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Abstract—Training robotic policies in simulation suffers from
the sim-to-real gap, as simulated dynamics can be different from
real-world dynamics. Past works tackled this problem through
domain randomization and online system-identification. The
former is sensitive to the manually-specified training distribution
of dynamics parameters and can result in behaviors that are
overly conservative. The latter requires learning policies that
concurrently perform the task and generate useful trajectories
for system identification. In this work, we propose and analyze
a framework for learning exploration policies that explicitly per-
form task-oriented exploration actions to identify task-relevant
system parameters. These parameters are then used by model-
based trajectory optimization algorithms to perform the task in
the real world. We instantiate the framework in simulation with
the Linear Quadratic Regulator as well as in the real world with
pouring and object dragging tasks. Experiments show that task-
oriented exploration helps model-based policies adapt to systems
with initially unknown parameters, and it leads to better task
performance than task-agnostic exploration.

I. INTRODUCTION

Reinforcement Learning (RL) is a powerful paradigm for
training robots to perform complex manipulation tasks in the
real world [15]. RL methods, whether model-free or model-
based, often require a lot of data that is expensive to obtain
with real robots. Instead, many prior works have studied how
to train a task policy with simulation data. However, due to
differences in simulation and real-world dynamics as well
as observation models, policies trained with simulation data
tend to suffer from the simulation-to-reality gap, i.e., the
distributional differences between training (simulation) and
testing (real-world) data are sufficiently large to degrade the
performance of the policy.

Many methods have been proposed to address the sim-
to-real gap, including domain adaptation [5] and domain
randomization for model-free RL [2], and learning residual
models that correct sim-to-real errors for model-based RL [3].
Past works also showed that it is possible to adapt simulation
parameters with real-world observations to train model-free
RL policies [6], and to use models learned from real-world
data to directly perform trajectory optimization for manipula-
tion tasks [22].

If a known model with initially unknown parameters is
given, System Identification (Sys-Id) can be used to tune these
parameters to match the model with different instances of
real-world environments. Sys-Id can be passive or active—the

Fig. 1. Proposed framework of active, task-oriented exploration policies.
An exploration policy generates real-world trajectories, which is then used
by an optimizer to identify the dynamics parameters (SimOpt). Model-based
trajectory optimization uses these parameters to find a task policy (TrajOpt),
which then performs the task in the real world. Experiments cover three
instantiations of the framework in one simulated task of LQR and two real-
world tasks of pouring and object dragging with the Franka Panda robot arms.

former uses offline trajectories or ones incurred during task
execution, and the latter uses an explicit information-gathering
exploration policy to probe the environment. The observation
trajectories generated by such an exploration policy are used
to fit the unknown parameters of the dynamics model, i.e.
the simulator. Then, a model-based trajectory optimization
or planning algorithm uses the model with the estimated
parameters to produce a task policy, which is then executed
in the real world.

Our proposed approach (Figure 1) follows this route. It
explicitly learns an exploration policy that interacts with the
real world and identifies the initially unknown parameters of a
known model, such that task policies planned with that model
can succeed in the real world. For example, the model can
be a full dynamics simulation, with the unknown parameters
being the mass and friction of the objects involved in the task.

The exploration policies in prior works optimize for model
parameter accuracy [3] or model prediction errors [38], and
as such we call them Active Task-Agnostic exploration.
However, it is usually the case that some parameters are more
important to trajectory optimization and task performance than
others. Hence exploration policies that identify all parameters
equally well may lead to worse task performance than ones
that focus on parameters about which the task is sensitive.

In this work, we propose learning Active Task-Oriented
exploration policies, where the exploration policy directly
optimizes for the performance of the downstream task. The
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exploration policy is trained in simulation over a distribution
of physics and task parameters. Once learned, the exploration
policy can be applied in environments with different parame-
ters and different task instances without retraining. This is in
contrast to previous works that adapt simulations to or learn
models of a specific instance of real-world dynamics and task
parameters, which limit such generalizations.

We performed three experiments to evaluate our
framework—one in simulation with the Linear Quadratic
Regulator (LQR) and two in real world with pouring
and box dragging tasks. The experiments show that task-
oriented exploration helps model-based policies adapt
by identifying system parameters and that task-oriented
exploration leads to better task performance than task-
agnostic exploration. See videos and supplementary materials
at https://sites.google.com/view/task-oriented-exploration/

II. RELATED WORKS

One popular method to address the sim-to-real gap is Do-
main Randomization (DR), which can be applied for observa-
tion models [30, 32] or dynamics models [25, 21, 19, 20, 28],
or both [2]. DR does not aim to train a policy with simulation
parameters that is close to those of the real world. Instead,
DR trains the policy with a wide distribution of parameters,
with the idea that a policy that can perform the task under
all of the different simulations should also be able to perform
it in the real world. As such, DR can make policies more
robust. However, training a policy that works on average for
all parameters may lead to sub-optimal performance when
different parameters require different policy behaviors [38, 19].
In addition, DR often needs humans to fine-tune the pa-
rameter distribution with some prior knowledge about the
appropriate range of parameter values in the real world. The
authors of [19, 2] address this issue by effectively building a
curriculum that actively changes the DR distributions during
training, leading to better policy generalization than sampling
from a static and uniform parameter distribution. The authors
of [6, 28] adapt the parameter distribution to better match real-
world observations to train model-free RL policies. However,
such adaptation is specific to one instance of real-world envi-
ronments, so the trained policy is not expected to generalize
on environments with different physics or task parameters.

Numerous works have studied using predefined trajectories
for Sys-Id [24], especially in the context of identifying contact
dynamics [35, 14, 9]. It is also possible to perform manual
Sys-Id by directly measuring dynamics parameters in the
real world [31]. However, these methods do not easily scale
to different kinds of robots and tasks. Alternatively, prior
works have explored finding the physics parameters, whether
for model-free policy learning or model-based adaptations,
through trajectories incurred by the task policy. We refer to
these as Passive Sys-Id methods. For example, the authors
of [36] train a physics parameter-conditioned model-free task
policy and a separate prediction model to predict the pa-
rameters from a history of trajectories generated by the task

policy. The authors of [27] train an environment-embedding-
conditioned RL agent that can identify the embedding online
during task execution. On the model-based side, the authors
of [29] propose a method to iteratively learn the model in
an on-line fashion with trajectories generated by an optimal
controller that uses the model, and the algorithm in [16] learns
a dynamics model conditioned on a local context embedding,
extracted by a learned context encoder during task execution.
Passive Sys-Id has the limitation that the trajectory generated
by the task policy might not be the most suitable ones for
identifying model parameters.

Instead of finding real-world model parameters to improve
model accuracy, many works have also studied using real-
world data to directly learn the model from scratch or cor-
rections on top of a known but imperfect model. An example
of the former is [22], where the authors learn a dynamics
model for in-hand manipulation tasks using real-world in-
teractions and perform the task with trajectory optimization.
Works doing the latter are commonly referred to as residual
learning [13, 1, 10, 37]. The method in [3] combines this idea
with Passive Sys-Id to produce a model that can iteratively
reduce the residual errors with little real-world data.

By contrast to Passive Sys-Id, Active Sys-Id algorithms
interact with the environment to explicitly identify relevant
system parameters. This is common for Interactive Perception,
where a robot performs probing actions in an environment to
segment objects [33], infer object properties like mass [12],
or infer kinematic constraints [11, 4, 7]. Like our approach,
many of these works assume a known model with unknown
parameters (e.g. the type of joint connecting two rigid bodies),
and they aim to choose the most informative actions via
heuristics like maximum information gain to reduce dynamics
prediction error. The work in [38] learns an exploration
policy that generates informative trajectories for inferring
environment embeddings. These embeddings are used as input
to model-free RL policies, and the embedding encoder is
trained to reduce dynamics prediction error. In [23] the authors
train an exploration policy that optimizes for the accuracy of
a parameter prediction network that estimates the mass of
articulated objects. We describe Active Sys-Id methods like
these as Task-Agnostic, because the exploration is done to
optimize for the accuracy of all of the model parameters or
model predictions, and not a downstream task.

Our work considers the case for performing Active and
Task-Oriented exploration, where the exploration policy is
used to infer model parameters in a way that directly optimizes
for task performance. The algorithm proposed in [18] is
similar—it applies a Bandits-based approach to select from
a fixed set of experiments to perform in the environment.
Like [38] however, this work focuses on the case of a finite
set of environments, so the exploration policy only needs
to produce information that can classify which environment
the agent is in, and not the underlying system parameters.
The authors of [8] propose learning a model from scratch
that minimizes prediction error in the value function, thus
making model-learning task-oriented. In this work, we assume
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a known parameterized model and explicitly try to identify
the continuous task-relevant system parameters. This means
that the method does not need a predefined discrete set of
environments. It also means the method does not require policy
learning or model learning from scratch, because the tuned
model is directly used for trajectory optimization to perform
the downstream task.

III. METHOD OVERVIEW

We first give a general overview of the proposed framework,
seen in Figure 2, for learning active and task-oriented explo-
ration policies. Following this section are three instantiations
of the framework—one simulated Linear Quadratic Regulator
(LQR) task and two real-world manipulation tasks.

A. Active and Task-Oriented Exploration

We consider the problem of fitting the parameters of a
dynamics model by using an exploration policy to generate
interactions with the real system, so that a task policy planned
with the fitted dynamics model can be directly applied on the
real system with no further fine-tuning.

Our chief assumption is that for a given task there exists
some values of model parameters that will make the simu-
lated dynamics sufficiently match real-world dynamics, so a
task policy planned using the estimated parameters can also
complete the task in the real world. We further assume that it is
possible to recover these parameter values from observations
available to the robot, and that we have models of the objects,
the robot, as well as their initial states.

We define the following variables:
• xt - state (e.g. robot, object configurations).
• ut - robot actions (e.g. desired end-effector poses)
• ot - observations (e.g. tracked object trajectories)
• θ - dynamics model parameters that can affect task

execution (e.g. mass, friction).
• fθ(xt, ut) - a discrete-time dynamics function that yields
xt+1 using the parameters θ. This is used to describe
both simulated and real-world dynamics functions. The
simulated dynamics is deterministic, while real-world
dynamics is stochastic due to unmodeled noise in the
environment.

Model-based Task Policy. Let πτ (θ) be a task policy
that uses the dynamics model with model parameters θ. For
example, it could be a policy that performs a motion plan
generated by trajectory optimization with a physics simulator
as the dynamics model. Let Tτ be the time horizon of the task.
Forming πτ is called Trajectory Optimization (TrajOpt).

Let J(πτ (θ̂), θ) be the total cost of a task performed by
a policy based on θ̂ acting in an environment that actually
has physics parameters θ. J can be an expectation over a
distribution of tasks (e.g. a distribution over goal states), but
for brevity we omit the expectation symbol E when writing
J . The expected loss over θ is Eθ J(πτ (θ̂), θ). If the policy is
optimized for one set of parameters but deployed on a system
that has different parameters, we expect the performance of

Algorithm 1 Deploy Exploration and Task Policy
Input: πe, fθ

1: Roll out πe in environment with dynamics fθ
2: Obtain exploration trajectory [x0, o0:Te , u0:Te ]
3: Estimate model parameters θ̂ ← g(x0, o0:Te , u0:Te)
4: Form πτ (θ̂) via trajectory optimization using fθ̂
5: Roll out πτ in fθ
6: return J(πτ (θ̂), θ)

the policy to be worse than one with the parameters it was
optimized for: Eθ J(πτ (θ̂), θ) ≥ Eθ̂ J(πτ (θ̂), θ̂).

Simulation Parameter Optimization. An exploration tra-
jectory consists of an initial state x0, real-world observations
o0:Te , and actions u0:Te , where Te is the horizon for the
exploration trajectory. Let g be the optimizer that optimizes
for the physics parameters that match these trajectories:
g(x0, o0:Te , u0:Te) = θ̂. We call applying g Simulation Op-
timization (SimOpt). For example, g can be a closed-form
expression that directly solves for θ or a derivative-free opti-
mization algorithm that iteratively searches for it. In general, g
tries to give an estimate θ̂ that minimizes the prediction error
of the resultant dynamics model on the exploration trajectory.

Active Task-oriented Exploration Policy. Let πe be the
task-oriented exploration policy, which acts as a feedback
controller starting from an initial state that is given or learned.
The exploration trajectory {u0:Te , o0:Te} generated by πe is
given to g, yielding estimated model parameters θ̂ that are
used by the task policy πτ (θ̂) to perform the task. We call
this the πe → πτ pipeline.

The goal of πe is to generate an exploration trajectory that
leads to low expected costs incurred by πτ :

πe = arg min
πe

Eθ[Ψ(πτ (θ̂), θ) + γh(πe)] (1)

where h(πe) is a regularization term that penalizes πe from
being too complex and incurring states and actions that have
high costs, and Ψ denotes the regret of πτ (θ∗) w.r.t. a task
policy optimized using the real dynamics parameters:

Ψ(πτ (θ̂), θ) = J(πτ (θ̂), θ)− J(πτ (θ), θ) (2)

See Algorithm 1 for the function that deploys the πe → πτ
pipeline at “test time” to perform a task. The deploy func-
tion takes in a dynamics model fθ, which is the real-world
dynamics when the robot is actually performing the task and
the simulated dynamics during training.

This procedure is active, because it chooses how to interact
with the real system to generate informative observations
for estimating model parameters. It is also task-oriented as
opposed to task-agnostic, because πe’s goal is to minimize
task regret Ψ, and not the accuracy of g’s predictions.

B. Training a Task-Oriented Exploration Policy

The exploration policy πe is trained in simulation via RL,
where the reward function is the negative of the objective in
Equation 1. At each training iteration we sample “ground-
truth” physics parameters from a wide, predefined distribution
θ ∼ Θ. Then we go through the πe → πτ pipeline, deploy



Fig. 2. Learning active task-oriented exploration policies: training and testing pipeline. During training, the πe → πτ pipeline is executed multiple times
in simulation to evaluate the expected task regret Eθ Ψ. This is then used to form the objective in Equation 1 for optimizing πe. During testing (deploying
the learned exploration policy), πe and πτ interfaces with the real world instead of the simulated dynamics.

Algorithm 2 Evaluate Expected Regret of Exploration Policy
Input: πe, Θ, N

1: for n ∈ {1 . . . N} do
2: Sample θn ∼ Θ
3: Form πτ (θn) via trajectory optimization using fθ
4: Evaluate J(πτ (θn), θn)
5: J(πτ (θ̂n), θn)← Deploy(πe, fθn)
6: Ψn ← J(πτ (θ̂n), θn)− J(πτ (θn), θn)
7: end for
8: return Eθ Ψ ≈ 1

N

∑N
n=1 Ψn

the task policy πτ in the “ground-truth” simulation fθ, and
evaluate the task regret Ψ. If there is a distribution of task
objectives (e.g. goal object poses), we repeat this process with
multiple task samples. This constitutes one rollout of πe. The
reward for πe is sparse, as it can only be computed after the
entire exploration trajectory is performed. See Algorithm 2
for how to evaluate the objective’s expected regret term,
Eθ Ψ(πτ (θ̂), θ), in simulation during training.

Sampling θ from a distribution, instead of training πe
for a specific θ, is motivated by works in DR. We apply
DR’s argument not to the task policy, but to the exploration
policy; πe should be applicable to a wide range of simulated
environments, and if it is, then it should also be able to work in
the real world even if it was trained in simulation. This should
be easier to achieve than with the task policy, because the
space of trajectories that completes a task is more restrictive
than one that’s informative for Sys-Id.

Optimizing for the expected task regret Eθ Ψ(πτ (θ̂), θ) w.r.t.
πe is equivalent to optimizing for the expected task perfor-
mance Eθ J(πτ (θ̂), θ). This is because the the difference, the
expected task performance of the policy using ground-truth
system parameters Eθ J(πτ (θ), θ), does not depend on the
exploration policy. In practice, we optimize for Eθ J(πτ (θ̂), θ),
but during training we report Eθ Ψ(πτ (θ̂), θ), because Ψ
fluctuates less than J with noisy dynamics, and Ψ = 0 is
an interpretable target for training πe.

IV. ANALYSIS AND EXPERIMENTS FOR LQR

To better understand the proposed framework, we first apply
it to the LQR task, which is fast to train and amenable to

analysis. The task is to form a linear feedback controller to act
in a fully observable discrete-time linear system to minimize a
finite-horizon quadratic cost in terms of the states and actions:

xt+1 = Axt +But (3)

J =

Tτ∑
t=1

x>t Qxt + u>t Rut (4)

where xt ∈ Rn, ut ∈ Rm, Q ∈ Rn×n, and R ∈ Rm×m. Q
and R are positive semi-definite cost matrices.

We set A to have the form A = UθU>, where U ’s columns
are the eigenvectors of A and θ the corresponding diagonal
matrix of eigenvalues. This allows us to decompose the system
dynamics into parts that are already known (U ) and the parts
that are unknown (θ). The parameters that the exploration
policy tries to infer are θ, the eigenvalues of A.

A. LQR Analysis
Our goal in this section is to rewrite the minimization

of the task cost min J as an optimization problem w.r.t
to an exploration policy πe and see how the task-oriented
objective affects the optimization. In the equations that follow,
we denote A as the ground-truth system dynamics, and Â
as the estimated system dynamics. The cost J is computed
with respect to A, while the model-based LQR policy πτ is
computed with respect to Â. We assume B is known.

Trajectory Optimization. With the task of minimizing J ,
the optimal LQR policy is a linear feedback controller with
time-varying gains ut = Kτ,txt, where the gains are computed
as follows:

PTτ = Q (5)

Kτ,t = −(R+B>Pt+1B)−1B>Pt+1Â (6)

Pt = Q+K>τ,tRKτ,t + (Â+BKτ,t)
>Pt+1(Â+BKτ,t)

(7)
Simulation Optimization. With linear dynamics and full

observability, we can derive the closed form solution for
θ̂ given an exploration trajectory by using the following
objective:

θ̂ = g(x0:Te , u0:Te) = arg min
θ

Te∑
t=1

‖x̂t − xt‖22 (8)



Taking the derivative and setting it equal to 0 yields:

θ̂ = arg min
θ

Te∑
t=1

‖UθU>xt−1 +But−1 − xt‖22 (9)

= −U
( Te∑
t=1

xtx
>
t

)†
U>
( Te∑
t=1

(U>xt) ◦ (U>(But−1 − xt))
)

(10)
where ◦ denotes element-wise product and † the pseudo-
inverse. If Te ≥ n and [x1 . . . xTe ] spans Rn, then

∑Te
t=1 xtx

>
t

is invertible. In practice, we use the pseudoinverse to handle
edge cases and also resolve numerical instabilities.

Task-Oriented Exploration Policy. We set the exploration
policy to be a linear feedback controller with time-invariant
gains: ut = Kext. Under the proposed framework, πe will
generate a trajectory of length Te, which will be used to
estimate Â = Uθ̂U>. The estimated dynamics model is used
to compute the optimal LQR gains, the performance of which
will be evaluated in J .

To make the analysis tractable, we make the following
assumptions: n = m, B = I , Q is diagonal, and R = 0.
Setting R = 0 is the strongest assumption, and it is not met in
practice, as doing so gives zero penalities to arbitrarily large
controller effort (although the closed loop system does not
converge in 1 step if there are modeling errors ‖Â−A‖ > 0).
However, having R = 0 greatly simplifies the algebra that
follows, and the result still provides useful insights.

With these assumptions the LQR equations yield PTτ =
Q,Kt = −Â, PT = Q. We can rewrite the costs in terms of
the closed-loop dynamics by using this simplified LQR policy:
xt+1 = (A+BKt)xt = (A− Â)xt (11)

J =

Tτ∑
t=1

x>t Qxt =

Tτ∑
t=1

x>t−1(A− Â)>Q(A− Â)xt−1

(12)
Finding the optimal Ke to minimize J can be formulated as
an optimization problem on setting the gradient ∇KeJ to 0:

K∗e = arg min
Ke

‖∇KeJ‖ (13)

= arg min
Ke

‖∇Ke θ̂∇θ̂J‖ (14)

= arg min
Ke

‖∇Ke θ̂
Tτ∑
t=1

U>(Dt +D>t )U‖ (15)

where Dt = xt−1x
>
t−1(Â−A)Q = xt−1(x̂t − xt)>Q.

Note that the objective function of optimizing the task cost
J w.r.t. the exploration policy Ke is a combination of 1) how
sensitive the identified parameters θ̂ are to the exploration
policy (∇Ke θ̂), 2) the dynamics prediction error (the x̂t − xt
term of Dt) weighted by 3) the task costs (the Q term of
Dt). As Ke depends on all 3 of these factors, this analysis on
the simplified system illustrates the difference between task-
oriented system identification vs. the task-agnostic variant,
which would not have terms that depend on task performance.

Fig. 3. Comparison of task-agnostic vs. task-oriented exploration policy
training in regret ratio of LQR cost on test systems across 10 random seeds.
Task-oriented exploration achieves lower final regret ratio, converges faster,
and incurs lower variance on task regret than task-agnostic exploration.

B. LQR Simulation Experiment

We implemented the proposed framework with a linear
system and the LQR task as the previous section describes.
Notably, our experiments do not make the simplifying assump-
tions that the analysis makes, with the exception of the form
of the system A = UθU> and that U and B are known.

We used gradient descent to optimize J w.r.t. Ke. Evaluat-
ing the LQR costs, obtaining the optimal discrete-time LQR
policy, and obtaining the estimate Â are all differentiable
(the last two are differentiable by using their closed form
solutions). As such, the entire pipeline from the exploration
policy to evaluating LQR costs is end-to-end differentiable.

To sample A, we first randomly generate a fixed orthonor-
mal basis U , then we sample eigenvalues θ ∼ N (µ, σI). In our
experiment, we used n = 6, m = 3. The sampled eigenvalues
are capped at a magnitude of 1.1, so the systems have
slightly unstable open-loop behavior, which makes LQR non-
trivial. The system also has small amounts of observation and
dynamics noise, both sampled from i.i.d. zero-mean isotropic
normal distributions at every time step.

The training set contains 1000 examples of θ, with the test
set containing 100. Gradient descent was done by the Adam
optimizer with a learning rate of 10−4 and weight decay of 0.1.
We also put an LQR-like cost on the trajectory generated by
the exploration policy: h(πe) =

∑Te
t=1 x

>
t Qext+u

>
t Reut. The

task policy horizon is 20, while the exploration policy horizon
is 4. Initial state x0 for the task is fixed, while initial state for
exploration is optimized for along with the exploration policy’s
feedback gains.

We compare the proposed task-oriented exploration policy
vs. a baseline task-agnostic exploration policy. The task-
oriented policy is trained to minimize regret of the task policy
EθΨ, while the task-agnostic exploration policy is trained to
minimize parameter estimation error Eθ‖θ̂ − θ‖22.

Note that the task-agnostic exploration policy is not opti-
mizing for the model prediction accuracy on the exploration
trajectory. Doing so would lead the exploration policy to
generate trajectories that are easy to predict. In some systems,
this may lead to the policy doing nothing, incurring no state
changes, and hence predictions become trivial. The fitted



dynamics parameters in this case would not be useful for
downstream tasks.

Figure 3 plots the results of this experiment. The x-axis
denotes the number of training batches. The y-axis denotes
the ratio between the regret achieved by the exploration policy
on test systems vs. the regret of the initial random exploration
policy, which is the same for both task-agnostic and task-aware
training runs. Regret ratio is reported here, because the unitless
LQR cost is difficult to interpret, and we can compute the
optimal regret and provide a more intuitive value between 0
and 1. We ran the training procedure for 10 random seeds, and
the means and standard deviations are computed across those
seeds.

While both task-agnostic and task-oriented exploration poli-
cies are able to reduce regret, the task-oriented exploration
performs better than the task-agnostic variant by having faster
convergence toward a lower final regret ratio, as well as having
a smaller variance.

V. REAL-WORLD ROBOT EXPERIMENTS

We apply the framework to two real-world robot manipula-
tion tasks, one using an analytical model and a discrete explo-
ration action space, and one using full dynamics simulations
with continuous exploration action space.

A. Task: Pouring

In the pouring task, the robot must pour mτkg of water
from a cup with known shape but containing initially unknown
amount of water. The goal parameter mτ is sampled at every
execution of the task: mτ ∼ N (µmτ , σmτ ). Because the cup
shapes are known a priori, if we know the initial amount of
water in each cup, we can compute the exact angle at which
to tilt the cup to pour the desired amount mτ . The task policy
πτ in this case has just one parameter—the cup tilt angle φ
(φ = 0 when the cup stands upright and φ = π/2 when the
cup is laying horizontal). Let m̂τ refer to the actual amount
of water poured. The task cost is J = |mτ − m̂τ |.

Below is the analytical solution that relates the tilt angle φ
of a cylindrical cup with uniform radius r, the height h, and
the maximum volume V of fluid that remains in the cup:

φ = tan−1(
1

r
(h− V

πr2
)) (16)

This equation is used to compute φ given a desired V ,
calculated from the amount of water that should be left in cup
after pouring (mc −mτ ). Note the above model only works
when φ < tan−1( h2r ), and we enforce this constraint during
experiments.

In addition to the cup the task uses, another identical distrac-
tor cup is also in the scene. The unknown system parameter
are the initial masses of both of the cups θ = [m1,m2]. The
exploration policy πe operates in a discrete action space—
lifting either cup 0 or cup 1 and uses the end-effector force
measurements to estimate the mass of the lifted cup. This
measurement is noisy, so lifting a cup more times result in
a more accurate mass measurement, which would in turn lead

Fig. 4. Comparison of Task-Agnostic and Task-Oriented exploration policies
during training for the pouring task across 10 random seeds. Left: Costs during
training. Right: Policy parameter (probability of measuring the cup used by
the task). Because the Task-Oriented policy is optimizing for task performance
and not parameter prediction error, it favors weighing the cup used by the task
instead of both cups equally.

to smaller task costs. The exploration policy acts as follows—
it first performs a single measurement for both of the cups.
For the remaining Te − 2 time steps, it samples which cup to
lift from a Bernoulli distribution with parameter pe, where a
value of 1 means choosing the task-relevant cup, and 0 the
task-irrelevant cup. Ideally, a trained exploration policy has a
pe that strongly favors the cup the task uses, leading to a more
accurate initial mass estimate and better task performance.

We trained πe by sampling from the analytical model with
added observation noise to the mass measurements as well as
dynamics noise to the outcome of how much water was poured
for a given tilt angle. πe is optimized via gradient descent with
finite-difference approximations of ∂ Eθ J

∂pe
. We set Te = 6, so

the maximum number of measurements per cup is 5.
Figure 4 shows both the costs incurred by the task-oriented

and task-agnostic exploration policies and their pe’s during
training. The task-agnostic pe is around 0.6, while the task-
oriented pe is closer to 0.9. The task-oriented exploration
policy also achieves better final task performance.

We performed the pouring task in the real world with a 7
DoF Franka Panda arm. Two identical plastic beakers were
used for the cups, and the masses before and after pouring
were measured with a scale. We evaluated the trained task-
oriented and task-agnostic policies with 10 samples of goal
parameters in the real world. See Figure 5 for the real-world
experiment setup and results. The task-oriented exploration
policy, by focusing exploration on the cup more likely to be
used by the task, achieves a lower average task cost of 14g
instead of 22g.

B. Task: Dragging

In this task, a box object of uniform density needs to be
dragged on a planar surface from an initial 3D pose (2D
translation and 1D rotation [x0, y0, φ0]) to a target goal pose
[xg, yg, φg] that is sampled from a distribution every time the
task is executed. Dragging means the robot end-effector pushes
the object against the workspace and drags the object along a
2D plane while maintaining contact with the object. There are
3 parameters varied and estimated in this task: the torsional
friction of the robot-object contact, torsional friction of the
object-table contact, and the mass of the object.

The task cost is the weighed sum of the magnitude of the



Fig. 5. Real-world pouring experiment. Left: Experiment setup. The robot
first to measures the initial masses of the two cups, then it pours a target
amount of water from the fixed task-relevant cup into another container. Right:
Comparison of Task-Agnostic and Task-Oriented exploration policies for real-
world pouring task costs.

Fig. 6. Box dragging task in real world (left) and simulation (right). In this
task, the robot must drag the box to different goal poses on a flat surface.
Variations across the surface material, box material, and box mass lead to
different slippage behaviors.

translation difference and the absolute value of the angular
difference between the final and the goal object pose: J =
[‖[x̂g − xg, ŷg − yg]‖2, |φ̂ − φ|]>w. The weights are chosen
such that each term is roughly normalized to a ratio of 3 : 1
for rotational vs. translational error across the optimization.
See Figure 6 for an illustration of the task in both simulation
and the real world.

The parameter space for the task policy consists of two
3D waypoints in the frame of the object. The first waypoint
indicates where the robot gripper makes contact with the top
surface of object, and the second waypoint is where the robot
gripper moves to. The trajectory in between the end waypoints
is generated via min-jerk interpolation, and the robot gripper
is controlled via Cartesian end-effector impedance control.

The parameter space for the exploration policy similarly
consists of two waypoints, but they are more constrained than
the task waypoints, so the exploration trajectories are shorter
than the task trajectories.

Instead of using analytical dynamics models as in the LQR
and pouring tasks, here we use a physics simulator. Specifi-
cally, we use the GPU-accelerated Nvidia Flex simulator [17],
which allows us to run multiple simulations in parallel on a
single GPU. We simulate 20 robots in parallel at a time step
of ∆t = 0.01s, and this achieves roughly 100 FPS on a single
Nvidia GTX 1080 Ti GPU.

1) Optimizers: For both TrajOpt and SimOpt we
use the episodic variant of Relative Entropy Policy Search
(REPS) [26]. This is a derivative-free optimization algorithm
that maintains the current optimal parameters as a multivariate

normal distribution, and it updates the mean and covariance
of the distribution at every optimization step subject to a KL-
divergence constraint.

Trajectory Optimization. The initial mean trajectory REPS
uses consists of the first waypoint right above the center of
the object, and a second waypoint to coincide with the goal
delta pose for the object. This initial trajectory doesn’t work
in most of the cases, because, depending on the friction and
mass values, the object will slip and rotate different amounts,
so its contact with the robot end-effector is not rigid. REPS
for TrajOpt converges within 10 iterations.

Simulation Optimization. Given a trajectory of object
poses and robot actions during exploration, we use REPS to
find the θ̂ in simulation that generates the trajectory closest
to the observations. The initial mean of the dynamics model
parameters are sampled from the wide distribution Θ, while
the initial covariance is set wide enough to sufficiently cover
Θ. At every REPS iteration, sampled θ’s are used to form
the dynamics model fθ, which is then used to playback the
recorded exploration trajectory. The translation and rotational
differences between each simulation’s object poses and the
observed object poses are used to form a weighted sum cost
similar to the one in trajectory optimization. REPS for SimOpt
also converges within 10 iterations.

Training the Exploration Policy. For optimizing the ex-
ploration policy, we first experimented with REPS, but taking
the full expectation of Ψ is too slow in practice. Instead, like
with the pouring task, we use finite difference in simulation to
directly perform gradient updates and estimate the gradients by
taking a small batch of samples. To make multi-dimensional
finite difference more accurate and efficient, we sample small
perturbations around the input variable, evaluate the function
at those perturbations, and fit a plane to estimate the gradient.

Since we want the task to generalize across a distribution
of task parameters, evaluating J in Algorithms 1 and 2
requires estimating an expectation as well. To reduce the
nested sampling of J and Θ during finite difference, we split
the gradient Eθ∇πeΨ(πτ (θ̂), θ) into two parts via chain rule
and estimate them separately. The first term is the gradient of
the task cost w.r.t. the simulation parameters evaluated around
the estimated simulation parameters: ∇θ̂ Eθ Ψ(πτ (θ̂), θ). The
second is the gradient of the estimated simulation parameters
w.r.t to the exploration policy: ∇πe Eθ θ̂. Gradient updates
were performed via the Adam optimizer.

Figure 9 shows the task regret ratio of task-agnostic vs. task-
oriented exploration policy during training. Similar to previous
cases, the task-oriented exploration policy achieves lower task
regret than the task-agnostic exploration policy.

2) Real-world Evaluations: To evaluate the two explo-
ration policies in the real-world, we 3D printed a box with the
exact dimensions as the one used in simulation. The box has
a cavity with a removable lid, so we can vary the box’s mass.
To vary the friction parameters of the robot-object and object-
table contacts, we attached different sheet materials to both
the top of the box and the top of the table surface. We also
attached AprilTags [34] to the top of the lid to estimate the



Fig. 7. Real-world box dragging setup. The 3D printed box has a cavity with a
removable lid, so its mass can be changed. We tested 3 box top materials (PLA
plastic, construction paper, and felt), 2 table surface materials (construction
paper and felt), and 2 different box masses.

Fig. 8. Learned task-agnostic exploration trajectory (left) and task-oriented
exploration trajectory (right) for the dragging task. The dragging trajectories
consist of start and end 3D way points for the robot’s end-effector, and they’re
denote by the red and green axes. While both trajectories have comparable
translation and rotation magnitudes, the task-oriented exploration trajectory
begins further away from the object’s center of mass. This leads to an object
trajectory that is more sensitive to the torsional friction between the object
and the table surface.

initial and final poses of the box. See Figure 7 for the box and
the different materials used. In total, we experimented with 2
sheet materials for the table surface, 3 materials for the top of
the box, and 2 different masses for the box.

We evaluate each set of parameters with 3 different goal
poses with 2 trials each, and we removed all trials during
which the robot was not able to move the box at all. This
happens when the friction of the object-table contact is much
greater than that of the robot-object contact. In total, there are
48 trials used for evaluating each of the task-oriented and task-
agnostic exploration policies. See Figure 8 for a visualization
of the learned exploration trajectories and Figure 9 for task
performance during training and real-world evaluations. The
Task-Oriented exploration policy led to smaller mean and
standard deviation of costs than the Task-Agnostic policy,
which did not improve over random exploration. For this task,
random exploration already leads to reasonable Sys-ID, and
task-oriented information is needed for further improvements.

C. Discussions
In both the pouring and box dragging task, and during both

training the exploration policy and testing it in the real world,
the parameters identified by task-oriented exploration led to
better final task performance than ones identified by task-
agnostic exploration. This behavior is observed with tasks us-
ing both analytical models (LQR, pouring tasks) and black-box
models (box dragging), and with discrete exploration actions
(pouring tasks) and continuous ones (LQR, box dragging).

The advantage of task-oriented over task-agnostic explo-
ration is due to the limited exploration budget. Exploration

Fig. 9. Box dragging task results. Left: Regret ratio of task-agnostic vs. task-
oriented exploration policy during training. Right: Real-world task execution
costs using learned task-agnostic vs. task-oriented exploration policies. Costs
are aggregated over 48 trials per method with different box masses and surface
materials.

policies have a finite time horizon, and during training regu-
larization terms are added to prevent the policy from incurring
high-cost states or actions (e.g. actions or states that are too
large). As a result, there is a need to explore more about system
parameters to which the task cost is more sensitive. This is
reflected by weighting the dynamics prediction error by the
task cost in LQR (Equation 15), measuring the mass of the
task-relevant cup more in pouring (Figure 4), and exploring
from an initial contact further away from the object’s center
of mass in box dragging (Figure 8).

Because the performance of an exploration policy during
training is evaluated as an expectation over a wide distribution
of system parameters as well as task goals, the learned
exploration policies can be applied to different systems and
generalize across the task distribution. This benefit also points
to a limitation of our approach, which is that optimizing the
exploration policies requires 3 layers of nested sampling. They
include taking samples for finite difference approximation,
system parameters, and task goals. As a result, the gradient
∇πe Eθ Ψ can be slow to evaluate when full dynamics simula-
tion is used. However, tasks with many model parameters typ-
ically only have a small subset of parameters that significantly
affect task performance. As such, the benefits of the task-
oriented approach will be more apparent in high-dimensional
tasks, where the effective task-oriented dimenaionalty is much
lower than the task-agnostic dimensionality.

VI. CONCLUSION

In this paper, we proposed, analyzed, and implemented a
framework of learning active task-oriented exploration policies
to improve task performance in the real world and bridge the
sim-to-real gap. The learned exploration policy works across
system parameters and task goals, so it can be applied to
different variations of the task without retraining. We instan-
tiated the framework with three experiments using analytical
and full dynamics simulation models. Across all experiments
we observed that task-oriented exploration leads to better task
performance than task-agnostic exploration.
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APPENDIX A
LQR EXPERIMENT

A. System Parameters

• n = 6, m = 3
• θ ∼ N ([0.9, 0.9, 0.9, 0.6, 0.6, 0.6], 0.2I). Samples are

clipped at a magnitude of 1.1.
• Observation noise distribution: N (0, 0.05)
• Dynamics noise distribution: N (0, 0.05)

B. Task Parameters

• Q = diag([100, 100, 10, 10, 10, 1])
• R = diag([0.1, 0.1, 0.1])

C. Adam Optimizer Hyperparameters

• α = 10−4

• β1 = 0.9
• β2 = 0.999
• ε = 10−8

• weight decay = 0.1
• batch size = 70

APPENDIX B
POURING EXPERIMENT

A. Parameters
Initial water masses for both cups are drawn from a uniform

distribution in the range of [0.15, 0.3]kg.
Noise sampled from N (0, 0.03) (unit in kg) and clipped at

σ was added to each mass measurement.
Noise sampled from N (0, 0.005) (unit in kg) and clipped

at σ was added to each pouring outcome simulation.
The range used for finite difference perturbations is 0.05.

B. Real-world Mass Measurement Errors
Figure 10 plots how the cup mass estimation errors decrease

as the number of measurements increase. With 5 measure-
ments, the mean estimation error decreases from the initial
50g to about 15g.

Fig. 10. Cup mass estimation error vs. number of mass measurements. Data
aggregated over all pouring experiment trials. Length of error bars denote one
standard deviation.

C. Adam Optimizer Hyperparameters

• α = 5 · 10−3

• β1 = 0.9
• β2 = 0.999
• ε = 10−8

• weight decay = 0
• batch size = 100

APPENDIX C
BOX DRAGGING EXPERIMENT

A. Box Dragging Task Visualization

Fig. 11. Two example dragging trajectories for the same goal pose. In
both trials the boxes start at the top. The solid arrows indicate the initial and
final box poses, and the dashed arrows indicate the goal pose. On the left the
goal pose and the final pose almost align, while on the right there is a big
difference in the final and goal pose angles.

B. Dragging Task Goal Distribution

• Translation: [xg, yg] ∼ N (0, 0.3).
• Rotation: θg ∼ N (0, 50◦)

Samples are clipped at 1.5σ.

C. System Parameters

The range boundaries form the support of the uniform
distribution Θ. Friction refers to torsional friction. The priors
are the initial distributions used by REPS during SimOpt.
During REPS, the parameter samples are clipped at 2σ and
by the parameter’s corresponding range. Delta is the range
used for finite difference perturbations.

Range Prior Delta
Robot-Object Friction [0.01, 0.4] N (0.15, 0.2) 0.01
Object-Table Friction [10−3, 4 · 10−3] N (2 · 10−3, 0.06) 10−4

Object Mass [0.05, 0.5] N (0.15, 0.3) 0.01



D. Dragging Trajectory Optimization

A dragging trajectory consists of two way points that are
interpolated via min-jerk interpolation. The waypoints are
specified in the object frame, with the origin point coinciding
with the object center. The initial waypoints used for both the
task policy and the exploration have start and end poses as
follows:
• [x0, y0] ∼ N (0, 0.1), φ0 ∼ N (0, 20◦)
• [xTτ , yTτ , φTτ ] ∼ [0.1, 0, 0]

Samples of the first waypoints are clipped at σ and also by
the boundaries of the box, so the robot is guaranteed to make
contact with the box initially.

The range used for finite difference perturbations are:
[∆x,∆y,∆z] = [2 · 10−3, 2 · 10−3, 0.1]

E. REPS Iteration Counts

• SimOpt: 8
• TrajOpt: 5

F. Adam Optimizer Hyperparameters

• α = 5 · 10−3

• β1 = 0.9
• β2 = 0.999
• ε = 10−8

• weight decay = 0.01
• batch size = 5

APPENDIX D
RELATIVE ENTROPY POLICY SEARCH

The episodic variant of REPS works as follows:
Let z be the optimization variable and R(z) be the reward

function (for minimizing costs, set rewards to the negative
costs). REPS is initialized with a normal distribution over the
optimization variable N (µz,Σz). At every REPS iteration, we
draw N samples from the current normal distribution over z
which gives us a set of zn’s. Then, each sample is evaluated
for a reward Rn, which are used to update the distribution
over z. The update is performed by first computing the

temperature parameter η from the KL-divergence constraint
ε by minimizing the following objective:

η∗ = arg min
η

ηε+ η log
1

N

N∑
n=1

eRn/η (17)

The new mean and covariance are:
dn = e

Rn
η (18)

µz =

∑N
n=1 dnzn∑N
n=1 dn

(19)

Σz =

∑N
n=1 dn(zn − µ)(zn − µ)>∑N

n=1 dn
(20)

We use ε = 1 for all experiments.

APPENDIX E
FINITE DIFFERENCE VIA PLANE FITTING

The finite difference approximation used during training the
pouring and box dragging exploration policies is detailed in
Algorithm 3. The inputs to the algorithm are:
• f - the function to be differentiated.
• x - the input around which f is differentiated.
• ∆ - the variance around which to sample perturbations.
• l and u - the lower and upper bounds for x. This is useful

for bounding the input perturbations, for example when
x is a probability between 0 and 1.

• N - the number of samples to use.

Algorithm 3 Finite Difference via Plane Fitting
Input: f, x,∆, l, u,N

1: X ← N samples from x+ max(min(N (0,∆), u), l)
2: F ← [f(X1), . . . , f(XN )]
3: X̄ ← 1

N

∑N
n=1Xn

4: F̄ ← 1
N

∑N
n=1 Fn

5: ∇xf(x)← (X − X̄)†(F − F̄ )
6: return ∇xf(x)

The † symbol denotes taking the pseudo-inverse.


	I Introduction
	II Related Works
	III Method Overview
	III-A Active and Task-Oriented Exploration
	III-B Training a Task-Oriented Exploration Policy

	IV Analysis and Experiments for LQR
	IV-A LQR Analysis
	IV-B LQR Simulation Experiment

	V Real-world Robot Experiments
	V-A Task: Pouring
	V-B Task: Dragging
	V-B1 Optimizers
	V-B2 Real-world Evaluations

	V-C Discussions

	VI Conclusion
	Appendix A: LQR Experiment
	A-A System Parameters
	A-B Task Parameters
	A-C Adam Optimizer Hyperparameters

	Appendix B: Pouring Experiment
	B-A Parameters
	B-B Real-world Mass Measurement Errors
	B-C Adam Optimizer Hyperparameters

	Appendix C: Box Dragging Experiment
	C-A Box Dragging Task Visualization
	C-B Dragging Task Goal Distribution
	C-C System Parameters
	C-D Dragging Trajectory Optimization
	C-E REPS Iteration Counts
	C-F Adam Optimizer Hyperparameters

	Appendix D: Relative Entropy Policy Search
	Appendix E: Finite Difference via Plane Fitting

