5. Numerical experiments. In this section, we present numerical examples
to test the performance of the proposed schemes and verify our theoretical findings,
based on the DG formulation (2.4) with (2.1). We use the Strang splitting method
for NLS equations so that the method is both mass-preserving and second order in
time.

The L2 error is measured in discrete norm

\| v  - vh\| :=

\Biggl( 
N\sum 

\alpha =1

Q\sum 
i=1

\omega i(v(x
i
\alpha , t) - vh(x

i
\alpha , t))

2| K\alpha | 

\Biggr) 1/2

,
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where v = uR or uI , the real or imaginary part of u, and vh is the corresponding part
of the numerical solution. Here xi\alpha is the ith quadrature point associated with weight

\omega i so that
\sum Q

i=1 \omega i = 1. In our two-dimensional numerical tests, we take Q = 25 for
all polynomial elements we tested. For the parameter \beta in numerical flux (2.1), we
take \beta = 4, 8, 20 for Qk, k = 1, 2, 3, approximations, respectively.

Unless otherwise pointed out, rectangle domains with periodic boundary condi-
tions will be considered. In our numerical experiments, we take A = 0 and \Phi (x1, x2) =
1
2

\sum 2
j=1 \gamma jx

2
j first, and then take nontrivial A to demonstrate the scheme performance

in the presence of magnetic forces.

5.1. BEC simulations. We begin with an example to test the method accuracy
and verify its mass-preserving feature in long time simulations.

Example 5.1. We solve the two-dimensional NLS equation

iut =  - 1

2
\Delta u+\Phi u+ | u| 2u, x \in [0, 2\pi ]2,

with periodic boundary condition and initial data

u(x, y, 0) = ei(x+y).

When taking \Phi (x, y) =  - 4, the exact solution is a plane wave solution

u(x, y, t) = ei(x+y+2t).

We test this example using the Qk, k = 1, 2, 3, polynomial elements on a uniform
mesh with N \times N cells. In Table 1, we list the L2 errors and orders of accuracy of
Qk approximations, respectively. We see that the optimal k + 1 order of accuracy
is achieved for Qk approximation. To verify the conservative property of the DG
method, we carry out the computation up to t = 20 with Q2 approximation and

\Delta t = 0.001. Figure 1 plots the history of the relative mass Mh(t)
Mh(0)

and relative energy
\~Eh(t)
\~Eh(0)

, respectively. It shows that the mass Mh(t) and energy \~Eh(t) are preserved.

Table 1
Errors for Example 5.1 when using Qk, k = 1, 2, 3, polynomials on a uniform mesh of N \times N

cells. Final time is T = 1.

Qk N \Delta t \| uR  - uR
h \| Order \| uI  - uI

h\| Order

k = 1

10 2.0e-02 6.9182e-01 - 6.9182e-01 -
20 1.0e-02 1.8460e-01 1.91 1.8460e-01 1.91
40 5.0e-03 4.6623e-02 1.99 4.6623e-02 1.99
80 2.5e-03 1.1761e-02 1.99 1.1761e-02 1.99
160 1.25e-03 2.9611e-03 1.99 2.9611e-03 1.99

k = 2

10 2.0e-02 6.1087e-03 - 6.1087e-03 -
20 5.0e-03 6.1798e-04 3.31 6.1798e-04 3.31
40 1.25e-03 7.7198e-05 3.00 7.7198e-05 3.00
80 3.125e-04 1.2356e-05 2.64 1.2356e-05 2.64
160 7.8125e-05 1.3115e-06 3.24 1.3115e-06 3.24

k = 3

10 4.0e-02 7.7716e-04 - 7.7716e-04 -
20 1.0e-02 4.6005e-05 4.08 4.6005e-05 4.08
40 2.5e-03 2.7499e-06 4.06 2.7499e-06 4.06
80 6.25e-04 1.9810e-07 3.80 1.9810e-07 3.80
160 1.5625e-04 1.1840e-08 4.06 1.1841e-08 4.06

In the following, we test the method's performance using examples for the BEC
simulation.
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Fig. 1. Example 5.1. Mass and energy history.

Example 5.2. We solve the two-dimensional NLS equation

iut =  - 1

2
\Delta u+\Phi u+ \mu | u| 2u

over \Omega = [ - 8, 8]2 with periodic boundary condition. This corresponds to (1.1) with
A = 0 and p = 3. The parameter \mu is either positive (repulsive) or negative (attrac-
tive), with potential of form

\Phi =
1

2
(\gamma 1x

2 + \gamma 2y
2).

Defocusing case. With \mu = 1 and initial data taken as a Gaussian,

(5.1) u0(x, y) =
1\surd 
\pi 
e - 

x2+y2

2 ,

we carry out the numerical simulation on the uniform mesh with 256 \times 256 cells and
time step \Delta t = 0.01. Figure 2 plots the numerical mode | u(x, y, t)| at different times
with different potentials:
(i) \Phi = (x2 + 4y2)/2 is attracting and confines waves to the ground state,
(ii) \Phi = (x2  - y2)/2 enhances the dispersion, and
(iii) \Phi = ( - x2  - y2)/2 shows dispersion in both x and y directions.
These numerical results are in agreement with those reported in [10]. We can see
clearly that attractive \Phi confines the waves to the ground state, while the repulsive
\Phi enhances the dispersion or scattering.

Focusing case. Consider

i\varepsilon ut =  - 1

2
\varepsilon 2\Delta u+\Phi u+ \mu | u| 2u,

with potential of form

\Phi =
1

2\varepsilon 
(\gamma 1x

2 + \gamma 2y
2)

and initial data

u0(x, y) =
1\surd 
\varepsilon \pi 
e - 

x2+y2

2\varepsilon .

The focusing case with \mu =  - 1.9718 < 0 and \varepsilon = 0.3 has also been studied in [10].
In such a case, the focusing NLS equation can have finite blowup solutions. The
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Fig. 2. Example 5.2. Defocusing \mu = 1, \varepsilon = 1, numerical | u(x, y, t)| . Left: 3D view of
| u(x, y, t)| . Right: Top view of | u(x, y, t)| . Top: \Phi = (x2+4y2)/2, t = 2.0. Middle: \Phi = (x2 - y2)/2,
t = 5.0. Bottom: \Phi = ( - x2  - y2)/2, t = 5.0.

attractive potential \Phi confines the cooled bosonic atoms, and the repulsive potential
\Phi supports the dispersion. Numerical simulations are carried out using a uniform
mesh with 256 \times 256 cells and time step \Delta t = 0.001. Figure 3 plots the numerical
amplitude max | u(x, y, t)| , t \in [0, 1]. A blowup time of approximately 0.3 seconds

is observed when \Phi = x2+y2

2\varepsilon , and the blowup time has been delayed slightly when

\Phi =  - x2+y2

2\varepsilon . We observe wild oscillations after the blowup time.

5.2. Magnetic effects. Consider the BEC with rotation, or more generally the
NLS equation subjected to magnetic fields [1, 22, 38]. It would be interesting to see
how the excited states are formed and how dispersion or scattering can be achieved
by appropriately manipulating BEC with potentials and magnetic fields.
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Fig. 3. Example 5.2. Focusing \mu =  - 1.9718, \varepsilon = 0.3, numerical max(x,y)\in \Omega | u(x, y, t)| .

Left: \Phi = x2+y2

2\varepsilon 
. Right: \Phi =  - x2+y2

2\varepsilon 
.

Our numerical experiments considered the linear Schr\"odinger equation

iut =  - 1

2
(\nabla  - iA)2u+\Phi u,(5.2)

with different potentials A and \Phi .

Example 5.3. In this example, we solve (5.2) over computational domain [0, 1]2,

A1(x, y) = sin(2\pi y), A2(x, y) = sin(2\pi x),

\Phi (x, y) =  - 1 - 4\pi 2 + 2\pi (A1 +A2) - 
1

2

\bigl( 
A2

1 +A2
2

\bigr) 
,

and initial value
u0(x, y) = ei2\pi (x+y).

The corresponding exact solution is

u(x, y, t) = ei(2\pi (x+y)+t).

We first test the accuracy and convergence rate using the Qk polynomials with
k = 1, 2, 3 on a uniform mesh with N \times N cells. Table 2 reports the L2 errors and
orders of accuracy. We observe that the DG method achieves the optimal k+1 order
for even k = 1, 2, 3. We then test the conservation property of the scheme using Q2

polynomials and \Delta t = 0.01. Figure 4 plots the history of the relative mass Mh(t)
Mh(0)

and energy
\~Eh(t)
\~Eh(0)

, respectively. It shows that the mass Mh(t) and energy \~Eh(t) are

preserved well during the simulation up to t = 20.

Example 5.4. We solve (5.2) in the two-dimensional setting, over interval [ - 5, 5]2,

A1(x, y) =  - 3 sin

\biggl( 
2\pi (y + 5)

10

\biggr) 
, A2(x, y) = 3 sin

\biggl( 
2\pi (x+ 5)

10

\biggr) 
,

\Phi (x, y) = 20 cos

\biggl( 
2\pi (x+ 5)

10

\biggr) 
+ 20 cos

\biggl( 
2\pi (y + 5)

10

\biggr) 
+ 40,

and initial data

u0(x, y) =

\sqrt{} \surd 
10

\pi 
exp

\Biggl( 
 - 
\surd 
10

2
((x - 1)2 + y2)

\Biggr) 
.

This numerical example was tested in [6] using a splitting approach.
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Table 2
Errors for Example 5.3 when using Qk, k = 1, 2, 3, polynomials on a uniform mesh of N \times N

cells. Final time is T = 1.

Qk N \Delta t \| uR  - uR
h \| Order \| uI  - uI

h\| Order

k = 1

20 2.0e-03 8.2110e-01 - 8.2117e-01 -
40 1.0e-03 2.2304e-01 1.88 2.2395e-01 1.87
80 5.0e-04 5.6289e-02 1.99 5.6289e-02 1.99
160 2.5e-04 1.4095e-02 2.00 1.4087e-02 2.00

k = 2

10 1.0e-03 2.3364e-03 - 2.4825e-03 -
20 2.5e-04 1.8422e-04 3.66 1.9191e-04 3.69
40 6.25e-04 1.7261e-05 3.42 1.7576e-05 3.45
80 1.5625e-05 1.9155e-06 3.17 2.1364e-06 3.04

k = 3

10 1.0e-03 3.9507e-03 - 4.1111e-03 -
20 2.5e-04 2.4776e-04 4.00 2.5775e-04 4.00
40 6.25e-05 1.5495e-05 4.00 1.6131e-05 4.00
80 1.5625e-05 1.0121e-06 3.94 1.0330e-06 3.97
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Fig. 4. Example 5.3. Mass and energy history.
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Fig. 5. Example 5.4. Mass and energy history.

The final time T = 50 and time step \Delta t = 0.01. Figure 5 plots the history of

the relative mass Mh(t)
Mh(0)

and relative energy
\~Eh(t)
\~Eh(0)

. We observe that, for this long-

term simulation, the mass is well preserved by the DG method, and the energy is
asymptotically preserved as the discrete energy appears to evolve quite close to the
initial energy.
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6. Concluding remarks. In this paper, we construct and analyze a high-order
DG method for the nonlinear Schr\"odinger equation in the presence of an electro-
magnetic field. The semidiscrete scheme is shown to preserve both mass and energy.
Optimal L2 error estimates are obtained in the full nonlinear setting. For time dis-
cretization, we use the second order Strang splitting method to solve the nonlinear
Schr\"odinger equation. We perform a number of numerical tests showing that the
method is both accurate and robust, and both mass and energy are well preserved
over long time simulation. Therefore, it can be considered as a competitive algorithm
in the solution of the nonlinear Schr\"odinger equation.
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