
iFLBC: On the Edge Intelligence Using Federated
Learning Blockchain Network

Ronald Doku and Danda B. Rawat
Data Science and Cybersecurity Center (DSC2), EECS Department

Howard University, Washington, DC 20059, USA
rdoku@bison.howard.edu.com, danda.rawat@howard.edu

Abstract—Lately there has been an increase in the number
of Machine Learning (ML) and Artificial Intelligence (AI)
applications ranging from recommendation systems to face to
speech recognition. At the helm of the advent of deep learning
is the proliferation of data from diverse data sources ranging
from Internet-of-Things (IoT) devices to self-driving automobiles.
Tapping into this unlimited reservoir of information presents the
problem of finding quality data out of a myriad of irrelevant
ones, which to this day, has been a significant issue in data
science with a direct ramification of this being the inability to
generate quality ML models for useful predictive analysis. Edge
computing has been deemed a solution to some of issues such
as privacy, security, data silos and latency, as it ventures to
bring cloud computing services closer to end-nodes. A new form
of edge computing known as edge-AI attempts to bring ML,
AI, and predictive analytics services closer to the data source
(end devices). In this paper, we investigate an approach to bring
edge-AI to end-nodes through a shared machine learning model
powered by the blockchain technology and a federated learning
framework called iFLBC edge. Our approach addresses the issue
of the scarcity of relevant data by devising a mechanism known
as the Proof of Common Interest (PoCI) to sieve out relevant data
from irrelevant ones. The relevant data is trained on a model,
which is then aggregated along with other models to generate a
shared model that is stored on the blockchain. The aggregated
model is downloaded by members of the network which they
can utilize for the provision of edge intelligence to end-users.
This way, AI can be more ubiquitous as members of the iFLBC
network can provide intelligence services to end-users.

I. INTRODUCTION

At the helm of the advent of deep learning is the prolifer-
ation of big data generated from IoT devices to autonomous
cars to smart critical infrastructure. The sudden furtherance in
AI that has provided various advantages in the lives of people
[1] is a direct consequence of this explosion of data in recent
times. Consequently, this has made the vision to make AI
more ubiquitous a bit attainable but still with more work to be
done. The main obstacle that hinders the omnipresence of AI
to every person and every organization can be attributed to the
inability of cloud computing to accommodate the vast amounts
of data that continues to be generated by devices [2]. At its
very core, cloud computing aims to transfer jobs to a remote
network of powerful servers. These jobs usually involve the
transfer of data for storage, management, or computation. A
significant factor responsible for the intricacies associated with
cloud computing is the heterogeneity of the data sources,
which ranges from massive data centers to a wide variety
of end-nodes (mobile phones, sensors, laptops) coupled with

the fact that they tend to be far away from the cloud. Con-
sequentially, cloud computing faces issues such as network
latency, efficiency, and the cost of transferring extensive data
to a remote server. These issues have necessitated the rise of
edge computing and its variants as a vital tool in the quest
to provide better services to clients. Edge computing [3], [4]
entails pushing the data for analysis closer to the source as it
is a less expensive undertaking, especially when moving this
across a wide area network to a remote server.

Furthermore, uploading the data over a long distance can
expose the data to security issues (eavesdropping, Man in
the Middle attack, etc.) [5]. Edge computing endeavors to
eliminate some of the risks of these attacks as it involves
shortening the distance the data travels. However, this still
does not present a foolproof solution to data security. A more
dependable solution is to get the data to stay on the device
for processing. Federated learning [6] has been proposed by
Google researchers in an attempt to ensure data privacy in a
distributed machine learning over multiple devices setting. In
federated learning, the data does not have to leave the data
source. The code comes to the data instead, which makes it
a reliable way of optimizing privacy issues. Wang et al [7]
proposed a framework they term In-Edge AI that combines
edge and federated learning by employing the collaboration
between devices through federated learning.

Conventionally, ML modeling and analysis happens in the
cloud, but the need for real-time information is a consequence
of the advancements of smart cities, self-driving vehicles, and
the IoT. These have rendered the back and forth transfer of
data to the cloud for analysis inefficient and outdated. Conse-
quently, this has compelled a new form of edge computing
known as edge intelligence. In edge intelligence, the goal
is to bring ML, AI, and predictive analytics services closer
to the data generator in an attempt to distribute computing
intelligence over the network. This is beneficial as it brings
intelligence closer to the data source as opposed to the labori-
ous task of sending data to the cloud for analysis. The Gartner
Hype Cycle foresees edge intelligence to play a significant
role in the next decade [8]. However, work in [9] highlights
the various factors that limit the widespread adoption of edge
intelligence. These limitations are the cost associated with the
bandwidth of transmitting vast amounts of data, the latency
associated with cloud/edge services, reliability of the edge
server, and the privacy of the data. In this work, we present

an approach that aims to address these issues.
In our approach, we devise a solution that attempts to

deliver fast and reliable edge intelligence to users. The pro-
vision of this edge intelligence service is achieved through
the creation of a network of nodes that incorporates federated
learning with blockchain, called iFLBC edge. The novelty in
our approach lies in the employment of the PoCI mechanism
that ensures that the data used to train models in the network is
trustworthy and relevant. This addresses the ongoing problem
of finding useful data currently plaguing data science [10].
We consider this undertaking to be a necessity because,
for predictive analysis to be truly effective, the need for
quality data is imperative. We achieve our goal of making
AI more ubiquitous by incorporating federated learning, the
blockchain, and Attribute-Based Encryption (ABE). The sec-
tions below describe the role these technologies play in our
system. The result section reinforces the fact that our goal
of getting AI services closer to the end-user becomes more
achievable when the network scales.

II. BACKGROUND & RELATED WORK

A. Blockchain

Bitcoin instigated the widespread adoption of the
blockchain when it highlighted its significance by solving
the double-spending problem in digital currency back in
2009 [11]. The blockchain ensured data integrity and validity
through a computational process known as mining. Through
the mining process, a new block gets appended to the cur-
rent blockchain. Mining involves the process of solving a
computationally-intensive cryptographic puzzle known as the
proof-of-work (PoW) for creating new blocks. The new block
gets appended if the majority of nodes involved in the PoW
process reach a consensus. Consensus is reached when the
network approves the mined block as legitimate.

The blockchain technology has many challenges. Scalability
issues is one such challenge that has garnered the attention
of researchers in the blockchain domain [12]. An approach
devised to solve this predicament is sharding. Sharding in
simple terms can be explained as dividing a blockchain
network into multiple teams [13]. Each team is referred to
as a shard. Each shard has its own ledger and can validate
transactions [14]. By splitting the network in this fashion, the
network’s efficiency is enhanced. These shards collaborate in
parallel to maximize the performance of the network [15]. In
[16], they propose a new sharding technique that divides the
network into teams they call an Interest Group (IG). In our
network, each IG has its own unique distributed ledger that
stores an aggregated shared model.

B. Federated Learning

Federated Learning [6] falls under a branch of computer
science coined recently as Decentralized AI. In federated
learning, machine learning models are trained on the device
that generated the data. The training data stays at the source
and never goes anywhere. This solves the privacy concerns
associated with individuals not willing to share data. In

the centralized manner of data training, the training data is
collected from the device and transferred to a centralized data
center. This is privacy-intrusive as it allows big companies
such as the GAFA (Google, Apple, Facebook and Amazon) to
collect data on users, which they derive insights from to build
personalized machine learning models aimed at providing
tailored services to consumers. Federated learning follows
a decentralized approach where various data owners can
collaborate to learn a model while keeping all the personal
data private. This implies there is a shared intelligence among
the nodes in the network.

Federated Learning plays a role in our system by gathering
local updates of Potential Members (PM) and then generating
an averaged global model update that is shared by members of
a shard. The shared model is an aggregation of the intelligence
derived from the local data of members that belong to that IG.
The shared model is stored on a blockchain that is unique to
each IG. Members of an IG can download the shared model
which can be used to provide edge intelligence to clients that
request it.

C. Proof of Common Interest (PoCI)

The work in [16] proposed a network that aims to determine
relevant data using the PoCI. In this section, we build on
the work done in [16] as the service we intend to provide is
maintained by such a network. The network is divided into
teams known as IGs. Each IG has a shared model that is
accessible to each member of that IG. The reputation of an
IG depends on how competent the model that it owns is, which
is a direct consequence of how relevant the data that a model
was trained on is. As such, the data of a potential member
(PM) must be vetted before its model is aggregated with the
other members’ model and appended to the blockchain. This
vetting process is done by the PoCI. The PoCI process requires
that nodes accepted to the IG must share similar interests with
the other members of the IG. This is enforced by members
of the IG that are randomly selected to perform the PoCI.
The PoCI process involves the selected nodes solving a small
computational work where they verify that a PM’s data aligns
with the interests of the IG. The PM is accepted into the IG
and it’s model is added to the blockchain ledger for that IG
when the nodes performing the PoCI come to a consensus that
the PM’s data is of relevance to the IG.

III. SYSTEM MODEL

A. PoCI Computation

The PoCI process demands the calculation of a unique hash
function known as the MinHash of the PM’s data. The first
step in the PoCI process is a PM sending a request to be
a member of the IG. The IG then sends a Latent Dirichlet
Allocation (LDA) [17] model to the PM which it downloads.
This topic modeling model is used to discover topics from the
PM’s data. Topic models require that the words that are used
as input for the model are relevant. The dataset the model
utilizes demands that it is split into suitably sized batches as
this plays a vital role in determining the context in which the

2

words are connected. Based on experiments, we discovered
300 samples (words in a dataset) perform better. As such, we
require the PMs to have data that has been set to a limit of 300
words. Datasets that go over the limit are split into batches
(300 samples per batch). The LDA model tends to get better
as more data is added.

The first step is a data pre-processing phase which involves
filtering words based on stop lists and lemmatization. We get
a list of words from the dataset using TF-IDF term frequency.
The list of words derived is used as the model’s input. The TF-
IDF algorithm is used to estimate the relevance of a keyword
in a document. A score is then assigned to that keyword
based on the number of times it appears in the document.
This algorithm generates a list of words that can be used as
input. Equation 1 below is the TF-IDF formula.

wi, j = t fi, j× log
N

d fi
(1)

In equation 1, t fi, j is the number of occurrences of the word i
in the document j, d fi is the number of documents containing
i, and N is the total number of documents.

In the LDA model, the observable features the model sees
are the words that appear in the documents. Other parameters
are hidden/latent (inferred). One of those parameters is a topic
that is assigned to each word, thus making every document a
mixture of such topics. The goal of the model is to figure out
how such document collection could have been generated in
the first place. LDA produces a file that contains all the topics
consisting of words with the probabilities of them belonging
to that topic. The number of topics we get is dependent on
the number of IGs present in the network. As such, topics are
generated based on the names of the IGs. The result of the
LDA model is a file that tells us the appropriate IG (label) the
words in the dataset belong to. This process confirms whether
the PM’s data actually belongs to the IG it has requested to
be a member of. If the LDA model does not produce the IG
the PM requested, the PM’s request is canceled.

LDA functions under the premise that a document consti-
tutes various topics, i.e., P(z|d). Each topic is a distribution
over terms in a vocabulary, i.e., P(t|z). LDA suggests doc-
uments are probability distributions over latent topics, and
topics are probability distributions over words. LDA can be
formally written as P(ti|d) = ∑

z
j=1 P(ti|zi = j)P(zi = j|d),

where P(ti|d) can be expressed as the probability of the
ith term for a given document d and zi is the latent topic.
P(ti|zi = j) is also expressed as the probability of ti within
topic j. Furthermore, P(zi = j|d) is the likelihood of selecting
a term from the topic j in the document. The number of latent
topics Z, has to be defined in advance; this allows for the
adaption of the level of specialization of the latent topics.
LDA approximates the topic–term distribution P(t|z) and the
document–topic distribution P(z|d) from an unlabeled Corpus
of documents using Dirichlet priors for the distributions and a
fixed number of topics. Gibbs sampling is one viable method
to achieve this: It iterates multiple times over each term ti in
document di, and samples a new topic j for the term based

on the probability P(zi = j|ti,di,z−i) based on (6), until the
LDA model parameters converge.

P(zi = j|ti,di,z−i) ∝
CT Z

ti j
+β

∑t CT Z
ti j +T β

CDZ
di j

+α

∑z CDZ
diz

+Zα
(2)

where CT Z keeps a tally of all topic–term assignments,
CDZ counts the document–topic assignments, z−i represents
all topic–term and document–topic assignments except the
current assignment zi for term ti, and α and β are the hy-
perparameters for the Dirichlet priors, working as smoothing
parameters for the counts. Based on the counts the posterior
probabilities in (6) can be estimated as

P(ti|zi = j) =
CT Z

ti j
+β

∑t CT Z
ti j +T β

(3)

P(ti|zi = j|di) =
CDZ

di j
+α

∑z CDZ
diz

+Zα
(4)

After the PM obtains the resulting file generated by the
LDA model, the next step is to select the words associated
with the IG (topic) it was assigned to. This set of words is
used to calculate the MinHash of the dataset. It is through
this MinHash that the PoCI is computed. To calculate the
MinHash, we employ data mining methods such as shingling
and Jaccard Similarity. The shingling of documents involve
viewing a document as a set of short strings. In this manner,
documents that share common sub-strings are perceived as
similar. Shingling solves this by transforming a document
into multiple sub-strings of length k that is present within the
document. As such, documents are represented as a set of k-
shingles. The length k needs to be picked according to the size
of the document. We pick a shingle size of k = 4. After picking
the shingle size, we introduce MinHashing. Like other hashing
techniques, MinHashing works by converting a document of
any size into a specific size. However, MinHashing can specifi-
cally return a fixed-size numeric signature for documents. We
can use this numeric signature to calculate the similarities
between the two documents. This is done through the help of
Jaccard Similarity. We can find the similarity between two
documents A and B by performing the Jaccard Similarity
by discovering the relative size of their intersection. When
documents are presented as a set of shingles, we can use the
Jaccard Index to measure the similarity. The Jaccard Similarity
can be applied to MinHashes as well. The Jaccard Similarity
between the MinHashes of two documents A (MHA) and B
(MHB) and is defined as

J(MHA,MHB) =
|MHA∩MHB|
|MHA∪MHB|

∣∣∣∣ (5)

MinHashing uses randomized algorithms to estimate the
Jaccard Similarity between documents. The steps below show
the MinHashing process:
Step 1: Break down the ledger into a set of shingles.
Step 2: Calculate the hash value for every shingle.

3

Step 3: Store the minimum hash value found in step 2.
Step 4: Repeat steps 2 and 3 with different hash algorithms

199 more times to get a total of 200 min hash values
(MinHash signature).

To compute the PoCI, we need to find the similarities
between the MinHash of the PMs and the members of the
IG randomly selected to participate in the PoCI process
(Approvers). Each PM is assigned an Approver. An Approver
computes the PoCI by comparing its MinHash with the
PM’s MinHash. This is achieved by counting the number of
signature components in which they match. That gives the
similarity score for the comparison of any two documents.
The formula for calculating the MinHash is expressed as:

hπ(C) = min
π

π(C) (6)

where C represents a document. If the Approvers confirm that
the PM’s data passed the PoCI, this indicates the PM has
proved that it owns relevant data.

B. Model Aggregation
For the federated learning portion of the algorithm, we

follow the approach implemented in [18]. Let’s assume a PM
A wants to be a part of the network. A’s local model is locally
trained via stochastic variance reduced gradient algorithm
utilizing the method illustrated in [19]. A’s datasize is split
into 300 samples. A computes a local model update using
equation 1

w(t,l)
i = w(t−1,l)

i − β

Ni
(
[
O fk(w

t−1,l
i)−O fk(w

(l))
]
)+O fk(w

l) (7)

f(w) is the loss function whose goal is to mininimize w(t,l)
i .

f (W) is calculated as a mean squared error defined as
f (w) = 1

NS
∑

ND
i=1 ∑sk∈si fk(w)where fk(w) = (xT

k w− yk)
2/2. Ni

is the number of iterations (number of batches needed
to complete an epoch), l is the current epoch (an epoch
represents the number of times the algorithm works through
the dataset). β is the step size.

The candidates then upload the local update:
(wl,

{
∆ fk(wl)

}
sk ∈ si) and the MinHash of their data

to their assigned Approvers where wl denotes the local
weight. The Approvers broadcast the local model updates of
their assigned PMs to the other members of the Approver set
after they have performed PoCI by verifying the MinHash.
The other Approvers must verify the MinHashes of the
models that have been broadcast to them as well. If a PM’s
MinHash passes the PoCI, it’s local model is included in
the Approver’s block until the Approver reaches the alloted
blocksize. After this is done, an Approver executes the PoW.
The first Approver to solve the PoW and generate a block
broadcasts it to the other Approvers and all the members
of the IG. The PMs then download the blockchain from
their assigned Approvers. The PMs then go ahead to locally
compute the global model update by utilizing the aggregated
local model updates in the newly appended blockchain. After
this is done, the PMs become members of the IG. They can
themselves become future Approvers in the future. Every

member of the IG gets an updated shared model as well by
computing the global model update.

IV. PROPOSED APPROACH

The goal of this work is to provide secure and reliable
intelligence to client nodes through the aid of a distributed
shared model. The initial step requires that a client node sends
a request to the network. The sent request is an encrypted
message describing the service needed. This request is en-
crypted using an Attribute-Based Encryption (ABE) scheme,
which ensures the encrypted data gets decrypted by nodes
in the network that belong to the IG the request was sent
to. Each node in the network automatically gets assigned a
set of attributes (belonging to an IG) when they become a
member of an IG. Once the client node chooses the IG, the
message/service request it sends to the network gets encrypted
with the attributes of the IG the client chose. Each node in
the network has a blockchain that contains an updated shared
model, as explained earlier. The nodes that decrypt the data
become the candidate nodes that will provide AI services to
the client node. The criteria for determining the actual node
that provides the intelligence depends on the distance of that
node from the client node. The closest node to the source
of the client becomes the designated intelligence provider. A
connection is established, and the selected node then sends
a secret key to the client node, which is used to decrypt the
homomorphically encrypted predictions of the shared model.

Figure 1. iFLBC Edge Intelligence Provisioning Process.
Figure 2 depicts the process of determining the intelligence

provider. The blue marks represent the nodes that decrypted
the request. The double blue marks depict the node closest to
the client node, and thus the node that gets chosen to provide
intelligence.

Attribute-Based Encryption for Candidate Selection: In
this section, we describe in detail the process for the candidate
selection. ABE is a public key encryption mechanism that

4

allows for the encryption and decryption of messages based
on the attributes of the receiver. ABE was first introduced
by Sahai and Waters and is also known as Fuzzy-Identity
based encryption (a variant of Identity Based Encryption
[20]). The first application of ABE is in the area of using
fingerprints in Identity Based Encryption. Fingerprints have
peculiar characteristics that make it unique. For example, a
fingerprint may have a set of 40 characteristics, and not all of
these characteristics may match. Consequentially, this may fail
to decrypt a message. The approach to address this was the
Fuzzy -Identity Based encryption or ABE. In this approach,
there was a threshold set in a manner that ensured a message
got decrypted if d many characteristics were matching in the
fingerprint. ABE is based on bilinear maps which have the
following properties:

Symmetric bilinear map: Let p be a large prime number.
G1,G2 are two groups of order p, and g is a generator of G1.
e : G1×G1 → G2 is a symmetric bilinear map, that satisfies
the following properties [?]:

1) Bilinear: For all u,v ∈ G1 and a0,b0,∈ Zp, e(ua0 ,vb0) =
e(u,v)a0,b0

2) Non-degenerate: e(g,g) 6= 1
3) Computable: There is an efficient algorithm to compute

e(P,Q) for any P,Q ∈ G1

We denote this bilinear map by (p,G,g,GT ,e) where g is a
generator of G.

Let U be the set of attributes assigned to a node based on
its membership to an IG. Let (p,G,g,GT ,e) be the public
parameters where Ti are randomly chosen from the cyclic
group. α is also randomly chosen from Zp, which later
becomes the master key. Nodes in the network send their
credentials L to the Key Generation Center (KGC). The KGC
then sends the secret key (SKL) back to the user.
• (p,G,g,GT ,e)
• U = {att1,att2, ...,attn}= {1,2,3, ...,n}
• params = [p,g,e,g2,hY = e(g,g2)

α ,T1,T2, ...,Tn], where
α

R← Zp,g2,h,Ti
R←G

• MK ≡ α

• SKL = [L,d1 = gr,d2 = gα
2 hr,di = T r

i ,∀i ∈ L], where r R←
ZP

The equations below depict the encryption and decryption
process of the message. The msg is the ciphertext, CT.
SKL is the secret key received from KGC upon sending the
credentials of the nodes. It can be seen that If {i1, i2, ..., ik}
is not a subset of L, then the decryption fails. However, if
it matches a set threshold, then the message gets decrypted.
IK is the set threshold. If the attributes of the nodes meet
the threshold set, then the decryption should take place. This
process is shown below:
• Encrypt(params[p,g,e,g2,h,Y =

e(g,g2)
α ,T1,T2, ...,Tn],W = i1∧ i2∧ ...∧ ik,msg ∈GT)

• CT = [W,C1,C2,C3] where C1 = msg.Y s,C2 = gs,C3 =

(h∏
k
j=1Ti j)

s,s R← Zp
• Decrypt(params,SKL = [L,d1,d2,di,∀i ∈ L],CT =
[W,C1,C2,C3])

– If {i1, i2, ..., ik} 6⊂, decryption fails
– If {i1, i2, ..., ik} ⊂ L, then d = d2∏

k
j=1di j and msg =

C1·e(d1,C3)
e(d,C2)

The nodes that can decrypt messages become the first set
of delegate nodes that get selected to participate in the edge
intelligence process. The primary service provider is selected
using the Dijkstra’s shortest path algorithm to find the closest
node to the client. The other candidate nodes serve as a
contingency plan in situations where the primary node goes
offline. The second nearest node is expected to take over in
such a scenario.

V. PERFORMANCE EVALUATION & SECURITY ANALYSIS

In this section, we investigate the latency of our proposed
iFLBC edge network. One of the foremost goals of this work
is to aid in the quest to make AI more ubiquitous by making
it more available to clients. We test this by conducting an
extensive simulation. Our experiments were implemented in
python and conducted on a workstation with Intel 3.40 GHz
CPU and 32 GB RAM running windows operating system. We
simulate a network of 5 IGs (IG IoT, IG Stock, IG Sports, IG
Food, IG Politics) where various nodes are accepted to the
network based on the data they own.

Figure 2. Impact of the number of nodes in the network on latency for
proposed iFLBC and Vanilla edge.

In this simulation, we send client requests to the network
with the aim of finding the appropriate node in the network
to provide intelligence. We then record how long it takes to
get back the result of a simple ML classification problem
(intelligence). As explained earlier, nodes that decrypt the
request become the candidate nodes that provide predictive
services to the client node. The closest node to the client is
then selected to provide this service. We compared our work
to a regular edge network that has an edge server that provides
similar predictions at a fixed location. From our simulations,
we discover that the iFLBC edge performs faster than the
vanilla edge network when the number of nodes in the network
increases. This is because when the nodes in the network are
considerably less, the distance between the client nodes and
the selected intelligence provider tends to be higher. On the
other hand, as more nodes get accepted to the network, the
probability of a client node being closer to an intelligence

5

provider gets higher. This result shows that our approach
performs better as the network scales and thereby supports
our goal of making AI more ubiquitous.

For security analysis, the network is potentially secure
against Distributed Denial of Service attack because of the
decentralized manner of data storage using federated learning
and the blockchain. Federated Learning also aids in the
prevention of data leakage. The federated learning approach of
storing the local model updates on the blockchain makes the
network less susceptible to the single point of failure attack.
Moreover, since the global model can be computed by any
node that has the current blockchain, it makes the network
more reliable as nodes do not rely on a central source for
global model updates. This is because the shortcomings of
other nodes in the network do not in any way affect the
computation of the global model updates. Furthermore, the
network is regarded as a restrictive permissionless network as
membership into the network demands that nodes only get
accepted when the data they own are deemed to be relevant,
thereby ensuring there is a vetting process that guarantees
some level of security.

VI. CONCLUSION

In this paper, we proposed an approach that aims to make
AI more ubiquitous by providing nodes in a network with the
necessary means to provide an intelligence service to client
nodes. We show that our approach makes considerable effort
to ensure the security and privacy of members in the network
using the blockchain and federated learning. Our approach
addresses the issue of the scarcity of relevant data by devising
a mechanism known as the Proof of Common Interest (PoCI)
that sieves out relevant data from irrelevant ones. We also
incorporate Attribute-Based Encryption (ABE) to achieve our
goal of making AI more ubiquitous. The result section further
reinforces the fact that our goal of getting AI services closer
to the end-user gets more achievable when the network scales.

ACKNOWLEDGMENTS

This work is partly supported by the U.S. NSF under grants
CNS 1650831, IIS 1924092 and HRD 1828811, and by the
U.S. Department of Homeland Security under grant DHS
2017-ST-062-000003 and DoE’s National Nuclear Security
Administration (NNSA) Award # DE-NA0003946. However,
any opinion, finding, and conclusions or recommendations
expressed in this document are those of the authors and should
not be interpreted as necessarily representing the official
policies, either expressed or implied, of the funding agencies.

REFERENCES

[1] J. Schmidhuber, “Deep learning in neural networks: An
overview,” Neural networks, vol. 61, pp. 85–117, 2015.

[2] M. V. Barbera et al., “To offload or not to offload? the
bandwidth and energy costs of mobile cloud computing,”
in 2013 Proceedings Ieee Infocom, pp. 1285–1293, 2013.

[3] M. Patel et al., “Mobile-edge computing introductory
technical white paper,” White paper, mobile-edge com-
puting (MEC) industry initiative, pp. 1089–7801, 2014.

[4] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge
computing: Vision and challenges,” IEEE Internet of
Things Journal, vol. 3, no. 5, pp. 637–646, 2016.

[5] Q. Pu et al., “Low latency geo-distributed data analytics,”
ACM SIGCOMM Computer Comm. Review, vol. 45,
no. 4, pp. 421–434, 2015.

[6] J. Konečnỳ et al., “Federated learning: Strategies for
improving communication efficiency,” arXiv preprint
arXiv:1610.05492, 2016.

[7] X. Wang et al., “In-edge ai: Intelligentizing mobile edge
computing, caching and communication by federated
learning,” IEEE Network, 2019.

[8] K. Panetta, “trends emerge in the gartner hype cycle
for emerging technologies, 2018,” Retrieved November,
vol. 4, p. 2018, 5.

[9] Y. Han, X. Wang, V. Leung, D. Niyato, X. Yan,
and X. Chen, “Convergence of edge computing and
deep learning: A comprehensive survey,” arXiv preprint
arXiv:1907.08349, 2019.

[10] M. A. Waller and S. E. Fawcett, “Data science, predictive
analytics, and big data: a revolution that will transform
supply chain design and management,” Journal of Busi-
ness Logistics, vol. 34, no. 2, pp. 77–84, 2013.

[11] D. B. Rawat, V. Chaudhary, and R. Doku, “Blockchain:
Emerging applications and use cases,” arXiv preprint
arXiv:1904.12247, 2019.

[12] Y. Sompolinsky and A. Zohar, “Accelerating bitcoin’s
transaction processing,” Fast Money Grows on Trees, Not
Chains, 2013.

[13] J. C. Corbett et al., “Spanner: Google’s globally dis-
tributed database,” ACM Transactions on Computer Sys-
tems, vol. 31, no. 3, p. 8, 2013.

[14] L. Luu et al., “A secure sharding protocol for open
blockchains,” in 2016 ACM SIGSAC Conf on Computer
& Comm Security, pp. 17–30, 2016.

[15] M. Zamani, M. Movahedi, and M. Raykova, “Rapid-
chain: A fast blockchain protocol via full sharding,”

[16] R. Doku, D. B. Rawat, and C. Liu, “Towards federated
learning approach to determine data relevance in big
data,” in 2019 IEEE 20th International Conference on
Information Reuse and Integration for Data Science
(IRI), pp. 184–192, 2019.

[17] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirich-
let allocation,” Journal of machine Learning research,
vol. 3, no. Jan, pp. 993–1022, 2003.

[18] H. Kim et al., “Blockchained on-device federated learn-
ing,” IEEE Communications Letters, 2019.

[19] J. Konečnỳ, H. B. McMahan, D. Ramage, and
P. Richtárik, “Federated optimization: Distributed ma-
chine learning for on-device intelligence,” arXiv preprint
arXiv:1610.02527, 2016.

[20] A. Sahai and B. Waters, “Fuzzy identity-based encryp-
tion,” in Annual International Conference on the Theory
and Applications of Cryptographic Techniques, pp. 457–
473, 2005.

6

