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Galois closures of commutative rank n ring extensions were introduced by Bhargava
and the 2nd author. In this paper, we generalize the construction to the case of non-
commutative rings. We show that noncommutative Galois closures commute with base
change and satisfy a product formula. As an application, we give a uniform construction
of many of the representations arising in arithmetic invariant theory, including many

Vinberg representations.

1 Introduction

In the last fifteen years, there have been many beautiful applications given by interpret-
ing orbit spaces of representations as moduli spaces of arithmetic or algebraic objects,
such as ideal classes of low-rank rings or Selmer elements of elliptic curves. Many of the
representations that arise seem to be closely related to one another, and in some cases,
they can be formally related to one another by a process called Hermitianization; see
[1, 2, 11]. In this paper, we construct such representations via a uniform approach. Our
method relies on a seemingly unrelated problem: defining Galois closures of possibly

noncommutative rings.
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2 W. Ho and M. Satriano

Galois closures of commutative rank n ring extensions were studied in [5],
building on previous work of Grothendieck [6, Exposé 4], Katz—Mazur [9, Section 1.8.2],
and Gabber [7, Section 5.2]. Given a morphism R — A of commutative rings realizing
A as a free R-module of rank n, the Galois closure G(A/R) is defined as the quotient
A®"/1, r, where I, is an ideal generated by relations coming from characteristic
polynomials. More precisely, given a € A, consider the R-linear endomorphism of A
given by multiplication by a and let T" + Z}lzl(—l)"sAlj(X)T"_f' be its characteristic
polynomial. Let a® e A®" denote 1®---® a ®- - - 1, where a is in the i-th tensor factor, and
let ej denote the j-th elementary symmetric function. Then the ideal I, g is generated by

the relations
(2
ej(a( ), a' ),...,a(”)) —s4(a),

as a runs through all elements of A. Then G(A/R) is an R-algebra equipped with
a natural S,-action, and the elements a',a®,...,a™ behave as if they are “Galois
conjugates.” One key property is that G(A/R) commutes with base change on R. This
construction has since been generalized by Gioia to so-called intermediate Galois
closure [8] as well as by Biesel to Galois closures associated to subgroups of S,, [3].

We now describe the connection between Galois closures of noncommutative
algebras and problems in arithmetic invariant theory. In this paper, we obtain many of
the representations with arithmetic applications by the following uniform construction:
let A be a possibly noncommutative degree n R-algebra and let G(A/R) be its Galois
closure, as we define in Section 2, which comes with a natural S, -action. For an n-
dimensional m x m x --- x m array with entries in G(A/R), there are two natural S, -
actions: one on G(A/R) and the other permuting the coordinates of the n-dimensional
array. The subspace where these two actions coincide has a natural action of the matrix
ring Mat,,(A) ® G(A/R); we refer to this as the associated Hermitian representation
Ham- See Section 4 for lists of representations obtained in this manner that have
arisen in arithmetic invariant theory. We hope that our uniform construction of these
representations #H, ,,, with just the input of a degree n R-algebra A and a positive
integer m, will also give a systematic approach to studying the moduli problems related
to the orbit spaces of the Hermitian representations.

For n and m sufficiently small, these Hermitian representations were studied
explicitly in previous work [1, 2, 11]. Galois closures were not needed in these
previous papers for two main reasons. First, when m is small, the entries of the
elements in the Hermitian representation may be defined over A itself. And second,

when n is small, the Galois closure G(A/R) is quite simple; for example, when
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Galois Closures of Non-commutative Rings 3

A is a quadratic algebra (n = 2), the Galois closure G(A/R) is isomorphic to A (see
Proposition 3.2). Similarly, when A is a decomposable cubic algebra, for example,
A = R x B for B quadratic, then G(A/R) ~ B®3 (see Proposition 3.6), so m x m x
m arrays Hermitian with respect to A = R x B may be viewed as an m-tuple
of m x m matrices Hermitian with respect to B (see Example 4.7). Thus, the need
for Galois closures in describing Hermitian representations does not arise until one
considers m > 3 and indecomposable cubic algebras A, such as the matrix ring
Mat, (R).

The aforementioned Proposition 3.6 and Example 4.7 are both specific cases of
more general results as we now discuss. In Section 2.3, we prove the following product
formula, which allows one to calculate the Galois closure of decomposable algebras in

terms of the Galois closures of its components.

Theorem (Product formula). For1 <i <k, let A; be a degree n; R-algebra. Then

G(A; x -+ x Ax/R) = (G(A,/R) & - -- ® G(4;/R))",

,,,,,

As a consequence, in Theorem 4.5, we may write the Hermitian representation of

a decomposable algebra in terms of the Hermitian representations of its components.

Theorem (Product formula for Hermitianizations). For 1 <i < k, let A; be a degree
n; R-algebra, and let A = H?ZIAL-. Then for any positive integer m, we have H, ,, =~
HAl,m ®--® HAk,m'

We also prove that taking Galois closures commutes with base change.

Theorem (Base change). Let A be a degree n R-algebra and let S be a commutative

R-algebra. The base change map yields an isomorphism
G(A/R) ®z S~ G((A ®R S)/S).

In this paper, all the algebras we consider are associative, but we believe it
would be useful to generalize these ideas to non-associative algebras such as cubic
Jordan algebras as well, especially as Jordan algebras have already been crucially used

in basic examples of Hermitianization.
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4 W. Ho and M. Satriano
2 Galois Closures of Non-commutative Rings

In this section, we define the Galois closure for certain classes of (possibly noncom-
mutative) rings and discuss several properties. When A is commutative, it recovers the

construction in [5].

2.1 Degree n algebras

We first define a degree n algebra over a commutative ring R. We use the following
notion: a morphism f: M — N of R-modules is universally injective if for every
commutative R-algebra S, the induced map f ® 1: M ®z S — N ®g S is injective. For

example, if f is split, then f is universally injective.

Definition 2.1. Let A be a central R-algebra that is free of finite rank as an R-module.
Let R’ be a finitely generated commutative R-algebra such that R — R’ is universally
injective, with a universally injective R-algebra homomorphism (: A — Mat,(R’). We
say that the triple (4,R’,t) is a degree n R-algebra if for all a € A, the characteristic

polynomial
Pyo(T)=det(T—u@a) =T" —sy [ (@T" '+ + (=1)"sy ,(a) (2.2)

lives in R[T], in other words, s, ;(a) € R for 1 < i < n. We frequently suppress R’ and ¢

from the notation if they are unambiguous and refer to A itself as a degree n R-algebra.

For a degree n R-algebra (4, R’,1), we refer to Tr(a) := s, ;(a) and N(a) := s4 ,(a)
as the trace and norm of a € A, respectively. It is immediate from the definition that
Saj(ra) = rfsAJ(a) for all r € R and a € A; in particular, the trace is additive and the

norm is multiplicative.

Remark 2.3. If R’ = R, clearly the required property P, ,(T) € RIT] is automatically
satisfied.

Remark 2.4. Let (A,R’,t) be a degree n R-algebra and let ¢: Mat,(R’) —» Mat,(R’) be
conjugation by an element of GL,(R’). Then (4, R’, 1) is a degree n R-algebra and all the

characteristic polynomials P, ,(T) for the two algebras coincide.

Example 2.5 (Left multiplication). Let A be a central R-algebra that is free of finite
rank n as an R-module. Then we can view A as a degree n R-algebra as follows. Choose

a basis uy,...,u, for A over R. Left multiplication by elements a € A induces a natural
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Galois Closures of Non-commutative Rings 5

map (: A — Mat,(R). Then : is clearly injective since a - 1 # 0 if a # 0. It is in fact
universally injective by the same observation, since u,, ..., u,, is also a basis for A @z S

over S, for any commutative R-algebra S.

Example 2.6 (Split algebra of any degree). For any n > 1, we may view R" as a
degree n R-algebra by left multiplication as in Example 2.5. In this case, the element

a = (ry,...,r,) has characteristic polynomial Pz ,(T) = [[;L (T — ).

Example 2.7 (Trivial algebra of any degree). For any n > 1, we may view R as a degree
n algebra over itself by choosing :: R — Mat,(R) as the diagonal embedding of R. Then
P o(T) = (T — )" for any a € R. Although seemingly trivial, this example plays a useful
role.

More generally, for any degree n algebra (A,R’,:) and integer m > 1, we
may also give A the structure of a degree mn algebra via the diagonal block map
(...,v): A > Mat,,,(R’). The characteristic polynomials are m-th powers of the original

characteristic polynomials.

Example 2.8 (Matrix algebras). If A = Mat, (R), then taking : to be the identity map

gives A the structure of a degree n algebra.

Example 2.9 (Central simple algebras). If A is a central simple algebra over a field
F, then there exists a splitting field K over F such that A ® K ~ Mat,(K), where n is
the square root of the rank of A as a F-vector space. We thus have an injection (: A —
Mat, (K), and it is universally injective because ¢ is split. The polynomials P, , agree
with the reduced characteristic polynomial of a central simple algebra A, and it is well
known that the coefficients lie in F (see, e.g., [4, Section IV.2]). In this way, we may view
A as an algebra of degree equal to the square root of the rank of A (which is the typical

definition of the degree of a central simple algebra).

Remark 2.10. One may generalize the definition of degree n algebra to locally free
R-modules of finite rank by requiring a universally injective homomorphism to an
endomorphism algebra of a rank n vector bundle over R’ instead. The definitions of
and theorems for Galois closures will also generalize in a similar way, but we focus on

the case of free R-modules in the rest of the paper for simplicity.

We next introduce products of degree n R-algebras.
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6 W. Ho and M. Satriano

Definition 2.11. Let (4,,R;,t;) and (4,,R,,t,) be R-algebras of degrees n; and n,,
respectively. We define the product (4;,R;,¢;) x (A,, Ry, ty) to be the degree n; + n, R-

algebra A = A; x A, with the universally injective composition

1Ay x A, M8 Mat,, (R) x Mat,,, (R,) < Mat,, (R, x Ry)

x Mat, (R; x R;) — Mat (R; x Ry),

ni+nz

where the last injection is given by block diagonals. If a; € A; has characteristic
polynomials P, , for i € {1,2}, then the characteristic polynomial of a = (a,,a;) €
A, x A, is clearly the product P, ,(T) = Py, 4, (T)Py, 4,(T) € RIT].

The following gives some further properties of product R-algebras.

Lemma 2.12. Let A, be a degree n; R-algebrafor1 <i < k and endow A = ]_[i-;l A; with

its associated structure as a degree n := Zle n; R-algebra.

1. Ifa=(a;,...,a;) €A, then

k
sam@= > [Isam @

0<m;<n; i=1
mi+---+mg=m

where we set s, (a;) = 1.
2. Ifa = (O,...,O,a]-,O,...O),then

Sam(@) = Sa;,m(a;)-

Proof. We first show (1). We use the notation [77]Q to denote the T/-coefficient of a
polynomial Q(T). As P, ,(T) = Hj PAj'aj(T), we have

[T""™P, , = > [Tir™1P,, 4,

0<m;<n;—m; j
mi+---+mg=n—m

Since the indices of the summation satisfy 0 < m; < n;, replacing m; by n; — m, changes

the above sum to

(TP, , = > v, . = > [T ey, ,,

0<m;<n; i 0<m;<n; j
> (ny—my)=n—-m > mi=m

and multiplying by (—1)™ = [[;(—1)™ gives the result.
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Galois Closures of Non-commutative Rings 7

For (2), we know that for all i # j, we have P, (T) = T" and S0 sy, 1, (@) = 8, ¢-

Thus, by (1) we see s, ,,(a) = sAj,m(aj). |

2.2 Galois closures

We now define the Galois closure for a degree n R-algebra A. For an element a € A, let
a® denote1® - -®a®---®1 e A®", where a is in the i-th tensor factor. Then consider

the left ideal I, in A®™ generated by the elements
ej(a(l), a?,...,a™) - s;(a) (2.13)

for every a € A and 1 < j < n, where ej denotes the j-th elementary symmetric function
and sj@=s3a) - 1® - ® 1).

Definition 2.14. The Galois closure of a degree n R-algebra A is defined to be the left

A®"_module

G(A/R) := A®"/I, . (2.15)

Remark 2.16. If A is a commutative ring of rank n over R, and if we endow A with the
degree n algebra structure via left multiplication as in Example 2.5, then it is immediate
from the definition that the Galois closure G(A/R) agrees with the S, -closure introduced
in [5].

Remark 2.17. Unlike the case of commutative rings considered in [5], here G(A/R) does
not necessarily have a natural ring structure since I,z is not necessarily a two-sided
ideal. In fact, in many cases of interest (e.g., if A is the ring of n x n matrices Mat,, (R)
for n > 3), if we were to replace I, g by the two-sided ideal generated by the elements

(2.13), the expression (2.15) would become 0.

Remark 2.18. If (4, R’,.) is a degree n algebra and B is an R-algebra with a universally
injective homomorphism B — A, then (B,R’,t) inherits the structure of a degree n
algebra. Then since I g C I, g, there is a well-defined homomorphism G(B/R) — G(A/R)
of left B¥™-modules.

Remark 2.19. Let (A,R’,1) be a degree n R-algebra and let R” be a commutative R’-
algebra. Let ¢ : Mat, (R") —» Mat, (R”) be the induced morphism. If y¢: A — Mat,(R”) is

universally injective, for example, if R” — R” is universally injective, then (4, R”, ¥1) is
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8 W. Ho and M. Satriano

a degree n R-algebra. In this case, the characteristic polynomials P, , for (4,R’,:) and

(A,R”, ) are the same, so the associated Galois closures agree.

By definition, the module G(A/R) has n distinct A-actions (one on each tensor
factor). We denote the i-th action of a € A on an element b € G(A/R) as a-;b. Furthermore,
the natural action of S, on A®" induces an S, -action on G(A/R) with the following
) o(b). This
gives G(A/R) the structure of a left module over the twisted group ring A®" = S, (or

property: forall 0 € S,,, a € A, and b € G(A/B), we have o(a -;b) = a -

o(i
equivalently, an S, -equivariant left A%*"-module).

2.3 Key properties: base change and the product formula

The focus of this subsection is to prove two main properties of Galois closures: they
commute with base change and they satisfy a product formula. Our 1st step is to show

that the left ideal I, g is generated by the expressions (2.13) for basis elements.

Proposition 2.20. Let A be a degree n R-algebra. If u,,...,u,, is a basis for A over R,
then I, p is the left A*"-ideal generated by the expressions

1) () (n)
ej(a a9, ..,a )—sj(a)

fora e {u;,...,u,,}.

Proof. By definition, there is a finitely generated commutative R-algebra R’ and a
universally injective R-algebra morphism ¢: A — Mat,(R’) such that P, o(T) = det(T —
t(a)) € R[T] for all a € A. We then have

det (1 — «(a)T) = Z(—l}isAJ(a)Tj. (2.21)
j=0

As shown in [5, Lemma 11], for a noncommutative polynomial ring Z(X,Y) over Z

generated by X and Y, there is a unique sequence {f;(X, ¥)}3’ , of homogeneous degree

d polynomials in Z(X, Y) such that

(1-X+Y)T)=01-XT)(1-YT) H (1-fax, Y)XYTd+2)
d=0

in Z{X, V)[[T]l. In particular, for any a, b € A, letting x = «(a) and y = ¢(b), we have
k-2

1- x+yT=0-xD1-yD) [[ (1 -Fixy)xyT4?) mod TF. (2.22)
d=0
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Galois Closures of Non-commutative Rings 9

Taking determinants of both sides of (2.22) and equating the coefficients of T, equation
(2.21) yields an expression for s, (a + b) in terms of s, ;(a), s4 x(b), and sA'i(qj(a,b))
for i < k, where the g; are noncommutative polynomials. In the case where A is the
split degree n algebra R" as in Example 2.6, the s, , are the elementary symmetric
functions e.

Combining the above with the observation that s, ;(ra) = risA,i(a) for all r € R,
we see by induction on k that s, ;(a) is expressible in terms of the s, ;(u,) for j < k.
Since the elementary symmetric functions e satisfy these same relations (since they
correspond to the special case where A = R"), we conclude that I, g is generated by the

expressions e;(aV,a®,...,a™) —s;(a) fora € {u,, ..., Uy} [ ]

Next, we show that if A is a degree n R-algebra, and R — S is a map of

commutative rings, then A ®p S carries a natural degree n S-algebra structure.

Lemma 2.23. Let R be a commutative ring and S a commutative R-algebra. If (A, R’, 1)

is a degree n R-algebra, then (A ®z S,R' ®z S,: ® 1) is a degree n S-algebra.

Proof. By definition, ¢ is universally injective, so t ® 1: A g S — Mat, (R’ ®y S) is as
well. It remains to prove that if b € A®gS, then the characteristic polynomial of (t®1)(b)
lives in S[T]. The proof of Proposition 2.20 yields an integral polynomial expression for
the characteristic polynomial of x + y in terms of the characteristic polynomials of x
and y. Since b is a sum of pure tensors, we are therefore reduced to the case where b is
a pure tensor itself, for example, b = a ® c for a € A and ¢ € S. Then (: ® 1)(b) is the
product of 1(a) ® 1 and the scalarc € S. So SA®RS,i(b) = CisA'i(a). Since (4, R’,1) is a degree

n R-algebra, we have s, ;(a) € R, and hence s g5 ;(b) € S, as desired. |

Remark 2.24. While proving Lemma 2.23, we showed that Sagrs,i(@®c) = cisA'i(a) for

allae Aandc e S.

The map A —» A ®g S induces a map A®" — (A ® S)®". This latter morphism
sends I g into [ 45, 5)/s by Remark 2.24, and hence induces a map G(A/R)®gS — G((A®g
S)/S), which we refer to as the base change map. Note that (A ®g S)®" ~ A®" ®5 S acts
on both G(A/R) @z S and G((A ® S)/S).

Theorem 2.25. (Base change). Let A be a degree n R-algebra and let S be a

commutative R-algebra. The base change map yields an isomorphism
G(A/R) ®g S = G((A®R S)/S)

of left modules over (A ®g S)®™ * S,,.
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10 W. Ho and M. Satriano

Proof. Lete¢j(a) = ej(a(l), a®,...,am) —s;(@).If uy, ..., u,, is a basis for A over R, then
the u,®1 gives a basis for AQgS over S. Proposition 2.20 implies that I,  is generated by
the expressions €;(uy) and Liagrs)/s is generated by the expressions €(u,®1) =¢€i(uy)®1.
Hence, I 4g,s)/s is the extension of the ideal I, ;. Consequently, the base change map is
an isomorphism G(A/R) @z S = G((A ®g S)/S). |

We next compute the Galois closure of a product in terms of the Galois closures

of the factors.

Theorem 2.26 (Product formula). For1l <j < k, let Aj be a degree n; R-algebra and
endow A = A, x--- x A; with the associated structure of a degree n = Zle n; R-algebra.

Then we have an isomorphism of left (A®™ x S,))-modules
GA/R) =~ (GA;/R)® - ® G(Ak/R))N, (2.27)

where NV is the multinomial coefficient ( . As arepresentation of S,,, the right-hand
side of (2.27) is the induced representation from S, x---x S, actingon G(4;/R)® - ®
G(Ay/R), and the A®"-action on the right-hand side of (2.27) is given by n; actions of A

on each G(4;/R).

Proof. Since A = Hj AJ-, there exist idempotents g in the center Z(A) of Afor1 <j <k,
such that A; = ¢;A = Ag¢; and ¢;¢; = §; ;¢;, where § is the Kronecker delta function. Let
[kl ={1,2,--- ,k} and for every n-tuplei = (iy,--- ,i,) < [kI", letAL- =A; ®A;,Q - -®4; .
Then

A®" — H Al

iclkl

This product decomposition corresponds to the idempotents ¢; € Z(A®") defined by

n.@ L m
Ei =6 &, Q Q& =& & & .

Notice that if J C A®" is a left ideal, then g =Jg; is a left ideal, which can be identified
with a left ideal J; of A;. Moreover, J = Hiji' In particular,

Liong =[] L

ielkl®

Our 1st goal is to show that I; = A; unless #{¢ | i, = j} = n; for every j, that is,
unless 4; =~ Aﬁml ® Ai’”z ® ~~Ain’°. Let i be an n-tuple for which this does not hold;
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Galois Closures of Non-commutative Rings 11

then there is some j with #{¢ | i, = j} < n;. By Lemma 2.12 (2), we know that SA,n]-(Sj) =
sAj,nj(l) = 1. So, the n;-th elementary symmetric function in the 8;@) equals 1 in the
module G(A/R), that is,

1— D Jrgr )
jci J A% /R

L<r<ry<--<rp<n
Since j occurs fewer than n; times in the n-tuple i, we see sl-s;rl)s;m e sJ(.rnj)
summand above, and so & € {;‘L'IA@n/R = IL., that is, we have IL- = AL' as desired.

Next let i e [k]" such that 4; ~ Af”l (X)Agn2 ®-- -Afink. We show in this case that
A;/l; ~ G(A{/R) ® G(A3/R) ® - - - G(Ay/R). To do so, it is enough to consider the specific

= 0 for every

case wherei = (iy,---,i,) isequalto (1,1,---,1,--- ,k,k,--- , k), since this is the case up
—_——— —_———
ni ng
to permutation. First note that A is generated by elements of the form a;e; where aj € A;

and 1 < j < n. So, by Theorem 2.25, we know that I,en g is generated as a left ideal by

elements of the form

Sa,m(a;e;) — Z (ajgj)(n)(ajgj)(rz) e (ajgj)(rm),
1<ri<ry<---<rm<n

and so J; is generated by the above elements after left multiplying by ¢;. First notice that
by Lemma 2.12 (2) we know s, p,(a;¢;) = Sa;m(@;), which is 0 if m > n;. Next note that
iy =jifand onlyifn; + ny, +---+n;_; +1 < € < n; +ny +--- +n;. So, multiplying the
above expression by ¢; is 0 if m > n;, and otherwise we obtain

— (r1) (r2) (rm)
sAj'm(a]) E £a; " a; a
ny+4nj_1+1<r <rz<--<rm<np+--+n;

that is nothing more than

Sam(@) =€ ® e ® - ® Z aJ(-rl)aJ(.rZ)maJ(-r'”)®~-~®8k®~-8k.
n 1<ri<ra<--<rm<n; g

This shows [; = IA?nl/R ® - ® IAf”k/R and therefore A;/I; ~ G(4,/R) ® G(4;/R) ®
-+-G(Ay/R) as desired. |

3 Examples of Galois Closures

In this section, we give many examples of Galois closures.
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12 W. Ho and M. Satriano
3.1 Trivial algebras

As in Example 2.7, for any n > 1, we may view the R-algebra A = R as a degree n algebra
with characteristic polynomial Pg ,.(T) = (T — r)". It is easy to check that I, = 0, so
the Galois closure G(A/R) is isomorphic to R itself. The S, -action is trivial, and the n
A-actions are all the same, namely the usual multiplication by elements of A = R. This

seemingly trivial example plays a role in many of the examples in Section 4.4.

3.2 Quadratic algebras

Suppose A is a degree 2 R-algebra. Then every element a € A satisfies an equation of the

form
a? — Tr(a)a + N(a) = 0, (3.1)

where Tr(a) and N(a) are the trace and norm, respectively, of a. Let a := Tr(a) — a, which
one should think of as the conjugate of a. It is easy to check that aa = aa = N(a) and
ab = ba.

The Galois closure G(A/R) is the quotient of A ® A by the left ideal I, g,

generated by the elements
a®1+1®a—-Tr(a)(1®1) and a®a—-N@)(1®1)

for all a € A. We will show that G(A/R) is isomorphic to A in this case. We first give
A the structure of a left (A% % S,)-module as follows: given b € A and a pure tensor
a,®a, € A%?,let (a; ®a,)-b :=a,ba,. If o € S, denotes the nontrivial element, then the

S,-action on A is given by o (b) := b.

Proposition 3.2. If A is a degree 2 R-algebra, then the morphism ¢: A ® A — A given

by ¢(b ® ¢) = bc induces an isomorphism
G(A/R) ~ A
of left (A%2 x S,)-modules.

Proof. One easily checks that ¢ is well defined and a morphism of left (4%2 x S,)-
modules. It is clear that ¢(I, g) = 0, so we obtain an induced map ¢: G(A/R) — A. Note

that p(a® 1) = a for all a € A, so ¢ is surjective.
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Galois Closures of Non-commutative Rings 13

Since @ is a morphism of left (A®2? x S,)-modules, to complete the proof, it is
enough to show @ is an isomorphism of R-modules. Consider the R-module morphism
¥: A = G(A/R) given by ¥(a) = a'V) = a ® 1. It is injective since Py (a) = a. It is

surjective because
bec=b"c?® =b.,c? =b- (Tr(c)(1 ® 1) — cV) = Tr(c)p? — (bc)V

for all b,c € A, that is, G(A/R) is generated as an R-module by the image of elements of
the form aV) for a € A. [ |

Remark 3.3. Proposition 3.2 generalizes the fact that a separable degree 2 field
extension L/K is already Galois and hence its Galois closure is L. Note that in the case

of quadratic R-algebras, since G(A/R) =~ A, the Galois closure inherits a ring structure.

3.3 Cubic algebras built from smaller-degree algebras

We give some examples of G(A/R) where A has degree 3 but is the product of smaller

degree algebras. These Galois closures may be easily computed using the product

formula (Theorem 2.26), but in this section, we show how to work with them explicitly.
The simplest case of a decomposable degree 3 R-algebrais A = R x R x R. Each

element a = (r, 1y, r3) € A satisfies the polynomial
3 2 _
a’—ta“+sa—nly =0, (3.4)

where the trace Tr(a) is s, ,(a) = t = ry + ry + r3, the spur Spr(a) is sy ,(@) = s =
riry+r r3+r,r3, the norm N(a) is s, 3(a) = n = ryr,r3, and 1, denotes the multiplicative
identity element (1,1,1) in A.

We claim that G(A/R) is isomorphic to R® as left (A%3 « S3)-modules, where the
left (A%3 « S3)-module structure on R%6 is given as follows. We index each of the six
copies of R in R®6 by the six permutations of {1, 2, 3}. The three actions of (r;,7,,1r3) € A

on (Ci) i jk=(1,2,3 € RP® are as follows:

(r1:72,73) 1 (i k=1,2.3) “= TiCiji) i ky=(1,2,3)
(r1:79,73) 2 (Ciird i j ky=11,2,3) *= (TjCijk) (i ky=(1,2,3)

(r1:72,13) -3 (i i j ky=11,2,3) *= TkCijid (i,j ky=(1,2,3}
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14 W. Ho and M. Satriano

The action of o € S; on R®6 is the standard action on the indices, that is, o ((cipjx) =
(Cotiy,o o te)ijk- Then we define the morphism ¢: A®3 — R®0 of left A®3-modules by

linearly extending

It is easy to check that the image of I,z is 0 in R9®8, so we obtain an induced map
@: G(A/R) — R9S,

Proposition 3.5. The map g is an isomorphism of left (A%3 % S3)-modules:
G(A/R) ~ R%S.

Proof. This is a special case of Proposition 3.6 below, with B=R x R. |

We next consider the more general situation where B is a quadratic R-algebra
and let A = RxB. Recall from Section 3.2 that there is a trace form Trz and norm form N
on B such that b € B satisfies the quadratic polynomial (3.1): bz—TrB(b)b+NB(b) = 0. Then
by the definition of the product polynomial Pg,p 5, an element a = (r,b) € A satisfies
the cubic polynomial (3.4), where t = Tr(a) = r + Try(b), s = Spr(a) = r Trz(b) + Ngz(b),
n = N(a) = rNg(b), and 1, = (1, 15). Recall as well from Section 3.2 that for b € B, we
define b = Trg(b) — b.

We claim that the Galois closure G(A/R) is isomorphic to B®% where we endow
B®3 with a left (A®® % S;)-module structure as follows. The three actions of (r,¢) € A on

(b;, by, by) € B®3 are given by

(r,c) -5 (by, by, by) :==(b,C, by, cby)
(7‘, C) '3 (bl,bz, bs) = (Cbl,bza, rbs).

The S;-action on B3 is given by

bo-101y:by-1(2), by- if son(o) = 1
o(by. by, by) = o101 b5-1(2): Do-1(3) gn(o)

(50—1(1),50—1(2),50—1(3)) if sgn(o) = —1.
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Galois Closures of Non-commutative Rings 15

Then we may define a morphism ¢: A®® — B®3 of left (A%3 « S;)-modules by linearly

extending
¢((r1,by) ® (r3,by) ® (r3,b3)) = (ryb3by, rpby bg, r3byby).

An easy check shows that ¢(I, g) = 0, so we obtain an induced map ¢: G(A/R) — B®3,
We then have the following.

Proposition 3.6. The map @ is an isomorphism of left (A% * S3)-modules:
G(A/R) ~ B®S.
Proof. We see that @ is surjective since ¢ is: for every b € B, we have

9((0,1)?0,0)®) = (,0,0)
¢((0,0)® —(0,1)?(0,0)¥) = (0,b,0)

¢((0,0)® - (0,1)?(0,5)®) = (0,0, b).

Since we know ¢ is a surjective map of left (A®3 x S3)-modules, to prove it is
an isomorphism, it is enough to show it is an isomorphism of R-modules. To do so, we
need only find an R-module map v : B®3 — G(A/R) that is a surjective section of . Then
we can define ¥ by v (b,0,0) = (0,1)@ (0, b)®, ¥ (0,b,0) = (0,b)® — (0,1)?(0,5)®, and
¥(0,0,b) = (0,0)® —(0,1)@(0,b)®. It then suffices to show that G(A/R) is generated as
an R-module by elements of the form (0, )?, (0,5)®, and (0,1)®(0,b)®.

For any element o € 4, the trace relation «V) + ¢ +a® — Tr(a) € I, g trivially
shows that any element ¢ = ¢ ® 1 ® 1 € A®3 may be written in G(A/R) as an R-
linear combination of 1,, «?, and «®. In particular, any element of G(A/R) may thus
be written as a linear combination of elements of the form 8@y ® for g,y € A. Also,
for = (r,b) € R x B = A, we see that 8O = rl, + (0,b — r)®, so the Galois closure
G(A/R) is generated as an R-module by 1, and elements of the form (0,5)?, (0,b)®,
and (0,b)?(0,b)® for b, b’ € B.

We claim that for b,b’ € B, we can write (0,b)®(0,)® in the form
0,1)@(0,b")® with b” e B; specifically, b” = b’b. First, expanding the equation
(b+1)2 —Trg(b+1)(b+ 1) — Ng(b+ 1) = 0 yields

Ng(b+ 1) — Ng(b) — 1 = Trg(b). (3.7)
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16 W. Ho and M. Satriano

Next, the trace and spur relations tell us

0,6)?(0,0)® = Ngz(b) — (0,)V(©0,b)® - (0,0)V (0, )

Np() + (0,b) -1 (0, 5)F) — Trg(b))

= Ny(b) + (0,b? — Try(b)b)"

Np(b) — (0, Ng(b)M = Ny(b)(14 — (0, DDV)

Np(®)(=1, + (0, D@ +(0,1)®),

where the last equality holds because Tr,(0,1) = Trgz(1z) = 2. Applying this equation

once to left-hand side and twice to the right-hand side of
©0,b+1@0,b6+1® =(©0,0)?©0,5)® +(0,0)? 0, H® +(©0,1)® 0,5 + (0, H® (0, 1)®
and making use of (3.7) implies
0,5)®0,1)® +(0,1)?(0,5)® = — Try() (14 + (0, D® + (0, H?) (3.8)
that simplifies to
0,602, 1)® = —Trg(b)(1 ® (1,0) ® (1,0)) + (0, H?(0,5).

Acting on the left by (0,5)® shows that (0,5)®(0,5)® = (0,1)@(0,b'b)®, that is, we
have shown that (0,5)®(0,')® is of the form (0,1)®(0,b")®.

So far, we have shown that G(A/R) is generated as an R-module by 1, and

elements of the form (0,5)®, (0,b)®, and (0,1)®(0,5)®. It remains to remove 1, from
our generating set. We have shown above that (0,5)®(0,b)® = Nz(b)(—=1, + (0,1)@ +

(0,1)®). Substituting in b = 1 shows that (0,1)?(©0,1)® = -1, + (0,1)® + (0, 1)®.
Therefore, 1, is also a linear combination of elements of the form (0,5)?, (0,5)®, and
0,1)®(0,b)®. This concludes the proof. [ ]

Remark 3.9. As a consequence of Proposition 3.6, we see that G(A/R) inherits a ring
structure when A = R x B with B a degree 2 R-algebra. This is not true more generally for
indecomposable degree 3 R-algebras, for example, for the case A = Mat4(R) considered

in Section 3.4.
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Galois Closures of Non-commutative Rings 17
3.4 Endomorphism rings (or matrix algebras)

Let V be a free rank n module over R and let A = End(V) be the ring of R-module
endomorphisms. Then as in Example 2.8, we may view A as a degree n R-algebra where
for each o € A, the polynomial P, ,(T) is the characteristic polynomial of « viewed as
an endomorphism of V; the trace and the norm of an endomorphism coincide with their
usual definitions.

Via the canonical isomorphism A ~ V ® V*, we have an isomorphism A®" ~
Ve ® (V*)®". The natural left (A®™ « S,))-module structure on A®" then induces such a

structure on V®" @ (V*)®". Explicitly, o € S,, acts on the pure tensors via
G(Vl R Q Va ®f1 &K--- ®fn) = Vg—l(l) X Vo_l(n) ®fg—1(1) (I ®fg—l(n)/

where v; € V andf}- € V*. The i-th action of @ € A is given by acting on the i-th factor
of V:

O“i(V1®"'®Vn®f1®"'®fn) =V ® - Qa(V)® - QV, i ® - ®Ff,.

We next define a left (A®" * S,)-module structure on V®" ® A" (V*) as follows. For

o €S, let
TV ® @V, ®(fi A Afp)) = Vomi) ® @ Vomi() ® (fomra) A+ A1)
in other words, for a form w € A"(V*), we have
o(V;® - @V, ®W) :=88N(0)Vy-1(1) R+ ® Vy-1() .
For o € A, the i-th A-action is given by
O“i(VI ®"’®Vn®w) =v ®"'®“(Vi)®"'®vn®w'

Let 7: (V*)®" — A™(V*) be the natural map n(fy ® --- ® f,,) = fi A+ A f,,. We
then obtain a map of left (A®™ « S,)-left modules given by.

g: A" = Vo @ (V)2 L yen g A1), (3.10)
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18 W. Ho and M. Satriano

Explicitly, if u,,...,u,, is a basis of V, then for «y,...,0,, € A = End(V), we compute
Pl Q@+ Quay) = Z sgN(0)a) (Uy (1) ® -+ ® y (Uy () ® (U A+ A Uy). (3.11)
oeSy

We show that ¢ induces an isomorphism between G(A/R) and V®" @ \"(V*). First, we

show that we may find a fairly simple basis for A.

Lemma 3.12. Let V be a free rank n R-module. Then the endomorphism ring End(V)
has a basis 8,;,..., 8,2 over R where each g; is a linear operator that is diagonalizable

over R.

Proof. After choosing an R-basis for V, we have an isomorphism End(V) = Mat,(R).
Let e;; denote the matrix whose entries are all 0 except for a 1 in the (i,j)-th position.
Then for i # j, the matrix e;; + e;; is diagonalizable: if P = e;; + €;; — €; + > x; j €y, then
P~ =Pand P! (e;j+e;;)P = e;;. So, we can choose our desired basis to be the n elements

2 . . .
€11, ..., €py, as well as the n* —n elements e; + ¢; and ej; + ej; with i <. |

Theorem 3.13. Let V be a free rank n R-module and A = End(V). The map ¢ of (3.10)

induces an isomorphism
G(A/R) ~ V" ® /\n(V*)
of left (A®" % S,,)-modules.

Proof. We begin by showing that ¢(I4/g) = 0. That is, we show that for all « € 4,

o D a®. a0 =g(s, @)

i1<---<ir

By Proposition 2.20, it suffices to prove this as « ranges over a basis of A over R.
Combining this with Lemma 3.12, we may assume that « is diagonalizable over R.
Choose a basis u,,...,u, of V such that a(u;) = A;u; for A; e R. Let o = uj A--- A uy,.

From (3.11), we see

(@™ al) =" ko ho,) SERO)Uy(r) @ - © Uy ® @.

ogeSy
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Galois Closures of Non-commutative Rings 19

Since

Sar@ = D hy ooy

i1 <--<ir

we obtain

o D @™ad™ )= D ) Ry SBRO Uy ® - @ Uy @ @

i]<--<ir oSy i1 <<y

=2 2 ki A SgnO)U ) @ ® Uy B0

0€Sp i< <ir

= SAIT(Ol) z Sgn(d)ug(l) ® s ® uo,(n) ® w = gD(SA'r(Ol)),

o€eSy

where the last equality again follows from (3.11).

Having now shown that ¢(I,,z) = 0, we obtain an induced map ¢: G(A/R) —
V" @ A™(V*). Since & is surjective, @ is as well. Since g is a map of (A®" xS, )-modules,
to prove it is an isomorphism, it is enough to show it is an isomorphism of R-modules.
To do so, we construct a surjective R-module map that is a section of @.

After choosing a basis of V, we may identify A with Mat,,(R) and use the notation
e;; to indicate a matrix that is 0 in all entries except 1 in the (i,j)-th position. It is
clear that G(A/R) is generated by (the image of) the elements (eiljl)(l) o (einjn)(”) for
1 < i, ji < n. We claim that for every function r: {1,2,...,n} = {1,2,...,n}, we have the

following equality in G(A/R):

(€] (n)
(6)) m | s8n() (e ) - (g, ,)"™ forres
€re) Eipe) = " it n (3.14)
0, fort ¢ S,.

Let N, = 3';e;.(;)- Then because e; ; N, = e; ., and (V)" .- (W)™ = det(lV,) in G(A/R),
we have

@

n _ €11 € n (Nr)(l) .. (NT)(TL) — det(Nr)(eill)(l) .. (einn)(n)'

(€1,:1)) “(€,0m)

Since det(IV,) vanishes for r ¢ S,, and is equal to sgn(r) for t € S,,, we have (3.14). Thus,
G(A/R) is generated by the elements (e; )™ - (¢; )™ for 1 < iy < n.
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20 W. Ho and M. Satriano

Next, notice that V®" @ \"(V*) is a free R-module of rank n™ with basis U ®
~-®u;, ®w, where 1 < i; <nandw = u; A---Au,. We can therefore define an R-module

map ¥ : V" ® \"(V*) - G(A/R) by
(1) (n)
V(g ® - ®u, ®o) = (e1)" - (€,0) " -
By (3.11), we see

o((e, D™ - (™) = D sgn(0)e; 1 (Up(1) @+~ @ € (Up(n) O =y @+ QU O

o€eSy

and so ¥ is a section of @. Since (e; )"+ (¢; )" generate G(A/R) as an R-module,
it follows that ¥ is surjective, hence an isomorphism of R-modules. Therefore, ¢ is an

isomorphism as well. |

3.6 Central simple algebras

We recall some basic facts about central simple algebras. For a field F, let F5°P denote

2 over F, then

its separable closure. If A is a central simple algebra of dimension n
there exists an F3®P-vector space V of dimension n and an F5°P-algebra isomorphism
Apsep = A ®p F5P =~ End(V). Since the Galois group G of F5¢P/F acts continuously
on Apsep, we obtain an induced action on End(V). In particular, Galois descent implies

that giving a central simple algebra of dimension n?

over F is equivalent to giving a
continuous G-action on End(V) over FS¢P,

In what follows, we endow A with the degree n F-algebra structure from
Example 2.9, namely choose a finite Galois extension K/F, a K-algebra isomorphism
U AQp K = Mat, (K), and let « be the embedding map A — Mat,(K). Lemma 2.23 tells
us that A®y K inherits a degree n K-algebra structure. As we will see momentarily, this
is not the degree n K-algebra structure on Mat,, (K) defined in Example 2.8; nonetheless,
A ®p K and Mat,,(K) do have isomorphic Galois closures, as we will see in the course of

proving the following result.

Lemma 3.15. We have

G(A/F) @ F*P = G(Apsep /F*P) = V" @ \" V.
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Proof. Throughout the proof, we endow A ® K with its degree n K-algebra structure
coming from Lemma 2.23. By the base change Theorem 2.25, it is enough to show that
if we endow Mat, (K) with the degree n K-algebra structure coming from Example 2.8,

then /: A®p K — Mat, (K) induces an isomorphism of Galois closures.

Recall that the degree n K-algebra structure on A ® K is induced from the map
t®1: A®p K — Mat, (K) ®5 K =~ Mat,, (K ®5 K). Let n: Mat,(K @z K) — Mat, (K) be the
map induced from the K-algebra morphism K ® K — K sending ¢ ® g to of. We claim
that no t ® 1) = /. Indeed, let a € A, o« € K, and /(a) = (Q;) € Mat,(K). Since /' is a
K-algebra map, we have //(a ® ) = (Q;j). On the other hand, ( ® 1)(a ® @) = Q) ®ae
Mat,, (K) ®z K that is identified with the matrix (Q;; ® @) € Mat, (K ®g K). This maps
under 7 to (Qj0) = /(a ® o), which proves our claim. It then follows immediately from

Remark 2.19 that / induces an isomorphism of Galois closures. |

In light of Lemma 3.15, by Galois descent, G(A/F) determines and is determined
by a continuous G-action on V®" @ A"™(V*). The following result shows how to obtain
this G-action in terms of the one on End(V), that is, how to determine G(.A/F) in terms
of A.

Proposition 3.16. With notation as above, let ¢: G — Aut(End(V)) be the continuous
Galois action corresponding to the central simple algebra A, and let 7 : V¥ @ (V*)®" —
Ve ® A"™(V*) be the natural projection. Then for every o € G, the automorphism ¢(o)®"
of End(V)®" ~ V®" g (V*)®" preserves kern, thereby inducing an automorphism v (o)
of V8" @ AN™(V*). The resulting map ¥ : G — Aut(V®" @ A\ (V*)) gives the Galois action
corresponding to G(A/F).

Proof. By Theorem 2.25, we know that tensoring the surjection A — G(A/F) with
FS€P yields the surjection A?S’Zp — G(Agsep /F*°P). As a result, the continuous G-action
on G(Agsep/F*%P) is induced from that on A%%,. The G-action on A%, is nothing more
than the one obtained from Agsep by tensoring n times, that is, ¢ € G acts on A?S’Zp
by ¢(0)®". Finally, as noted above, the G-action on G(Agsep/F*°P) is induced from that
on A%%L,. Hence, each ¢(0)®" preserves I Agsep/Fsev = kerm and the resulting action on
G(Agsep /F5P) is given by v/ (o). ]

Let us next consider a large class of explicit examples that includes all central
simple algebras over number fields (see, e.g., [10, Chapter 15] for further details). Let

K/F be a Galois extension having a cyclic Galois group of order n with generator o. For
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22 W. Ho and M. Satriano

y € F*, one may define an associative F-algebra

AK/F,0,y) = K®OuK®--- u”_lK)/(un =y;au=uoc(x)Va € K). (3.17)

The Albert-Brauer—-Hasse-Noether theorem combined with the Grunwald-Wang theo-
rem implies that if F is a number field, then every central simple algebra over F is a
cyclic algebra, that is, of the form (3.17). If y € NK/F(K*), then A(K/F,o,y) is isomorphic
to Mat, (F). If y € F* modulo Ng y(K*) has order exactly n (i.e., y" € Ng,(K*) and
y® ¢ N, p(K*) for all d dividing n), then A(K/F,0,y) is a division algebra.

Now fix a central simple algebra A over F of the form (3.17). Since K splits A, we
have an injection of A4 into A ®y K = Mat, (K); explicitly A may be identified with the

subring of Mat,, (K) consisting of elements of the form

Xy  vo(X,_1) Yo (X,_p) - yo"Tl(x))
X 0(xg)  yoi(x,_y) - yo"l(x,)
X9 U(Xl) UZ(X()) )/Un_l(Xg)
Xp_1 0(Xp,_p) 0%(x,_3) - 0" lxp)

Since Ay ~ Mat,, (K), the central simple algebra A corresponds to a Galois action
on Mat, (K), which we now describe explicitly. Fix an n-dimensional K-vector space V
and basis u,,...,u, of V to identify End(V) = Mat, (K). Recall the notation that e; (or
e; j) refers to the n x n matrix whose only nonzero entry is a 1 in the (i, j)-th position. For
all « € K, the action of Gal(K/F) = (o) is given by

c@epjp,  Lj<n

o (aey) = o(a)ey, i=j=n
/ U(a)yeIJH, i=n,j<n
oy ley,, i<nj=n.

In other words, o acts as usual on K, and it adds 1 to both of the i and j indices,

1

multiplying by y or y =" whenever the i or j index, respectively, overflows. Written in
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matrix form, we have

o (o) yo () yo(ayg) -+ Va(an,n—l)

vy lo(a,) o(ayy) o(ag) -+ o(gu_y)

o ()5 > y o (ag,) o (az) o(ag) - olagp_y)
Y lo(an1n) 0@y_11) 0y 1) -+ 0y qpn_1)

The induced action on V®" ® A" V* = G(Ag/K) given by Proposition 3.16 is as

follows: let u,,,; :==u; and w = uj A--- Auy. Then for 1 < i; < n, we have

croau;, @ ®U ®w > o@y H=D"u , ® QU 1 ®o,
where r is the number of j such that i; = n.
Example 3.18. Let F/Q be a field that does not contain a square root of —1 and let

K = F(i). Then 0 (i) = —i and let @ := o («). If y € F* is not of the form a? + b? fora,b € F,

then A(K/F,o,y) is a division algebra, whose elements are explicitly represented by

Xy vX
X, Xg

with x; € K. For example, when F = R and y = -1, this gives the usual matrix

matrices of the form

representation of the Hamiltonian quaternions H.
By Proposition 3.16, the action of Gal(K/F) = (o) on Mat,(K) corresponding to
G(A/F) is given by

O'((Olllul ® ul + Ollzul ® u2 + 0521u2 ® ul + azzuz X uZ) ® a))
=—(y 7' Uy ® Uy + T 15Uy @ Uy +Tg Uy ® Uy + YU ®UY) Q.
Since G(A/F) is the subspace of elements that are fixed by o, it is explicitly given by the
set of
(Otul ®u1 —'}/auZ ®u2 +'3u1 ®u2 —Buz ®u1) ®CU

with «, 8 € K. On the other hand, A is a quadratic algebra over F, so we know from
Proposition 3.2 that G(A/F) ~ A, where the left (A%? « S,)-module structure on A is
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described in Section 3.2. The map

B ra _ =
5 — (U @ Uy — yaU, @ Uy + BU; Uy — BU, QUL Q @
o

yields an explicit isomorphism between our two different descriptions of G(A/F) as a
left (A%? % S,)-module.

3.6 Group rings

An easy application of the product formula (Theorem 2.26) and our work in Sections 3.4
and 3.5 allows us to compute Galois closures of group rings. For a finite group G and a
field F with characteristic prime to |G|, Maschke's theorem implies that the group ring
F[G] is semisimple, that is, has the structure of a product of central simple algebras (and
thus is a degree n algebra for some integer n). One thus can compute the Galois closure

of such a group ring. If all G-representations are split, the computation is easier.

Proposition 3.19. Let G be a finite group and F a field whose characteristic is prime to

|G|. If all G-representations are split over F, then

G(FIGI/F) ~ (@ (v o N V;)) :

p

where the tensor product varies over the irreducible representations p: G — V,, n, :=

dim V,, and N is the multinomial coefficient N := |G|! /Hp n,l.

Proof. By Maschke’s theorem and Artin-Wedderburn (see, e.g., [16, Chapter 6]), one
has FI[G] = Hp End(Vp). The result then follows from Theorem 2.26 and the computation
of G(End(Vp)/F) in Theorem 3.13. |

4 Hermitian Representations from Galois Closures

As indicated in the introduction, one of our motivations for studying noncommutative
Galois closures is related to constructing “Hermitian” representations. We describe in
Section 4.1 one way to construct such representations and how Galois closures are

needed.
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4.1 Definitions

We would like to study representations of algebraic groups that generalize tensor
products of standard representations.

A simple explicit example is the space W of m x m matrices that are Hermitian
with respect to a quadratic algebra A over R. Using the notation for quadratic algebras
from Section 3.2, these are m x m matrices C = (cij) such that C = C*, where C denotes the
entrywise conjugate of C, that is, ¢;; = ¢;; forall 1 < i,j < m. If A is a rank p free module
over R, then W is a free module over R of rank m + pm(m — 1)/2. Moreover, the group
GL,,(A) naturally acts on W: for y € GL,,(A), we define the action of y by y - C = yCy,
where ¥ is the entrywise conjugate of y. For example, if A is simply R itself considered
as a degree 2 algebra with polynomial P,(T) = (T —r)?, then we have recovered the space
of symmetric m x m matrices over R with the standard action of GL,,(R); for A = R?
as a quadratic algebra, this space is isomorphic to the space of m x m matrices over R
with the standard action of GL,,(R) x GL,,(R). It is of course possible to define W in a
basis-free manner, as we will see in more generality below.

We wish to generalize the above to a notion of a Hermitian n-dimensional
m x --- X m array with entries in a degree n algebra A over R. Intuitively, we would
like the symmetric group S,, to act on such an array in two different ways: by an S, -
action on A and by permuting the factors, and we would like to restrict to the arrays for
which these two actions agree. In general, an algebra A does not come equipped with a
natural S,,-action, but its Galois closure G(A/R) does. So instead we allow for entries in
G(A/R). We now make this definition precise.

We begin with a coordinate-free description of the representation and then give
an explicit description in terms of coordinates. Let U be a free R-module of rank m.
There are two natural S,-actions on G(A/R) Qg U®", one is the left action on G(A/R)
and the other is a right action on U®" given by permuting coordinates. For ¢ € S,, and

N € G(A/R) ®g U®", we denote the two actions by o -; X and o -, X, respectively.

Definition 4.1. We define the Hermitian space H 4 ;; to be the subspace of G(A/R) ®g

U®™ where the two S,,-actions agree (up to an inverse), that is,
[RNeG@A/R)®R U 0 R=0"1,Rforallo €S,}.

Remark 4.2. We have two commuting (left) S,,-actions on G(4/R) ® U®", hence an
action of S, x S,,. The Hermitianization #, ;; is the space of invariants for the diagonally
embedded copy of S,, in S, x S, that is, H, ;; = (G(A/R) ® U®™)5n,
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We have a natural action of A ®g End(U) on G(A/R) ®z U®", where A acts on
G(A/R) via the diagonal embedding of A in A®" and End(U) acts on each factor of U®"

in the standard way.

Lemma 4.3. The action of A ® End(U) on G(A/R) Qg U®™ commutes with the two S, -
actions on G(A/R) ®g U®™. In particular, H 4y is preserved by the action of A®z End(U).

Proof. This follows from the A @z End(U)-action being the same on every factor A of
G(A/R) and every factor U of U®" by definition. |

Definition 4.4. We refer to H,y with this action of A ® End(U) as a Hermitian

representation.

We next describe the Hermitian representation explicitly using coordinates.
After choosing a basis for U, we may make identifications U ~ R®™ and A ® End(U) ~
Mat,,(A). Letting T = {(iy,...,i,) | 1 < iJ- < m}, we then have

G(A/R) ®g U™ =~ G(A/R)®7,

that is, elements of G(A/R) ® U®" are represented as n-dimensional m x --- x m arrays
with entries in G(A/R), where T parametrizes the coordinates of the array. The two
S,-actions can then by described as follows. The 1st S,-action on G(A/R) acts on
M € G(A/R)®T coordinate-wise: 0 (M,),.r = (0 (M,)),.r- The 2nd S, -action on U®" yields
an action on T via o(iy,...,i,) = (-, lyn) Which then induces an action on
G(A/R)®T. The Hermitian space Ha y is then the subspace of arrays where these two
actions agree (up to an inverse).

In coordinates, the action of A ® End(U) on H, ;; is described as follows. Let
y € A®g End(U) ~ Mat,,(A) and M = (M);.r € H, y- Then y - M has (iy,...,i,)-entry as

follows:

(v M i, = Z (Vijy ® Vigi, ® @ Vigj) - Mj, _j,i
jlrm:jn

here Vi ® Vigjp ® *++ ® Vijiy) - M comes from the left action of A®" on G(A/R).

-

4.2 Product formula for Hermitian representations

In this subsection we show that if A is a product of degree n; algebras, then the
Hermitian representation associated to A is a tensor product of the corresponding

Hermitian representations.
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Theorem 4.5. (Product formula for Hermitianizations). For 1 < i < ¢, let A; be a

degree n; R-algebra. f A=A; x--- x A, thenH, y = Hy y ®g - ®r Ha, v

Proof. For notational simplicity, we reduce to the case £ = 2. Recall from Theorem 2.26
that if A; and A, are R-algebras of degree n; and n,, respectively, then the R-algebra

A=A, x A, has degree n = n; + n, and its Galois closure is given by
G(A/R) = Indg;;l x5, (G(A1/R) ® G(4y/R)).

Further, recall from Remark 4.2 that H, ; = (G(A/R) ® U®™)Se for the diagonally
embedded copy of S,,.

Now, in complete generality, if G is a finite group, H C G is a subgroup, V is
a finite-dimensional H-representation, and W is a finite-dimensional G-representation,

then by the projection formula (see, e.g., [17, Tag 01E6]) we have
Ind§(V) ® W ~ Ind§; (V ® Resg (W)).
Taking G-invariants of both sides yields
(md§(v) ® W)° = (v ® Res§(w))".

Applying this to the case where G = S,,, H = S, x S

W = U®", we see

V = G(4,/R) ® G(4,/R), and

na’

Sny

Hay = (GA/R) ® US™)™ = (G(A,/R) ® G(A,/R) @ U™ @ US"2) 2 ~ 91, @ H,, 4

thereby proving the result. |

Example 4.6. Viewing R as a degree 1 algebra over itself, we have Hz ; = U. The
Hermitian representation is given by the standard action of GL(U) on U. Applying
the product formula (Theorem 4.5) tells us that for the degree n algebra A = R", the

Hermitian representation is H, ; = U®" equipped with the natural action of GL(U)".

Example 4.7. If B is a quadratic R-algebra and A is the cubic algebra R x B as in
Section 3.3, we conclude that H, ;; ~ U® Hp ;. With a choice of basis for the rank m free
R-module U, we see that m x m x m arrays that are Hermitian with respectto A = R x B

may be viewed as an m-tuple of m x m matrices that are Hermitian with respect to B.
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More generally, for a degree n R-algebra B, elements of the Hermitian space Hy, p ;; may

be viewed as an m-tuple of elements of Hp ;.

4.3 Example: endomorphism algebras (or matrix rings)

Let V be a rank n free R-module and let A = End(V). We study the Hermitian

representation #, ;;, where U is a rank m free R-module.

Proposition 4.8. Let U be a rank m free R-module, V be a rank n free R-module, and
A = End(V). The Hermitian representation #, ;; is isomorphic to AN (VRU) @ AN"(V*).

Proof. As mentioned in Remark 4.2, we may view H, ; as the invariant subspace of
a particular S, -action. Recall from Theorem 3.13 that G(A/R) ~ V®" @ A\™(V*). Since
A" (V*) is the sign representation, our desired subspace of G(A/R) ® U®" is therefore
A" (V*) tensored with the copy of the sign representation in V®" ® U®" = (V ® U)®™.
This is given by A"(V® U) @ A™(V*).

The action of A ® End(U) = End(V) ® End(U) on H, y =~ A" (V@ U) ® \"(V*) is
then given by End(U) acting on U and End(V) acting on both V and V*. |

Example 4.9. If U and V are free R-modules of ranks m and n, respectively, then with
a choice of basis for each, we observe that Hgyq(y) y is naturally isomorphic to (a twist
of) the n-th wedge product of a free R-module of rank mn, with the standard action of

GL,,,(R). In particular, we obtain some interesting representations (see Section 4.4):

dimU dimV Hgyqy)y 8roup

m 2 A2@2m) GL,,
2 3 A3(6) GLg (4.10)
2 4 A*®)  GLg
3 3 AN3©@  GLg.

Note that the 1st two cases in the table could have been computed without the definition
of a Galois closure. The 1st may be visualized as Hermitian m x m matrices over the
quadratic algebra Mat,(R). The 2nd may be visualized as 2 x 2 x 2 cubes, Hermitian over
the cubic algebra Mats(R); the orbits of this space for R = Z are studied in [2], which

motivated much of this paper.
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4.4 Vinberg representations

In [19], Vinberg considers finite d-gradings of Lie algebras g = Zf:_ol g; and studies the
representation of G, C G on g;, where G, C G are the groups corresponding to the Lie
algebras g, C g. The orbit spaces of many of these representations have, in recent years,
been studied as moduli spaces of arithmetic or algebraic data [1, 2, 11-13, 18].

We observe that many of these representations may be viewed as Hermitian
representations, as in Example 4.9. Below is a table with Vinberg’s representations,
coming from a d-grading on an exceptional group G, that also arise as Hermitian
representations #, ;; for an m-dimensional vector space U over a field k and a degree
n k-algebra A. The last column gives some recent references where the representation,
corresponding moduli problem, and/or relevant arithmetic statistics problem have been
studied.

G d (semisimple) representation m n A reference
group

1. |E" 2 SL, x SLg 2@ N\3(6) 2 4 kxMaty(k) [1,Section 6.6.2]
2. |E 3 SLyxSL;xSL, 3®3®3 3 3 K3 [1, Section 4.2]
3. |EV 2 SLg A% (8) 2 4  Maty(k) [14, 18]
4. | BV 3 SL, x SLg 3@ A\%(6) 3 3 kxMaty(k) [1,Section 5.5]
5. | By 2 SL, xE, 2 ® 56 2 4  kxJ [1,Section 6.6.3]
6. |EY 3 SL, A%9) 3 3  Maty(k) [12, 13, 15]
7. | B8 3 SL, xEj 3®27 3 3 kx QO [1, Section 5.4]
8. |F{" 3  SLyxSL, 3@Sym?3) 3 3  kxky [1,Section5.2.1]
9. |GV 2 SL, x SL, 29sym32) 2 4  kxkg [, Section 6.3.2]
10. [ DY 3 SL, Sym®(3) 3 3 kis) [1, Section 5.2.2]

We use the notation k,; to denote k as a degree n algebra (see Example 2.7). The
notation O refers to the split octonion algebra over k, and 7 is the exceptional cubic
Jordan algebra (also known as the space of Hermitian 3 x 3 matrices with respect to Q).
In both of these cases, this algebra A is non-associative, but the Galois closure is not

needed to describe the Hermitian space (see [1] for details).
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There are in fact many additional cases of representations that arise from
Vinberg's construction and are closely related to Hermitian representations. A simple
example is that of SL, x SL, acting on 2 ® Sym?(4), which comes from a 4-grading of
Eéz) ; it is the tensor product of a 2D space and the space of Hermitian matrices over K[,;.
However, there are still numerous Vinberg representations for which we do not yet have
such an interpretation.

Due to the non-associativity of general cubic Jordan algebras, our current
definition of Galois closure does not apply. However, given the above connection between

Vinberg representations and Galois closures, we ask the following.

Question 4.11. Can our definition of Galois closure be extended to the case of cubic
Jordan algebras (or other non-associative algebras)? If so, can any of the remaining
Vinberg representations be recovered as Hermitian representations associated to such

algebras?

Remark 4.12. As mentioned in the introduction, our original motivation for this paper
was to study as many representations as possible, including those arising from Vinberg
theory, with a uniform method. In particular, we hope it will be possible to study
the moduli problems coming from these Hermitian spaces using uniform geometric

constructions via Galois closures.
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