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This paper is concerned with large time behavior of solutions to a semi-discrete model
involving nonlinear competition that describes the evolution of a trait-structured pop-
ulation. Under some threshold assumptions, the steady solution is shown unique and
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1. Introduction

The evolution by natural selection is the most ubiquitous and well-understood pro-

cess of evolution in living systems. Adaptive dynamics (see Refs. 13, 14, 19 and 31)

is a branch of evolutionary ecology, that aims at describing the Darwinian evolution
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of populations along a phenotypic trait x, which characterizes each individual. We

are interested in the population dynamics subject to mutations and selection due

to competition between individuals. In such setting probabilistic models are usually

considered as the most realistic. We refer to Ref. 30 and the references therein for a

nice introduction to the probabilistic approach. When the total number of individu-

als is too large (it can easily reach 1010 ∼ 1012 for some microorganisms), it becomes

prohibitive to compute numerically the solution to this process. In that case one

expects to be able to derive a deterministic model as a limit of large populations.

Such of derivation was proved in Refs. 9 and 10 and one obtains integro-differential

equations like

∂tu(t, x) = M(u)(t, x) + u(t, x)

(
a(x) −

∫
b(x, y)u(t, y)dy

)
, (1.1)

where the mutation kernel is for instance

M(v)(x) =

∫
K(z)(a(x+ z)v(x+ z)− a(x)v(x))dz.

Although mutation cannot be fully understood without molecular knowledge, it can

be replaced by diffusion for qualitative analysis so that we have

∂tu(t, x) = ∆u+ u(t, x)

(
a(x)−

∫
b(x, y)u(t, y)dy

)
. (1.2)

For rare mutations, the above models become the well known

∂tu(t, x) = u(t, x)

(
a(x) −

∫
b(x, y)u(t, y)dy

)
. (1.3)

These competition models or their variants when arising in ecology with individuals

competing for resources, x denotes a location variable, see, e.g. Refs. 5, 16 and 20.

Of special interest are the steady states of population models, which may rep-

resent some biological patterns emerged as intrinsic properties of such models. For

instance, with model (1.3), one expects that the population density concentrates at

large times, see, e.g. Refs. 2, 6, 12, 24 and 37. The singular steady-state solutions

of such competition model correspond to highly concentrated population densities

of the form of well-separated Dirac masses. This density concentration phenomena

has been shown to happen only asymptotically in the model with mutations (see

Refs. 3, 11, 27, 32, 33, 35 and 36). The emergence of patterns also occurs in other

mathematical models that mimic dynamics of populations (see for example, Amaral

and Meyer,1 Ji and Li,25 Murray,34 Tokita39). Hence, links are often made between

patterns from models and in nature because of their similarity. Through inquiries

into the dynamics of evolution, one may understand why we observe such patterns

in real world.

Generally speaking, the emergence of patterns follows an optimization process,

and that explains why game theory has served as a powerful framework for the

construction of evolution models of natural selection (see for example the review

paper Ref. 29). A central concept in the game-theoretic approach to ecology and
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evolution is that of evolutionary stable strategies (ESS), pioneered by Marynard

Smith and Price in 197328. For example, this concept has been used as a guide to

determine a favorable density distribution among infinitely many steady states to

(1.3), see, e.g. Ref. 24.

In this paper, we focus on a nonlocal selection-mutation model with a gradient

flow structure. Such structure facilitates the analysis of the underlying dynamics

(see Refs. 8 and 22) and fulfills criteria that are relevant for optimization; see, e.g.

Ref. 21 for dynamics in gradient systems. Our objective is to investigate issues on

time-asymptotic convergence rates towards discrete steady states. This is related

to recent results in Refs. 8 and 22.

1.1. The model and its properties

Our model equation is the nonlocal selection-mutation equation

∂tf(t, x) = ∆f(t, x) +
1

2
f(t, x)

(
a(x)−

∫
X

b(x, y)f2(t, y)dy

)
, t > 0, x ∈ X,

(1.4a)

f(0, x) = f0(x) ≥ 0, x ∈ X, (1.4b)

∂f

∂ν
= 0, x ∈ ∂X, (1.4c)

this is an intergo-differential equation that describes the evolution of a population

of density f(t, x) structured with respect to a continuous trait x, where X is a

subset of R
m, and ν is the unit outward normal at a point x on the boundary

∂X . Delicate competition of selection and mutation leads to mathematical and

numerical challenges in solving such problems.

In this model, the diffusion term plays certain role of mutations in the popu-

lation dynamics. Coefficient a(x) is the intrinsic growth rate of individuals with

trait x, and b(x, y) > 0 represents the competitive interaction between individuals.

Such a trait dependent competition appears in many population balance models of

Lotka–Volterra type, see, e.g. Refs. 4, 12, 17 and 18. In particular, a competition

model for fish species population is introduced in Ref. 38 to study the effect of

exploitation on these species. Compared to competition term of classical models

−∫X b(x, y)f(t, y)dy. The main difference between (1.4) and classical models is its

nonlinear competition term

−
∫
X

b(x, y)f2(t, y)dy.

From the biological point of view, such competition terms may represent direct

predation. More commonly though, it is typically a simplified way of modeling com-

petition for resources between subpopulations. Classical linear competition terms

like −∫
X
b(x, y)f(t, y)dy have long been used in that context, e.g. Lotka–Volterra

systems. They can simply be seen as assuming that each subpopulation will con-

sume an amount of resource proportional to their headcount; the kernel b(x, y) then



October 4, 2019 9:46 WSPC/103-M3AS 1950040

2066 W. Cai, P.-E. Jabin & H. Liu

models how close the resources used by the subpopulation with trait x are to the

ones used by the subpopulation with trait y.

Nonlinear terms −∫
X
b(x, y) f2(t, y)dy, as we consider here, are used where

modeling more complex effects between population and resources. At the level of

microorganisms, resource consumption results from a chain of biochemical reactions

where various subpopulations may each play a role; when those subpopulations are

small, their interactions may in fact look more collaborative than competitive (see

for example Ref. 23). On larger animal populations, such as the fish species model

mentioned above, resources will usually include over animal population in complex

interaction. In particular one may observe some drastic effects on the resource pop-

ulations with almost complete collapse when the predatory population becomes too

large. This type of effects are poorly represented by linear competition terms with

respect to the quadratic term which increases the impact of large populations.

From a mathematical point of view, the main attractive feature of model (1.4a)

is its gradient flow structure in the sense that (1.4a) can be written as

∂tf = −1

2

δF

δf
, (1.5)

where the corresponding energy functional is

F [f ] =
1

4

∫∫
b(x, y)f2(t, x)f2(t, y)dxdy

− 1

2

∫
a(x)f2(t, x)dx +

∫
|∇xf(t, x)|2dx, (1.6)

so that the energy dissipation law d
dtF [f ] = −2

∫ |∂tf |2dx ≤ 0 holds for all t > 0,

at least for classical solutions.

Such a gradient flow structure is preserved by the finite volume scheme recently

proposed in Ref. 8, in which we show that both semi-discrete and fully discrete

schemes satisfy the two desired properties: positivity of numerical solutions and

energy dissipation. These ensure that the positive steady state is asymptotically

stable. A rigorous analysis on global existence of (1.4), and time-asymptotic con-

vergence to the positive steady state is further provided in Ref. 22, complementing

with the numerical results in Ref. 8.

The objective of this paper is to study the time asymptotic convergence rates

towards discrete steady states of the semi-discrete scheme in Ref. 8. Our starting

point is Ref. 22, and we refer the reader to it for more references to earlier results

on this and related models.

It is of course natural to conjecture that steady states of the system describes its

permanent behavior. For this reason, calculating steady states and obtaining rates

of convergence is especially useful. In models without mutations like (1.3), there

can actually exist several steady states: u is a steady state iff

a(x) =

∫
b(x, y)u(y)dy ∀x ∈ suppu.
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Many of those steady states can actually be unstable, for example if for some

x0 �∈ suppu,

a(x0) >

∫
b(x0, y)u(y) dy

then a mutant with trait x0 may invade and u is unstable. This leads to the defi-

nition of ESS which also satisfies

a(x) ≤
∫

b(x, y)u(y)dy, ∀x.

The ESS may be interpreted as a Nash equilibrium with appropriately defined

payoff. Note that a strict inequality is sometimes required instead (or some other

condition as in the famous Ref. 28), in which case a Nash equilibrium may not be

an ESS.

With mutations and diffusion in the model however, one expects any steady

state to have full support and hence not to require any additional assumption for

stability. Moreover in our present case the nonlinear dependence with respect to

u in the competition term prevents any straightforward interpretation in terms of

game theory or strategy.

To compare the results in Ref. 22 with what we do here we need to recall some

conventions. In Ref. 22, we make the following basic assumptions:

a ∈ L∞(X), |{x | a(x) > 0}| �= 0; (1.7a)

b ∈ L∞(X ×X), essinfx,x′∈Xb(x, x′) > 0; (1.7b)

b(x, y) = b(y, x), ∀ g ∈ L1(X)\{0},
∫∫

b(x, y)g(x)g(y)dxdy > 0. (1.7c)

From the biological point of view, the first assumption on a in (1.7a) simply means

that the growth rate of the population is necessarily limited. The second assumption

ensures that there are at least some phenotypic traits where the population grows so

as to avoid extinction. Assumption (1.7b) simply again guarantees that competition

exists between any subpopulations but cannot be unlimited. Assumption (1.7c) is

more fundamental for the structure of the interactions between sub-populations.

The equality b(x, y) = b(y, x) forces a strict symmetry in the competition: sub-

population x has exactly the same negative impact on sub-population y that y

has on x. The second part of (1.7c) is intimately connected to the stability of

the dynamics. It imposes a strong constraint on how small perturbation in the

population density will increase competition.

With these assumptions, in Ref. 22, the steady state g is shown to be strictly

positive if λ1 < 1/2, where λ1 is uniquely determined by

λ1 =

∫ |∇xψ|2dx∫
aψ2dx

= inf

{∫ |∇xv|2dx∫
av2dx

: v ∈ D(L1) and

∫
av2dx > 0

}
, (1.8)
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where the positive function ψ ∈ D(L1) with
∫
aψ2dx > 0 and D(L1) = {u ∈

H2(X) : ∂nu|∂X = 0} is the domain of the Laplace operator L1u = −∆u. And the

principal result of Ref. 22 becomes

Theorem 1.1. (Theorem 1.3 in Ref. 22) Assume both a and b satisfy (1.7). Con-

sider any nonnegative f0 ∈ L1(X)∩L∞(X). Then the corresponding solution f(t, ·)
of (1.4) converges to the steady state g

lim
t→∞ ‖f(t, ·)− g(·)‖L2(X) = 0. (1.9)

And moreover, there exists C depending on initial data f0 and g ≥ 0 such that∫
|f(t, x)− g(x)|2dx ≤ Ce−rt ∀ t > 0,

for
∫
adx ≥ 0 or

∫
adx < 0 with λ1 �= 1

2 , where of course g = 0 if λ1 > 1/2.

For
∫
adx < 0 and λ1 = 1

2 ,∫
|f(t, x)|2dx ≤ C

1 + t
∀ t > 0.

In this paper, we establish a discrete version of Theorem 1.1 and related results.

1.2. Assumptions and main results

For simplicity of presentation, we restrict ourselves to only one-dimensional setting

for X = [0, L]. We partition X into subcells Ij = [xj−1/2, xj+1/2], j = 1 · · ·N , for

a uniform mesh of size h = L/N so that xj−1/2 = x1/2 + (j − 1)h with x1/2 = 0,

xN+1/2 = L. We consider the following semi-discrete scheme:

d

dt
fj =

fj−1 − 2fj + fj+1

h2
+

1

2
fj

(
āj − h

N∑
i=1

b̄jif
2
i

)
, 1 ≤ j ≤ N, (1.10)

where

f0 = f1, fN+1 = fN ,

āj =
1

h

∫
Ij

a(x)dx, b̄ji =
1

h2

∫
Ii

∫
Ij

b(x, y)dxdy, (1.11)

and the numerical solution fj(t) approximates the average of the exact solution f

on Ij . From the basic assumptions (1.7) one may derive similar assumptions at the

discrete level:

|āj | ≤ ‖a‖∞, {1 ≤ j ≤ N, āj > 0} �= ∅; (1.12a)

0 < bm ≤ b̄ji ≤ ‖b‖∞ for 1 ≤ i, j ≤ N ; (1.12b)

b̄ji = b̄ij ;

N∑
j=1

N∑
i=1

b̄jivivj > 0 for any vj such that

N∑
j=1

|vj |2 �= 0. (1.12c)
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Under additional assumptions, (1.12) ensures the existence and uniqueness of pos-

itive steady state g satisfying

−g1 + g2
h2

+
1

2
g1

(
ā1 − h

N∑
i=1

b̄1ig
2
i

)
= 0, (1.13a)

gj−1 − 2gj + gj+1

h2
+

1

2
gj

(
āj − h

N∑
i=1

b̄jig
2
i

)
= 0, j = 2, . . . , N − 1, (1.13b)

gN−1 − gN
h2

+
1

2
gN

(
āN − h

N∑
i=1

b̄Nig
2
i

)
= 0. (1.13c)

Note that (1.12b)–(1.12c) imply that B = (b̄ij)N×N is a positive definite matrix,

so it defines a scalar product

〈w, v〉 = h2
N∑

i,j=1

b̄ijwivj

with corresponding norm

‖w‖b =

h2

N∑
i,j=1

b̄jiwjwi




1
2

. (1.14)

We will also use the discrete lp norm

‖w‖p =


 N∑

j=1

|wj |ph



1/p

.

In order to characterize the conditions on āj for which the steady state g is strictly

positive, we set

A =


v ∈ R

N |v �= 0 and

N∑
j=1

ājvj
2h > 0


, (1.15)

and

K[v] =

∑N−1
j=1 (vj+1 − vj)

2h−1∑N
j=1 ājvj

2h
, v ∈ A. (1.16)

We then have the following result.

Theorem 1.2. There exists u ∈ A, such that

λ1 = K[u] = min
v∈A

K[v]. (1.17)

Moreover,

(i) If h
∑N

j=1 āj ≥ 0, then λ1 = 0;

(ii) If h
∑N

j=1 āj < 0, then λ1 > 0.
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We can show that the steady state is strictly positive if λ1 < 1/2. More precisely,

we have the following result.

Theorem 1.3. There exists g ∈ S = {f ∈ R
N | f ≥ 0} satisfying (1.13). Moreover,

(i) if 0 ≤ λ1 < 1/2, then there exists a unique positive solution such that

0 < gmin ≤ gj ≤ gmax < ∞ for 1 ≤ j ≤ N ;

(ii) if λ1 ≥ 1/2, there is no positive steady state.

Thanks to this result, we can show the convergence of f(t) to g as t → ∞.

Theorem 1.4. Assume both āj and b̄ij satisfy (1.12). Let fj(t) be the solution

to (1.10) subject to initial data f0
j , and g the steady state. Then there exists λ

independent of f0, and C depending on the initial data f0 such that

‖f(t)− g‖2 ≤ C exp(−λt), ∀ t > 0,

for
∑N

j=1 ājh ≥ 0 or
∑N

j=1 ājh < 0 with λ1 �= 1/2, where g = 0 if
∑N

j=1 ājh < 0

with λ1 > 1/2.

For
∑N

j=1 ājh < 0 with λ1 = 1/2,

‖f‖2 ≤ C

1 + t
, ∀ t > 0.

The proofs of these theorems rely on a careful use of the competition assumption

and are given in Sec. 2. The main techniques in the proof of Theorem 1.4 mimic

those in Ref. 22, yet we overcome a number of new difficulties arising from the

spatial discretization.

Let us remark that under the transformation u = f2, the resulting equation

from model (1.4) becomes

∂tu(t, x) = ∆u− |∇u|2
2u

+ u(t, x)

(
a(x) −

∫
X

b(x, y)u(t, y)dy

)
.

Therefore there does not seem to be any simple way to reduce (1.4) to an already

studied case.

Numerical schemes with similar methodology to that in Ref. 8 have been pro-

posed and analyzed for the linear selection dynamics governed by (1.3) in Refs. 7

and 26. The schemes in Ref. 26 feature two nice properties: positivity preserving and

entropy satisfying, and numerical solutions are proved to asymptotically converge

to the Evolutionary Stable Distribution (ESD). The exponential convergence rates

towards the special ESD and the algebraic convergence rate towards the general

ESD are obtained in Ref. 7.

The rest of this paper is devoted to the proof of Theorems 1.2–1.4, as presented

above.
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2. Proofs of the Results

2.1. Proof of Theorem 1.2

We recall that the minimum value of a multivariate continuous function in a closed

domain can be reached (the discrete problem is finite-dimensional). Hence from

min
v∈A

K[v] = min
w∈RN ,h

∑N
j=1 ājwj

2=1

N−1∑
j=1

(wj+1 − wj)
2h−1, wj =

vj√∑N
j=1 ājvj

2h
,

it follows that there exists u ∈ A, such that

λ1 = K[u] = min
v∈A

K[v]. (2.1)

Note that we always have λ1 ≥ 0. Introduce

Qλ(v) =

N−1∑
j=1

(vj+1 − vj)
2h−1 − λ

N∑
j=1

ājvj
2h, (2.2)

clearly

Qλ1(u) = 0,

and Qλ1(v) ≥ 0 for all v ∈ A.

(i) In order to show λ1 = 0 when h
∑N

j=1 āj ≥ 0, it suffices to show for any

λ > 0 there exists v ∈ A such that Qλ(v) < 0.

If
∑N

j=1 ājh > 0, we choose v = (1, 1, . . . , 1) ∈ R
N , so that

Qλ(v) = −λ
N∑
j=1

ājh < 0.

If
∑N

j=1 ājh = 0, we choose any v ∈ A such that
∑N

j=1 ājvjh > 0 and s ∈ R, so

that for s > 0 sufficiently small we have

Qλ(1 + sv) = s2
N−1∑
j=1

(vj+1 − vj)
2h−1 − λ

N∑
j=1

āj
(
1 + 2svj + s2v2j

)
h

= s2Qλ(v)− 2sλ
N∑
j=1

ājvjh < 0.

(ii) If
∑N

j=1 ājh < 0, the situation is different. The key to the situation is the

following lemma, whose continuous analog is stated by Fleming in Ref. 15.

Lemma 2.1. If
∑N

j=1 ājh < 0, then there exists ε > 0, η > 0 such that

N−1∑
j=1

(vj+1 − vj)
2h−1 ≥ ε

N∑
j=1

v2jh

for all v ∈ R
N such that

∑N
j=1 ājv

2
jh > −η

∑N
j=1 v

2
jh.
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Assume this lemma for the time being. If
∑N

j=1 ājv
2
jh > 0, then

K[v] ≥
∑N−1

j=1 (vj+1 − vj)
2h−1

max
1≤j≤N

|āj |
∑N

j=1 vj
2h

≥ ε/‖a‖∞ > 0,

and so λ1 ≥ ε/‖a‖∞ > 0.

We now return to prove Lemma 2.1 by contradiction. Suppose a sequence {vn} ⊂
R

N such that
N∑
j=1

(vnj )
2h = 1,

N∑
j=1

āj(v
n
j )

2h > −1/n and

N−1∑
j=1

(vnj+1 − vnj )
2h−1 < 1/n,

for all n. Then {vn} is bounded in R
N and so has a subsequence {vnk} converging

to v in R
N (by the Bolzano–Weierstrass theorem). Then

N∑
j=1

(vj)
2h = 1,

N∑
j=1

āj(vj)
2h ≥ 0 and

N−1∑
j=1

(vj+1 − vj)
2h−1 = 0.

Since
∑N

j=1(vj)
2h = 1, and

∑N−1
j=1 (vj+1−vj)

2h−1 = 0, we must have that vj ≡ c =

1/
√
L for j = 1, 2, . . . , N . But this implies

N∑
j=1

āj(vj)
2h = c2

N∑
j=1

ājh < 0

and this is a contradiction. Thus, we have finished the proof of Lemma 2.1.

Finally, we relate the sign of Qλ(v) to the value of λ < λ1. This result will be

used to prove exponential convergence to zero steady state in Theorem 1.4.

Lemma 2.2. Assume h
∑N

j=1 āj < 0 and 0 < λ < λ1, then there exists ν > 0 (ν

depends on λ) such that Qλ(v) ≥ ν‖v‖2 for all v ∈ R
N .

Proof. Let λ = (1− s)λ1 with 0 < s < 1. Then,

Qλ(v) =
N−1∑
j=1

(vj+1 − vj)
2h−1 − λ

N∑
j=1

ājv
2
jh

=
λ

λ1
Qλ1(v) +

(
1− λ

λ1

)N−1∑
j=1

(vj+1 − vj)
2h−1

≥ s

N−1∑
j=1

(vj+1 − vj)
2h−1,

since, by the definition of λ1, Qλ1 ≥ 0.

Let ε and η be the constants described in Lemma 2.1. If
∑N

j=1 ājv
2
jh >

−η
∑N

j=1 v
2
jh, we have

Qλ(v) ≥ s

N−1∑
j=1

(vj+1 − vj)
2h−1 ≥ sε

N∑
j=1

v2jh,
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and if
∑N

j=1 ājv
2
jh ≤ −η

∑N
j=1 v

2
jh, we have

Qλ(v) =

N−1∑
j=1

(vj+1 − vj)
2h−1 − λ

N∑
j=1

ājv
2
jh ≥ λη

N∑
j=1

v2jh.

2.2. Proof of Theorem 1.3

Here we give a variational construction of a positive solution of (1.13). The unique-

ness of positive steady state has been proven in Ref. 8. First, we claim that having

a nonnegative solution to (1.13) is equivalent to the nonzero critical point of the

functional

F (w) =
1

4

N∑
j,i=1

b̄ji(wj)
2(wi)

2h2 − 1

2

N∑
j=1

āj(w
+
j )

2h+

N−1∑
j=1

(wj+1 − wj)
2h−1,

(2.3)

where w+ = max{w, 0}. Indeed, a nonnegative solution of (1.13) is obviously a crit-

ical point of F (w) since ∂wF (w)|w=g = 0 is exactly the system (1.13). Conversely,

if g is a critical point of F (w), then

0 =

N∑
j=1

∂wjF (g)g−j = h2
n∑

i,j=1

b̄i,jg
2
i (g

−
j )

2 +
2

h

N−1∑
j=1

(gj+1 − gj)(g
−
j+1 − g−j )

= h2
n∑

i,j=1

b̄i,jg
2
i (g

−
j )

2 +
2

h

N−1∑
j=1

(g−j+1 − g−j )
2 − 2

h

N−1∑
j=1

(g−j+1g
+
j + g+j+1g

−
j )

≥ h2
n∑

i,j=1

b̄i,jg
2
i (g

−
j )

2 +
2

h

N−1∑
j=1

(g−j+1 − g−j )
2,

where g−j = min{gj, 0}. We see that g− = 0, which implies g ≥ 0. Hence g is a

nonnegative solution of (1.13).

We next prove the existence of a minimizer for the variational problem F . By

Young’s inequality, we have

F (w) ≥ 1

4
bm‖w‖42 −

1

2
‖a‖∞‖w‖22 +

N−1∑
j=1

(wj+1 − wj)
2h−1

≥ − ‖a‖2∞
4bm

.

This says that F (w) is bounded from below. Hence m = infw∈S F (w) is finite.

Select a minimizing sequence {gk}∞k=1, so that

lim
k→∞

F (gk) = m.
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Set C = supk F (gk), then

1

4
bm‖gk‖42 −

1

2
‖a‖∞‖gk‖22 ≤ C,

which implies that

‖gk‖22 ≤ ‖a‖∞
bm

+
1

bm

√
‖a‖2∞ + 4bmC < ∞.

Hence, {gk} is bounded sequence in R
N . There exist g ∈ R

N and a subsequence of

{gk} (still denoted by gk) converging to g such that for any v ∈ R
N ,

h

N∑
j=1

vj(g
k
j − gj) = 0 as k → ∞.

Note that

|w+
j+1 − w+

j | ≤ |wj+1 − wj |,
therefore

F (g+) ≤ F (g),

one may replace gk by its positive part and as a consequence we may assume gk ≥ 0.

Hence g ≥ 0. A direct calculation shows that

h

N∑
j=1

|gkj |2 − h

N∑
j=1

|gj |2 − h

N∑
j=1

|gkj − gj|2 = 2h

N∑
j=1

gj(g
k
j − gj) → 0, as k → ∞

and

h

N−1∑
j=1

|gkj+1 − gkj |2 − h

N−1∑
j=1

|gj+1 − gj|2 − h

N−1∑
j=1

|gkj+1 − gkj − (gj+1 − gj)|2

= 2h
N−1∑
j=1

(gj+1 − gj)
[
gkj+1 − gkj − (gj+1 − gj)

] → 0, as k → ∞.

Note also that
N∑

i,j=1

b̄ji(g
k
i )

2(gkj )
2h2 −

N∑
i,j=1

b̄ji(g
k
i − gi)

2(gkj − gj)
2h2

=

N∑
i,j=1

b̄ji[(g
k
i )

2 − (gki − gi)
2][(gkj )

2 − (gkj − gj)
2]h2

+2
N∑

i,j=1

b̄ji[(g
k
i )

2 − (gki − gi)
2](gkj − gj)

2h2

→
N∑

i,j=1

b̄ji(gi)
2(gj)

2h2, as k → ∞
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and

lim
k→∞

N∑
j=1

āj(g
k
j )

2h = lim
k→∞

N∑
j=1

āj(gj)
2h.

These together ensure that

F (gk)−
N−1∑
j=1

|gj+1 − gj |2 −
N−1∑
j=1

|gkj+1 − gkj − (gj+1 − gj)|2

− 1

4

N∑
i,j=1

b̄ji(g
k
i − gi)

2(gkj − gj)
2h2 → F (g), as k → ∞.

Then

m = lim
k→∞

F (gk) ≥ F (g) ≥ m.

By g ∈ S, it follows that

F (g) = m = min
f∈S

F (f).

This proves the existence of a nonnegative minimizer.

To prove that g is not identically 0, when
∑N

j=1 ājh ≥ 0 or
∑N

j=1 ājh < 0 with

λ1 < 1/2, we discuss case by case, keeping in mind that F (0) = 0.

(1) If
∑N

j=1 ājh > 0, choose w ≡ ε, then

F (ε) =
ε4

4

N∑
j,i=1

b̄jih
2 − ε2

2

N∑
j=1

ājh < 0

for ε small enough.

(2) If
∑N

j=1 ājh = 0, we take w = ε(1 + δv) satisfying
∑N

j=1 ājvjh > 0, so that

F (w) =
ε4

4

N∑
i,j=1

b̄ji(1 + δvj)
2(1 + δvi)

2h2

− ε2

2

N∑
j=1

āj(1 + δvj)
2h+ ε2δ2

N−1∑
j=1

(vj+1 − vj)
2h−1

=
ε2

2


 ε2

2

N∑
i,j=1

b̄ji(1 + δvj)
2(1 + δvi)

2h2

+ δ2


2

N−1∑
j=1

(vj+1 − vj)
2h−1 −

N∑
j=1

ājv
2
jh


− 2δ

N∑
j=1

ājvjh


 < 0

for ε, δ suitably small.
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(3) If
∑N

j=1 ājh < 0 with λ1 < 1/2, we take w = τu with τ > 0 and u satisfying

(2.1) so that

F (τu) =
τ4

4

N∑
i,j=1

b̄jiu
2
ju

2
ih

2 + τ2
(
λ1 − 1

2

) N∑
j=1

āju
2
jh

≤ τ2

4
‖u2‖2b

[
τ2 + 4

(
λ1 − 1

2

) ∑N
j=1 āju

2
jh

‖u2‖2b

]
< 0

for τ > 0 sufficiently small. Hence, in all these three cases the minimizer cannot

be 0.

(4) Finally, we show 0 is the only minimizer if
∑N

j=1 ājh < 0 and λ1 ≥ 1/2.

Note for any v ∈ R
N with

∑N
j=1 ājv

2
jh ≤ 0, we have

F (v) ≥ 1

4

N∑
i,j=1

b̄jiv
2
j v

2
i h

2 +

N−1∑
j=1

(vj+1 − vj)
2h−1 ≥ 0.

If
∑N

j=1 ājv
2
jh > 0, then

F (v) =
1

4
‖v2‖2b +

(
λ1 − 1

2

) N∑
j=1

ājv
2
jh+Qλ1(v) ≥ 0 = F (0).

That is, we have F (v) ≥ 0 = F (0), in such case 0 is the only minimizer.

Finally, we show the 0 < gmin ≤ gj ≤ gmax < ∞. Assume gmin = gj0 = 0, then

from (1.13b), we have

gj0+1 + gj0−1 = 0,

leading to gj0±1 = 0, hence gj = 0 for all 1 ≤ j ≤ N , leading to a contradiction.

Assume that gmax = gj0 , then again from (1.13b), we have

‖a‖∞ ≥ āj0 ≥ bm‖g‖22.

Hence, gmax ≤
√

‖a‖∞
bmh < ∞.

2.3. Proof of Theorem 1.4

As it will prove convenient later, we first give a uniform l2-bound of the numerical

solution when b̄ji ≥ bm > 0. Let γ = ‖a‖∞/bm which will be used to quantity the

uniform bound.

Lemma 2.3. Assume (1.12) holds. Let f be the solution to (1.10) with nonnegative

initial data f0 ≥ 0, and ‖f0‖2 < ∞. Then,

‖f‖2 ≤ max
{‖f0‖2,√γ

}
= M. (2.4)
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Proof. Let Q(t) =
∑N

j=1 f
2
j h = ‖f‖22. Then using (1.10), we have

d

dt
Q(t) = 2

N∑
j=1

fjfj−1 − 2f2
j + fjfj+1

h

+

N∑
j=1

[
f2
j h

(
āj − h

N∑
i=1

b̄jif
2
i

)]
. (2.5)

The first term on the right-hand side of (2.5) is nonnegative since

2

h


2 N∑

j=2

fjfj−1 − 2

N∑
j=1

f2
j + f2

1 + f2
N




≤ 2

h


 N∑
j=2

f2
j +

N∑
j=2

f2
j−1 − 2

N∑
j=1

f2
j + f2

1 + f2
N


 = 0,

where we have used f0 = f1 and fN+1 = fN , and the Cauchy–Schwarz inequality.

The second term on the right-hand side of (2.5) is bounded above by

max
1≤j≤N

(
āj − h

N∑
i=1

b̄jif
2
i

)
Q(t) ≤ (‖a‖∞ − bmQ(t))Q(t).

Combining the above estimates, we obtain

d

dt
Q ≤ (‖a‖∞ − bmQ(t))Q(t).

Hence, Q(t) ≤ max{Q(0), γ}. This yields the claimed estimate (2.4).

Before going further, we provide a discrete version of the one-dimensional

Poincare inequality, which will be used twice in the proof of Theorem 1.4.

Lemma 2.4. For any v = (v1, v2, . . . , vN ) ∈ R
N , then

N−1∑
j=1

|vj+1 − vj |2 ≥ 6

N2
inf
c∈R

N∑
j=1

|vj − c|2, (2.6)

where the minimum is achieved at c∗ = 1
N

∑N
j=1 vj.

Proof. The quadratic form in c in (2.6) implies that the minimum point must be

c∗ = 1
N

∑N
j=1 vj . To prove (2.6), it suffices to show

N∑
j=1

|Nvj − (v1 + v2 + · · ·+ vN )|2 ≤ N4

6

N−1∑
j=1

|vj+1 − vj |2. (2.7)
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The left-hand side of (2.7) can be estimated using the Cauchy–Schwartz inequal-

ity as

N∑
j=1

∣∣∣∣∣
N∑
i=1

(vj − vi)

∣∣∣∣∣
2

=
N∑
j=1

∣∣∣∣∣∣
j−1∑
i=1

i(vi+1 − vi)−
N−1∑
i=j

(N − i)(vi+1 − vi)

∣∣∣∣∣∣
2

≤
N∑
j=1


j−1∑

i=1

i2 +
N−1∑
i=j

(N − i)2


N−1∑

j=1

|vj+1 − vj |2

=
1

3

N−1∑
i=1

i(i+ 1)(2i+ 1)

N−1∑
j=1

|vj+1 − vj |2

=
N2(N2 − 1)

6

N−1∑
j=1

|vj+1 − vj |2.

This leads to (2.7).

We proceed to prove Theorem 1.4. For a positive steady state g > 0, we introduce

the auxiliary functional

G = h

N∑
j=1

[
f2
j − g2j
2

− g2j ln

(
fj
gj

)]
.

After rewriting, we have

G =
h

2

N∑
j=1

[
f2
j − g2j − g2j ln

(
f2
j

g2j

)]

=
h

2

N∑
j=1

[
(f2

j − g2j )− g2j

∫ 1

0

f2
j − g2j

sf2
j + (1 − s)g2j

ds

]

=
h

2

N∑
j=1

Kj(fj − gj)
2,

where

Kj =

∫ 1

0

s(fj + gj)
2

sf2
j + (1− s)g2j

ds.

We thus can estimate both the upper and lower bound of G.

For some η ∈ (0, η0] with η0 < 1,

G =
h

2


 ∑
fj≥ηgj

Kj(fj − gj)
2 +

∑
fj<ηgj

Kj(fj − gj)
2


 =: I + II.
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If fj ≥ ηgj , then

Kj ≤
∫ 1

0

s(fj + gj)
2

sf2
j

ds ≤
(
1 +

gj
fj

)2

≤ (1 + η−1)2.

If fj < ηgj , then for θ ∈ (0, 1),

Kj ≤ 4

∫ 1

0

sg2j
sf2

j + (1− s)g2j
ds

≤ 4

[∫ 1−θ

0

sg2j
(1− s)g2j

ds+

∫ 1

1−θ

sg2j
sf2

j

ds

]

= 4

(
−ln θ − 1 + θ + θ

g2j
f2
j

)
taking θ = f2

j /g
2
j

= 4
[
f2
j /g

2
j + 2 ln(gj/fj)

]
≤ 4 + 8 ln(gj/fj) ≤ C ln(gj/fj),

where C = 8 + 4
|ln η0| . This implies that for any 0 < η ≤ η0 < 1,

G ≤ 2η−2‖f − g‖22 + C
h

2

∑
fj≤ηgj

ln(gj/fj)(fj − gj)
2

≤ 2η−2‖f − g‖22 + Chg2max

∑
fj≤ηgj

ln(gj/fj). (2.8)

On the other hand,

G =
h

2

N∑
j=1

[
(fj − gj)

2 + 2g2j

(
fj
gj

− 1− ln(fj/gj)

)]

=
1

2
‖f − g‖22 + h

N∑
j=1

g2j

(
fj
gj

− 1 + ln(gj/fj)

)

≥ 1

2
‖f − g‖22 +

g2minh

C

∑
fj≤ηgj

ln(gj/fj) (2.9)

for any η ≤ η0 < 1, where C depends only on η0.

A direct estimate now gives

d

dt
G = h

N∑
j=1

(
fjfjt − g2j

fjt
fj

)
= h

N∑
j=1

(f2
j − g2j )

fjt
fj

= h

N∑
j=1

(f2
j − g2j )

[
fj+1 − 2fj + fj−1

h2fj
+

1

2

(
āj − h

N∑
i=1

b̄jif
2
i

)]
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= h

N∑
j=1

(f2
j − g2j )

×
[
fj+1 − 2fj + fj−1

h2fj
− gj+1 − 2gj + gj−1

h2gj
− h

2

N∑
i=1

b̄ji(f
2
i − g2i )

]

=
1

h

N∑
j=1

(f2
j − g2j )

(
fj+1 + fj−1

fj
− gj+1 + gj−1

gj

)

− h2

2

N∑
i,j=1

b̄ji(f
2
i − g2i )(f

2
j − g2j )

= I1 + I2 − 1

2
‖f2 − g2‖2b,

where we have used fN+1 = fN , f0 = f1, gN+1 = gN , and g0 = g1. For I1, we have

I1 =
1

h

N∑
j=1

f2
j

(
fj+1 + fj−1

fj
− gj+1 + gj−1

gj

)

=
1

h

N∑
j=1

fj
gj

[gj(fj+1 + fj−1)− fj(gj+1 + gj−1)]

=
1

h

N−1∑
j=1

fj
gj

(gjfj+1 − fjgj+1) +
1

h

N∑
j=2

fj
gj

(gjfj−1 − fjgj−1)

=
1

h

N−1∑
j=1

fj
gj

(gjfj+1 − fjgj+1) +
1

h

N−1∑
j=1

fj+1

gj+1
(gj+1fj − fj+1gj)

=
1

h

N−1∑
j=1

(
fj
gj

− fj+1

gj+1

)
(gjfj+1 − fjgj+1)

= − 1

h

N−1∑
j=1

gjgj+1

∣∣∣∣fj+1

gj+1
− fj

gj

∣∣∣∣
2

.

Similarly,

I2 =
1

h

N∑
j=1

g2j

(
gj+1 + gj−1

gj
− fj+1 + fj−1

fj

)
= − 1

h

N−1∑
j=1

fjfj+1

∣∣∣∣gj+1

fj+1
− gj

fj

∣∣∣∣
2

.

Collecting the above relations, we have

d

dt
G = −D(f, g)− 1

h

N−1∑
j=1

fjfj+1

∣∣∣∣gj+1

fj+1
− gj

fj

∣∣∣∣
2

,
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where

D(f, g) =
1

2
‖f2 − g2‖2b +

1

h

N−1∑
j=1

gjgj+1

∣∣∣∣fj+1

gj+1
− fj

gj

∣∣∣∣
2

.

We claim that there exists a constant ν such that for every P > 0, we can choose

ηP < 1 to obtain

h
∑

fj≤ηgj

ln(gj/fj) ≤ ν

P

1

h

N−1∑
j=1

fjfj+1

∣∣∣∣gj+1

fj+1
− gj

fj

∣∣∣∣
2

+
νG(0)

P
G(t), ∀ η ≤ ηP ,

(2.10)

and that there exists µ > 0 such that

D(f, g) ≥ µ‖f/g − 1‖22. (2.11)

Assuming (2.10) and (2.11) are correct for the time being, this gives for any 0 <

ε ≤ 1,

dG

dt
≤ −D(f, g)− ε

h

N−1∑
j=1

fjfj+1

∣∣∣∣gj+1

fj+1
− gj

fj

∣∣∣∣
2

≤ −µ‖f/g − 1‖22 −
εP

ν
h

∑
fj≤ηgj

ln(gj/fj) + εG(0)G(t). (2.12)

From the upper bound of G in (2.8), we have

‖f/g − 1‖22 ≥
h

g2max

N∑
j=1

(fj − gj)
2

≥ η2

2g2max


G(t)− Cg2maxh

∑
fj≤ηgj

ln(gj/fj)




=
η2

2g2max

G(t) − Cη2

2
h

∑
fj≤ηgj

ln(gj/fj). (2.13)

Substituting this into (2.12) gives

dG

dt
≤ −

(
µη2

2g2max

− εG(0)

)
G(t) +

(
Cµη2

2
− εP

ν

)
h

∑
fj≤ηgj

ln(gj/fj).

Choose P = 2Cνg2maxG(0) (and hence ηP accordingly), and choose ε = µη2

4g2
maxG(0) ,

which can be made smaller than 1 for some η ≤ ηP .

This implies that there exists λ = µη2

4g2
max

such that

dG

dt
≤ −λG(t),
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which yields G(t) ≤ G(0) exp(−λt). This when combined this with the lower

bounded G gives

‖f − g‖2 ≤
√
2G(t) ≤

√
2G(0) exp(−λt/2).

We now return to prove (2.10) and (2.11), respectively.

In order to prove (2.10), we recall for any ξ, η > 0

|ξ − η|2 ≥ ξη |ln ξ − ln η|2,
with which we proceed to estimate

1

h

N−1∑
j=1

fjfj+1

∣∣∣∣gj+1

fj+1
− gj

fj

∣∣∣∣
2

≥ 1

h

N−1∑
j=1

gjgj+1

∣∣∣∣ln gj+1

fj+1
− ln

gj
fj

∣∣∣∣
2

≥ 1

h
g2min

N−1∑
j=1

∣∣∣∣ln gj+1

fj+1
− ln

gj
fj

∣∣∣∣
2

≥ 1

h
g2minCh2 inf

c

N∑
j=1

∣∣∣∣ln+ gj
fj

− c

∣∣∣∣
2

,

where ln+ x = lnx | x≥η−1 for 0 < η < 1, and C = 6
L2 from (2.6). The optimal

constant c is given by

c =
h

L

∑
fj≤ηgj

ln
gj
fj

. (2.14)

By using the lower bound on G, we estimate

c ≤ 1

L

CG(t)

g2min

≤ CG(0)

Lg2min

.

Then using (2.14), we have

h
∑

fj≤ηgj

ln
gj
fj

≤ h
∑

fj≤ηgj

1

|ln η|
(
ln+

gj
fj

)2

≤ h
N∑
j=1

1

|ln η|

[∣∣∣∣ln+ gj
fj

− c+ c

∣∣∣∣
2
]

≤ 1

|ln η|


h N∑

j=1

∣∣∣∣ln+ gj
fj

− c

∣∣∣∣
2

+ c2L



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≤ 1

|ln η|
1

Cg2min


 1

h

N−1∑
j=1

fjfj+1

∣∣∣∣gj+1

fj+1
− gj

fj

∣∣∣∣
2



+
L

|ln η|
C2

L2g4min

G(0)G(t),

which leads to (2.10) with ηP = e−P , and

ν = max

{
1

Cg2min

,
C2

Lg4min

}
.

Next, we prove (2.11). Using the lower bound of g and (2.6), we obtain

1

h

N−1∑
j=1

gjgj+1

∣∣∣∣fj+1

gj+1
− fj

gj

∣∣∣∣
2

≥ g2min

h

N−1∑
j=1

∣∣∣∣fj+1

gj+1
− fj

gj

∣∣∣∣
2

≥ Cg2minh inf
c≥0

N∑
j=1

∣∣∣∣fjgj − c

∣∣∣∣
2

,

where the minimum is achieved at c∗ = 1
N

∑N
j=1

fj
gj

and C = 6
L2 .

As a consequence it suffices to find µ independent of c such that

Cg2minh

N∑
j=1

∣∣∣∣fjgj − c

∣∣∣∣
2

+
1

2
‖f2 − g2‖2b ≥ µ

∥∥∥∥fg − 1

∥∥∥∥
2

2

. (2.15)

If c = 1, the inequality is obvious for µ ≤ Cg2min.

For c �= 1, we estimate

‖f2 − g2‖2b = ‖f2 − c2g2 + (c2 − 1)g2‖2b
= (c2 − 1)2‖g2‖2b + 2(c2 − 1)〈f2 − c2g2, g2〉b + ‖f2 − c2g2‖2b
≥ δ(c2 − 1)2‖g2‖2b −

δ

1− δ
‖f2 − c2g2‖2b

for any 0 < δ < 1 by using Young’s inequality.

Note that for ‖f‖ ≤ M , we have

‖f2 − c2g2‖2b ≤ h2‖b‖∞

 N∑
j=1

(f2
j − c2g2j )



2

≤ h2‖b‖∞

 N∑
j=1

(fj + cgj)
2




 N∑
j=1

(fj − cgj)
2




≤ 2h2‖b‖∞

 N∑

j=1

f2
j + c2

N∑
j=1

g2j


 g2max

N∑
j=1

(fj/gj − c)2
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≤ 2‖b‖∞g2max

(‖f‖22 + c2‖g‖22
)
h

N∑
j=1

(fj/gj − c)2

≤ 2‖b‖∞g2max(1 + c2)M̃2‖f/g − c‖22, M̃ := max{M, ‖g‖}.
Therefore, the left-hand side of (2.15) satisfies

LHS ≥
(
Cg2min −

δ

2(1− δ)
2‖b‖∞g2max(1 + c2)M̃2

)
‖f/g − c‖22 +

δ

2
(c2 − 1)2‖g2‖2b

=
Cg2min

2
‖f/g − c‖22 +

δ

2
(c2 − 1)2‖g2‖2b

by taking δ =
Cg2

min

Cg2
min+2(1+c2)‖b‖∞g2

maxM̃
2
.

Furthermore, we use the Young inequality for any τ ∈ (0, 1) so that

‖f/g − c‖22 = ‖f/g − 1 + 1− c‖22 ≥ τ‖f/g − 1‖22 −
τL

1− τ
(c− 1)2.

This finally gives

LHS ≥ Cg2min

2

[
τ‖f/g − 1‖22 −

τL

1− τ
(c− 1)2

]
+

δ

2
(c2 − 1)2‖g2‖2b

=
Cg2minτ

2
‖f/g − 1‖22 + (c− 1)2

[
δ

2
(c+ 1)2‖g2‖2b −

Cg2minτL

2(1− τ)

]
.

Therefore, it is enough to take τ such that

δ

2
(c+ 1)2‖g2‖2b −

Cg2minτL

2(1− τ)
≥ 0,

that is for c1 = CG(0)/(Lg2min),

τ = min
0≤c≤c1

δ(c+ 1)2‖g2‖2b
δ(c+ 1)2‖g2‖2b + Cg2minL

=
‖g2‖2b

‖g2‖2b + L(Cg2min + 2‖b‖∞g2maxM̃
2)
,

which leads to (2.15) for µ =
Cg2

minτ
2 . Hence, (2.11) is also proved.

Finally, we investigate the case when 0 is the only steady state, which is the

case when
∑N

j=1 ājh < 0 and λ1 ≥ 1/2. In such case, the convergence rate can also

be established, by introducing

G(t) =
1

2

N∑
j=1

fj(t)
2h.

We find that

d

dt
G(t) =

N∑
j=1

fj

[
(fj+1 − 2fj + fj−1)h

−2 +
1

2
fj

(
āj − h

N∑
i=1

b̄jif
2
i

)]
h

= −
N−1∑
j=1

(fj+1 − fj)
2h−1 +

1

2

N∑
j=1

ājf
2
j h− 1

2

N∑
i,j=1

b̄jif
2
i f

2
j h

2.
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If λ1 > 1
2 , then by Lemma 2.2, it follows that there exists ν > 0 such that

Q1/2(v) =
N−1∑
j=1

(vj+1 − vj)
2h−1 − 1

2

N∑
j=1

ājv
2
jh ≥ ν

N∑
j=1

v2jh

for any v ∈ R
N . Hence, we have

d

dt
G(t) ≤ −ν

N∑
j=1

f2
j h− 1

2

N∑
i,j=1

b̄jif
2
i f

2
j h

2 ≤ −2νG.

This leads to G(t) ≤ G(0)e−2νt, hence

‖f‖22 = 2G(t) ≤ 2G(0)e−2νt.

If λ1 = 1
2 , we have

d

dt
G(t) = −

N−1∑
j=1

(fj+1 − fj)
2h−1 + λ1

N∑
j=1

ājf
2
j h− 1

2

N∑
i,j=1

b̄jif
2
i f

2
j h

2

≤ −1

2

N∑
i,j=1

b̄jif
2
i f

2
j h

2,

where we have used the definition for λ1 when
∑N

j=1 ājf
2
j h > 0, and the inequality

remains valid when
∑N

j=1 ājf
2
j h ≤ 0. Hence,

d

dt
G(t) ≤ −1

2

N∑
i,j=1

b̄jif
2
i f

2
j h

2 ≤ −bm
2


 N∑
j=1

f2
j h



2

= −2bmG2.

This upon integration over [0, t] using ‖f‖22 = 2G gives

‖f‖22 ≤ ‖f0‖22(1 + bm‖f0‖22t)−1

for arbitrary t > 0. This completes the proof of Theorem 1.4.
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