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This paper is concerned with large time behavior of solutions to a semi-discrete model
involving nonlinear competition that describes the evolution of a trait-structured pop-
ulation. Under some threshold assumptions, the steady solution is shown unique and
strictly positive, and also globally stable. The exponential convergence rate to the steady
state is also established. These results are consistent with the results in [P.-E. Jabin,
H. L. Liu. Nonlinearity 30 (2017) 4220-4238] for the continuous model.
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1. Introduction

The evolution by natural selection is the most ubiquitous and well-understood pro-
cess of evolution in living systems. Adaptive dynamics (see Refs. 13, 14, 19 and 31)
is a branch of evolutionary ecology, that aims at describing the Darwinian evolution
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of populations along a phenotypic trait x, which characterizes each individual. We
are interested in the population dynamics subject to mutations and selection due
to competition between individuals. In such setting probabilistic models are usually
considered as the most realistic. We refer to Ref. 30 and the references therein for a
nice introduction to the probabilistic approach. When the total number of individu-
als is too large (it can easily reach 10'° ~ 10*2 for some microorganisms), it becomes
prohibitive to compute numerically the solution to this process. In that case one
expects to be able to derive a deterministic model as a limit of large populations.
Such of derivation was proved in Refs. 9 and 10 and one obtains integro-differential
equations like

Opu(t,x) = M(u)(t,x) + u(t, x) (a(x) - /b(x,y)u(t, y)dy)7 (1.1)
where the mutation kernel is for instance
Mv)(z) = /K(z)(a(ac + 2)v(z + 2) — a(z)v(x))dz.

Although mutation cannot be fully understood without molecular knowledge, it can
be replaced by diffusion for qualitative analysis so that we have

Byu(t, z) = Au -+ u(t, 2) (a(x) - / b, )ult, y)dy>. (1.2)

For rare mutations, the above models become the well known

Oru(t,x) = u(t, x) <a(x) — /b(x,y)u(t,y)dy). (1.3)

These competition models or their variants when arising in ecology with individuals
competing for resources, x denotes a location variable, see, e.g. Refs. 5, 16 and 20.

Of special interest are the steady states of population models, which may rep-
resent some biological patterns emerged as intrinsic properties of such models. For
instance, with model (1.3), one expects that the population density concentrates at
large times, see, e.g. Refs. 2, 6, 12, 24 and 37. The singular steady-state solutions
of such competition model correspond to highly concentrated population densities
of the form of well-separated Dirac masses. This density concentration phenomena
has been shown to happen only asymptotically in the model with mutations (see
Refs. 3, 11, 27, 32, 33, 35 and 36). The emergence of patterns also occurs in other
mathematical models that mimic dynamics of populations (see for example, Amaral
and Meyer,* Ji and Li,?> Murray,3* Tokita3?). Hence, links are often made between
patterns from models and in nature because of their similarity. Through inquiries
into the dynamics of evolution, one may understand why we observe such patterns
in real world.

Generally speaking, the emergence of patterns follows an optimization process,
and that explains why game theory has served as a powerful framework for the
construction of evolution models of natural selection (see for example the review
paper Ref. 29). A central concept in the game-theoretic approach to ecology and
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evolution is that of evolutionary stable strategies (ESS), pioneered by Marynard
Smith and Price in 19732%. For example, this concept has been used as a guide to
determine a favorable density distribution among infinitely many steady states to
(1.3), see, e.g. Ref. 24.

In this paper, we focus on a nonlocal selection-mutation model with a gradient
flow structure. Such structure facilitates the analysis of the underlying dynamics
(see Refs. 8 and 22) and fulfills criteria that are relevant for optimization; see, e.g.
Ref. 21 for dynamics in gradient systems. Our objective is to investigate issues on
time-asymptotic convergence rates towards discrete steady states. This is related
to recent results in Refs. 8 and 22.

1.1. The model and its properties

Our model equation is the nonlocal selection-mutation equation

o f(t,z) =Af(t,z)+ f(ta:( /bxy ty)dy) t>0, reX,

(1.4a)
f0,2) = f(z) >0, ze€X, (1.4b)
g—‘l]j =0, ze€0dX, (1.4c)

this is an intergo-differential equation that describes the evolution of a population
of density f(t,x) structured with respect to a continuous trait x, where X is a
subset of R™, and v is the unit outward normal at a point x on the boundary
0X. Delicate competition of selection and mutation leads to mathematical and
numerical challenges in solving such problems.

In this model, the diffusion term plays certain role of mutations in the popu-
lation dynamics. Coeflicient a(x) is the intrinsic growth rate of individuals with
trait x, and b(x,y) > 0 represents the competitive interaction between individuals.
Such a trait dependent competition appears in many population balance models of
Lotka—Volterra type, see, e.g. Refs. 4, 12, 17 and 18. In particular, a competition
model for fish species population is introduced in Ref. 38 to study the effect of
exploitation on these species. Compared to competition term of classical models
— [ b(x,y) f(t,y)dy. The main difference between (1.4) and classical models is its
nonlinear competition term

—/ b(z,y) f2(t, y)dy
X

From the biological point of view, such competition terms may represent direct
predation. More commonly though, it is typically a simplified way of modeling com-
petition for resources between subpopulations. Classical linear competition terms
like —fX b(z,y)f(t,y)dy have long been used in that context, e.g. Lotka—Volterra
systems. They can simply be seen as assuming that each subpopulation will con-
sume an amount of resource proportional to their headcount; the kernel b(x, y) then
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models how close the resources used by the subpopulation with trait = are to the
ones used by the subpopulation with trait y.

Nonlinear terms — [y b(z,y) f2(t,y)dy, as we consider here, are used where
modeling more complex effects between population and resources. At the level of
microorganisms, resource consumption results from a chain of biochemical reactions
where various subpopulations may each play a role; when those subpopulations are
small, their interactions may in fact look more collaborative than competitive (see
for example Ref. 23). On larger animal populations, such as the fish species model
mentioned above, resources will usually include over animal population in complex
interaction. In particular one may observe some drastic effects on the resource pop-
ulations with almost complete collapse when the predatory population becomes too
large. This type of effects are poorly represented by linear competition terms with
respect to the quadratic term which increases the impact of large populations.

From a mathematical point of view, the main attractive feature of model (1.4a)
is its gradient flow structure in the sense that (1.4a) can be written as

10F
25f

where the corresponding energy functional is

— 1 [ e g sdy

_5/ ()f2(txdx+/|v f(t,z)|?dx, (1.6)

onf = - (L5)

so that the energy dissipation law %F[f] = —2 [ |0y f|*dz < 0 holds for all ¢ > 0,
at least for classical solutions.

Such a gradient flow structure is preserved by the finite volume scheme recently
proposed in Ref. 8, in which we show that both semi-discrete and fully discrete
schemes satisfy the two desired properties: positivity of numerical solutions and
energy dissipation. These ensure that the positive steady state is asymptotically
stable. A rigorous analysis on global existence of (1.4), and time-asymptotic con-
vergence to the positive steady state is further provided in Ref. 22, complementing
with the numerical results in Ref. 8.

The objective of this paper is to study the time asymptotic convergence rates
towards discrete steady states of the semi-discrete scheme in Ref. 8. Our starting
point is Ref. 22, and we refer the reader to it for more references to earlier results
on this and related models.

It is of course natural to conjecture that steady states of the system describes its
permanent behavior. For this reason, calculating steady states and obtaining rates
of convergence is especially useful. In models without mutations like (1.3), there
can actually exist several steady states: u is a steady state iff

a(x) = /b(x,y)u(y)dy YV € supp u.
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Many of those steady states can actually be unstable, for example if for some

To & Supp u,
a(xg) > /b(xo,y)u(y) dy

then a mutant with trait xyp may invade and w is unstable. This leads to the defi-
nition of ESS which also satisfies

@) < [ W yuludy. Ve

The ESS may be interpreted as a Nash equilibrium with appropriately defined
payoff. Note that a strict inequality is sometimes required instead (or some other
condition as in the famous Ref. 28), in which case a Nash equilibrium may not be
an ESS.

With mutations and diffusion in the model however, one expects any steady
state to have full support and hence not to require any additional assumption for
stability. Moreover in our present case the nonlinear dependence with respect to
u in the competition term prevents any straightforward interpretation in terms of
game theory or strategy.

To compare the results in Ref. 22 with what we do here we need to recall some
conventions. In Ref. 22, we make the following basic assumptions:

a€ LX), H{x|a(z) >0} #0; (1.7a)
be L*(X x X), essinf, pexb(x,a’) (1.7b)
b(x,y) = b(y,z), Yge L'(X)\{0}, / b(x,y)g (y)dzdy > 0. (1.7¢)

From the biological point of view, the first assumption on @ in (1.7a) simply means
that the growth rate of the population is necessarily limited. The second assumption
ensures that there are at least some phenotypic traits where the population grows so
as to avoid extinction. Assumption (1.7b) simply again guarantees that competition
exists between any subpopulations but cannot be unlimited. Assumption (1.7¢) is
more fundamental for the structure of the interactions between sub-populations.
The equality b(z,y) = b(y,z) forces a strict symmetry in the competition: sub-
population x has exactly the same negative impact on sub-population y that y
has on . The second part of (1.7¢) is intimately connected to the stability of
the dynamics. It imposes a strong constraint on how small perturbation in the
population density will increase competition.

With these assumptions, in Ref. 22, the steady state g is shown to be strictly
positive if A\; < 1/2, where A1 is uniquely determined by

2 2
J IVa|?da :inf{f|vzv| dx .

A =
! [ a?dx J av?dz

€ D(Ly) and /av2dx > 0}, (1.8)
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where the positive function ¢ € D(L;) with [ay?dz > 0 and D(Ly) = {u €
H?(X) : Opu|px = 0} is the domain of the Laplace operator Lyu = —Au. And the
principal result of Ref. 22 becomes

Theorem 1.1. (Theorem 1.3 in Ref. 22) Assume both a and b satisfy (1.7). Con-
sider any nonnegative f° € LY (X)NL>(X). Then the corresponding solution f(t,)
of (1.4) converges to the steady state g

Jim [[£(t,) — 90|z = 0. (19)
And moreover, there exists C depending on initial data f° and g > 0 such that

/|ftx x)[Pdr < Ce™™ Vit >0,

for [adz >0 or [adz <0 with Ay # 5, where of course g =0 if Ay > 1/2.
For [adx <0 and \; = 3,

c
/|f(t,a:)|2dx§ —— vi>o

In this paper, we establish a discrete version of Theorem 1.1 and related results.

1.2. Assumptions and main results

For simplicity of presentation, we restrict ourselves to only one-dimensional setting
for X = [0, L]. We partition X into subcells I = [z;_1/2,%;41/2], j = 1--- N, for
a uniform mesh of size h = L/N so that x; /5 = 212 + (j — 1)h with 21/ = 0,
Tn41/2 = L. We consider the following semi-discrete scheme:

N
fj_f 2fg+fj+1+%fj <aj—hzbjif?>, 1<j<N, (1.10)
=1

12
where

fo=fi, [fn+1=fn,
_ 1 - 1
aj = E . CL(.’L’)d.’E7 b]z = ﬁ /l /Ij b(.’l,'7y)d$dy, (111)

and the numerical solution f;(t) approximates the average of the exact solution f

on I;. From the basic assumptions (1.7) one may derive similar assumptions at the
discrete level:

la;] < llaflos, {1 <j<N,a; >0} #0; (1.12a)

0 < by <bj; <|blloc forl<i,j<N; (1.12b)

= byj; ZZ bjviv; >0 for any v; such that Z lvj|? # 0. (1.12¢)
== ot
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Under additional assumptions, (1.12) ensures the existence and uniqueness of pos-
itive steady state g satisfying

—g1+g2 1 _ Al 9
7 + 591 (al - h;bligi> =0, (1.13a)
gj1—29j+gj+1+lg,<a,_hib,,g2> =0, j=2,...,N—1, (1.13b)
h2 2 J J — JrIi ) ) ) ’
gN-1—9gn 1 _ N 5
R (aN—h;bNigi> — 0. (1.13¢)

Note that (1.12b)-(1.12c) imply that B = (b;;)nxn is a positive definite matrix,
so it defines a scalar product

N
(w,v) = h2 Z Bijwivj
ij=1
with corresponding norm
N 3
wllp = b W4 W; . .
[Jw| WY bjiw; (1.14)
i,j=1
We will also use the discrete I norm
N 1/p
lwlly = [ Y lw;|Ph
j=1

In order to characterize the conditions on a; for which the steady state g is strictly
positive, we set

N
A=< veRNw#0and Zdjvj2h>0 , (1.15)
j=1

and

N-1 27 —1
- (vja1 —v)°h
K] = 2 (NJ“ i) , ve A (1.16)
Zj:l szvﬂh

We then have the following result.

Theorem 1.2. There exists u € A, such that

A1 = Ku] :{Jréi}qlK[v]. (1.17)

Moreover,
(i) Ifh Y0, a; >0, then Ay = 0;
(i) IfhY 0 a; <0, then A > 0.
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We can show that the steady state is strictly positive if A} < 1/2. More precisely,
we have the following result.

Theorem 1.3. There exists g € S = {f € RV | f > 0} satisfying (1.13). Moreover,
(1) if 0 < A1 < 1/2, then there exists a unique positive solution such that

O<gmin<gjggmax<00 fOTlS]SN,

(il) of A1 > 1/2, there is no positive steady state.
Thanks to this result, we can show the convergence of f(t) to g as t — oc.

Theorem 1.4. Assume both a; and b;; satisfy (1.12). Let f;(t) be the solution
to (1.10) subject to initial data fjo, and g the steady state. Then there exists A
independent of f°, and C depending on the initial data f° such that

[ f(t) — gll2 < Cexp(—At), V>0,

for Z;VZI a;h > 0 or Zj\;l ajh < 0 with M1 # 1/2, where g = 0 if Z;VZI ajh <0
with Ny > 1/2.
For Zj\;l ajh <0 with \y =1/2,

C
[ fll2 < T vt > 0.

The proofs of these theorems rely on a careful use of the competition assumption
and are given in Sec. 2. The main techniques in the proof of Theorem 1.4 mimic
those in Ref. 22, yet we overcome a number of new difficulties arising from the
spatial discretization.

Let us remark that under the transformation u = f2, the resulting equation
from model (1.4) becomes

2
Owu(t,x) = Au — [Vul?

+ u(t,x) (a(x) —/ b(&y)u(t,y)dy).

X
Therefore there does not seem to be any simple way to reduce (1.4) to an already
studied case.

Numerical schemes with similar methodology to that in Ref. 8 have been pro-
posed and analyzed for the linear selection dynamics governed by (1.3) in Refs. 7
and 26. The schemes in Ref. 26 feature two nice properties: positivity preserving and
entropy satisfying, and numerical solutions are proved to asymptotically converge
to the Evolutionary Stable Distribution (ESD). The exponential convergence rates
towards the special ESD and the algebraic convergence rate towards the general
ESD are obtained in Ref. 7.

The rest of this paper is devoted to the proof of Theorems 1.2-1.4, as presented
above.
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2. Proofs of the Results
2.1. Proof of Theorem 1.2

We recall that the minimum value of a multivariate continuous function in a closed
domain can be reached (the discrete problem is finite-dimensional). Hence from

. . 1 Uy
E%IEK[U] = MGRNﬁZI:r;n i ]; wit1 — w7, w; = —E;\Ll ajngh,
it follows that there exists u € A, such that
A= Ku] = min K{v]. (2.1)
Note that we always have \; > 0. Introduce
~1 N
Qxr(v) = Z (vj11 — ) At — )\Zajvfh, (2.2)
J=1 j=1

clearly

Q/\l (u) =0

and Qy, (v) >0 for all v € A.

(i) In order to show A; = 0 when hZ?;l a; > 0, it suffices to show for any
A > 0 there exists v € A such that @ (v) < 0.

If Zjvzl ajh > 0, we choose v = (1,1,...,1) € RY, so that

N
v)=-AY _a;h <0.
j=1

If Zj\;l ajh = 0, we choose any v € A such that Zjvzl a;v;h > 0 and s € R, so
that for s > 0 sufficiently small we have

N-1 N
Qx(1 4 sv) = 5° Z(vj+1 —v;)? )\Z a; ( 1+2svj+321)2)h
j=1 j=1

N
=s52Qx(v) — QSAZdjvjh <0.

j=1

(ii) If Zjvzl ajh < 0, the situation is different. The key to the situation is the
following lemma, whose continuous analog is stated by Fleming in Ref. 15.

Lemma 2.1. [If Z;\Ll ajh <0, then there exists € > 0,17 > 0 such that

N-1
Z vjp1 —vj) Rt > eZth
J=1 J=1

for allv € RN such thatz . ajuih > 7]2] L3R
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Assume this lemma for the time being. If ZN:1 djvjzh > 0, then

S Wi —v))?h!

SN2
1Ignjaung\] ;| ZJ:1 v;2h

and so A1 > €/]|al|o > 0.

We now return to prove Lemma 2.1 by contradiction. Suppose a sequence {v"} C
RY such that

N N—1
Z Zaj )?h > —1/n and Z Uiy — ”)thl < 1/n,
Jj=1 Jj=1

for all n. Then {v"} is bounded in RY and so has a subsequence {v"} converging
to v in R (by the Bolzano-Weierstrass theorem). Then

Ko} = > ¢/llall >0,

N N N-1
Z(vj)Qh =1, Z&j(vj)Qh >0 and Z Vi1 — ;)R =
j=1 j=1 j=1

Since Zj.vzl(vj)Qh =1, and Z;.\;l(vﬂl —v;)?h~1 = 0, we must have that v; = ¢ =
1/VL for j =1,2,...,N. But this implies

N N
Zc’zj(vj)Qh =2 Zajh <0
j=1 =1

and this is a contradiction. Thus, we have finished the proof of Lemma 2.1.
Finally, we relate the sign of @, (v) to the value of A < A;. This result will be
used to prove exponential convergence to zero steady state in Theorem 1.4.

Lemma 2.2. Assume hZ;.Vzl a; <0 and 0 < X\ < A1, then there exists v > 0 (v
depends on \) such that Qx(v) > v||v||? for all v € RN

Proof. Let A = (1 — s)\; with 0 < s < 1. Then,

j=1 j=1

N—-1 N
QA(U) = Z(Uj+1 — Uj)2h71 — )\Z&jv?h
A

= —Qx (v) + (1 - —) Nﬁl(vﬂl —v;)?h !

1

N—
+1 — h
UJ UJ ?

since, by the definition of /\1, Qx, > 0.
Let € and 1 be the constants described in Lemma 2.1. If Zjvzl ajvih >

-1 Zj L v3h, we have

N—
ZUJ_H—UJ )°h™ >3€szh

7j=1
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andlfzj L a0ih < UEJ L v3h, we have

N—-1

N N
(vj41 —v;)°h 7t = /\Zdjvjz»h > /\UZU?h. O
— —

=1

<.

2.2. Proof of Theorem 1.3

Here we give a variational construction of a positive solution of (1.13). The unique-
ness of positive steady state has been proven in Ref. 8. First, we claim that having
a nonnegative solution to (1.13) is equivalent to the nonzero critical point of the
functional

1 & 1 e
:Z Z 2"2_52 Z Wjt1 — W;) h717
) ) (2.3)

where w = max{w, 0}. Indeed, a nonnegative solution of (1.13) is obviously a crit-
ical point of F(w) since Oy F(w)|w=4 = 0 is exactly the system (1.13). Conversely,
if g is a critical point of F(w), then

N n N—1
B _ 2 B -
0=> 0u,F(g)g; =h> > bigl(g; )+ = > (9541 = 99) (9551 — 95)
=1 ij=1 =1
n 9 N—-1 9 N—-1
=0y biggi (e + 2 D (950 — 9707 = 3 D (959) +9fag5)
ij=1 j=1 j=1
n 2 N—-1
th Z bl]giz(g] )2+E (gj+1 gj )27
i,7=1 J=1

where g; = min{g;,0}. We see that g~ = 0, which implies g > 0. Hence g is a
nonnegative solution of (1.13).

We next prove the existence of a minimizer for the variational problem F. By
Young’s inequality, we have

N-1
Flw) > bmellg - _||a||oon||2 + ) (wier —w;)*h
Jj=1
oLl
I 1

This says that F(w) is bounded from below. Hence m = inf,cs F'(w) is finite.
Select a minimizing sequence {g¥}2° |, so that

lim F(g*) = m.

k—o0
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Set C = supy, F(g*), then

1 1
1omllg"llz = Sllallellg™ll3 < C,

which implies that

laflo , 1
913 < 55 == + = V/llall& + 4bnC < co.

Hence, {g*} is bounded sequence in R . There exist g € RY and a subsequence of
{g*} (still denoted by g*) converging to g such that for any v € RY,

thJ F—gj)=0 ask—oo.
Note that
lwi, —w) | < |wjpr —wjl,
therefore

F(g") < F(g),

one may replace ¢g* by its positive part and as a consequence we may assume g~ > 0.
Hence g > 0. A direct calculation shows that

N
hy _lgfP? thg]F thJ—g]F—thg] C ) =0, as k= oo
j=1

and

h Z \9f —gj P = Z \gj+1— 951> —h Z 951 — 9} — (9541 — g))I?

N-1
=20 Y (gj+1—9) |95 —9F — (gj+1—9)] = 0, ask — oo.
j=1
Note also that
N N
> bilgh) (g8 = > biilgl — 9i)* (g — 9;)°h?
i,7=1 i,j=1
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and

hm Zaj g] )2h = hm Zaj gj

These together ensure that

N—1 N—1
=Y lgis1—giP =D labi — g = (gj1 — 9i)P
j=1 j=1

mH

N
Zl; K g)? (g —g;)*h* = F(g), ask — oco.

Then

m = lim F(g*) > F(g) > m.

k— o0

By g € S, it follows that

Flg) =m = min F (/).

This proves the existence of a nonnegative minimizer.

To prove that g is not identically 0, when Zj\;l ajh >0 or Zj\;l ajh < 0 with
A1 < 1/2, we discuss case by case, keeping in mind that F(0) = 0.

(1) If Ejvzl ajh > 0, choose w = ¢, then

6 a 6 a

for e small enough.
(2) It Zjvzl a;h =0, we take w = €(1 + 0v) satisfying Z;V:1 a;v;h > 0, so that

N
F(w) = EZ Z (14 6v;)%(1 + 6v;)°h?

5 N N-1
— % Z Elj(l + (SUj)Qh + €262 Z (’Uj+1 — Uj)2h_1
j=1 j=1

(14 6v;)%(1 + dv;)*h?

| T
l\:>|"‘[\3

i_
*x

N
v]+1—vj Za]vjh —252djvjh <0

for €, 6 suitably small.
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(3) It Zjvzl ajh < 0 with Ay < 1/2, we take w = 7u with 7 > 0 and wu satisfying
(2.1) so that

4

N N
1
F(ru) = TZ E il 2uZh? + 1 ()\1 - 5) E dju?h
ij=1 i=1

N 2
1 L a;ush
72+4<>\1——> 2= 0th A ]<0

2 I

A

2
.
< Tl

for 7 > 0 sufficiently small. Hence, in all these three cases the minimizer cannot
be 0.

(4) Finally, we show 0 is the only minimizer if Zjvzl ajh < 0 and Ay > 1/2.
Note for any v € RV with Z;\;l djvjzh < 0, we have

| X N-1
F(v) > Z”zzzlbﬂv vZh? + ; Vjg1 —vj) h~t>0.

Iij.Vlaj Jh>0 then

F(v) = £||v2||§ - (Al - —) Z ik + Qa(v) > 0= F(0).

That is, we have F(v) > 0 = F(0), in such case 0 is the only minimizer.
Finally, we show the 0 < gmin < g5 < gmax < 00. Assume gmin = gj, = 0, then
from (1.13b), we have

Fjo+1 + Gjo—1 =0,

leading to gj,+1 = 0, hence g; = 0 for all 1 < j < N, leading to a contradiction.
Assume that gmax = gj,, then again from (1.13b), we have

lallee > @jo > bmllgl3-

/llallos
Hence, gmax < oo < 00.

2.3. Proof of Theorem 1.4

As it will prove convenient later, we first give a uniform /2-bound of the numerical
solution when b;; > by, > 0. Let v = ||al|oo/bs which will be used to quantity the
uniform bound.

Lemma 2.3. Assume (1.12) holds. Let f be the solution to (1.10) with nonnegative
initial data f° >0, and ||f°||2 < co. Then,

1£1l2 < max {[| %2, v/7} = M. (2.4)
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Proof. Let Q(t) = 31| f?h = ||f|3. Then using (1.10), we have

_Q _zzfafj 1— QIJ; + fifi+

7j=1

S [f?h ( - hzbﬁﬁﬂ- 25)

The first term on the right-hand side of (2.5) is nonnegative since

2Zf]f] - 2Zf2+f1+fN

j=1

N N N
DB a2 AR+ =0,
j=2 j=2 j=1

where we have used fy = f1 and fy11 = fn, and the Cauchy—Schwarz inequality.
The second term on the right-hand side of (2.5) is bounded above by

=0

1<j<N

N

max (aa’ - hzbﬁff> Q) < (llallsc = bm@(1))Q(t).
i=1

Combining the above estimates, we obtain

£Q < (lalla ~ baQU)QA)

Hence, Q(t) < max{Q(0),~}. This yields the claimed estimate (2.4). O

Before going further, we provide a discrete version of the one-dimensional
Poincare inequality, which will be used twice in the proof of Theorem 1.4.

Lemma 2.4. For any v = (vi,vs,...,von) € RV then
N-1
Z [vjt1 — UJ| > N2 1nf Z |vj — o, (2.6)
j=1

- : : s _ 1N
where the minimum is achieved at ¢* = 5 37—, v;.

Proof. The quadratic form in ¢ in (2.6) implies that the minimum point must be

*

=+ Zjvzl v;. To prove (2.6), it suffices to show

Nt N
Z|ij—(v1+vg+~-~+vN S?Z UJH—UJ . (2.7)
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The left-hand side of (2.7) can be estimated using the Cauchy—Schwartz inequal-
ity as

N | N 2 N i N-1 2
Z Z(Uj vi)| = Z i(Vig1 —vi) — Z(N — 1) (vit1 — i)
j=1 li=1 j=1|i=1 =7

N [j-1 N-1 N—-1
SO A+ IN= | D o1 — vy
Jj=1 =1 =7 Jj=1
e N—-1
=2 S+ DI+ ) Y foger — vl
i=1 j=1
N2(N?2 N-1 )
=— % [vj41 — vj]°.
j=1
This leads to (2.7). |

We proceed to prove Theorem 1.4. For a positive steady state g > 0, we introduce

N 2_ 42 ,
o3[ (2)]

Jj=1

the auxiliary functional

Q
|

After rewriting, we have

N 12

G= Z[ —%—gﬂn(—é)]
j 9i
N

1 f2_g2
Z[fQ—g] / mds]

Jj=

MIE NJID‘
—

[

N

Z _gj )

NJID‘

where
bos(f+95)°
o sff +(1—s)g

We thus can estimate both the upper and lower bound of G.
For some n € (0,n0] with ng < 1,

K, =

G=5| > Ki(fi—g)°+ >, Ki(f;—g)*| = 1+IL

fizng; fi<ng;

| >
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It f; > ng;, then

1 ) N2 ) 2
K; S/ s < <1+&> < (L+n7h)%
0 Sfj

If fj < ngj, then for 6 € (0,1),
1 sg2
K; < 4/ — s
’ o sfi+(1—s)g;

1-0 2 1
9; 9;
4l/0 (1—3)gjds+/05f2ds]
7
f2
=4(f7/g? +2In(g;/ ;)]
<4+81n(g;/ f;) < Cln(g;/f5),

where C' = 8 + ﬁ. This implies that for any 0 < n < ng < 1,

IN

= <1n9—1+9+0 ) taking 0 = f7 /g7

G <o i - gli+Ch Y Wlgs/F)F 9

fi<ng;
<2n72||f — g||2 + Chg? In(g;/f; 2.8
= 77 ||f gH2+ gmax Z n(gj/fj)' ( . )
fi<ng;

On the other hand,

h & f;
G=5 2 |(5 =0+ 2 (£ - 1-mis /)
=1 9i
1 al f;
— -ty (2 -1 min)
= g;
> l”f_ 2 gmm 1 2.9
=3 glz + Z n(g;/f5) (2.9)
fi<ng;

for any n < ng < 1, where C' depends only on 7.
A direct estimate now gives

d al fit a fit
70 =0 (D=7t ) =n 3o -

N
:hzlfz [fm h22iij+f11 _< _hzbﬂfﬂ
=
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N
ZfQ—g]

N
fj+l_2fj+fj71_gj+1_2gj+gj—1_ﬁz (2 -
h2f] h2gj 2 — 2 g’L

1 o firi+fimt g +9j—1>
- - >( : X

.
7Zb f2_gl)(f2_gj)

L+ b= ¢,

where we have used fyi11 = fn, fo = f1, gv+1 = gn, and gog = g1. For 17, we have

N
1 ; + fi_ . + g
hz—E ff (fﬂ“ ficr gty 1)

fi

4 [9;(fi+1 + fi-1) = fi(gj+1 + gj-1)]

o~/
Z— (9jfi—1 — fi95-1)
]

D‘I'—‘

1
=T Z &(gjfﬁ»l fjgj+1
h =9

[ N2 f; 1 N=
= - Z “L(gifiv1 = figir) + 5 Z = fi+195)
h j=1 9j h j=1
N-1
1 i i
=— (—j 2 ) (95 fi+1 — figi+1)
h < \9 gt
N-1 2
1 fivn  Jy
I 9i95+1 |7 — — =
= gj+1 gj
Similarly,
N N—
1 gi+1 + gj—1 fj+1 + fic1 1 gj+1 QJ
h; ’ 9 fi hz:: e i

Collecting the above relations, we have

d 1= g g2
aC= TP = f L Sl |

fivr  fj
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where

2
fivr i
gj+1 Gy

1 1=
D(f,9)=§||f2— 5 + Ez 9i95+1

We claim that there exists a constant v such that for every P > 0, we can choose
np < 1 to obtain
vG(0)

—=G(t Vn <
+ P G(>7 77777P7

2
gi+1 95

fiv1  fj

N—
h Z ln gj/fj %Z fj+1

fi<ng;

wlt

(2.10)
and that there exists o > 0 such that

D(f.9) = ullf/g =15 (2.11)

Assuming (2.10) and (2.11) are correct for the time being, this gives for any 0 <
e<1,

dG _ € = gir1 gl
@ =P 2 bl [
—ullf/g—lllg—%h > In(g/f;) + €GO)G(2). (2.12)
fi<ng;

From the upper bound of G in (2.8), we have

N

TSR gz" S - 95)?

max ;1
772 2

2 50— |G = Cgnach 3 Inlg;/f;)
max £i<ng;
7’ Cn?

= FG(L‘) - Th Z In(g;/ f;)- (2.13)
max fi<ng;

Substituting this into (2.12) gives

ac _ < “;72 _ eG(O)) G(t) + (C% - f) h > In(gi/fy)-

di 29 inax fi<ng;

2

Choose P = 2Cvg?2, .G(0) (and hence np accordingly), and choose ¢ = 492"7"6(0),
which can be made smaller than 1 for some 1) <np.
This implies that there exists A = 4“;7 such that

Imax

dG
— <<
o < G,
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which yields G(t) < G(0)exp(—At). This when combined this with the lower
bounded G gives

If = gll2 < V2G(t) < V2G(0) exp(-At/2).

We now return to prove (2.10) and (2.11), respectively.
In order to prove (2.10), we recall for any &, > 0

€ =nl> > &n|ng —Innl?,

with which we proceed to estimate

L N-1 girr i 2
E ; fjfj+1 m - f_]
l1\/—1 B 1gﬂ_l_1&2
> 7 ;gﬂgﬁ'l nfj+1 nfj
> ng S In P+ 9 i
TR finm fi
Lo 2 S 9j ’
> EgmmCh Hclfz Iny f—j —c|
j=1

where Iny # = Inz |, 5,1 for 0 < n < 1, and C = % from (2.6). The optimal
constant ¢ is given by

h gj
c=v Z In —j (2.14)
fi<ng; /
By using the lower bound on G, we estimate
< 1CG(1) - CG(O).
- L gr2nin B LgrQnin

Then using (2.14), we have

2
gi 1 < 9j>
h m% <p = (%
Z fj fj;gj |ln77| fj

fi<ng;
N i 2
<h —_— ln+—]—c—|—c
;Uﬂll fi
1 N i 2
<—— | |Iny ZL —¢| +2L
[In.7| Z} i
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11 1= g; 9|2
< e |5 0 fifin | -
nn| Cg2,, h; P e
L 2
T i) Z2gn,, GO0

which leads to (2.10) with np = e~ and

1 Cc?
vV = max O Lgﬁlin .

Next, we prove (2.11). Using the lower bound of g and (2.6), we obtain

N-1

N-—
1 Z - i £l gmm Z fivn B
h = 9391 gi+1  9j S99
N f, 2
> Cg?n]nh’ ég%z _J —C
204~ 1g
where the minimum is achieved at ¢* = 1{, Z;V 1 g—J and C' = %
As a consequence it suffices to find p independent of ¢ such that
N f; 2 2
Cotu Y- |2 ol #3182 Pl 2w -1
j=1 gj 2

If ¢ = 1, the inequality is obvious for u < Cg?; .
For ¢ # 1, we estimate

112 =%z = |1f* = g* + (* = 1)g°|l;
= (= 1D?||g?IF +2(c®* — 1){f* = ¢, ¢*)p + | 1> — 2?1}
5
>6(c* = 1?9113 — m\\fQ Al

for any 0 < § < 1 by using Young’s inequality.
Note that for || f|| < M, we have

[~
172 = 215 < B2[bllos | D_(fF = 93)
j:l

2

Mz

< h?[bllo

(fj+eg)” | | Do —cgy)?

J=1

.
Il
-

N N N
S22 blloe | D ST HED 07 | G D _(fi)95 — ©)

j=1 j=1 j=1

2083

(2.15)
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N
< 206l ccgimax (IF113 + < llglI3) h D (Fi/95 — o)
j=1

< 2[|bllscGmax(L + )M f /g = cll3, M := max{M, |g]|}.
Therefore, the left-hand side of (2.15) satisfies

)
LIS > (gl gy 200t + T2 /9=l + (6 = 20212

091211111 5
= THf/g — 3+ 5(62 - 1)%1¢%II7

. Cg2.
by taking § = min N
Y RAKINE O = G2 211 c?) [bllow 9 M2

Furthermore, we use the Young inequality for any 7 € (0,1) so that

L
’ (c—1)%
1—7

If/g—cl3=1lf/g—1+1=cl3>7lf/g 1]~

This finally gives

TL 2 0, 5 20,212
e 17 + 6 - 0PI

Cgmm
LHS > 7l f/g = 1113 —
- —Cgﬁ““’nf/ 1 o— 12 [ 2R - STt
T g= 2z 2 =50 -7
Therefore, it is enough to take 7 such that

5 CgminTL

“ 1 2 2012 _ min

e+ 17?5 > 0,
that is for ¢; = CG(0)/(Lg2;,),

i 8(c+1)°[lg°II3 _ 9”113 ]
0<eser 8(c+ 1)?[19°lI5 + Comnl (192017 + L(CG2in + 2/1bllccgRiax M?)

T =

which leads to (2.15) for pu = Cg‘“‘“ . Hence, (2.11) is also proved.

Finally, we investigate the case when 0 is the only steady state, which is the
case when Zj\;l ajh < 0and A\ > 1/2. In such case, the convergence rate can also
be established, by introducing

N
=3 Z
We find that

d
EG@

H'Mz

N
Fi [ = 2f5+ fi-)h 2 + %fj (%‘ - hzbﬁf?ﬂ h
=1

Jj=1

2

-1

N N
_ 1 B 1 7
(i1 = fi*h 7 5 D aiffh =5 7 bisfE7m

1 j=1 ij=1

J
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If Ay > %, then by Lemma 2.2, it follows that there exists v > 0 such that

N—1 1 N
27 -1 _ 2 2
Q1/2(v) Z (vj+1 —vj)°h —§Zajvjh21/Zvjh
Jj=1 j=1 j=1
for any v € RV, Hence, we have

iG _—VZth——Zbﬂf f2h? < —20G.
3,7=1

This leads to G(t) < G(0)e2"!, hence

If]12 = 2G(t) < 2G(0)e~ ",

N—-1

N
_G(t> = f]+1 fj h +)\12an h— — Z szf?ffhz

Jj=1 i,j:l

N
Z bji f7 f7H?,

I/\
l\JI»—A

where we have used the definition for A\; when Zjvzl a; ffh > 0, and the inequality

remains valid when Zjvzl djffh < 0. Hence,

d 1 N b N 2
§ :’ 20272 m 2 2 _ 2
dtG(t) S _5 bjlf1 f]h S - 9 = fjh - _Qme .

ij=1
This upon integration over [0,¢] using || f||3 = 2G gives

LFI1Z < I1FOU3L + by || £O138) 1

for arbitrary ¢ > 0. This completes the proof of Theorem 1.4.
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