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ABSTRACT
With the rapid progress of AI in both academia and industry, Deep
Learning has been widely introduced into various areas in drug
discovery to accelerate its pace and cut R&D costs. Among all the
problems in drug discovery, molecular property prediction has been
one of the most important problems. Unlike general Deep Learn-
ing applications, the scale of labeled data is limited in molecular
property prediction. To better solve this problem, Deep Learning
methods have started focusing on how to utilize tremendous unla-
beled data to improve the prediction performance on small-scale
labeled data. In this paper, we propose a semi-supervised model
named SMILES-BERT, which consists of attention mechanism based
Transformer Layer. A large-scale unlabeled data has been used to
pre-train the model through a Masked SMILES Recovery task. Then
the pre-trained model could easily be generalized into different
molecular property prediction tasks via fine-tuning. In the experi-
ments, the proposed SMILES-BERT outperforms the state-of-the-art
methods on all three datasets, showing the effectiveness of our un-
supervised pre-training and great generalization capability of the
pre-trained model.

CCS CONCEPTS
•Theory of computation→ Semi-supervised learning; Struc-
tured prediction; •Applied computing→Molecular sequence
analysis; Natural Language Modeling; Bioinformatics.
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1 INTRODUCTION
The capability of accurate prediction of molecular properties is
an essential key in the chemical and pharmaceutical industries. It
benefits various academic areas and industrial applications such
as improvement to rational chemical design, reducing R&D cost,
decreasing the failure rate in potential drug screening trials, as
well as speeding the process of new drug discovery [4]. The key
problem of introducing Deep Learning into this area lies on embed-
ding graph-like molecules onto a continuous vector space. Then
the representations, as named molecular fingerprints, could be used
for various applications such as molecular properties classification,
regression, or generating new molecules. Instead of computing a
basic property, traditional molecular fingerprints provide a descrip-
tion of a specific part of the molecular structure [27]. However,
traditional molecular fingerprints require intensive manual feature
engineering and strong domain knowledge. Besides, this kind of
fingerprints is highly task-dependent, not general enough for other
property prediction tasks [10].

The current success of deep learning in various areas and ap-
plications, e.g., image classification [12, 33], video understand-
ing [1, 31, 34], medical imaging [15, 35, 42], and bioinformatics [39,
41], demonstrates that deep learning is a powerful tool in learn-
ing feature from data and good at task-related prediction. An in-
creasing number of publications have introduced deep learning
into molecular fingerprint learning [3, 39–41]. The models be-
ing introduced rely on two main deep learning structures: Recur-
rent Neural Networks (RNNs) [30] and Graph Convolutional Net-
works (GCNs) [17, 18]. For RNNs-based methods, molecules are
represented as strings by Simplified Molecular-Input Line-Entry
system (SMILES). In this way, the current successful models in nat-
ural language modeling could be utilized to extract high-quality
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features from SMILES and make task-related predictions. GCNs-

based methods consider the atoms in molecules as graph nodes and

the chemical bonds as graph edges. These methods use graph con-

volutions to extract the feature then classify/regress the molecular

properties. In general, it is not trivial to support RNNs-based meth-

ods for parallel training on multiple GPUs and multiple devices,

and it needs different training tricks like gradient clipping and early

stopping to assure the model convergence; GCNs-based methods

usually have high computation complexity. It limits exploring more

complicated methods for molecular properties prediction. Mean-

while, CNNs-based models [8, 31] for language translation and

modeling have been developed and widely used. These methods

could easily support parallel training. With the help of attention

mechanism, the results even outperform a lot of RNN models.

The success of current deep learning methods highly relies on a

large-scale labeled training samples. For many areas, the labeled

sample number of image classification could easily reach several mil-

lion or more. However, it is not the same situation with molecular

property prediction. The cost of obtaining such scale of molecular

properties with screening experiments is exceptionally high. It is

similar to the case in natural language modeling that they have

almost unlimited unlabeled data while a tiny portion has labels.

The state-of-the-art framework to utilize the unlabeled data is the

pre-training and fine-tuning framework [5]. It pre-trains the model

in an unsupervised fashion then fine-tune the model on labeled data.

Seq3seq Fingerprint model [41] first starts using this framework

to involve large-scale unlabeled data in model training to improve

the prediction performance. However, Seq3seq model is not very

efficient since it uses an encoder-decoder structure, and the decoder

is used as a scaffold and does not contribute to the final prediction.

The motivations of this paper are two-folded. First, we would like

to build a powerful semi-supervised model utilizing the essential

information in unlimited unlabeled data to improve the prediction

performance with limited labeled data. Second, we would like our

model to be efficient in training stage in two ways: 1) our model

should naturally support parallel training to reduce pre-training

time; 2) the model used for pre-training will all take part in the fine-

tuning stage with no scaffolding part like the decoder of Seq3seq

fingerprint [41]. Thus, in this paper, we propose a pre-training

and fine-tuning two-stage framework named SMILES-BERT mo-

tivated by the recent natural language modeling work BERT [7].

The neural network structure is a fully convolutional net stacked

of Transformer layers. In the pre-training task, SMILES-BERT is

trained with unsupervised learning mechanismMasked SMILES Re-

covery on large scale unlabeled data. In the Masked SMILES Recov-

ery task, the input SMILES will be randomly masked or corrupted,

and the model is being trained to recover the original SMILES

according to the information lying in the unmasked part of the

input. After that, the model needs a slight fine-tuning with the

labeled dataset to have good prediction performance. The proposed

SMILES-BERT contains several benefits than the existing methods:

1) different from Seq2seq or Seq3seq model, SMILES-BERT does not

require an encoder-decoder structure which is more efficient and

the model could be more complicated given the same GPU memory;

2) SMILES-BERT is more natural to parallel training because of the

fully convolutional structure; 3) The random masking method will

having SMILES-BERT more general and able to avoid overfitting; 4)

The attention mechanism is used in the Transformer layer which

could potentially improve the prediction performance.

Figure 1: Mapping molecule to feature vector (Fingerprint)

with different methods.

Our contributions of this paper could be summarize as:

• We propose a two-stage (pre-training and fine-tuning) model

SMILES-BERT to utilize both unlabeled data and labeled data

to have better molecular properties prediction performance.

• SMILES-BERT has better performance, outperforming a se-

ries of state-of-the art methods on three datasets.

The rest of the paper is organized as follows. Related work in-

cluding both molecular property prediction and natural language

modeling is summarized in Section 2. Section 3 gives a detailed

introduction about the proposed SMILES-BERT including the two-

stage training. We describe our experiment settings and results in

Section 4. Following that is Section 5, which is the conclusion of

this paper and potential future work.

2 RELATEDWORK

Almost all the molecular property prediction methods or finger-

prints could be concluded in Figure 1. The most important task is to

embed the molecule into a continuous feature space for further task.

Since molecules have different representation, these methods could

be divided into three categories based on the input representation

format being used: the manually feature engineering methods, the

graph-based methods, and the sequence-based methods.

2.1 SMILES and canonical SMILES

To represent molecules with atoms and chemical bonds inside,

the Simplified Molecular-Input Line-Entry system (SMILES) [37]

is proposed to represent molecules in a simple way. SMILES is a

line notation which represents the chemical structures in a graph-

based definition, where the atoms, bonds and rings are encoded

in a graph and represented in text sequences. One example of

SMILES representation is shown in Figure 1: melatonin with struc-

ture C13H16N2O2, where corresponding SMILE representation is
included as well as the 3D molecule structure. Simply speaking,

the letters, e.g., C,N , generally represent the atoms, while some
symbols like −,=, # represent the chemical bonds. SMILE system is

not perfect given that the vanilla SMILE system is not a bijective

mapping between SMILE sequence and a molecule. For example,
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a molecule could have multiple corresponding SMILE representa-

tions, e.g.,CCO ,OCC andC(O)C . To address this issue and provide
a one-to-one mapping between SMILES and molecules, multiple

canonicalization algorithms are invented to ensure the representa-

tion uniqueness of each molecular structure [21]. In this paper, all

the SMILES are canonical.

2.2 Manually Designed Fingerprint

Traditionally, there is a class of molecular representation systems

called molecular fingerprints. A fingerprint is basically a vector of

a corresponding molecule as its continuous representation. Hence

fingerprints can be thereafter fed into a machine learning system as

an initial vector representation. A large number of previous studies

have invented new fingerprint systems which can benefit future

predictive tasks.

Many hash-based methods has been proposed to generate unique

molecular feature representation [10, 11, 20]. One important class

is called circular fingerprints. Circular fingerprints generate each

layer’s features by applying a fixed hash function to the concate-

nated features of the neighborhood in previous layer. One of the

most famous ones is Extended-Connectivity FingerPrint (ECFP)

[27]. However, due to the non-invertible nature of the hash function,

the hash-bashed fingerprint methods usually do not encode enough

task-related information and hence result in not good enough per-

formance in properties prediction.

Another stream of traditional fingerprint methods are based on

the biological experiments and the expertise knowledge and expe-

rience, e.g., [22, 28]. Biologists have figured out several important

task-related sub-structures (fragments), e.g., CC(OH )CC for solu-

bility prediction, and count those sub-structures as local features to

produce molecular fingerprints. This kind of fingerprint methods

usually work well for specific tasks, but could not generalize well

for other tasks.

Figure 2: The structure of Transformer Layer.

2.3 Deep Fingerprints

The growth of deep learning has provided excellent flexibility and

performance to learn molecular fingerprints from data samples,

without explicit guides from experts [2, 8, 14, 29, 32, 39].

2.3.1 Graph-based fingerprint. Among all the graph-basedmolec-

ular fingerprint, the state-of-the-art work is the neural finger-

print [3]. The neural fingerprint mimics the whole process of gen-

erating circular fingerprint but the hash function is replaced by a

non-linear activated densely connected layer. The model of neural

fingerprint is a deep neural network. To acquire enough labeled

data, biologists need to perform a sufficiently large number of tests

on chemical molecules, which is extremely expensive.

2.3.2 RNNs-based fingerprints. Recently, a few unsupervised

fingerprint methods, e.g., seq2seq fingerprint [39], are proposed

to alleviate the issue of insufficient labeled data. These models

generally train deep neural networks to provide strong vector rep-

resentations using a big pool of unlabeled data. The vector rep-

resentation model is thereafter used for supervised training with

any kind of classifiers. Since the deep models are trained with a

sufficiently large data-set, the representation is expected to contain

enough information to provide good inference performance. How-

ever, this type of methods are not trained with prediction tasks,

meaning that the representation only adjusts to the recovery task

of the original raw representation. It might not provide optimal

inference performance for general prediction task. Seq3seq [41] is

the first semi-supervised learning model for molecular property

prediction. It has an Encoder-Decoder structure which could learn

the fingerprints based on self-representation. Thus, it could utilize

unlimited unlabeled data. However, the Encoder-Decoder frame-

work limits its capability for property prediction. It is because the

decoder of Seq3seq functions as a scaffold in pre-training stage

and is barely useful in fine-tuning, but it has to consume the GPU

memory in the pre-training stage. In this way, Seq3seq fingerprint

is not computationally effective.

2.4 Transformer and BERT on Natural
Language Modeling

Recently, there are several CNNs-based language models having

excellent performance on various language modeling tasks [6, 7, 9,

24, 25, 31]. These methods use fully convolutional network struc-

tures instead of any RNNs blocks. With the help of self-attention

mechanism [31], CNNs-based models could even outperform RNNs-

based models. Among these methods, Transformer [31] is one of

the most significant model building block. Furthermore, BERT [7]

proposes to pre-train the Transformer encoders with two tasks:

masked language learning, and continuous sentence classification.

Both Transformer and BERT belongs to pre-train and fine-tuning

framework, which could use the power of unlabeled data to initial-

ize the parameters in the models, then promise good performance in

following general language modeling tasks. This paper is inspired

by Transformer and BERT, we keep the model used in BERT as our

backbone with a few adaptations.

3 METHODOLOGY

In this section, the proposed SMILES-BERT is introduced step by

step. First, we give the details of our backbone and its building block,

i.e. Transformer Encoder. Then the Masked SMILES Recovery task

used for pre-training our backbone on large scale unlabeled data

will be introduced. Following that is the fine-tuning process for

molecular properties prediction. The proposed model handles the

molecules as sequences. Thus the inputs of SMILES-BERT are the

tokenized molecules SMILES representations as shown in Figure3.
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Figure 3: SMILES-BERT: pre-training stage.

3.1 Model Backbone and Transformer Layer

As shown in Figure 2, a transformer layer contains three compo-

nents: a pre-attention feed forward neural network, a self-attention

layer, and a post-attention feed forward neural network. The pre-

attention feed forward is a fully-connected layer shared by all the

input tokens. It maps the output features from former Transformer

layer or the embedded features from the input into another non-

linear space. The post-attention works precisely in the same way,

while the input is the output features after self-attention module.

RNNs-basedmethods utilize the sequential information naturally

since the output from the former time step will be part of the input

of the current time step. However, in Transformer Encoder, only

using feed forward network could not bring temporal information

from the sequence. The self-attention layer plays a crucial role

to introduce the temporal relation into consideration for feature

learning. For every time step, it could decide how to use information

from other sequences by which is more related to itself.

The attention mechanism [31] used in Transformer encoder is

named scaled dot-product attention. It maps the input data into

three parts, a query matrix, a key matrix, and a value matrix. The

query matrix works together with the key matrix to serve as the

input of the Softmax. Then Softmax creates the attention weights,

which will be applied to the value matrix to generate the output

features with the attention on the whole sequence. The scaled doc-

product attention is formulated as:

Z = So f tmax
����
(
XWQ

) (
XW K

)T
√
dk

�		

XWV ,

Where X ∈ RN×M is the input feature matrix,WQ ,W K , and

WV ∈ RM×dk corresponds to the query weight matrix, the key

weight matrix, and the value weight matrix.
√
dk is a scaling factor

and Z is the output of the attention layer. It is the single head self-

attention version. However, in the backbone, a more powerful ver-

sion of the self-attention layer is used, the multi-head self-attention.

Thus, different heads could pay attention to various aspects, making

attention to the best power.

All the three components, the feed forward neural networks,

and the self-attention layer are followed by a normalization layer

to increase the generalization ability of the model. Besides, each of

the components has a residual input to better utilize the original

information.

The whole structure of the proposed model is shown in Figure 3.

SMILES BERT contains a stack of Transformer Encoders with the

self-attention mechanism.

3.2 Pre-training as Masked SMILES Recovery

The pre-training stage is shown in Figure 3. BERT uses a com-

bination of two tasks to per-train the model, masked language

learning and the consecutive sentences classification. Masked lan-

guage learning is that given a partially masked sentence, using

other visible tokens to predict the masked or corrupted ones. It is
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label-free so it could utilize all the unlabeled sentence in natural

languages. The consecutive sentences classification is to classify if

two sentences are consecutive, which is also label-free. However,

different from natural language modeling, SMILES do not have

a consecutive relationship. The masked language learning is still

promising to pre-train the model with unlabeled SMILES and we

name the task Masked SMILES Recovery.

We follow the way in BERT [7] to mask an input SMILES. First

15% tokens in a SMILES will be randomly selected for masking and

the minimum token number per SMILES is one. For every selected

token in a SMILES, it has 85% chance to be changed to <MASK>

token.With 10% and 5% chances, it will be randomly changed to any

other token in the dictionary or kept unchanged correspondingly.

The original SMILES serve as ground truth for training the model

but the loss is only computed based on the outputs of masked

tokens and their ground truths. By randomly masking the input

SMILES, the dataset used for pre-training model is enlarged. The

randomness could increase the generalization ability of model and

keep it from over-fitting.

The tokens are first embedded into the feature space. Besides

the token embedding, positional embedding is also included to add

sequential information used in self-attention layer to utilize the

temporal information of the inputs.

The proposed SMILES-BERT differs from BERT in the following

perspectives: 1) SMILES-BERT uses the single Masked SMILES

Recovery on large scale unlabeled dataset. 2) We do not include the

segmentation embedding used in BERT into our model since we do

not involve the continuous sentences training.

3.3 Fine-tuning for Molecular Property
Prediction

The fine-tuning stage is shown in Figure 4. After pre-training on

the large scale unlabeled SMILES data, the model has a non-trivial

initialization. During the pre-training, we pad every input SMILES

with the leading token <GO>. In the fine-tuning stage, the model

output corresponding to the <GO> token is used for molecular

property prediction.

A simple trainable classifier/regressor is added to the output of

the <GO> token. Then the small scale of the labeled dataset is used

for fine-tuning the model to predict specific molecular property.

The proposed SMILES-BERT has several advantages. First, it

could use large scale unlabeled dataset for model pre-training. It

not only contains the dataset itself, by randomlymasking the inputs,

but the dataset could also be enlarged into theoretically infinite.

Second, unlike encoder-decoder structures in [39], the whole model

involving in pre-training will be used in fine-tuning. Thus, the

model could be more complicated since it does not need scaffold-

ing parameters (the decoder parameters in Seq2seq and Seq3seq

fingerprint models).

3.4 Model Structure

In this paper, the proposed SMILES-BERT contains six Transformer

Encoder layers. In each Transformer layer, the pre-attention and

the post-attention fully-connected layers embed input features

into a feature space with size 1024. For the self-attention block,

SMILES-BERT uses a four-head multi-attention mechanism. Note

Figure 4: SMILES-BERT: fine-tuning stage.

that the layers and number of attention heads are less than the base

BERT [7], which consists of twelve Transformer Encoder layers

with 3072 fully-connected embedding size and twelve attention

heads in attention block. It is because SMILES are relatively simpler

than the natural language sequences. Besides, the vocabulary of

SMILES is much less than the vocabulary of natural language. We

have tried the base structure setting of BERT tomolecular properties

prediction and it does not provide a noticeable improvement. Then

we keep the SMILES-BERT in the current setting since it is better

for the model to have less computation and memory requirements

in practice.

4 EXPERIMENTAL RESULTS

In this section, we describe all our experiments related details. First,

the implementation details are given. Then we include the detailed

settings in both pre-training and fine-tuning stages. Following that

is a brief introduction to the datasets we include in our experiments.

At last, we list the state-of-the-art methods used in our comparison

and demonstrate the power of the proposed SMILES-BERT with a

thorough discussion of the experimental results.

4.1 Implementation Details

The proposed SMILES-BERT is implemented with the FairSeq [23],

which is Facebook AI Research Sequence-to-Sequence Toolkit writ-

ten in Python and PyTorch. Along with the proposed SMILES-BERT,

we also implement a series of fingerprint models based on modern

natural language sequence learning models including RNNs-based

models [19, 38, 41] and CNNs-based models [6, 9, 24, 25, 31] models.

4.2 Experimental Settings

4.2.1 Pre-training. During the unsupervised pre-training stage,

SMILES are tokenized into tokens as the feeding inputs to SMILES-

BERT. As the Masked SMILES Recovery stage, the tokens are ran-

domly selected to be masked with the masking strategy as described

in Section 3.2. Note that the minimal number of masked token is

set as one. Thus, each of the input SMILES contains at least one

masked token. In this way, the pre-training dataset is enlarged

with randomness. With training on such dataset, the generalization

capability of proposed SMILES-BERT is enhanced.
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The pre-trained dataset we use for SMILES is ZINC [13]. Zinc
is a free database of commercially-available compounds for vir-
tual screening. ZINC contains over 35 million purchasable com-
pounds in ready-to-dock, 3D formats. ZINC is provided by the Irwin
and Shoichet Laboratories in the Department of Pharmaceutical
Chemistry at the University of California, San Francisco (UCSF).
In SMILES-BERT, we only use the SMILES of the molecules with
no additional label to pre-train the SMILES-BERT, strengthening
the model prediction capability than only using the labeled dataset.
To verify the pre-train model, we randomly keep 10000 samples
for validation and another 10000 for evaluation. The number in the
training set ends up to 18,671,355.

We use Adam optimizer [16] as the pre-training optimizer. To
better initialize the proposed model, a warm-up strategy is intro-
duced for the first 4000 training steps. During the warm-up, the
learning rate increases from 10−9 to 10−4. We notice that the warm-
up stage is crucial in SMILES-BERT pre-training. Without it, the
model tends not to converge even after a long time training. Af-
ter the warm-up finishes, the learning rate starts from 10−4 with
the inversed-square-root updating strategy. The Adam betas are
(0.9, 0.999) and the weight decay is 0.1. The batch size is set to 256
and the dropout is set to 0.1.

We pre-train SMILES-BERT for 10 epochs on ZINC dataset. We
use the exact recovery rate to evaluate the pre-train model. The ex-
act recovery rate on the ZINC validation dataset is 82.85%, meaning
82.85% masked SMILES could be exactly recovered by the informa-
tion from the unmasked part.

Table 1: Parameters and Performances Contrast between
Two Structures of SMILES-BERT

layers att-heads ffn-dim accuracy

SMILES-BERT 6 4 1024 0.9154
SMILES-BERT (large) 12 12 3072 0.9147

4.2.2 Fine-tuning. The supervised fine-tuning stage is based on
the pre-trained model. As the pre-training stage, we use Adam
optimizer for fine-tuning. The learning rate is not sensitive. We
have tried several learning rates such as 10−5, 10−6, 10−7 and all
the learning rate could get very good prediction results. Besides,
we also test several different learning rate updating strategies such
as no-updating, inversed-square-root updating. It turns out the
updating strategy is not important for the training results. Thus,
we simply choose not to update the learning rate in the fine-tuning
stage.

In all our experiments, we fine-tune the model with each of the
labeled datasets for 50 epochs and we choose the best model on
validation data for the final evaluation.

4.3 Datasets Description
To evaluate our methods we use three datasets, LogP dataset, PM2
dataset and PCBA-686978 dataset in our experiments. The three
datasets vary in not only properties but also the size of datasets. We
would like to see if the pre-trained model could adapt well to fine-
tuning with different molecular properties and different dataset

sizes. The intrinsic logic of the experimental settings is from small-
scale dataset (LogP) to large-scale datasets (PM2 and PCBA), from
nonpublic datasets (LogP and PM2) to public dataset (PCBA).

4.3.1 LogP. LogP dataset is obtained from the National Center for
Advancing Translational Sciences (NCATS) at National Institutes
of Health (NIH). LogP dataset contains a total of 10,850 samples.
Each sample contains a pair of a SMILES string and a water-octanol
partition coefficient (LogP) value. The value is continuous and
we use the threshold of 1.88 suggested by an NCATS expert to
convert the dataset as a classification task. Samples with LogP
value larger than 1.88 will be classified as the positive samples,
while the opposites are considered the negative ones.

4.3.2 PM2. PM2 dataset is also obtained fromNCATS at NIH. PM2
has 323,242 data samples with PM2 labels. Similarly, the continuous
PM2 labels are set as positive if it is larger than 0.024896; otherwise
as negative.

4.3.3 PCBA-686978. PCBA [26] is a group of public available
dataset containing 128 datasets from PubChem [36]. We select one
of the largest datasets, the dataset with ID 686978 among the 128
datasets to evaluate our method. PCBA-93 contains 302,175 samples.

For each of the three datasets, we randomly select 80% for train-
ing, 10% as the validation set and the rest 10% for evaluation.

4.4 Experimental Results
4.4.1 SMILES-BERT Structure Study. To compare what kind of
structure of SMILES-BERT could have better performance onmolec-
ular properties prediction tasks, we compare two structures. We
have not explored more structures for the following two reasons. 1)
Any of the two structures has better prediction performance (accu-
racy) than state-of-the-art method but they do not have a noticeable
performance difference. 2) SMILES-BERT training could take a long
time. For a single GPU, it could take more than a week to train the
model for 10 epochs. The detailed parameters of the two structures
are listed in Table 1 as well as the performance on LogP dataset.

In Table 1, the att-heads stands for the attention heads in self-
attention layers and the ffn-dim stands for the dimension for the
shared fully-connected layer in each Transformer Layer. As shown
in Table 1, the SMILES-BERT(large) is much more complicated
than SMILES-BERT in all settings, while the performance is slightly
worse. The performance difference could be caused by noise or
randomness. Thus, we choose SMILES-BERT as our structure since
it takes much less training cost and could have very good perfor-
mance.

4.4.2 Comparison Methods. To prove the capability of molec-
ular properties prediction performance of the proposed SMILES-
BERT, we choose four state-of-the-art methods [3, 10, 39, 41] for
comparison. These methods include one state-of-the-art manually
designed fingerprint Circular Fingerprint [10], one graph-based
neural network Neural Fingerprint [3], one unsupervised RNNs-
based deep learning model Seq2seq Fingerprint [39], and one semi-
supervised RNNs-based model [41]. We note the four methods as
CircularFP, NeuralFP, Seq2seqFP, Seq3seqFP in all the following
tables and figures.
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Figure 5: Prediction Results (Accuracy) on LogP Dataset.

4.4.3 Results of LogP. The prediction results for LogP data are

shown in Figure 5. In this experiment, we use classification accuracy

as the prediction metric to evaluate our model. As an unsupervised

fingerprint, Seq2seq has reasonably lower performance than other

methods. As a graph-based neural network, NeuralFP is slightly

better than the manually designed CircularFP. Seq3seqFP and the

proposed SMILES-BERT are both semi-supervised methods, which

utilize large-scale unlabeled data. These semi-supervised methods

have better performance than others. The proposed SMILES-BERT

improves accuracy by around 2%. Since both of the SMILES-BERT

and Seq3seq are pre-trained on Zinc, it shows that SMILES-BERT

could better utilize the unsupervised information with the Masked

SMILES Recovery task.

4.4.4 Results of PM2. PM2 is a much larger dataset than LogP.

It contains 300 times data than LogP. It favors the supervised learn-

ing method because they could get better performance from more

data samples. As shown in Table 2, unsupervised Seq2seqFP could

not generate label-related fingerprint to have good prediction. The

results of CircularFP and NeuralFP are similar. That CircularFP is

slightly better than NeuralFP could be caused by that the graph-

based neural network tends hard to train and tune in practice.

Seq3seqFP slightly improves the performance compared to super-

vised method. The proposed SMILES-BERT achieves the better ac-

curacy and it could get more than 5% improvement than Seq3seqFP.

The results in Table 2 show that with the help of unsupervised

pre-training, the proposed SMILES-BERT could have better repre-

sentation and prediction capability after fine-tuning on the large

dataset.

Table 2: Prediction Results (Accuracy on PM2 Dataset.)

Method Accuracy

Circular Fingerprint [10] 0.6858

Neural Fingerprint [3] 0.6802

Seq2seq Fingerprint [39] 0.6112

Seq3seq Fingerprint [41] 0.7038

SMILES-BERT 0.7589

4.4.5 Results of PCBA-686978. We introduce a public dataset

PCBA-686978 to compare the molecular property prediction per-

formance on all the state-of-the-art methods. Figure 6 shows the

results of five models. The trend is the same as the LogP and PM2

datasets. The proposed SMILES-BERT has 87.84% accuracy, which

is 8% higher than the unsupervised Seq2seqFP.

Figure 6: Prediction Results (Accuracy) on PCBA-686978

Dataset.

All the experiments on the three datasets demonstrate the power

of the proposed SMILES-BERT. With the help of the large-scale

unsupervised pre-training via the Masked SMILES Recovery task,

SMILES-BERT could easily be fine-tuning towards the labeled dataset.

It could have outstanding molecular property prediction perfor-

mance, independently from whether the scale of the labeled dataset

is small or large.

5 CONCLUSION AND FUTUREWORK

In the paper, to better use the numerous unlabeled molecular data

and overcome some problems in current models, we have pro-

posed a novel semi-supervised learning method SMILES-BERT for

molecular properties prediction. The backbone of SMILES-BERT is

BERT, a combination of Transformer Layer and attention mecha-

nism. The semi-supervised method utilizes the power of unlabeled

data through a large scale pre-training through a Masked SMILES

Recovery task. The labeled dataset could be easily fine-tuned on

the pre-trained model and could have very good prediction perfor-

mance. In our experiments on three datasets, i.e., LogP, PM2 and

PCBA, the proposed SMILES-BERT over the performance of various

of state-of-the-art methods and future potential to deal with most

kind of label datasets with a good generalization capability.

In this work, we utilize the Masked SMILES Recovery task in the

pre-training stage corresponding to the masked language learning

task in BERT [7]. However, BERT has another task to classify if

two concatenated sentences are originally continuous. This task

is to pre-train the classification with the input <GO> token. In

SMILES-BERT, the classification capability of the model has not

been involved in the pre-training stage. Thus, we could have the

setting to include Quantitative Estimate of Druglikeness (QED)

prediction as another task into the pre-training stage to warm up

the classification capability of SMILES-BERT. It could potentially
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to increase the classification in the fine-tuning stage. We plan to

design and include the QED prediction pre-training task in our

future work.
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