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CRITICAL THRESHOLDS IN ONE DIMENSIONAL DAMPED
EULER-POISSON SYSTEMS

MANAS BHATNAGAR AND HAILIANG LIU

ABSTRACT. This paper is concerned with the critical threshold phenomenon for one
dimensional damped, pressureless Euler-Poisson equations with electric force induced by
a constant background, originally studied in [S. Engelberg and H. Liu and E. Tadmor,
Indiana Univ. Math. J., 50:109-157, 2001]. A simple transformation is used to linearize
the characteristic system of equations, which allows us to study the geometrical structure
of critical threshold curves for three damping cases: overdamped, underdamped and
borderline damped through phase plane analysis. We also derive the explicit form of these
critical curves. These sharp results state that if the initial data is within the threshold
region, the solution will remain smooth for all time, otherwise it will have a finite time
breakdown. Finally, we apply these general results to identify critical thresholds for a
non-local system subjected to initial data on the whole line.

1. INTRODUCTION

It is well known that the finite-time breakdown of the systems of Euler equations for
compressible flows is generic in the sense that finite-time shock formation occurs for
all but a “small” set of initial data. For pairs of conservation laws, Lax [17] showed
that the Cl-smoothness of solutions can be lost unless its two Riemann invariants are
nondecreasing. On the other hand, with the Poisson forcing the system of Euler—Poisson
equations admits a “large” set of initial configurations which yield global smooth solutions,
see, e.g. [8, 20, 21]. The Euler-Poisson system of equations is used to model various
phenomena, ranging from plasma physics to applications in semiconductors. Physically,
we would desire to know as to whether the concerned particles aggregate or the smooth
density profile exists forever. Indeed, for a class of Euler—Poisson equations, the question
addressed in [8] is whether there is a critical threshold for the initial data such that the
persistence of the C'! solution regularity depends only on crossing such a critical threshold.
For example, for system of Euler—Poisson equations with only electric force,

pr+ (pu)w =0,
(pu)e + (pu?)e = —kpon,
- ¢mm =p—cC

subject to initial data (py > 0,ug(x)), [8] has shown that for repulsive force k > 0 it
admits a global smooth solution if and only if

uoe(z) > —+/2kpo(z) if ¢=0,
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and
luoe ()] < VEk(2po(x) —c) if ¢>0.

These two critical thresholds indicate that with the background charge, the solutions of
the above system will be oscillatory, hence initial slope cannot be too big either. The zero
background case when augmented with the usual ~-law pressure, is shown by Tadmor
and Wei [27] to still admit global solutions for a large class of initial data identified by
an intrinsic critical threshold. The non-zero background case with pressure is different.
Using special energy techniques with proper normal form of transformations, the authors
in [11] have shown that smooth solutions with small amplitude persist forever with no
shock formation in the case of cubic law of pressure.

In this paper we revisit the one dimensional pressureless, damped FEuler—Poisson system
with potential induced by a constant background,

pe+ (pu)e =0,
(1.1a) up + uu, = —ko, — vu,
- ¢:c:c =p—C

subject to initial conditions,

p(iU,O) = po(.ilf) > 07 Po € CI(R)v

u(x,0) = up(x), ug € CY(R),

where ¢ > 0 is the constant background, v > 0 is the damping coefficient, and parameter
k signifies the property of the underlying forcing, repulsive if & > 0 and attractive if & < 0.

We consider only repulsive force between particles and hence, k£ > 0. Here, we also need
the neutrality condition

(1.1b)

/ T (po(€) — ) dé =0,

which is conserved for all time if pu vanishes at far fields. Therefore, we have a fixed
background charge density of ¢ and an equal amount of movable charge, p(x,t).

The main objective of our revisit to this problem is to introduce alternative tools,
instead of the use of flow map techniques in [8], to identify the critical thresholds for (1.1a).
We hope these tools can be useful for the study of critical threshold phenomena in other
problems of similar nature. More precisely, we want to get an explicit characterization
of the critical threshold curve as a function of initial density and velocity slope for three
different cases:

(1) v > 2vke, strong damping,
(2) v < 2vke, weak damping, and
(3) v = 2v/ke, borderline damping.

We are able to recover the results in [8] for weak damping case, and obtain a sharp critical
threshold for strong damping case, for which only a sufficient condition was identified in
8], plus a sharp critical threshold for the borderline case.

We present two methods in analysis, each gives the critical threshold curve for all three
cases but by different techniques. The initial step in both methods is to transform a non-
linear system of equations into a linear system and then analyze the obtained system.
The first method is more rudimentary and involves explicit solution techniques of linear
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differential equations with constant coefficients. The second method involves vector field
analysis.

On the solution behavior of Euler—Poisson equations there is a considerable amount
of literature available. Consult [9, 28] for nonexistence results and singularity formation;
[7, 29] for global existence of weak solutions with geometrical symmetry; [10, 12, 13] for
global existence for 3-D irrotational flow, [24] for isentropic case, and [25] for isothermal
case. Smooth irrotational solutions for the two dimensional Euler—Poisson system are con-
structed independently in [14, 23]. See also [15, 16] for related results on two dimensional
case. The question of critical thresholds in multi-D Euler-Poisson systems remains largely
open; we refer to [21] for sharp conditions on global regularity vs finite time breakdown
for the 2-D restricted Euler—Poisson system, and [20] for sufficient conditions on finite
time breakdown for the general n-dimensional restricted Euler—Poisson systems. A rel-
ative complete analysis of critical thresholds in 3-D restricted Euler—Poisson systems is
given in [19] for both attractive and repulsive forcing.

As a direct benefit of our present results, we illustrate how to apply them to an inter-
esting system in the context of biological aggregation:

(1.2a) pr+ (pu), =0, (z,t) € R x (0,00),
(1.2b) up + ut, +u = —0W * p,
where

2
Wia) = ol + 2

subject to initial conditions
p(zao) = pO(x) > 0? Po € Cl(R)a
u(z,0) = up(x), ug € C'(R).

Instead of electric force governed by the Poisson equation, here non-local interactions
between particles are modeled by Newtonian attractive forces. System (1.2) has been
formally derived from interacting particle systems in collective dynamics; see e.g. [5],
[6], and kinetic equations for collective behavior can be derived rigorously from particle
systems via the mean-field limit, see [4, 2|, and the references therein.

When initial data is compactly supported, belonging to space (H*(U), H*(U)), where
U C R has compact support, the critical thresholds for this problem have been established
in [3] by flow map techniques. We should point out that in [3, Remark 3.1] there is an
explanation of what additional assumptions need to be made for the initial data so that
the result still holds for U = R. However, the analysis of the local existence result for
classical solutions in [3, Appendix A] does not seem to be applicable directly to the setting
when initial data is defined on the whole line. Hence, we present a new local existence
theorem of classical solutions and give a self-contained proof using a different approach, in
which some control of solution behavior at far fields is essential. In addition, the C! class
of initial data we consider is larger than the H? x H? class for (pg,ug). With this local
existence theory, our results obtained for (1.1a) when applied to (1.2) lead to Theorem
5.2 and Theorem 5.3. To our best knowledge, the geometrical structure of the critical
threshold curves for (1.2) given in Theorem 5.3 is new. The explicit thresholds in Theorem
5.2 are essentially the same as those in [3], although here the initial data is defined on the
whole line.

(1.3)
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A related model is the one-dimensional Euler—alignment system which has a non-local
velocity alignment force (such force becomes the linear damping when the alignment force
is localized), for such model thresholds for global regularity vs finite time breakdown were
analyzed in [26]. Such result was further improved in [1] by closing the gap between
lower and upper thresholds. When both linear damping and nonlocal interaction forces
are present, sharp critical thresholds were obtained in [3] for a special system (1.2) with
smooth, compactly supported initial data.

The rest of this paper is organized as follows. In Section 2, we state the main results and
introduce the key transformation as a preparation for the analysis carried out in Sections
3 and 4. In Section 3, we prove our main results, providing sharp critical thresholds for
initial configurations which yield either global smooth solution or finite time breakdown.
In Section 4, we give dynamic representation of the critical threshold curve in each case.
Finally, in Section 5 we apply our obtained results to identify the critical thresholds for
(1.2). The proof of the needed local wellposedness result is deferred into Appendix A.

2. PRELIMINARIES AND MAIN RESULTS

The threshold analysis to be carried out is the a priori estimate on smooth solutions
as long as they exist. For the one-dimensional Euler-Poisson problem, local existence of
smooth solutions was long known, it can be justified by using the characteristic method
in the pressureless case. We only state the result here.

Theorem 2.1. (Local existence) If py € C* and uy € C' | then there exists T > 0,
depending on the initial data, such that the initial value problem (1.1a), (1.1b) admits a
unique solution (p,u) € C*([0,T) xR). Moreover, if the mazimum life span T* < oo, then

lim Oyu(t,z") = —o0
t—=T*—

for some x* € R.
We proceed to derive the characteristic system which is essentially used to in our critical

threshold analysis. Differentiate the second equation in (1.1a) with respect to x, and set
u, := d to obtain:

(2.1a) o+ pd=0,
(2.1b) d +d*+vd=k(p—c),
where we have used the Poisson equation in (1.1a) for ¢, and
0 0
r_— - -
= ot i Yor

denotes the differentiation along the particle path,
I'={(z,t)] 2'(t) = w(x(t),t), 2(0) = o € R},

Here, we employ the method of characteristics to convert the PDE system (1.1a) to ODE
system (2.1) along the particle path which is fixed for a fixed value of the parameter
«. Consequently, the initial conditions to the above equations are p(0) = po(a) and
d(0) = do(a) = upe(v) for each a € R.

Through analysis of system (2.1) we find the following.



CRITICAL THRESHOLDS IN EULER-POISSON SYSTEMS 5
Theorem 2.2. For the given 1D FEuler Poisson system (1.1a) with initial data (1.1b),
there is finite time breakdown iff 3x € R such that
(1) (v > 2Vke) Strong damping

max{ug,(z), ug(z) + Aa(c— po(z))} <0, and
aty(e) + ke = pola)) [ _ [ M) + (e — pola) [
kpo(x) kpo(z) ’

— 2_
where A = Y=YZ=Ike g ), — vk,

(2) (v = 2vVkc) Borderline damping

Z(c— po(x)} <0, and
2c

In (_20%(:c> +v(c— po(:c))) . 2cul(z)

vpo(x) ~ 2cug(x) + v(e— po(x))
(3) (v < 2vVke) Weak damping

(1501 + —22)0(:5»)2 s [ (hee ) Bt )]

where p = \/kc —v?/4 and

t = % {ﬁ%—tan_l (,/ug(x) —QFM;lf((cx) o(x )))} ’

max{ug(x), up(x) +

0 vuy(x) < min{0,2k(po(z) — )},
B=q 7 2k(po(x) — ¢) < vug(x),
2m 0 < wvug(x) < 2k(po(x) —¢).

This reconfirms the rather remarkable phenomena investigated in [8], namely that the
non-zero background is able to balance the nonlinear convective effects, damping, and the
repulsive forces, to yield a global smooth solution if the initial data is within the threshold
region.

The above result improves and extends the result stated and proved in [8].

In the next theorem we present critical thresholds in an alternative form which can be
determined from the phase plane analysis.

Theorem 2.3. Consider the 1D Euler Poisson system (1.1a) subject to C* initial data
(1.1b). There exists a unique solution p,u € C*(R x (0,00)) iff Vx € R,

(1) (v > 2v'kc) Strong damping

(po(x), ug(x)) € {(p,d) : d > —pQa(1/p), p > 0},

where Q, : [0,00) — [0,00) is a continuous function satisfying

dQ. k
;i —I/—I—@(l—cs) Q.(0)=0

(2.2)
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(2) (v = 2vVkc) Borderline damping

(po(), ug(x)) € {(p,d) : d > —pQu(1/p), p > 0},
where Q) : [0,00) — [0,00) is a continuous function satisfying

(2.3) % = 2Vke + &(1 —cs), Qp(0) = 0.

(3) (v < 2Vke) Weak damping

(po(x), ug(x)) € {(p, d) : =pQ1(1/p) < d < —pQa(s™ —1/p), p € (1/s",00)},
where s* > 0 is uniquely determined, and Q1 : [0, s*] — RTU{0} is a continuous
function satisfying

dc% v+ &(1 —c¢s), Qi(0) =0,

and Qs : [0,s*] — R™ U {0} is another continuous function satisfying

W2 R s =)= 1), Qu0) =0,

s~
The details of the proofs of Theorems 2.2 and 2.3 are carried out in Section 3 and
Section 4, respectively.
The main tool in our analysis is a transformation of variables with which we can reduce
the non-linear system of equations into a linear system. The solutions to the linear system
can then be analyzed or analytically found. More precisely, we introduce

d

2.4a r=——,
(2.4a) p

1
2.4b 5= —,
(2.4Db) ;
so that (2.1) reduces to
(2.5a) r' = —vr — k(1 — cs),

(2.5b) s =—r.

Clearly, given any initial data, we can find the solution curves r(¢) and s(t) which exist for
all £ € R. In order to return to the original unknowns (p, d), we need to make sure that
s remains greater than 0 for all ¢ > 0. In this way, we avoid the finite time breakdown of
p. Consequently, we find d to be bounded from below since

d=—rp>—oo Vt > 0.

In all fairness, we should point out that actually s = I'/py, where I' is nothing but
the ‘indicator’ function introduced in [8] to denote 0,z (t; ). The variable r has also
appeared as [3(t) in [8] in the case v = 0 and ¢ = 0. Here with these two variables
combined, we obtain the novel system (2.5) for the first time. The linearity of (2.5) and
its special structure allow us to derive explicit solutions as shown in Section 3, which is
essentially the same as those preformed in [8, 3] using the flow map techniques. However,
the geometric structure in terms of phase plane analysis we present here has not been
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reported in the literature. We hope this approach to study the geometric structure of
critical threshold curves can be extended to other systems in a dynamic way.

3. PROOF OF THEOREM 2.2: ANALYZING THE EXPLICIT SOLUTION

Differentiating (2.5b) and using (2.5a), we obtain the following initial value problem
(IVP) for s,

(3.1a) s"+vs' + kes =k,

1 dy
3.1b 5(0) = —, §(0) = —.
(3.1Db) (0) o (0) 0

The type of damping pertains to the type of solutions to this IVP.
3.1. Strong damping (v > 2vkc). On solving (3.1), we get,

1
s(t) = — [1+ Ae7™ + Be™1],

where )
A= ———|dy+ Xo(c— ,
()\2_)\1)p0[ 0 2( Po)]
1
B=——+———|dy+ M\(c— ,
()\2_)\1)p0[ 0 1( pO)]
) v — 2 —4ke N v+ V1?2 —4ke
1= ) 2 = .

2c 2c
Also note that if either of A or B is 0, then s(¢) > 0 for all £ > 0 is trivially achieved. Since
our solution comprises negative exponentials, s decays to 1/c. Also, such expressions can
have at most one extremum. Therefore, on observation we conclude that if s'(0) > 0,
then s remains positive; that is, dy > 0 ensures global existence. Next, we differentiate
the expression for s,
8/(t) = — [A)\le_Alct + B)\ge_)\26t] s

and equate it to 0 to obtain an expression for time ¢ = t* at which the extrema occurs,
e()\z—)\l)ct* _ _B)\2
AN
Furthermore, we differentiate s’ again to obtain,
s"(t) = ¢ [AN e ™ + BAJe ]
and write it in the following way,

B2
_ A —)qct)\ )\ —()\2—)\1)Ct
ce 1AL+ 1 —)\1 e ,

and substitute the expression for e~(A2=2)et” to obtain,
s"(t*) = —(Ag — A1) Ace M\,

Hence, if A > 0 then the extremum, if it exists, is a maximum. Furthermore, if A < 0, we
conclude from the expression of t* that B > 0 becomes a necessary condition for t* > 0 to
exist. Therefore, A > 0 ensures global solution anyways. To obtain the critical threshold
curve, we apply the condition that if there exists t = t* > 0, where the minimum of s is
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achieved, then s(¢*) > 0 which, from (3.1a), is equivalent to the condition that s”(t*) < k.
Therefore, we get
—(Ag — Ap)Ace ™M\ < k.
After substituting the expression for t*, the above equation can be rewritten as,
A1
B)\2 (A2=A1)
—(Ae = AM)Ach < k| ———= .
Ow = Anen < b (-5

Noting that A < 0 and B > 0, we get

A2

A
C(>\2 — >\1)(—A>\1)A2*>‘1 < ]{j(B>\2)W

On substituting the expressions for A and B and using that the difference of the exponents
on either side of the inequality is one, we obtain

[_ chidy + k(c — po)] A2 _ [_ chody + k(c — po)] M
kpo kpo '

From the discussion above, we also need dy < 0 and dy + Aa(c — po) < 0 for uniquely
determining the curve as a critical threshold. These together lead to the conclusion in (1)
of Theorem 2.2.

(3.2)

3.2. Weak damping (v < 2v'kc). On solving (3.1), we get,
1 e - 1 -
s(t):——i-e - [(C Po) cosut—i——(%jLM) sin,ut},
Po B\ Po 2po

where p = vkc —0.2502. Once again, the idea is that if s = (1/p) becomes 0 at some
time ¢ = ., means lim, ,,- p(t) = oo, then there is breakdown of the solution. Since, the
solutions are decaying with time, we need the first local minimum of s to be greater than
0. In view of this, we find all the times for which

S(t) =0, §'(t)>0.

In view of this, we calculate

J(t) = e K@) cos(jit) — (”do + 2k(e - pO)) sin(,ut)} .

2p1p0

So §'(t) =0 if
2Md0
vdy + 2k(c — po)’

We further perform the second derivative test,
ce

po ; cos(put) {tan(ut) (

which in virtue of (3.3) gives

(3.3) tan(ut) =

2

S”(t) —

4 2 2

B ce™2 cos(yut)
po(vdo + 2k(c — po))

S// (t) —

[M g2 (o +2k(e = po))2] |

2

—4p2dy + v2dy + 2kv(c — Po))  vdy + 2k(c — po) V@
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The condition for a minimum to occur is sgn{cos(ut)} = —sgn{vdy + 2k(c — po)}. This
gives us a sequence of minima at different times. At the first time t*, we have

_ 2,ud0
t* — t 1
pt = tan <yd0+2k(c—p0))’

0 wvdy < min{0,2k(py — )},
B=4 x 2k(po — ¢) < vdy,
o 0 < vdy < 2k(po — c).

Note that for
f(t) =co+e e cos(0t) + cosin(6t)],  v,0 >0,
the value of the function f at a local minima 7 is
0+ cg.
VO 2

co— €

On comparing s with f above we have,

v c— 1 [cd vic—
T=5 92,“9 60:1/07 €1 = p0> 02:_<—0+7( pO))
2 Po K\ Po 2po

Applying the above formula on s(t), we have for s(t*) > 0 to hold,

p0)? o 1 (edo oy vle=p0))?
¢=po A [ cao vie=po)
_ut* (Po) +u2(ﬁo+ 2p0 )
2 p

Ve
oy (kce;’t* B 1) n (2p0 — C)} .
c 0 c

3.3. Borderline damping (v = 2vkc). On solving (3.1), we get
]_ D vt
s(t) = = + [DJF (ﬁ + 7”) t} e
c

Po

where D = pio — 1. Setting §'(*) = 0 to obtain extremum, hence from
do do Dy _ vt
s'(t) = |:——(——|——)l/t}6 2
) Po 2p0 4

B 4dy
v (2do+vDpy)’

1—ce > 0.

This is equivalent to the following
2
v(c = po) 5
3.4 do+—= | <
(3.4 (a0 +2220) <
This proves (2) in Theorem 2.2.

we get

t*

which is positive if dy < 0 and
2dy +vDpy < 0.

The latter ensures that s”(¢*) > 0 since

dg Dv do Dv\ vt| _u
St :_V[_+__<_+_)_}e 3
) po 4 po 2 ) 4
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The above t* when inserted into s(t*) > 0 gives us,

)
(D + —) 7,
Vpo
which is equivalent to the following

(2edy + v(c — po)) 2edy
(3.5) In (‘ Vo ) 2cdy + v(c— po)

provided dy < 0 and 2cdy + v(c — po) < 0. This proves (3), hence completes the proof of
Theorem 2.2.

4. PROOF OF THEOREM 2.3: CRITICAL THRESHOLD CURVE

We will look into the geometrical interpretation of the critical threshold curve for the
3 cases in this section. First, we note from (2.5) that (0,1/c) is the only critical point in
phase plane, and the vector field for the system (2.5) is shown in Figure 1.

FIGURE 1. Vector field for (2.5).

The key point is that in the r — s plane, s = 0 corresponds to p = oo by (2.4b). We
need to identify an invariant region ¥ in phase plane so that s(t) > 0 for all t > 0 if
(ro, S0) € 2. Its boundary when transformed onto the p — d plane through (2.4) would
give us the critical threshold curve. By observation, a trajectory curve starting at the
origin and moving backwards in time would give us 0%, the boundary of X.

We proceed to discuss each case as stated in Theorem 2.3.

4.1. Strong damping (v > 2vkc). We rewrite (2.5) as the following form

d r —v ck r
(4.1) E(s—l/c)_<—1 0)'<s—1/c>'
The coefficient matrix on the right hand side has eigenvalues
Ay = (—vE V2 —4ke)/2

with the corresponding eigenvectors

V- = (_)‘—7 1)T> Vy = (_)‘-H 1)T
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Under the strong damping condition, the critical point (0, 1/c) is an asymptotically stable
node. In order to determine ¥, we know that the boundary curve (r(t), s(t)) satisfy the
following

r'=—-vr+k(cs—1), §=-r t<r
with (r,s) = (0,0) at a time ¢ = 7. When the time parameter is eliminated, we obtain
% - 5(1 —es), 1(0) = 0.
Let such a trajectory be denoted by 7 = Q,(s), we have
Y={(r,s), s>0,7<Qus)},
where @, (s) is as defined in (2.2). We now show such set is well-defined by looking at the
asymptotic behavior of @,(s). Since both the eigenvalues are real and negative, then

t

lim @ =—=)\_,
t——o0 s(t)

the slope of the eigenvector v_, for any trajectories. Hence

lim Qa(s) v+ Vv? —4dkc
= 5 .

§—00 S

One can show that r = —A_(s — 1/c¢) is a trajectory, so the curve r = Q,(s) always
remains below it. As a result, r = Q,(s) also remains below the line vr + k(1 — ¢s) = 0.
Hence, we have dfs“ > 0 for s € (0,00), X is thus well-defined. We can conclude that
s(t) > 0Vt > 0 if and only if (1o, s9) € X.
We also need to ascertain the behavior of as s goes to zero to know the behavior
of d versus p on the p — d plane as p — co. First we know that
lim Qa(s) = lim Q! (s) = lim v +

s—0t S s—0+t ¢ s—07F QQ(S) N

Qa(s)

which from (2.4) implies that d — —oo0 as p — oco. Transforming the threshold curve
back onto the p — d plane through (2.4), there is global solution if and only if

(p(]de) < {(p7 d) td > _an(l/p)7 pe (07 OO)}
Remark 4.1. We could also evaluate lim;_ o Q“T(S) using (2.1). Since r = Qu(s) is a
trajectory, using (2.4), the above limit is the value of —d as p — 0. Since p = 0 is a

solution to (2.1a), we thus have
d' = —(d* + vd + ke),

which gives
d=—(d—-X)(d—\).
For this Ricatti equation, d breaks down in finite time if and only if initial data dy < A_.
Qa(5)

Therefore,
) v+ V2 —4ke
lim =—)\_= )

S$—00 S 2
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4.2. Borderline damping (v = 2vkc). Note that (0,1/c) is an asymptotically sta-
ble improper node with eigenvalue A = —v/2 and the corresponding eigenvector v =
[—=X 1]7. Similar to the strong damping case we can identify the invariant region

S ={(r,s), s>0,r<Qys)},

where @), is a monotone function, satisfying

lim @uls) = K,
S§—»00 S 2
and it can be determined by the ODE (2.3). We also have
lim @ols) = +00.
s—0+t S

These enable us to conclude that s(t) > 0 V¢ > 0 if and only if (1, s9) € 2. Transforming
the invariant region back onto the p-d plane through (2.4), there is global solution if and
only if

(Po;do) € {(p,d) : d > =pQu(1/p), p € (0,00)}.
We point out that on the p-d plane, the critical threshold curve starts at (0, —v/2) and
monotonically goes to negative infinity as p goes to infinity.

4.3. Weak damping (v < 2v/kc). In such case, the coefficient matrix on the right hand
side of (4.1) has eigenvalues

Ap = —% + %\/4/% )

Hence (0,1/c) is an asymptotically stable spiral point for system (2.5). Therefore, tra-
jectories spiral into the critical point as time increases. Consequently, by vector field
diagram, a trajectory beginning at the origin and proceeding backwards in time (into the
first quadrant on 7-s plane) would spiral outwards and hit the s = 0 line again in the
second quadrant. This segment of the trajectory is the threshold curve on the r-s plane.
This curve partitions the upper half plane into two sections. The closed region formed by
this curve and s = 0 would then be an invariant region X since any trajectory with initial
data (79, so) in this region would spiral inwards clockwise without touching the s = 0 line.
And any trajectory with initial data outside this region remains outside this region.
We proceed to describe ¥ using two functions.

—vr —k(l —cs) =0

FIGURE 2. The curve along with vector field for (2.5).
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Because of the outward spiraling nature of the trajectory curve starting from (0,0),
then there exists a unique s* > 1/¢ so that we have (r,s) = (0, s*) at some t. The first
segment of such curve can be defined via a continuous function,

Q1 : [0,s*] — RT U {0},
satisfying for 0 < s < s¥,

d k
% v+ g l-as), QuO) =0,
Define a continuous function Qs : [0, s*] — R~ U {0} as follows.
40, k
T = —1-— = U.
- v+ Oa(7) (es cr), @Q2(0)=0

Then r = Q2(s* — s) gives the left segment of the said trajectory curve in the r — s plane.
That is the invariant region can be defined by

Y= {(Ta S) : Q2(S* - S) <r< Ql(s)> s € (07 S*)}
In order to transform X back to the p-d plane, we evaluate the appropriate limits to
ascertain the behavior of the threshold curve as p — oo As done before, we have

lim Qi (s) = lim LQI(S) = +00.
s=0t S s—0t ds
Note that Q2(s*) < 0 due to the outward spiraling nature of the threshold trajectory,
hence
lim 7622(8 —9) = —00.
s—0 S

We can now transform back onto the p — d plane through (2.4) to conclude that there is
global solution if and only if

(do, po) € {(d, p) : =pQ1(1/p) <d < —pQa(s™ —1/p), p € (1/s",00)}.
Note that the shape of the critical threshold curve is similar to that of a parabola opening
towards positive p axis and vertex at (1/s*,0). This completes the proof to Theorem 2.3.

Remark 4.2. Using (3.4), we can find s* explicitly. Note that the left-most point of the
threshold curve is (p*,d*) = (1/s*,0) with p* < ¢; for which § = =, setting dy = d* = 0
in (3.4) and using p* = ke — v?/4, we find that

c

ew +1

*

v
* L e2r +1
Hence, s* = = —.

5. APPLICATION TO AN AGGREGATION SYSTEM

In this section, we illustrate that our results can be applied to system (1.2), subject to
C! initial data (1.3).

For initial data (pg, uo) defined on the entire R, we shall make the following assumptions
concerning their behavior at far fields. There exists > 0 such that

(5.1) uos(7) € CY(R),  (2)**po(x) € CJ(R),
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where (z) := /1 + 22, and CP(R) denotes the set of bounded continuous functions on R.
Under (5.1) we have

(5.2) /Rpo(x) dz < oo, /Rpo(x)|u0(x)| dz < oo, /R|at|po(:z') dz < co.

We state the local wellposedness in the following.

Theorem 5.1. (Local existence) If py, ug € C*(R), and (5.1) is satisfied, then there
exists T > 0, depending upon the initial data so that (1.2), (1.3) has a unique solution
(p,u) € CHR x [0,T)), that fort € [0,T) and i =1,2

i C
(5.3) plx, t)|u|"(z,t) = 0 as |z]| = 00 and p(z,t) < P

Moreover, if the mazimum life span T < oo, then
lim Oyu(t,z") = —o0
t—=T*—
for some z* € R.

In other words, we prove local existence and uniqueness for solutions in a more restricted
function space. We would like to point out that the decaying assumptions at far fields
make sense physically and are reasonable assumptions as we want the particle density,
momentum, and energy to vanish at 4oco.

Using (5.2), set

/Rpo(x) da = M, /Rpo(x)uo(x) do = M.

For C' solutions satisfying (5.3) we first derive a local PDE in terms of (u, E,d, p) with
E := 0W p and d = u,, and reformulate it into a closed ODE system. First, we integrate
(1.2a) to get

/,0(:5, t) dr = M,,
R

since pu — 0 as |z| — co. Hence we have

(5.4) B(xt) = / —sgn(z — ) + o — yloly, ©) dy

= (x+ 1)Mo - / yply. t)dy — 2 / Py, t)dy.

— 00

Here we see that E is well defined due to (5.3). (1.2) can be used to obtain (pu);+ (pu?), +

pu = —Ep. Upon integrating,
d
— =0.
dt/R,ou%—/Rpu

Here, we used the decay of pu® and symmetry of E so that [, Epdx = 0. Therefore,

/ p(y, t)u(y,t) dy = Mie™".
R
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Differentiation of (5.4) with respect to t using (1.2a) yields

E, =2pu — / p(y, t)u(y,t) dy = 2pu — Mye™".
R
Also, we get E, = My — 2p, so that
Et + UEx = Mou - Mle_t.

Together with the equation for d = u, we obtain an augmented system

(5.5a) pr + upy + pd =0,

(5.5b) up + Uty +u = —F,

(5.5¢) di+udy, +d*+d=—E, =2p— My,
(5.5d) E, +uE, = —Me ' + Myu.

From this system we derive the characteristic system, based on which we further construct
the local-in-time solution. Finally, we show such constructed solution indeed satisfies (5.3).
Further details will be deferred to Appendix.

Since both equations for v and E are linear, and decoupled from the equations for p and
d. It suffices to consider the following system of equations to find the critical threshold:

(5.6a) o+ pd =0,
(5.6b) d/+d2+d:2<p—%>,
and

, 0 0

denotes the differentiation along the particle path,
I'={(z,t)] 2'(t) = w(x(t),t), 2(0) = o € R},

This is a particular case of system (2.1), with

Consequently, we have the following theorems.

Theorem 5.2. For the given 1D pressureless damped Euler system of equations (1.2)
subject to initial data (1.3), there is finite time breakdown iff 3x € R such that

(1) (Subcritical mass My < 1/4)
max{ugy(x), ug(z) + A2(0.5My — po(z))} < 0 and
05M0)\2U6($) + M() - 2p0($) A < ‘05M0>\1U6(2U) + M() - 2p0(117) A2
200() = 2p0 () ’

where A\ = 1=vi1—dMo 00 g Ay = 1+v1-4Mo
Mo MO
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(2) (Critical mass My =1/4)
max{ug(z), Moug(z) + 0.5My — po(x)} < 0 and
In (_Mou’o(x) +0.5M, — po(x)) Mouy(z) .
po(T) — Mougy(z) + 0.5My — po(z)
(3) (Supercritical mass My > 1/4)

<ug(x) L 0-5My — po(x)>2 . <M0 B 1) {4;)3(9;) ( Mpe"” 1) L Apola) - MO} |

M, = 1) Tz \ My -1 M,
where
; 1 P ) (Mo — 1)
= an
(My — 1) up(z) + 2My — 4po(x)

0 ug(zr) < min{0,4(po(z) — 0.5My)},

=R 7 4(po(x) — 0.5Mp) < up(x),

27 0 < uj(x) < 4(po(z) — 0.5My).

Theorem 5.3. Consider the given 1D pressureless damped Euler system of equations (1.2)
subject to initial data (1.3). There exists a unique global solution p,u € C1(R x (0, 00))
iff Ve € R,

(1) (Subcritical mass My < 1/4)

(po(x), up(x)) € {(p,d) : d > —pRu(1/p), p > 0},
where R, : [0,00) —> [0,00) is a continuous function satisfying
dR, 1
14+ —(2— M, — 0.
ds + Ra( 08), Ra(O) 0

(2) (Critical mass My =1/4)
(po(2), uy(2)) € {(prd) : d > —pRo(1/p), p > O},
where Ry, : [0,00) — [0, 00) is a continuous function satisfying
drR, . 1 B
(3) (Supercritical mass My > 1/4)

(po(), ug(x)) € {(p,d) : =pR1(1/p) <d < —pRa(y —1/p), p € (1/7,00)},

where 9
’}/ = ﬁo (1 —'— e\/T?) ,

and Ry : [0,7] — RT U {0} is a continuous function satisfying

dR, 1

TN 14 (2 Mys), Ri(0) =0

ds + Rl( 05)7 1( ) ’
and Ry : [0,7] — R~ U {0} is another continuous function satisfying

dRy 1

o=l My =5 =2), Raf0) =0,
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APPENDIX A. PROOF OF THEOREM 5.1

Denote ' = 9/0t + u0d/dx as the derivative along the particle path,
(A.1) I'={(z,t): 2 =u(z,t), z(0) = a, a € R},
and define

flat) == p(a(a,t),1),
Qla,t) == E(z(a,),1)
d(a,t) = ug(z(a; 1), 1),
(o, t) = u(x(o, 1), 1),

so to obtain the following closed ODE system

Y

)

(A.2a) f+ fd=0,

(A.2Db) 2+ 2=-0Q,

(A.2c) d+d*+d=2f — My,
(A.2d) Q' = —Me™t + Myz,
subject to initial data

(A.3a) f(a,0) = po(a),
(A.3b) 2(a, 0) = up(a),
(A.3c) d(a,0) = ugg (),
(A.3d) Q(a,0) = Ey(a),
where Ey(«) is defined by

(A4) Eufa) = [ [=santa = 5)+ (a = B)l(3) 45

which is well defined since |Ey(a) — Moar| < My + [ |2|po(z)da

This ODE problem, for each fixed oy € R, admits a unique local C* solution (f, z, d, Q)(a, t)
in a neighborhood of (ap,0). Our aim is to find a 7" > 0, such that f(a,t),z(«,t) are in
CHR x [0,T7]).

We do this by ensuring that the deformation of the path has a strictly positive uniform
lower bound. In the neighborhood of any («y, 0), using (A.2b), (A.2d), (A.3b) and (A.3d),
we see that a := z,(a, t) solves

a”" +a' + Mya =0,
(1(0) = do(Oé), a’(O) = —do(Oé) + 2p0(a) — M().

Since dy = ugg, po are bounded uniformly in terms of «, we find that for any ¢ > 0,
la(cr, t)| < C uniformly in «. Hence, choosing 7' < 1/(2C'), we ensure

t
1
S—Z:1+/O za(a,s)ds>§ Va e R, t €10,T].

Eventually, by the inverse function theorem, for each x € R and ¢t € (0,7], we can
uniquely solve the equation

r=uz(a,t), a=a(x,t),
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where the mapping x — «a,t is C?. Finally let us define

plx,t) = fla(x,t),t),

E(Iv t) = Q(O‘(Ia t)v t)7

u(z,t) = z(a(z, t),t),

p(z,t) = d((a(z,t),1)
for each z € R and ¢t € (0,T]. It remains to show (p,u) is indeed a solution to (1.2). One
can very that f' = p; + up,, so that

pi+upy +pp = 0.
da

We still need to show p = u,, that is to show d = z, - 5 along the particle path I'. In
view of this, fix a and set

ox
Upon differentiating,
ox
/ — / _ ad _ _d/
O =z,—2 %
Ox Ox
—~Qu— @+ ) (s - 50 ) - T2y - )

ox
=—Q,—0(d+1)+ 8_a(MO —2f).

Here, we used (A.2b), (A.2¢) and (A.1). Differentiating once again and using the expres-
sion for © along with (A.2d), (A.2a), (A.2c) and (A.1),
0
0" = —Myzo — ©'(d+1) — d'O + 2, (My — 2f) + 8—2(—2f’)

0
=—0'(d+1)+ (d*+d—2f + My)© — 2f (za _da_z)
=—(d+1)0 — (4f — My — d*> — d)®.

Note that ©(0) = 0 and ©(0) = 0, therefore, © = 0. So, d = u,. In a similar manner we
have
up + uu, +u=—E(z,t).
We need to show E(x,t) = OW % p. In order to achieve this, it suffices to prove
q(a,t) =0,
where

a(t) = Qs 1) - / [—sgn(a(a t) — y(5, ) + (x(e 1) — y(8, D]po(5) d.

R
Observe that ¢(0) = 0. Since the characteristics don’t cross, we have

sgn(z(a,t) —z(B,t)) = sgn(a — 5).

This observation along with the characteristic flow equation gives,

=0 - / (2(en ) — (8, 8))po(8) dB
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:M@—Mﬁ%—g/mwMﬁ+/4@wmwMﬁ
R R
- / (8, )po(B) dB — Mye.
R

We claim the right hand side is zero. Hence g = 0, we have arrived at equation (1.2b).
To prove the above claim, we first show [, Q(cv, t)po(ar) dov = 0 which will be essential

later. To see this, set
/ Q(a,t)po(c

One can check that a(0) = 0. From (A.2d),

a(t) = My </ 2po dov — Mle_t) :
R

Observe that a’(0) = 0. Differentiating once again, using the above expression for deriv-
ative and using (A.2b),

a’" +d + Mya = 0.
Consequently,

[ @tatmlayda=o
R
Multiplying (A.2b) by po, integrating and using the above result, we get

/Rz(a,t)po(a) da = Me™

This proves the claim. Finally, we show that the solution obtained for (1.2) with the
above construction indeed satisfies the designated boundary conditions. Since f(«,t) =
po(@)/(0x/0a), we have p — 0 as |z| — oo with the same rate as py since dx/0a has
a strictly positive lower bound V¢ € [0,7]. And since (A.2b) and (A.2d) form a closed
linear system, we can explicitly solve for z(«,t) via

2+ 2+ Myz = Mye™,
2(0) = uo(er),  2'(0) = —uo(cr) — Ep(cv).

Since ug, is bounded and observing the aMj term in Ey(a), both z(0) and 2/(0) may grow
at most linearly in «, so does z. Hence, by hypothesis,

lim pu® l‘im (0 /0x)poz® = 0.
—00

|| =00

Finally, we show that for a fixed a € R, for a finite time breakdown to occur, we must

have lim;_,7«- d(t) = —oo. Otherwise, we would have lim; ,7«— d(t) = co. Then Je > 0
such that for t € I :={t: T* —e <t < T*},
f'=—fd<0.

Therefore, there exists a constant D > 0 such that 2f — My < D. Hence, from (A.2c),
d" < D; Integration from some ty € I gives

d(T*) < d(to) + D(T* — 1),

which is a contradiction. This completes the proof to Theorem 5.1.
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APPENDIX B. UNIQUENESS OF CRITICAL THRESHOLD CURVES
Lemma B.1. Q,, Q,, Q1 and Q)5 in Theorem 2.3 are uniquely defined.

Proof. We will prove the existence and uniqueness for (), only, and similar analysis can
be carried out for @, @1, Q2. Consider an auxiliary problem of the form

ds r

ar vr + k(1 —cS)’ 5(0)=0,r>0.
One can check the right hand side function is continuous and locally Lipschitz in S around
the origin. Hence, a unique, strictly increasing solution S exists on [0, d] for some small
§ > 0. We can show that S~1 satisfies (2.2). Now, suppose Q and @ are two solutions to
(2.2). Note from (2.2) that any solution has to be strictly increasing in a neighbourhood
for s > 0. Hence, ) and @ have inverses, Q! and @_1. But the inverse being unique,

we have Q~! = Q~! = S. Hence, Q, is uniquely defined. O
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