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POSITIVE AND FREE ENERGY SATISFYING SCHEMES FOR DIFFUSION
WITH INTERACTION POTENTIALS

HAILIANG LIU AND WUMAIER MAIMAITIYIMING

ABSTRACT. In this paper, we design and analyze second order positive and free energy satisfying
schemes for solving diffusion equations with interaction potentials. The semi-discrete scheme is
shown to conserve mass, preserve solution positivity, and satisfy a discrete free energy dissipation
law for nonuniform meshes. These properties for the fully-discrete scheme (first order in time)
remain preserved without a strict restriction on time steps. For the fully second order (in both
time and space) scheme, we use a local scaling limiter to restore solution positivity when necessary.
It is proved that such limiter does not destroy the second order accuracy. In addition, these schemes
are easy to implement, and efficient in simulations over long time. Both one and two dimensional

numerical examples are presented to demonstrate the performance of these schemes.

1. INTRODUCTION

This paper is concerned with efficient numerical approximations to the following problem,

Op=V-(Vp+pV(V(x)+W=xp)), xeQCRI >0,
p(x,0) = po(x), x € QCRY

(1.1)

subject to zero flux boundary conditions. Here {2 is a bounded domain in R?, p = p(x,t) is the
unknown density, V' (x) is a confinement potential, and W (x) is an interaction potential, which is
assumed to be symmetric.

Such problems appear in many applications. If W vanishes, this model includes heat equation
(V(x) = 0) and the Fokker—Planck equation (V' (x) # 0, see e.g. [41]). With interaction potentials,
the equation can model nematic phase transition of rigid rod-like polymers [14], chemotaxis [39],
and aggregation in biology (see [17,21,43] and references therein). For chemotaxis, a wide literature
exists in relation to the Patlak-Keller-Segel system [22,38], and for rod-like polymers, the Doi-
Omnsager equation [13,14,30,34] is a well studied model.

Main properties of the solution to (1.1) are non-negativity, mass conservation and free energy
dissipation, i.e.,

po(x) > 0= p(x,t) >0, t>0, (1.2)

/Qp(x,t)dx:/gpo(x)dx, t>0, (1.3)

dE(p)

T = [ IV log(e) + Vi) + W s p)Pix = ~I(p) <, (14)
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where the free energy associated to (1.1) is given by

E(p) = / plog(p)dx + / V(x)pdx + | / / W (x — y)p(y)p(x)dydx. (15)

This energy functional is a sum of internal energy, potential energy, and the interaction energy. The
functional [ is referred to as the entropy dissipation. The nice mathematical features (1.2)-(1.4) are
crucial for the analytical study of (1.1), while free-energy dissipation inequality (1.4) is particularly
important to understand the large time dynamics of solutions of (1.1)( see e.g., [6,7,32]). There
have been many studies about the connection between the free energy, the Fokker-Planck equation,
and optimal transportation in a continuous state space (see e.g., [3,16,20,35,44]).

One way of obtaining a structure-preserving numerical scheme is the minimizing movement
approximation (see [1] and the references therein), also named Jordan-Kinderlehrer-Otto (JKO)
scheme (Jordan et al. [20]), which is given by

1
p"t = argmin {;WQ(p", p)+E (p)}

Here, at each time step, the distance of the solution update acts as a regularization to the free
energy. Yet such problems involving the Wasserstein distance W (p", p) are computationally de-
manding, see, e.g., [5,10,15,31] for some recent advances.

The second way of obtaining a structure-preserving numerical scheme is by a direct discretization
of (1.1) so that these solution properties are preserved at the discrete level. This way has gained
increasing attention in recent years, some closely related works include [8,25-29,42]. In [25], second
order implicit numerical schemes designed for linear (yet singular) Fokker-Planck equations satisfy
all three solution properties without any time step restriction. In [28], the authors extended the
idea in [25] to a system of Poisson-Nernst-Planck equations using the explicit time discretization.

For a more general class of nonlinear nonlocal equations,
Op =V - (pV(H'(p) + V(x) + W xp)) , (1.6)

where H is a smooth convex function, a second order finite-volume method was constructed in [§],
where positivity is enforced by using piecewise linear polynomials interpolating interface values.
Structure preserving schemes based on the Chang-Cooper scheme [9] have been constructed in [37]
to numerically solve nonlinear Fokker-Planck equations. Note that in [8,28,37] different time step
restrictions are imposed in order to preserve the desired solution properties.

The construction of higher order schemes using the discontinuous Galerkin (DG) framework has
recently been carried out for Fokker-Planck-type equations. We refer to [27] for entropy satisfying
DG schemes of arbitrary high order, and to [26] for a DG scheme of third order to satisfy the
discrete maximum principle for linear Fokker-Planck equations. In [29], the authors designed free
energy satisfying DG schemes of any high order for Poisson-Nernst-Planck equations, but positive
cell averages are shown to propagate in time only for special cases. While in [42], a high order
nodal DG method for (1.6) was constructed using k + 1 Gauss—Lobatto quadrature points for
degree k polynomials in order to preserve both the entropy dissipation and the solution positivity;

somehow degeneracy of accuracy in some cases was reported. Despite some well-known advantages
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of the DG method, structural properties of the above fully discrete DG schemes are verified under
some CFL conditions. It would be interesting to explore some explicit-implicit strategies for DG
schemes.

In this paper we extend the idea in [25] to construct explicit-implicit schemes which are proven
to preserve three main properties of (1.1) without a strict restriction on time steps. This therefore
has improved upon the work [28]. Our main results include the scheme formulation, proofs of
mass conservation, solution non-negativity, and the discrete free-energy dissipation law for both
semi-discrete and fully discrete methods. In particular, the fully-discrete scheme (first order in
time) is shown to satisfy three desired properties without strict restriction on time steps, in both
one and two dimensional cases with nonuniform meshes. For the fully second order (in both time
and space) scheme, we apply a local scaling limiter to restore solution positivity, such limiter was
first introduced in [24], in this paper we rigorously prove that such limiter does not destroy the
second order accuracy.

More precisely, our scheme construction is based on a reformulation

dp =V - (MV (%)) , (1.7)

where M = e~ V®)=W* motivated by the fact that the equilibrium solutions of (1.1) may be

x)=W+p  For linear Fokker-Planck equations, such reformulation with M =

expressed as p = Ce™ V!
e~V® (so called non-logarithmic Landau form) has been used in [25], as well as in earlier works (
see e.g., [4]). We note that for the general nonlinear nonlocal model (1.6), our scheme construction
remains valid if we take M = pe~H'(P)=VE)=W+p in the reformulation (1.7).

The advantage of formulation (1.7) can be seen from both spatial and temporal discretization.

The symmetric spatial discretization of the one-dimensional version of (1.7) yields the semi-discrete

scheme
d _ Pi+1 Py - Pi _ Pi-t
hi—p; = h* M. <J+ — D) R My | L — , 1.8
jdtpj G41/2845+1/2 ]\4],_~_1 Mj j—1/2773—1/2 Mj Mj_1 ( )

in which the evaluation of M at cell interfaces {;11/2} and cell centers {z;} is easily available
as defined in (2.4). Here p; approximates the cell average of p(z,t) on j-th computational cell
[iCj_l/Q,l'j_H/Q] of size hj, and hj+1/2 = (hj -+ hj+1)/2.

For time discretization of (1.8), we adopt an implicit-explicit approach to obtain

n+1 n n+1 n+1 n+1 n+1
h.u:hfl n T _ et M A (1.9)
T TR M MY SRR M M ) '

where p? approximates p;(t) at time ¢ = n7, see (3.1). This scheme is easy to implement, and is
shown to preserve all three desired properties without a strict time step restriction. However, the
scheme (1.9) is only first order in time. We further propose a fully second order scheme:

ot — B p%H iy 3 P Pi 1

e R Ry ol B0 VP (Bic o M M Y S V4 Ry

) J+1/2775+1/2 M;, M Y2 My My, )¢ (1.10)
n+1

Py =205 = 0y,
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based on the predictor-corrector methodology, where M7 and M7, , /o are given in (5.1). This
scheme is second order in both time and space, and it preserves solution positivity for small time
steps. For large time steps, we use a local scaling limiter to restore the solution positivity.

Although we derive the schemes for the model equation (1.1), the methods can be easily applied
to a larger class of problems where the solution depends on additional parameters and the PDE is
of drift-diffusion type; see [23].

The rest of the paper is organized as follows. In section 2, we present a semi-discrete scheme
for one dimensional problems. Theoretical analysis of three properties is provided. In section 3,
we present fully discrete implicit-explicit schemes for one dimensional case and prove the desired
properties. Section 4 is devoted to numerical schemes for two dimensional problems. In section 5,
we extend the scheme to a fully second order (in both time and space) scheme, a mass conserving
local limiter is also introduced to restore solution positivity. Numerical examples for one and two

dimensional problems are presented in section 6. Finally, concluding remarks are given in section

7.

2. NUMERICAL METHOD: ONE DIMENSIONAL CASE
We begin with

Op = 05(0up + p0:(V(2) + Wk p)), x€Q, >0,
p(l’,O) = pO(x)a HARS Q, (21)
Opp + p0,(V(x) + W % p) =0, xed, t>0.

and reformulate (2.1) as

Orp = 0:(MOy(p/M)),  x€Q, >0,
p(z,0) = po(x), x €, (2.2)
M, (p/M) = 0, redN, t>0,

where M = e=V@=W+_We propose a finite volume scheme for (2.2) over the interval = [a, b].
For a given positive integer IV, we partition domain €2 into computational cells [; = [z, 1, T +%]
with mesh size h; = |[;| and cell center at z; = T o1+ shi, j€{1,2,--- N}, we set hji1/o =

(hj + hja)/2.

2.1. Semi-discrete scheme. We integrate on each computational cell I; to obtain

d
E ; p(l’, t)dﬂf = Malv(p/M)lxj-Hp - Maﬂv(p/M)‘mj—l/z'
i
Let p(t) = {p1, ---, pn} be the numerical solution approximating all cell averages and Cj11/2 be
an approximation to M,(p/M)|.,,, 1> then one has the following semi-discrete scheme,
d Citipg—Cjorpp .
— P = ) j:1727"'>N7 (23)
dt"’ h;

we define

M. . . .
+7
Ciy12 = 2 (M_p_]

for j=1,2,--- N —1,
Mja Mj)

hji1/2



Ci2 =0, Cny12=0.
Here Mj 1/ = Q1(xj41/2, p) and M; = Q1 (x5, p) with
Q1(x,v) = e V@EL Wi for 2 e R, v e RV, (2.4)
Note that the zero flux boundary conditions have been weakly enforced.

2.2. Scheme properties. We investigate three desired properties for this semi-discrete scheme.

For the energy dissipation property, we define a semi-discrete version of the free energy (1.5) as
al 1
En(t) =) b (Pj log(p;) + Vip; + 591/%) 7 (2.5)
j=1

where g; = SN ;W (z; — x;)p; is a second order approximation of the convolution (W * p)(z;).
The following theorem states that the semi-discrete scheme (2.3) is conservative, positive, and
energy dissipating.

Theorem 2.1. The semi-discrete scheme (2.3) satisfies the following properties:
(1) Conservation of mass: for any ¢t > 0 we have

> hapi(t) =3 hips(0). (2.6)

(2) Positivity preserving: if p;(0) > 0 for all j € {1,---, N}, then p;(t) > 0 for any ¢ > 0.

(3) Entropy dissipation: dEd—’;(t) < —1;, where
N-1 ) ).
L=Y ¢ log (=LY —log (<4) ) > 0. 2.7
23 o (108 (255) ~ log (£2)) > .)

Proof. (1) Summing all equations in (2.3), we have

d Y d
7 > hipi(t) = S iri(t) =0,
s j=1

therefore (2.6) holds true for any ¢ > 0.

(2) Let F(j) be the vector field defined by the right hand side of (2.3), then
d "
—p=F(p). 2.
4 5= F(p 28)
Note that the hyperplane ¥ = {7 Z;VZI hjp; = Z;VZI h;p;(0)} is an invariant region of (2.8). We
define a closed set ¥; on this hyperplane by

N N
El = {ﬁ Pj > O,] = 1,2,"' ,N,and Zhjpj = Zhjp](())}
j=1 i=1

It suffices to show that Yy is invariant under system (2.8). This is the case if the vector field F(7)
strictly points to interior of ¥; on its boundary 0%;: i.e.,

F(p)-7 <0,



6 HAILIANG LIU AND WUMAIER MAIMAITIYIMING

where v’ is outward normal vector on any part of 9%;.

A direct calculation using (2.3) gives

N-1 N
F(@) 7= Crnp =D 37 Ciap
=t =t 2.9
N-1 v v ( ’ )
1 j
E—_— — .
j:1<h_j+1 h_]) j+1/2

For each [i € 0%, we define the set S ={j :1 < j < N and p; = 0}, then the outward normal
vector at fi has the form

, T . —Qy, 1€ S,
U= (v1,09, - ,0 with v; = ,

(st o) { 0,  i¢S,
and o; > 01if 7 € S.

Note that if j, j+1 € S, then p; = p;11 = 0implies Cj11/0 = 0;if j, j+1 & S, thenv; 1 = v; = 0.
Therefore nonzero terms in (2.9) are those with j € S, j+1¢ Sorj¢ S, j+1¢€ S. Hence
A - o Mieg pir o Mivh ps

hj jija My hjsr Pjaja M;

JES,j+1¢S j¢S,j+1€8

Therefore ¥; is an invariant region of (2.3), this completes the proof of (2).
(3) From the fact that W(z) = W(—x), it follows

N

d dp;
pr Z = gipj = Z h;g; dtj (2.10)
=1

Differentiating the discrete free energy (2.5) with respect to time and using (2.10) we obtain

N

dEy(t d
;; ) > (log(p;) + 1+ V; + gj)h; dpt]
j=1
a P
= Z(log (Mj )+ 1)(Cy12 — Cj1y2)
j=1 J
N-1 ) )
=—-) (| (log Ly og (L )
j:1 ]+1/2 (M]+1) (Mj)
=—-1,<0

Note that

and (z —y)(logz —logy) > 0 for z,y € RT, so we have I;, > 0. O



3. FULLY DISCRETE SCHEME

For time discretization of (2.3), we use an implicit-explicit time discretization in order to con-
struct an easy to implement yet stable numerical scheme without time step restriction.

3.1. Scheme formulation and algorithm. Let 7 be time step and p} be the numerical solution
at t, = n7 to approximate p;(t,). From given pj, 7 =12,---, N, we update to get p”+1 by

pn—l—l_pn (O - "

=2 =12, N (3.1)
T hj
with
M™ n+1 n+1
n,% j+3 Pj+1 P I .
or j=1,2,---,N—1,
j+1/2 = Rjt1)2 (Mj+1 Mjn) J
CIL/; = 03311/2 0,
where M7, |, = Q1(vj41/2, ") and M} = Qi(x;, p"). The initial data is chosen by

1 .
P? - h_/ po(x)dz, j=1,2,--- N. (32)
Jj JI;

3.2. Scheme properties. Define a fully discrete version E}' of the free energy (1.5) as
al 1
Bp =) h (p? log(p}) + V0 + §gyp;) , (3.3)
j=1

N
where gi' = > 5" bW (zi — x5)p
The following theorem states that the three desired properties are preserved by the scheme (3.1)
without strict time step restriction.

Theorem 3.1. The fully discrete scheme (3.1) has the following properties:
(1) Conservation of mass:

Z hjpi = / x)dx forn > 1. (3.4)

(2) Positivity preserving: if p} > 0 for all j =1,---, N, then
pitt >0, j=1,---,N.
(3) Entropy dissipation: there exists 7% > 0 such that if 7 € (0, 7*), then
Byt — By < —2I,

where

p”ﬂl pyt
T,% J+ 7
Z Citiy ( Mn+1) — log( M )> > 0.
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Proof. Set G = pi*t /M and Aji12 = 7/hjy1je, so the fully discrete scheme (3.1) can be

rewritten into the following linear system:
hipt =(ha M} + )\1+1/2M1+1/2)G )‘1+1/2M1+1/2Gg 5
hjpj )‘J 1/2M 1/2Gn* (h Mn + )\] 1/2M -1/2 + )\] 1/2 +1/2)Gn*
= Ajr12M; +1/2G]+1 J=2,3,--- ,N-1,
hnpy = — )‘N—I/QMN—l/ZGN—l + (hNM}\l/ + AN—1/2M17571/2)G?/’*-

(3.5)

Note that the coefficient matrix of linear system (3.5) is strictly diagonally dominant, therefore
(3.5) has a unique solution for whatever 7 a priori chosen so dose (3.1) because p”Jrl G M}
(1) (5.1) follows from adding all equations in system (3.5) and using (3.2).
(2) Since pi™ = MPGT™ and M7 > 0, it suffices to prove that

G = min {G}"} > 0.

v 1<j<N
Assume 1 < i < N, from i-th equation of (3.5) we have
hipi = =12 MLy G+ (R 4 Nicajo M g + N2 My 2) GE7 = Nipr e M 0GR
< N 2a MLy oG A (M + N1 oML gy + Nipa oM 1) G = i o My oG

Thus G} > 2> (). A similar argument applies if i = 1 or i = N.
(3) A dlrect calculation using (3.3) gives

Byt — By —Zh py M log(pf ) = pfflog(pf) + Vipy = Vig + S gt it = Sgi))
7=1
N
_Zha o log(pn ) + (00— PV (o0 — o) gl

n+1

1 n n n 1 mn T
+ 59505 = 950y 59 i+ P log(=-)
Pj

N

n n T, % 1 n n _n 1 n 7
Z = o) log(GF) + Saiey — i ey 4 g e,
n+1 n+41

here we have used p} log(p; ) < pj (pjp — — 1) and mass conservation Zj\’: i —=pt) = 0. We
J J

proceed with

N hjpn+1 h]p N
72(%)1% (G77) TZ log(G7)( J+1/2 (G — GY)
=1 j=t
h] LM (G = GT))

(3.6)
=—7 Z h]+1/2 Te(GY = G (log GTYy — log G)

= —7'[,’11 <0.



Here the sign of ;] is implied by the monotonicity of the logarithmic function.
It remains to find a sufficient condition on time step 7 so that

N
Zh L A A A B g

J=1

h; ,O?H h;p}

T

) log(G™"). (3.7)

J

From Z] Vhighpi = Zjv L higi ol it follows that

N
Zh gjp] g5+ 5 o) = 5 D hilg T = g eyt = )

2 ,
7=1
1 N N
=3 D hy Y hW (i — ) (pp T = ) (o = o)
=1 =1

N

W T T V23
<7 thhw ooy = 7]

]:
N n+1 n 2
W ]oo(b — a)72 (pj —pj>
< doh | "]
2 = T

where we have used the Cauchy-Schwarz inequality and b —a = Zjvzl hj. Let E, 7 € RY be vectors
= (pntl_pn
defined as §; = M, 7 = +/hjlog G7", then (3.7) is satisfied if

T

[Wlloo(b — a)72
2

2+ -E-q<0.
We claim that
£-7=0 ifandonlyif &=0. (3.8)

Therefore

t/‘ﬁrl

7 1l
|§|2 E fOI' f 7é 0,

where ¢g may depend on numerical solutions at t,, and t, ;. We thus obtain (3.7) by taking

O<CQ<

*

Co
T<7T1 =

Wb —a)’

—

Finally, we verify claim (3.8). If £ - 77 =0, then from (3.6) we have

N-1
0=C-77=—7> hil M (log Gy —log G3) (Gl — G*) <0,
j=1
therefore we must have G?’* = constan for all j € {1,2,--- , N}. This when inserted into scheme

(3.1) leads to
pitt = pl for all j € {1,2,--- N},

thus E: 0. 0J
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Remark 3.1. One could take the Euler forward time discretization to obtain an explicit scheme:
From p?, j =1,2,--- | N, update to get p'*" by

nt+l _ n n —(n
P 4 — Jj+1/2 ]_1/27 j:1,2,,N
T hj
where
M n n
n Jt+3 Pji+1 Pj ) f .
~ = — = or j=1,2,--- , N —1,
e hj+1/2 (Mj+1 Mj
1n/2 = C%H/z =0,
with M7, = Q1(2j41/2, p") and M} = Qi(z;,p"). One can show that the positivity preserving

property is still met yet under a CFL condition like 7 < vh2.

4. NUMERICAL METHOD: TWO DIMENSIONAL CASE

In this section, we extend our method to multi-dimensional problems. For simplicity, we only

present schemes for the two dimensional initial value problem,

{ Bp =V -(Vp+pV(V(z,y)+ Wxp), (r,9) €QCR? >0, (1)

p(x7y70):p0<x7y)7 (5’773/) EQ?
on a rectangular domain Q = [a , b] X [¢, d] subject to zero flux boundary conditions.

For given positive integers IV, N,,, we partition (2 by a Cartesian mesh with computational cells

Lij = [%—%» Lit

] X [y]—%a y]+%]7
where i € {1,2,--- N },j € {1,2,--- , N,}. The mesh size is |, ;| = hih} with the cell center at
(i, yj) = (xi—1/2 + %hfa Yj-1/2 t %h% we set hf+1/2 = (hi + hf+1)/2> hg+1/2 = (hi/ + h?+1)/2-

4.1. Semi-discrete scheme. Let p(t) = {p;;} be the numerical solution, then dimension by

dimension spatial discretization of
dp =V (MV(%)) . with M = e V@9 W,

yields the following semi-discrete scheme

i R Oi+1/2,j — L1725 " O’i7j+1/2 — Ci,j—1/2
" h* 3 ,

(2

where

My ( pivry P . .
Oi+1/2,': : L = ) Z:L"'aNx_Lj:L'“aNa
! hzg':+1/2 MiJrl,j Mz,] Y

Mgz ( pigar P . .
OZ’,‘+1/2: J = - = ) Z:L"'aNx>]:17"'7N_17
! h?_‘_l/Q Mi,jJrl Mz,] Y

Cl/2,j = CN1+1/2,j = U172 = Ci,Ny+1/2 =0, i=1,-+--,Ngyyj=1,--- 7Ny7
with Miy1/05 = Q2(Tit1/2,Yj» p)s Miji1/2 = Qa(Tis Yjs1/2, p), and M; ; = Qa(z4,y;, p). Where

Q2(x,y,v) = eV @)= 4 WEh{ W ek —e =yt for g y € R v e RN=xNy, (4.3)
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Let

U

Z hihj (Pm log(pi ;) + Vijpij + 59@]'02;3‘) ;
=1 j5=1
be an approximation of the entropy functional (1.5), with

Na: Ny

Gig = > > WERIW (= xi 01 — )P

k=1 I=1
The following theorem states that the semi-discrete scheme (4.2) is conservative, positive, and

energy dissipating.

Theorem 4.1. The semi-discrete scheme (4.2) satisfies the following properties:
(1) Conservation of mass: for any ¢ > 0,

Z Z hehYp;;(t) Z Z heh! pi ;(0)

i=1 j=1 =1 j=1

(2) Positivity preserving: if p; ;(0) > 0 for all ¢ € {1,--- ,N,} ,j € {1,---,N,}, then p; ;(t) > 0
for any ¢ > 0.

(3) Entropy dissipation: %ﬁt(t) < —1;, where
Ny N,—1
Pi+1,j Pi,j
hiC; 1 — log (—
h=) ¥ K (10825 ~ o (422
N, Ny—1
Pi 41 Pi.j
—|— hiC; 12<log( )—log(—)) > 0.
Proof. The proof is similar to that of Theorem 2.1, details are therefore omitted. O

4.2. Fully discrete scheme. Let p}'; approximate p;;(t,), then (4.2) gives the following fully
discrete scheme,

n+1 n T, % T, % Mm% T,
PJ — Pij _ Cl+1/2,] Cz 1/2,j n C,g+1/2 Oi,jfl/Q (4 4)
T hi h? ’ ’
where
Mﬂ ) pfl+1 pn+l
Czn* = H—I/Q’J( L o )a izl,'--,Nx—l,j:1,-",Ny,
TR hz+1/2 Mz+ly M,
M™ & ntl
n,* 1,j+1/2 ( pz,]—i—l pz,] ) . .
, 1/2 — n ) Z—la"'aNxaj—lv"'7Ny_1a
AR h§/+1/2 Mij-{—l M’L]
01/2,] _OK/*H/QJ 2011/2 _071\7 172 = =0, =1 ,Npyj=1,--,Ny,

with MZ+1/2] QQ(xi-i-l/?)yj)p )7 M i,j+1/2 — QQ(Iuyj-i-l/Qa ) and Mn QQ(xZayjapn)
The initial data is chosen as

piy = / po(,y)dzdy. (4.5)
[7:51
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In 2D case, a discrete version of entropy (1.5) may be defined as

Ny

mn I x 1
E; :;;h h (pwlog(p”)i-vjp”—l— 2g”pw), (4.6)
where
Ng N'y
9ij = Z Z hichf W (e — 24, y0 — y5) Prey-
k=1 i=1

Theorem 4.2. The fully discrete scheme (4.4) has the following properties:
(1) Conservation of mass:

a?

Ny
Zthhypw = / po(x,y)dxdy, for alln > 1. (4.7)
Q

=1 j=1

(2) Positivity preserving: if pj'; > 0 for all 7 € {1,--- , N, } and j € {1,---, N, }, then

pn-l—l 0
2y} - :
(3) Entropy dissipation: there exists 7% > 0 such that if 7 € (0, 7%), then
mn n T n
By — By < =3I, (4.8)
where
pn—l—l pn—l—l
Y Ornox it+lj tJ
Ih—ZZhOZ“/QJ M'ﬁl'_logM )
j=1 i=1 i+1,j irj
Nz Ny_l pn+1 pn-‘rl
hxc«n* i+l log =22 ) > 0.

Proof. For simplicity of analysis we rewrite the scheme (4.4) as

. N, n,% n,% n,%
T l+1/2]G’L+1j 1/2]Gz 1,5 ]+1/2G2j+1 j 1/2GZ] 1>

with the following notations

Yy x n+1
rn _ hj n MTL _ hz M n,* plv]
i+1/2,5 — he i+1/2,5° i,j+1/2 — LY 1,j+1/2> j Mn. :
i+1/2 j+1/2 2y

Note that the coefficient matrix of the linear system (4.9) (when consider G} as unknowns) is
strictly diagonally dominant, therefore (4.9) always has a unique solution.

(1) Adding all equations in (4.4) and using (4.5) lead to (4.7).

(2) Since pn+1 = MG and MY, > 0, it suffices to prove that G/ = ming j; G > 0, the
corresponding equation is

hihi iy =(hhi My, + TMk+1/2l + 7 My 1720 T M} Ar12 T TMkl 1/2) Gl

T,%
TMk+1/2le+1l TMk 1/2le 1,0 TMkl+1/2le+1 TMk,l71/2 k-1
N
<hih MMG,”,
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therefore GZZ* > (.
(3) A direct calculation using (4.6) gives

No Ny n+1
n () 7 7 pl,
Byt = By =3 Y (el og(pi]") = piylog(pi") + i log(— )
i=1 j=1 :J
n+1 1 n+1l n+1 n 1 n n 410
+ ‘GPZJ + 291] pz,] ‘/;in,j - §gz7jpl,]) ( . )

S T n,* n n 1 n n n 1 n v
<D hhog(G) (i = piy) + Saieis — 6ot + S0 o),
=1 j=1

where we have used log(z) < x — 1 and mass conservation property. By the symmetrical property
of W(x,y) we have

Ny N, N,
Z i hzhygmp?jl Z Zy: h””hygfflp?y
i=1 j=1 i=1 j=1

so that

X n 1 mn n
Zh W spls — G+ 5o )
1 j=1

1=

Ng y
= S W~ g )
=1 j=1

N Ny N Ny
= Zzh’”hy SN hphEW (i — a g — w) (i = D) (P = )
i=1 j=1 k=1 I=1
N 2
W - x Yy N n
< Wl (zzh i - )
=1 j=1
Zzh hy szl - pi,j)27
=1 j=1

where |Q] = 3= ZN‘” hihy. Substitution of the above inequality into (4.10) yields

Ny

N,
Byt —Ep < Zzh hy log (G )(P”H pij) + Zzh hy szl pi,j>2
i=1 j=1 =1 j=1
= F'"+ F}.

We proceed using summation by parts and boundary conditions so that

N Ny

Fln :TZZIOg(GZj)( Z+1/2](G?+*1j Gn*) ~2—1/2](C7m* G?i*l,j))

i=1 j=1

+TZZlOg Gn* zy—i—l/?(G?j*—&—l G"*) ~z] I/Q(Gn* G ))

2,7—1
i=1 j5=1
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Nz—1 Ny

=7 Z Z 1y2,(108(GEL ;) — log (GG — GiY)

i=1 j=1
N, Ny—1

- TZ Z ]+1/2 IOg Gz ]Jrl) log(Gz’]*))(G:L]:l GZ;)

i=1 j=1

. n

It remains to figure out a condition on 7 so that F'+ S Fy* < 0. Let 5, 7 € RY=Nv be vectors defined
as:

T
g VIR (i = i) g (O = PR ) VI, (PN N, — PR )

T T T

ﬁ:(VhTh?{log( ?,T)?"'a hv}c\lrhzl/log( %:,1)7 : \/hx hy 10g< N Ny))T7
then Fy' + 1 FP <0 if
W ||| QUE? + 7€ - 7 < 0.

In similar manner as in 1D case, we can show that é’ -7 =0 if and only if E = 0. Therefore

0<c < 5;77 m for £ #£ 0,
€z~ Il
where ¢y may depend on numerical solutions at ¢, and t,,,. We thus obtain the desired result
(4.8) by taking 7 < 7 = TSR O

Remark 4.1. The schemes presented so far apply well to the general class of nonlinear nonlocal
equations (1.6), based on the reformulation

o =V - (ML),

—H(p)=Vx)=W+p for p away from zero. The numerical solution may be oscillatory at

where M = pe
low density, for which one could use either upwind numerical fluxes or non-oscillatory limiters as a
remedy [8]. Note that for the aggregation equation (in the absence of diffusion), particle methods
have been developed in [11, 36]; Particle methods naturally conserve mass and positivity, yet a

large number of particles is often required to resolve finer properties of solutions.

5. SECOND ORDER IN-TIME DISCRETIZATION

The numerical schemes presented so far are only first order in time. In this section we extend

these schemes with a second order in time discretization.
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5.1. Second order scheme for 1D problem. We replace (3.1) by a two step scheme

P; - ,0? C;+1/2 C; 1/2

= i=1,2,---. N 5.1
7_/2 h] ) .] ) ) ) ) ( a’)
Pt =2p —pt j=1,2,--- N, (5.1b)
where
M* * *
. i+3 Pi+1 Pj ), f .
; = — — — —), for j=1,2,--- /N -1,
Tz h3+1/2 Mj+1 Mj

Oik/2 =0, C]j;f+1/2 =0,

with My, 5 = Qu(jg12, 50" — 30"7") and My = Qi(w, 50" — 3p"~"). The scheme (5.1) has
following properties.

Theorem 5.1. Let p}”l be obtained from (5.1), then
(1) Conservation of mass:

N
Z hip} = / po(z)dz, forn > 1.
j=1 @

(2) Positivity preserving: if p} > 0 for all j =1,---, N, then
gt z0, =1 N,
provided 7 is sufficiently small.

Proof. (1) From the scheme construction, the conservation property remains hold.
(2) Setting

G = p? * M*+1/2
i Jj+1/2 =
J

h]+1/2

and a careful regrouping leads to the following linear system
* T n+1 T n+l __
(M o 93/2) G- 2_h193/2G2 = by,
T
M* (g 4 g )) GnJrl o _gf Gn+1 o g Gn+1 — b (52)
( 2h j+1/2 j—1/2 2]1] j+1/2~5+1 2h j—1/2

(M54 gt a2 ) 63 = gk 2GR = b

where j =1,--- | N — 1, with the right hand side vector given by
>z< T n
by = | My 2h 93/2 Gy + 2%, 93/2G27
* T * * n T * n T * mn .
by = | Mj - 2h, (9j+1/2 +9;‘—1/2) Gj + 2_hjgj+1/2Gj+1 + 2_hjgj_1/2Gj_1’ j=L-,N-1

% T % n T * n
by = (MN — %g]v_l/z) Gy + %91\[—1/2@1\/—1-
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The linear system (5.2) admits a unique solution {G}*'} since its coefficient matrix is strictly
diagonally dominant. Following the proof of (2) in Theorem 3.1, we see that G?H > 0 is ensured
if each b; > 0, which is the case provided

2h M 2h; M* 2h N M
7 < min 1* ! , min — d J* , *N NS
9372 1<G<N Gii1)2 T 95172 IN-1/2

The stated result thus follows. O

n+1

For large time step 7, non-negativity of pi™" obtained by the second order scheme (5.1) may not

be guaranteed, we introduce a local limiter to resolve the solution positivity.

5.2. Local limiter and algorithm. We begin to design a local limiter to restore positivity of
{c; 300 if S =16 > 0, but ¢ <0 for some k. The idea is to find a neighboring index set S, such

Cr = ’Sk Zc]>0

JESE

that the local average

where |S;| denotes the minimum number of indexes for which ¢; # 0 and ¢, > 0, then use this as
a reference to define the following scaling limiter,

6j = 0Cj + (1 - e)éka J € Sk7 (53)

where

. Ck .
0 =minql, ———— >, Cpnin = ming;.

Cr — Cmin JESK
Lemma 5.1. This limiter has the following properties:
(1) ¢; > 0 for all j € S,
(2) Z]ESk é.] = Z]ESk Cj7 and
(3) 1¢; — ¢ < |Sk|(— minjes, ¢;).
Proof. (1) This follows from the definition of # and (5.3).
(2) By (5.3) and the definition of ¢, it follows that

> =0|Sklex + (1= 0)alSkl = > ;.

JESk JESk

(3) From (5.3) it follows that for all j € Sk,

N _ |k — ¢
éi—cil=(1-280 Cr — Cj —C B ———
| J ]| ( )l ]| min (ck cmzn)
S <_Cmin>max{1ac_ma$—_0k}7
Ck — Cmin

where ¢, = maxjeg, ¢; and i, = minjeg, ¢;. Note that Zjesk (¢x — ¢j) = 0 implies

Z (¢j —ck) = Z (@ — ),

jes JES
in which each term involved on both sides is nonnegative. Hence, ¢ — G < |Sk|(¢k — Cmin)-
Obviously, |Sg| > 1. Hence the claimed bound follows. O
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Remark 5.1. In general, |Sk| may not be bounded. For instance, we let

1 1
=—forj=1,--- ,N—1, and cy = —=
C.] 2] Or j Y ) Y a‘n CN 27
then Z;VZI ¢; =3 — zn1 > 0, but Z;VZQ ¢; = —3v— < 0. This implies that |[Sy| = N since
Sy=A{1,---,N}.
The above limiter when applied to {p,} with ¢; = h;p; gives
. Ck
pi="0p;+(1—0)~, (5.4)
J
where
. Ck . __ 1
e_mln{la m}, Cmm—?elgclhj/)ja Ck—mzhjpj‘

JESk
Such limiter still respects the local mass conservation. In addition, for any sequence g; with g; > 0,
we have

195 — 95| < (1 +|Sk|a) max|p; — g;, J € Sk,
JESk

where « is the upper bound of mesh ratio h;/h;. Let p; be the approximation of p(z) > 0, we let
g; = p(z;) or the average of p on I;, so we can assert that the accuracy is not destroyed by the
limiter as long as |Sk|a is uniformly bounded. In practice, it is indeed the case as verified by our
numerical tests when using shape-regular meshes.

Indeed, the boundedness of |Sk| can be proved rigorously for shape-regular meshes.

Theorem 5.2. Let p(x) > 0, be in C?(2), and {p,} be an approximation of p(x) such that |p; —
p(z;)] < Ch? where h = minj<j<y h; and h; < ah for some o > 0. If pp < 0 (or only finite

number of neighboring values are negative), then there exists K* > 0 finite such that
|Sk| < K™
where K* may depend on the local meshes associated with Sj.

Proof. Under the assumption p; < 0, p must touch zero near x. We discuss the case where
p(z*) = 0 and p/(2*) = 0 with p(z) > 0 for x > 2* locally with z* € I;. The case where p(x) > 0
for x < x* can be handled as well. Without loss of generality, we consider £ = 1 with z* € I, and
1, p(x)dz > 0. Tt suffices to find K such that

K
> hip; > 0. (5.5)
j=1

Using the error bound we have

pi = plz;) — Ch%.
Also from p € C? we can deduce that

o)) > iy — AR,
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with A\ = 5 maxgeq |p”| and the cell average p; = i L[ p I x)dzx. Combining these we see that the
left hand 81de of (5.5) is bounded from below by

Z hip; > Z hj(p; — Ch? — Ah?)

TK+1/2
2/ p(x)dx—(z\%—C)Zh?
T1/2

j=1

TK41/2 K
> / p(x)dz — (A + C)h*a? Z h;

T1/2 J=1

1
- [/ p (977 + $1/2) df — (X + C)hQQQ} n,
0

where 7 = Z]K:l hj, and we have used h; < ha. Using the fact Kh < 7, the term in the bracket
is bounded below by

1
/ p (0 +2172) dO — (A + C)’a® /K2,
0

which is positive if

av A+ Cn
v

This can be ensured if we take
K =|A]+1,
where for 2 = [a, b],
av A+ Cz
A= max

=€l b=l \/fo (02 + 212 db

which is bounded and depends on h;. For general cases a different bound can be identified and it

may depend on local meshes. U

Note that our numerical solutions feature the following property: if pj = 0, then p’”rl =
2p5 — p7 > 0 due to the fact that p; > 0 for all j = 1,---, N. This means that if py(x) = 0 on
an interval, then pjl- cannot be negative in most of nearby cells. Thus negative values appear only
where the exact solution turns from zero to a positive value, and the number of these values are

finitely many. Our result in Theorem 5.2 is thus applicable.

Algorithm. We have the following algorithm:
(1) Initialization: From initial data po(z), obtain p? = ;- f[ po(z)dz, 7 =1,--- N, by using
a second order quadrature.
(2) Update to get {p;} by the first order scheme (3.1).
(3) Marching from {p7} to {pi*'} for n =1,2,--- , based on (5.1).
(4) Reconstruction: if necessary, locally replace ,O"Jrl by p”Jrl using the limiter defined in (5.4).

The following algorithm can be called to find an admissible set S, used in (5.4).
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(i) Start with Sy = {k}, m =
(ii) If K —m > 1 and ¢, # 0, then set S, = Sp U {k —m}.
If ¢, > 0, then stop, else go to (iii).
(iii) If K +m < N and cgypm # 0, then set Sy = S, U {k + m}.
If ¢, > 0, then stop, else set m = m + 1 and go to (ii).

5.3. Second order scheme for 2D problem. A similar two step time-discretization technique
can be applied to higher dimensional problems. In the 2D case, that with scheme (4.2) gives the
following fully discrete scheme,

Pf,j - P?,j _ Oz'*+1/2,j - ;‘71/2,3' I i*,j+1/2 - CZ;‘A/Q (5 6a)
7/2 h¥ h? ’ '
Py = 2005 = Pl (5.6b)
where
M* . * o *
" . i+1/2,5 ( pz—i—l,] pz,] > . -
i+1/2,7 — T * - * ) 2*17"'7N1_17.7*17"'7Ny7
/% hz+1/2 M'H-l] Mi,j
MF. * i
* i,j+1/2 < 101,]+1 pz,] > . .
i,'+1/2: Y * * ) 2217"'7Nr7]:17"'7Ny_17
’ h]+1/2 MZ J+1 Mi,j
f/2,j = Nm+1/2,j = i,1/2 = z‘*Ny+1/2 =0, +=1,--- Ny, j=1,--- Ny7
with MZ*H/QJ = Q2 (xz+1/27yja %Pn ;Pn 1) M*ij4172 = Qz(xi,yjﬂ/z,%p” épn 1)7 and Mz*] =

Q2(xs, y;, 2p — ;p" D). In an entirely similar fashion (details are therefore omitted), we can prove

the following.

Theorem 5.3. The fully discrete scheme (5.6) has the following properties:
(1) Conservation of mass:

z

Ny
Z Z hibipl; = / po(x,y)dxdy, for n > 1.
Q

=1 j=1
(2) Positivity preserving: if pj'; > 0 for all i € {1,--- , N, } and j € {1,---, N, }, then
pitt >0,
provided 7 is sufficiently small.

5.4. Local limiter and algorithm. If the time step 7 is not small, positivity of pj'; is not
guaranteed for n > 2. We use the following limiter to resolve this issue:

_ ¢
pij = 0pi;+ (1 - e)hff’jyv (5.7)
il

with

. C,l
f=min<1l, ————— %, Cpnin= min h? hjpm, Ckl =
Ck,l — Cmin (4,5)€Sk,1

Z hihipig,

| kl| (4,3)E€Sk,1

where Si; denotes the minimum number of indexes for which p; ; # 0 and ¢;; > 0.
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The limiter (5.7) can be shown to be nonnegative and satisfy the local mass conservation. In
addition, for any g; ; > 0 we have
1Pig = 9isl < (L +[Skale) max [pi; —gisl,  (i,5) € Sku,
(4,3) €Sk 1
where « is the upper bound of 2D mesh ratios. Hence the second order accuracy remains for

shape-regular meshes since |Sk,| can be shown bounded as in the one-dimensional case.

Algorithm Our algorithm for 2D problem is given as follows:
(1) Initialization: From initial data po(x,y), obtain pf ; = % flm‘ po(z,y)dzdy, i=1,-+-  N,, j=
1,---, Ny, by using a second order quadrature.
(2) Update to get {p;;} by the first order scheme (4.4).
(3) March from {p7";} to {p}+'} based on the scheme (5.6).
(

/L?]
4) Reconstruction: if necessary, locally replace p"t! by ﬁz;rl using the limiter defined in (5.7).

i\j
The following algorithm can be called to find an admissible set Si; used in (5.7).
(i) Start with Si; = {(k,0)}, m = 1.
(ii) For d, = max{1,l —m} : min{l + m, N,} and d, = max{1,k —m} : min{k +m, N, },
If (dy,dy) ¢ S and ¢j_p, # 0, then set Sy, = Sk, U {(ds, dy) }-
If ¢, > 0, then stop, else go to (iii).
(iii) Set m =m + 1 and go to (ii).

6. NUMERICAL EXAMPLES

In this section, we implement the fully discrete schemes (3.1) and (4.4) and second order exten-

sions (5.1) and (5.6). Errors in 1-D case are measured in the following discrete norms:

N
ep = hz o — P}l
=1

— no__ on
e = max |pf — pyl.

Here p7 is cell average of the exact solution on I; at time ¢ = nr.
6.1. One-dimensional tests.

Example 6.1. (Accuracy test) In this example we test the accuracy of scheme (3.1) and scheme
(5.1) Consider the initial value problem with source term

Owp = 0u(0pp+ p0o(V(x)+ W xp)) 4+ F(x,t), ¢t>0, z€[-m 7, (6.1)

p(x,0) = 2+ cos(x), T € [-m, 7, '

subject to zero flux boundary conditions. Here we take V' (x) = cos(x), W (z) = cos(z), and
F(x,t) = me *(2cos®(x) + 2cos(x) — 1) + e *(2 cos®(x) + 2 cos(z) — 3).

One can check that the exact solution to (6.1) is

p(z,t) = e (2 + cos(x)).
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We compute to ¢ = 1, first use time step 7 = 0.1h and 7 = h? to check accuracy of scheme (3.1),
then use 7 = h to check accuracy of scheme (5.1), results are reported in Table 1 and Table 2
respectively. We see that the scheme (3.1) is first order accurate in time and second order accurate
in space, while the scheme (5.1) is second order accurate both in time and space.

Note that the exact solution is p(z,t) = e *(2+ cos(z)), which is far above 0 for ¢ € [0, 1]. Hence
the positivity-preserving limiter is not activated in this test.

TABLE 1. Accuracy of scheme (3.1) with 7 = 0.1k and 7 = h? .

errors and orders with 7 = 0.1h errors and orders with 7 = h?
N ! error order | [* error order | (! error order | [* error order
40 |0.70474E-01 | - 0.26268E-01 | - 0.10451E-00 | - 0.46075E-01 | -

80 | 0.32212E-01 | 1.1295 | 0.15021E-01 | 0.8063 | 0.25847E-01 | 2.0156 | 0.11397E-01 | 2.0153
160 | 0.15796E-01 | 1.0280 | 0.79593E-02 | 0.9163 | 0.64441E-02 | 2.0039 | 0.28433E-02 | 2.0030
320 | 0.78955E-02 | 1.0005 | 0.40881E-02 | 0.9612 | 0.16098E-02 | 2.0011 | 0.71027E-03 | 2.0011

TABLE 2. Accuracy of scheme (5.1) with 7 = h .

N I' error order [*° error order

40 | 0.14049E-00 - 0.43022E-01 -

80 | 0.35941E-01 | 1.9668 | 0.10729E-01 | 2.0036
160 | 0.90784E-02 | 1.9851 | 0.26805E-02 | 2.0009
320 | 0.22814E-02 | 1.9925 | 0.67108E-03 | 1.9980

Ezxample 6.2. In this example, we study dynamics of linear Fokker-Plank equations by considering
the following problem

Op = 0,(0wp+xp), t>0, €[5, 5 (6.2)
with initial condition
R = _
o(,0) = 2 [pe dr, z€[-35, 3.5 (6.3)
0, otherwise,

and zero flux boundary conditions (9,p + zp)|s=+5 = 0.

This is (2.1) with V(x) = % and W (z) = 0. The steady state to (6.2) is pe,(z) = e~ . We use
the time step 7 = 0.1 to compute solutions up to t = 4, with N = 200. In Fig.1(a) are snap shots
of patt =0, 0.2, 0.5, 1, 4, and the steady state. Fig.1(b) shows the mass conservation and energy
decay. We observe from this figure that the solution of problem (6.2) becomes indistinguishable
from the steady state after t = 2. Compared in Fig.2 are numerical solutions obtained by the
second order scheme (5.1) with and without the local limiter. We see that the limiter produces
positive solutions and reduces solution oscillations.
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F1GURE 1. First order scheme for Example 6.2.
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FIGURE 2. Second order scheme (with and without limiter) for Example 6.2.
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Example 6.3. (Doi-Onsager equation with the Maier-Saupe potential) In this example, we con-

sider the Doi-Onsager equation with Maier-Saupe potential

Oip = 0(0up + apd(W % p))), W(x)=sin’*(x) t>0, x €0,2n]

p(l‘,O) = #_'il)’

(6.4)

subject to zero flux boundary conditions. Here « is the intensity parameter. Stationary solutions
of (6.4) have been an interesting subject of study, since when « increases, phase transition from
isotropic state to nematic state will appear. A detailed characterization of solotions can be found
in [30]: for 0 < a < a* = 4, the only stationary solution is the isotropic state pe(z) = 5=. When
a > a* besides the constant solution pe,(x) = %, there are other solutions given by

6—77* cos2(x—xo)

eg\ L) = )
p q( ) fozﬁ e—1* cos(2z) ]

where z is arbitrary, n* > §+/1 — 4/a is uniquely determined by

fo% cos(2x)e™" cos(28) g N 2n

f()QW e—n* cos(2z) o
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We use scheme (3.1) and choose the time step 7 = 0.1 to compute up to 7' = 30 with N = 80. In
Fig. 3(a) are snap shots of solutions to (6.4) for « =3 < a* at t =0, 0.5, 5, 15, 25, 30. Fig.3
(b) shows mass conservation and energy decay, from which we can observe that the problem (6.4)

is already at steady state pe,(z) = 5= after ¢ = 20. In Fig. 4(a) are snap shots of solutions to (6.4)

fora =5>a*att =0, 0.5, 1, 5, 25, 35. Fig.4 (b) shows mass conservation and energy decay,

which tells that problem (6.4) is at already steady state after ¢ = 30. Our method gives satisfying

results for the problem, consistent with the numerical results obtained in [12] by an explicit scheme

with Fuler forward time discretization.

6.2. Two-dimensional tests.

Example 6.4. (Accuracy test) We consider the initial value problem with source term,

atp: V(Vp+pVV(C(Z,y))+F(ZL‘,y,t), t>0, (l‘, y) S [_
p<x7y70> = 2 —|—SiIl<LU) Sin(y>7 (fL’, y) < [_

subject to zero flux boundary conditions, here V(z,y) = sin(x) sin(y), and

F(x,y,t) = e *(2sin®(x) sin®(y) + 5sin(z) sin(y) — cos®(z) sin®(y) — sin(z) cos?(y) — 2).
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2
s
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ot
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This problem has the exact solution
p(x,t) = e (2 + sin(z) sin(y)).

We choose 7 = 0.1h? in scheme (4.4) and 7 = 0.1% in scheme (5.6). Errors and orders at ¢t = 1 are
listed in Table 3, in this test uniform meshes with h = h* = h¥ = 7 /N have been used.

TABLE 3. Accuracy of scheme (4.4) and (5.6).

scheme (4.4) with 7 = 0.1h? scheme (5.6) with 7 = 0.1h
N x N | ! error order | [*° error order | [! error order | [*° error order
10 x 10 | 0.927816E-1 | - 0.175767E-1 | - 0.31090E-01 | - 0.84728E-02 | -

20 x 20 | 0.232384E-1 | 1.997 | 0.446660E-2 | 1.976 | 0.77577E-02 | 2.003 | 0.22012E-02 | 1.945
40 x 40 | 0.581196E-2 | 1.999 | 0.112137E-2 | 1.994 | 0.19368E-02 | 2.002 | 0.55550E-03 | 1.986
80 x 80 | 0.145297E-2 | 2.000 | 0.280607E-3 | 1.999 | 0.48558E-03 | 1.996 | 0.13975E-03 | 1.991

Finally we mention that there is a class of equations in which the interaction is modeled through
a potential governed by the Poisson equation. The celebrated model is the Patlak-Keller-Segel
system of the chemotaxis [18,19]. The original model is a coupled parabolic system, and the one
related to our model equation (1.1) is the parabolic-elliptic version of the form (see e.g., [33])

op= Ap—V-(xpVe), t>0, x€R?
~Ac= p, (6.6)
p(x,0) = po(x), x € R2.

Here, p(x,t) is the cell density, c¢(x,t) is the chemical attractant concentration, the parameter
X > 0 is the sensitivity of bacteria to the chemical attractant. It has been shown in [2] that the
solution behavior of problem (6.6) is quite different when crossing a critical mass. If the initial
mass M =[5, po(z,y)dzdy is smaller than a critical value M, = 87/, then the solution exists
globally. When M > M., the solution will blow up in finite time, which is referred to as chemotactic
collapse.

Example 6.5. (Patlak—Keller—Segal system). In this example, we test the method’s capacity
in capturing solution concentrations for the Patlak—Keller—Segal system (6.6). Using the Green
function for the Poisson equation, this system can be reformulated as (1.1) with V' =0 and

W(z,y) = % log(v/72 + 12). (6.7)
In our simulation, we restrict to a bounded domain €2 subject to zero flux boundary conditions,
using formulation (4.1) with V(z,y) = 0 and W defined in (6.7). We fix x = 1 and consider both
the sub-critical case with

2r—0.2), (z,y) €[~1,1] x [-1,1],

po(a:,y) -
07 (xay) € Q\[_L 1] X [_17 1]7
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on 2 = [—-5,5] x [=5, 5], and super-critical case with
2(r4+0.2), (x,y)€[-1,1] x[-1,1],
po(z,y) =
0, (z,5) € O\[=1,1] x [-1,1],
on ) = [—1.5,1.5] x [—1.5,1.5], for which we know that the solution blows-up at finite time.

We take time step 7 = 0.01, and set N, = N, = 51 so that a single cell is located at the
center of the computational domain, where one can view a clear picture of the blow-up phenomena
in super-critical case. In Fig.5 are snap shots of numerical solutions in the sub-critical case at
t =0, 2, 8 12, 16, from which we observe that the numerical solution dissipates in time, the
last picture in Fig.5 shows mass conservation and energy dissipation. In Fig.6 are snap shots
of numerical solutions in super-critical case at ¢ = 0, 0.5, 1, 1.5, 2, we observe that numerical
solutions tend to concentrate at the origin.

Let us remark that in [42] the same concentration phenomena was observed, using a DG method
for this problem with periodic boundary conditions. Different boundary conditions do not affect the
concentration profile since the solution is compactly supported in our setting. In the super-critical
case, the peak in our result is slightly lower than that captured in [42], this is expected because
the solution is concentrated at a single point, and cell averaging near the origin can decrease the
height of the peak.

7. CONCLUDING REMARKS

In this paper, we have developed positive and free energy satisfying schemes for diffusion equa-
tions with interaction potentials; since such equations are governed by a free energy dissipation law
and are featured with non-negative solutions. Based on the non-logarithmic Landau reformulation
of the model, we constructed a simple, easy-to-implement fully discrete numerical scheme (first
order in time) which proved to satisfy all three desired properties of the continuous model: mass
conservation, free energy dissipation and non-negativity, without a strict time step restriction. For
a fully second order (in both time and space) scheme ,we used a local scaling limiter to restore
solution positivity when necessary. Moreover, we rigorously proved that the limiter does not de-
stroy the second order accuracy. Numerical examples have demonstrated the superior performance
of these schemes, in particular, the three solution properties numerically confirmed are consistent
with our theoretical findings.
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FIGURE 5. Solution evolution for Example 6.5 (sub-critical).
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FIGURE 6. Solution evolution for Example 6.5 (super-critical).
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