®

Check for
updates

Graph Convolutional Nets for Tool
Presence Detection in Surgical Videos

Sheng Wang, Zheng Xu, Chaochao Yan, and Junzhou Huang®)

University of Texas at Arlington, Arlington, TX 76019, USA
jzhuang@uta.edu

Abstract. Surgical tool presence detection is one of the key problems in
automatic surgical video content analysis. Solving this problem benefits
many applications such as the evaluation of surgical instrument usage
and automatic surgical report generation. Given the fact that each video
is only sparsely labeled at the frame level, meaning that only a small por-
tion of video frames will be properly labeled, existing approaches only
model this problem as an image (frame) classification problem without
considering temporal information in surgical videos. In this paper, we
propose a deep neural network model utilizing both spatial and tempo-
ral information from surgical videos for surgical tool presence detection.
The proposed model uses Graph Convolutional Networks (GCNs) along
the temporal dimension to learn better features by considering the rela-
tionship between continuous video frames. To the best of our knowledge,
this is the first work taking videos as input to solve the surgical tool
presence detection problem. Our experiments demonstrate the employ-
ment of temporal information offers a significant improvement to this
problem, and the proposed approach achieves better performance than
all state-of-the-art methods.

Keywords: Surgical video analysis -+ Graph convolution networks -
Surgical tool detection

1 Introduction

Automatic content analysis of surgical videos recorded by an endoscopic camera
in minimally invasive surgery is significant for many functions in the operating
room of the future [3], such as analysis of the operation steps, review of the
techniques employed, evaluation of instrument usage, and automatic surgical
report generation [14]. Among all the tasks of surgical video content analysis, one
crucial problem is surgical tool presence detection, to detect which surgical tools
are being used at a certain time during surgery. The problem is different from
surgical tool detection [16] or object detection [15,19] since it does not require
the awareness of the location of surgical tools or general objects. However, the
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problem is challenging due to several reasons: First, multiple surgical tools could
be used at the same time. Second, different tools could have partial presence and
occlusion which makes it even harder to detect. Third, since the frequencies of
different surgical tools being used vary a lot, the data could be very imbalanced
among certain surgical tools [17].

Existing approaches and models solve this problem by engaging multi-label
image classification: sampling every frame with ground truth as an image dataset,
learning features from each still image and then perform classification [2,8,10, 16—
18]. There are two ways of feature extraction. One is to use manually hand-
crafted features or pre-designed features, e.g., SIFT features. The other is to use
deep neural networks such as convolution neural networks (CNNs) to extract
high-level features. After applying deep neural networks, the classification accu-
racy generally improves. However, one key piece that is still missing from the
current methods is the information along the temporal dimension, which is the
nature of videos. As shown in Fig. 1, almost all surgical tool detection datasets
are labeled sparsely, i.e. the tools being used are not labeled for every frame.
Only a very tiny portion (usually only a few percentages) of video frames are
manually labeled. The insufficient label information leads to a huge challenge
for the research of machine learning based surgical tool presence detection. To
address this problem intuitively, the temporal information from neighbor frames
could help the presence detection and should provide better performance than
utilizing only the labeled image. For instance, one tool might be occluded at
a certain frame and it can be very difficult to recognize it from the complex
background by one single image. However, when using a continuous sequence of
frames, even slight movement of the surgical tool could be noticed and help the
tool get detected correctly.

To utilize the temporal information of the surgical videos for detection, it is
not easy to apply current methods straightforwardly. Since almost all current
surgical tool detection datasets are sparsely labeled at the frame level, using
fixed length frames around the labeled image as a video could either introduce
noise or lack enough temporal information. It might not offer enough temporal
information when the video length is too small, while it might introduce noise
when the video length is too large. Besides, if we use continuous frames around
the labeled image as a video, the length of videos in this problem will not be long
enough or the variation of the frame contents will not be large enough to learn
long-range temporal dependency with Recurrent Neural Networks (RNNs) such
as Long Short-Term Memory (LSTM) [7,21,23] for general video understanding.

In this paper, we propose a novel deep neural network model named Sur-
gical Tool Graph Convolutional Networks (STGCN) combining the power of
both Convolutional Neural Networks (CNNs) and Graph Convolutional Net-
works (GCNs) [12]. We model the problem as a video classification problem by
using the sparsely labeled frame and the neighbor frames around it. STGCN uses
DenseNet [9] as our backbone to learn the spatial features from the input images
and extracts the features directly from the videos with inflated 3D DenseNet.
Then it applies GCNs along the temporal dimension to learn better feature with
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consideration of the relationships among continuous frames. In our experiments,
we demonstrate temporal information can always improve the performance by a
significant amount in the detection task.

To fully demonstrate the superiority of our model, we evaluate our model
on two most recently developed datasets: M2cai-tool and Cholec80 [17]. On
M2cai-tool, STGCN beats the first place method of the data challenge! by more
than 28% in mean average precision (mAP) and surpasses the previous best
performance in literature as we know of. On Cholec80 dataset, the proposed
STGCN improves the best performance by 10% in terms of mAP.

The contributions of this paper are summarized below:

— To the best of our knowledge, this is the first work to utilize the temporal
information for surgical tool presence detection problem.

— We propose to apply GCNs to better model the temporal information from
surgical videos.

— The proposed STGCN achieves state-of-the-art results with a significant gain
on both M2cai-tool and Cholec80 datasets.

grasper grasper
grasper hook specimen

Fig. 1. Sparsely labeled surgical tool detection dataset. In this dataset, the tools being
used in one image is labeled every 25 frames. Existing methods only use the labeled
images for model training. In this paper, we propose to use both the labeled frame and
the unlabeled frames around it as a video for model training.

2 Related Work

Surgical Tool Detection. By introducing deep neural networks to extract
high-level image feature for surgical tool detection, many approaches have been
developed on larger-scale datasets [2,8,10,17,18] and the overall accuracies have
been improved. EndoNet [17] first proposed to use CNNs to train a tool detec-
tion model on labeled images. Since the M2cai-tool challenge, an increasing
number of methods have been developed to solve this problem with M2cai-
tool dataset. The winner of M2cai-tool challenge [18] modeled the problem as

! M2CAT Surgical Tool Presence Detection Challenge 2016: http://camma.u-strasbg.
fr/m2cai2016/.
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a multi-label image classification problem and used VGGNet and InceptionNet.
The authors ensembled the results of these two deep models as the final result.
After that, two methods have been proposed to further improve the detection
performance by labeling extra localization information of surgical tools to the
original dataset [2,10]. AGNet [8] proposed a model with two parts: one atten-
tion model as a global network to detect the areas with high possibilities to
contain the surgical tools, and one local model to detect the tools from selected
areas. AGNet has achieved the best performance. However, given the fact that
each video is only sparsely labeled at the frame level, all these existing methods
modeled surgical tool presence detection problem as an image classification prob-
lem without taking the advantage of the temporal information from unlabeled
neighboring frames around the labeled frame.

Video Understanding and Surgical Video Understanding. Meanwhile,
many researchers focus on video inference for the better ability of computer
video understanding. A great number of cutting edge approaches have been
proposed to improve the video understanding performance, and several complex
datasets have been built to promote related research [1,6].

Recent video understanding work focuses on modeling long term temporal
information with Recurrent Neural Networks. There has also been some surgical
video understanding work on the surgical phase recognition using RNNs [11,22].
Different from the tool presence detection problem, surgical phase recognition
demands to model long term temporal information on a whole surgical video,
while the short video among the single labeled surgical frame does not need long
term temporal modeling. Thus, RNNs based methods do not serve as a good fit
in our problem.

Graph Convolutional Networks. Until recent years, very little attention has
been devoted to the generalization of neural network models to more general
structure such as graphs or networks [4,13]. The deep models handling the graph-
like structure are named Graph Convolutional Networks (GCNs).

Our work is motivated by recent work on human recognition [20] using GCN
as one crucial part of their proposed deep neural network model. In this work,
the authors built a graph containing nodes corresponding to different object
proposals aggregated over video frames. Different from this work, we model
the feature extracted from each frame as a node and build the graph as the
relationship within the continuous frames of a video segment to learn better
feature with temporal information.

3 Methodology

3.1 Problem Definition

Image Classification. Existing methods for surgical tool detection models the
problem as an multi-label image classification problem. Given the image x; at
frame t, models are trained to get the prediction for the input image F'(x;) close
to its groundtruth y;.
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Video Classification. In this paper, we propose to use not only the labeled
image but also the neighbor images as a video segment for model training
and evaluation. Thus, the problem becomes that given a video segment cor-
responding to the ¢t frame [z4_, ..., Ty, ..., T4 4], where [ is the number of frames
before and after the labeled frame image we take into consideration, models are
trained to get the prediction for the input video F(x¢—i, ..., Zt, ..., Tr4;) close to
its groundtruth y;.

3.2 Model Overview

As shown in Fig. 2, the proposed STGCN contains several components. To get
the features from the input video, we use an inflated 3D DenseNet-121 [1,9] to
get the representation of each frame in the video. We take the representation of
each frame as a node and build a similarity graph on these nodes. By applying
GCNs on the constructed graph, the GCNs will adaptively generate the features
considering the relationships among the nodes in the graph, i.e., the temporal
relationship in continuous frames. After that, we use pooling over all the nodes
corresponding to continuous frames. We note the pooling layer as temporal pool-
ing since what it does is applying the pooling on the temporal dimension. The
details of each component will be discussed in the following sections.

Build
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Fig. 2. The overview of the proposed STGCN.

3.3 Inflated 3D DenseNet

Different from most deep convolutional neural networks, DenseNet [9] connects
all the convolutional layers in pairs when their spatial output sizes are the same.
The output of each feature maps also serves as the input of all following con-
volutional layers. The idea is similar to Residual Networks. However, it can
reuse all the features in the network. This sort of network almost exhaustively
maximizes the network capacity to squeeze its spatial feature extraction and
prediction power. Also, the network can alleviate the vanishing-gradient prob-
lem, strengthen feature propagation and substantially reduce the number of the
parameters in the network.



472 S. Wang et al.

In our proposed model, we use DenseNet to learn and extract spatial features
for each frame in the input video. To adapt DenseNet for video input, the original
DenseNet needs to be inflated to 3D ConvNet (I3D) [1,9]. That is, to support
the input video of length ¢, a 3D kernel with ¢ X k x k dimensions can be inflated
from a 2D k x k kernel by copying the weight ¢ times and rescaling by 1/t. In
our implementation, we use 11 as the number of frames. The growth rate is 32
as the default number for DenseNet-121.

3.4 Graph Convolutional Networks

We apply GCNs [4] in the proposed framework to better capture the temporal
relationship along the continuous frames.

Similarity Graph Building. For a video input X = [z, ..., X4, ..., T+4] With
length N, where x; is with the dimension of d, containing the labeled surgical
tools while others not. We use the output of the fully-connected layer right after
the fourth dense block from our inflated DenseNet-121 model to get the feature
representations noted as [f (x¢—;) ..., f (Te—1), f (@), [ (@t41) ooy [ (T241)]. We
regard the representation for each frame as one vertex (node) vy of a graph, and
use the similarity S;; between each pair of nodes (v;,v;) as the corresponding
edge of the graph. Thus, the graph could reflect the temporal relationship of the
continuous frames.

There are quite a few different methods to build the similarity graph. In the
proposed STGCN, we use the cosine similarity to build the graph as

_fl) - fay)
[F ) M7l

and we can get the similarity graph G after normalizing each row of S as

S, (1)

eSii

Gij = =v——<—
J N 31 :
2L evu

(2)

Graph Convolutional Layer. After building the similarity graph, the graph
convolutional layer could be represented as

Z =GXW, (3)

where W is the weight mapping feature of each node to another dimension. The
graph convolutional layer could not only map the feature as a general convolu-
tional layer, but also take the graph information (temporal relationship among
the frames in the input video) into consideration. In the surgical tool detec-
tion problem, graph convolutional layer could learn features while adaptively
reference the relationship among the frames to generate the correct prediction.
The graph convolutional layers could be stacked as a deep GCNs or in general

CNNs by
X0 = gx =Dy -1, (4)
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where X(—1) is the feature map as the input to current graph convolutional
layer, W=D is the weight. X is the output of current layer as well as the
input of next layer.

In our proposed model, we use a residual variation of the graph convolutional
layer as

xO — 4 (GX(l—l)W(l—l)) 4 x0-, (5)

where o(-) is the activation function after the graph convolutional layer and we
add X =1 to the output of the layer as a residual component.

3.5 Temporal Pooling

The feature after the last graph convolutional layer contains N features for the IV
frames. Then we add a temporal pooling layer to combine all the N features from
N frames in the video. Temporal pooling layer has no difference than general
pooling layer that it aggregates the features along the temporal dimension. It
should not be a crucial factor in the performance of the proposed model since the
features for the pooling layer has utilized the temporal information with GCNs.
However, we still try different pooling strategies in STGCN to seek potential
improvement. There are a lot of methods for pooling such as [, pooling, average
pooling, max pooling, and max-min pooling [5]. In later ablation experiments,
we will show the performance of different pooling methods on Cholec80 dataset.

Given a sequence of N d-dimensional dense features after GCNs as z(¥,
where ¢ is from 1 to N, temporal pooling pools the features along the time
dimension. Assume the N-dimensional feature after temporal pooling as Z, for

max temporal pooling, 7, = max(x,(j)) where ¢ from 1 to N, for average

temporal pooling, T; = %Zf;l :U,(:) and for [, temporal pooling, z; =

N
Zﬁil (ac,(;)) where k is from ¢ to d for all temporal pooling methods. For

max-min pooling, we apply a simple version of max-min pooling, which could
be computed as: ' _

Ty = max(ac](j)) + amin(a:,(;)), (6)
where « is a hyperparameter balancing the weights of max pooling and min
pooling.

4 Experiments

4.1 Implementation Details

DenseNet. We use DenseNet-121 pretrained from ImageNet to continue train-
ing on surgical tool detection datasets for a multi-label image classification. Then
we inflate the trained DenseNet to 3D DenseNet. To avoid using temporal infor-
mation in the inflated DenseNet, we keep all the dimension of kernels in either
dense blocks or other convolutional/pooling layers as 1. Thus, all the temporal
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information is used in the GCNs part of the proposed model. We fix the length
of the video segment around each labeled image to 11 to train the GCNs and
following classifier. The DenseNet is trained with Adam optimizer with learning
rate 0.0001 for 200 epochs. The learning rate will be decayed if the training loss
does not decrease after three continuous training epochs.

GCNs. After extracting the feature presentation for each frame from Inflated
DenseNet-121, we input the features along with the similarity graph into the
GCNs. The feature we get from the inflated DenseNet-121 has the dimension of
1024. In our GCNs, we use one graph convolutional layer which maps the input
feature from 1024 dimensions to 1024 dimensions. Then the temporal pooling
layer is added to pool the features along the temporal dimension. After that
is followed by a layer maps 1024 dimensions feature to the number of surgical
tools for classification. In GCNs, both batch normalization and dropout are
added after the graph convolutional layer. Batch normalization is also added
before the graph convolutional layer. We train the GCNs with Adam optimizer
with learning rate 0.0001 for 300 epochs. The dropout rate is set as 0.75 in our
training. The same learning rate decay strategy is used as the one in training
DenseNet. For max-min pooling, we fix the hyperparameter a to 0.75.

4.2 Data Description

M2cai-Tool Dataset [17]. This dataset from M2CAI surgical tool presence
detection challenge contains 15 videos of laparoscopic cholecystectomy proce-
dures from the University Hospital of Strasbourg/IRCAD (Strasbourg, France).
The dataset is split into two parts: the training subset (containing 10 videos)
and the testing subset (5 videos) by the challenge organizers. The videos are
recorded at 25 fps and labeled at 1 fps (one labeled frame in every 25 frames).
There are 23287 training samples and 12541 testing samples. The evaluation
process only considers the labeled frames in testing dataset.

In this dataset, there are seven kinds of surgical tools in total as shown in
Fig. 3: grasper, hook, clipper, bipolar, irrigator, scissors, and specimen bag.

Cholec80 Dataset. The Cholec80 dataset is larger than M2cai-tool dataset.
It contains 40 videos (86304 labeled frames) for training and 40 videos (98194
labeled frames) for testing. The Cholec80 is also from the University Hospital of
Strasbourg/TRCAD and has the same recording rate, labeling rate, and tool set
as M2cai-tool dataset.

Validation Sets. For both M2cai-tool and Cholec80 datasets, we split 10%
samples from training sets as validation sets. We tune our hyperparameters on
the validation sets.
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Grasper Hook Irrigator Clipper Bipolar Specimen bag Scissors

Fig. 3. The surgical tools used in M2cai-tool and Cholec80 datasets. Both of the
datasets have the same seven surgical tools.

4.3 Evaluation Metric

We use the mean average precision (mAP) among the average precision (AP) on
each of the seven surgical tools, which is the same as the challenge evaluation
metric. To ensure a fair comparison with all the methods during and after the
challenge, we exactly follow every detail of data usage and evaluation protocol
used in M2CAT challenge.

4.4 Experimental Results

MZ2cai-Tool Dataset. In this experiment, we choose the winner’s and the 3rd
place’s methods from the challenge, as well as three approaches after the chal-
lenge as comparison methods. Among the challenge methods, EndoNet [17] first
proposed using CNN as a baseline model. The winner of the challenge [18] intro-
duced an ensemble model of VGGNet and Inception Net. However, the highest
mAP is alittle above 60%. For the methods after the challenge, both Jin et al. [10]
and Choi et al. [2] added location information of the tools by adding surgical
tools bounding box to the dataset. These two approaches improved the mAP by
10%. AGNet [8] proposed to use an attention model to increase the detection per-
formance. AGNet trained two cascaded deep convolutional neural networks: the
first one as a global model to locate the area which has higher responses by the
attention based classification network, and then the second one as a local model
to classify the cropped areas with higher attention. Before our method, AGNet
has the best mAP among all the approaches. We compare all these methods
with our results of STGCN results. We include three variations of the proposed
STGCN as side ablation experiments. STGCN (DenseNet) is the model we train
and test on the labeled images without using any temporal information. STGCN
(3D DenseNet + LSTM) contains the inflated 3D DenseNet as the backbone,
and add an LSTM layer after it to extract the temporal information from con-
tinuous frames in the video. The difference between STGCN (3D DenseNet +
GCNs) and STGCN (3D DenseNet + LSTM) is that STGCN (3D DenseNet +
GCNs) uses GCNs to exploit the temporal information.

As shown in Table 1, the STGCN (DenseNet) model has achieved better per-
formance than all existing methods. Compared to AGNet, STGCN (DenseNet)
has not used any attention strategy to boost the performance to have around
2% better mAP than AGNet. By adding temporal information, the STGCN
(3D DenseNet + LSTM) and the proposed STGCN (3D DenseNet) both
improves our image classification model STGCN (DenseNet). With GCNs, it
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Table 1. The results on M2cai-tool dataset.

Methods Mean AP
STGCN (3D DenseNet + GCNs) (90.24
STGCN (3D DenseNet + LSTM) 89.03
STGCN (DenseNet) 88.27
AGNet [8] 86.8
Choi et al. [2] 72.3

Jin et al. [10] 71.8
Sheng et al. [18] 63.8
Twinanda et al. [17] 52.5

could have 1% better mAP than LSTM. Our results demonstrate that temporal
information is effectively helpful for surgical tool presence detection, and GCNs
is better than LSTM in this problem.

Cholec80 Dataset. We compare the proposed STGCN result with the two
baseline methods ToolNet and EndoNet on this dataset in [17]. We also try
the four different temporal pooling methods: ls pooling (STGCN(ls)), aver-
age pooling (STGCN(avg)), max pooling (STGCN(max)), and max-min pool-
ing (STGCN) on this dataset. Results are shown in Table2. On this larger
dataset, the proposed STGCN has better performance than the baseline methods
ToolNet and EndoNet modeling the problem as a multi-label image classifica-
tion problem. By utilizing the temporal information, the proposed STGCN has
improved the performance around 10% in mAP.

Among all the results with different temporal pooling strategies, max-min
pooling has better performance. However, the improvement is so small that it
could be caused by randomness during model training. The slight difference
among the four pooling methods offers support to our analysis that the graph
convolutional layer has utilized the temporal information so how to aggregate
the information along the temporal dimension is not sensitive, which could be
convenient for model designing.

Table 2. The results on Cholec80 dataset.

ToolNet [17] | EndoNet [17] | STGCN (l2) | STGCN (avg) | STGCN (max) | STGCN
mAP | 80.9 81.0 90.05 90.11 90.08 90.13

By comparing the results of the proposed STGCN with the existing meth-
ods on both M2cai-tool and Cholec80 datasets, it demonstrates that there is
always significant improvement by utilizing the extra temporal information by
modeling the surgical tool presence detection as a video classification problem.
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Besides, with the power of GCNs, STGCN has better accuracy even compared
with existing leading methods using multiple CNNs [8] or labeling additional
localization ground truth [10].

5 Conclusion

Surgical tool presence detection is an essential problem for automatic surgical
video analysis. To use the temporal information from the video data, we pro-
pose a novel model named STGCN which applies graph convolutional learning
on continuous video frames to better use the temporal information. STGCN can
directly take a video (a sequence of image frames) as input, extract both spa-
tial and temporal features of the input and get excellent surgical tool detection
precision. To the best of our knowledge, this is the first model which can take
video sequences as inputs for surgical tool presence detection. On both of the
two datasets to evaluate our model, STGCN has the best mean average preci-
sion. Comparing with the models that only use spatial features, we demonstrate
that with GCNs, the temporal information is effective to improve surgical tool
presence detection performance.
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