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Abstract

We give an FPTAS and an efficient sampling algorithm for the high-fugacity
hard-core model on bounded-degree bipartite expander graphs and the low-temperature
ferromagnetic Potts model on bounded-degree expander graphs. The results apply,
for example, to random (bipartite) ∆-regular graphs, for which no efficient algo-
rithms were known for these problems (with the exception of the Ising model) in the
non-uniqueness regime of the infinite ∆-regular tree. We also find efficient count-
ing and sampling algorithms for proper q-colorings of random ∆-regular bipartite
graphs when q is sufficiently small as a function of ∆.

1 Introduction

There are two natural computational problems associated to a statistical physics spin
model on a graph: the approximate counting problem of approximating the partition
function of the model and the sampling problem of obtaining a random spin configura-
tion approximately distributed according to the model.

A prominent example is the hard-core model of weighted independent sets. For a
graph G and fugacity parameter λ > 0, the hard-core model is the probability distribu-
tion µG,λ on the collection I(G) of independent sets of G given by

µG,λ(I) =
λ|I|

ZG(λ)

where

ZG(λ) =
∑

I∈I(G)

λ|I|
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is the hard-core partition function (also known as the independence polynomial in graph
theory).

A fully polynomial-time approximation scheme (FPTAS) is an algorithm that for
every ε > 0 outputs an ε-relative approximation to ZG(λ) (that is, a number Ẑ so that
e−εẐ ≤ ZG(λ) ≤ eεẐ) and runs in time polynomial in |V (G)| and 1/ε. A polynomial-
time sampling algorithm is a randomized algorithm that for every ε > 0 runs in time
polynomial in |V (G)| and 1/ε and outputs an independent set I with distribution µalg

so that ‖µG,λ−µalg‖TV < ε (this terminology is not completely standard, but it defines
the natural sampling equivalent of the running-time guarantees of an FPTAS).

The computational complexity of the approximate counting and sampling problems
for the hard-core model is well understood for bounded-degree graphs. For graphs of

maximum degree at most ∆, when λ < λc(∆) = (∆−1)∆−1

(∆−2)∆ , there is an FPTAS and a

polynomial-time sampling algorithm due to Weitz [47] (see also the recent [2]); whereas
when λ > λc(∆) both computational problems are hard: there is no polynomial-time
algorithm unless NP=RP [43, 44, 21]. The value λc(∆) is the uniqueness threshold of
the hard-core model on the infinite ∆-regular tree [31].

On the other hand, if we restrict ourselves to bipartite graphs, then classifying the
computational complexity of these tasks are open problems. The class #BIS is the class
of problems polynomial-time equivalent to approximating the number of independent
sets of a bipartite graph [18], and many interesting approximate counting and sampling
problems have been shown to be #BIS-hard [24, 14, 22] (that is, at least as hard as
approximating the number of independent sets in a bipartite graph). In particular, Cai,
Galanis, Goldberg, Guo, Jerrum, Štefankovič, and Vigoda [11] showed that for all ∆ ≥ 3
and all λ > λc(∆), it is #BIS-hard to approximate the hard-core partition function at
fugacity λ on a bipartite graph of maximum degree ∆. Resolving the complexity of
#BIS is a major open problem in the field of approximate counting.

One direction for partial progress on any intermediate complexity class is to find
subclasses of instances for which the problem is tractable (e.g. results showing that the
Unique Games problem is tractable on expander graphs [3, 35]). For #BIS, we would like
to find subclasses of bipartite graphs on which we can efficiently approximate the number
of independent sets or the hard-core partition function. One example is the algorithm
of Liu and Lu [34] which works when λ < λc(∆) and one side of the bipartition has
maximum degree ∆ but the other side of the bipartition is allowed unbounded degree.

Recently, Helmuth, Perkins, and Regts [27] gave efficient algorithms for the hard-core
model at high fugacity on the torus (Z/nZ)d and subsets of the lattice Zd with certain
boundary conditions. The algorithms are based on contour models from Pirogov-Sinai
theory [40] along with the cluster expansion and Barvinok’s polynomial interpolation
method [4, 5].

Here we extend this approach and use abstract polymer models and the cluster ex-
pansion to give efficient approximate counting and sampling algorithms for all bounded-
degree, bipartite expander graphs at sufficiently high fugacity. We say that a bipartite
graph G = (O, E , E) is a bipartite α-expander if |∂S| ≥ (1 + α)|S| for all S ⊆ O with
|S| ≤ |O|/2 and all S ⊆ E with |S| ≤ |E|/2. Here ∂S denotes the vertex boundary of S,
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the set of all vertices in V (G)\S with a neighbor in S.

Theorem 1. There exists an absolute constant C such that for every α > 0, ∆ ≥ 3,
and any λ > C∆4/α, there exists an FPTAS and a polynomial-time sampling algorithm
for the hard-core model at fugacity λ on bipartite α-expander graphs of maximum degree
∆.

In general the running time of our approximate counting algorithm in Theorem 1
(and the theorems that follow) is (n/ε)O(log ∆) for an ε-relative approximation to ZG(λ)
for an n-vertex graph G. Since ∆ is fixed this running time is polynomial in n and 1/ε,
but one might hope to improve the dependence on ∆. In fact, the larger λ is and the
larger α is, the faster the running time, and for large enough values of the parameters
the algorithm runs in almost linear time. We discuss this more below. See also [15]
in which the authors find faster sampling algorithms in similar settings using abstract
polymer models and Markov chains.

We can extend our methods to obtain efficient counting and sampling algorithms
for the hard-core model on random regular bipartite graphs for much smaller values of

λ, all the way down to λ = Ω
(

log2 ∆
∆

)
.

Let Gbip(n,∆) be the set of all ∆-regular bipartite graphs on n vertices (where n

is even), and let Gbip
n,∆ be a uniformly chosen graph from Gbip(n,∆). We say that a

property holds for almost every ∆-regular bipartite graph if the property holds with
probability → 1 as n→∞ for Gbip

n,∆.

Theorem 2. There exists a constant ∆0 so that for every ∆ ≥ ∆0 and all λ > 50 log2 ∆
∆ ,

there is an FPTAS and an efficient sampling algorithm for the hard-core model at fugac-
ity λ on almost every ∆-regular bipartite graph. The running time of the approximate
counting algorithm is (n/ε)1+O(log2 ∆/∆).

In particular, by setting λ = 1 this gives an FPTAS for counting the total number
of independent sets in random ∆-regular bipartite graphs for large enough ∆.

Remark 1. The guarantees of the algorithm of Theorem 2 (and of those below in
Corollary 4 and Theorem 5) are of the following form: the counting algorithm will
output an estimate of the partition function for every ∆-regular bipartite graph. With
probability 1−o(1) over the choice of graph Gbip

n,∆ the estimate will satisfy the guarantees
of an FPTAS. In fact what is needed is that the graph satisfy some expansion conditions
which hold with probability 1 − o(1) for Gbip

n,∆. It would be desirable to find algorithms
with a stronger type of guarantee: an algorithm could give no answer on a vanishing
fraction of graphs but if it gives an answer, the answer must satisfy the stated guarantees
(e.g. the sampling algorithm in [9]). We find such an algorithm for the Potts model
on random regular graphs below (Corollary 4) by certifying expansion using spectral
methods. We believe such an algorithm can be found for the hard-core model as well
(also using spectral results, e.g. [46, 10]), but certifying the specific expansion properties
used in Lemma 24 below seems more difficult, and so we do not pursue it here.
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To the best of our knowledge, no efficient counting or sampling algorithms for ran-
dom regular bipartite graphs were previously known for any λ > λc(∆).

Moreover, for any δ > 0, taking ∆ = Ω(log2(1/δ)/δ) gives an approximate counting
algorithm running in time O((n/ε)1+δ).

1.1 The Potts Model

Given a graph G and q ∈ N, let Ω = [q] = {1, . . . , q} and let ΩV (G) be the set of
all colorings ω : V (G) → Ω. Given ω ∈ ΩV (G) let m(G,ω) denote the number of
monochromatic edges induced by the coloring ω, that is

m(G,ω) :=
∑

{i,j}∈E(G)

δω(i),ω(j)

where δ is the Kronecker delta function. The q-color Potts model on G at inverse
temperature β is the probability distribution on ΩV (G) defined by

µG,q,β(ω) =
eβ·m(G,ω)

ZG,q(β)
, ω ∈ ΩV (G)

where
ZG,q(β) :=

∑
ω∈ΩV (G)

eβ·m(G,ω)

is the Potts model partition function. When β > 0 the model is ferromagnetic (monochro-
matic edges preferred) and when β < 0 the model is antiferromagnetic (bichromatic
edges preferred).

Goldberg and Jerrum [24] showed that approximating the partition function of the
ferromagnetic Potts model for q ≥ 3 is #BIS-hard. Later, Galanis, Štefankovič, Vigoda,
and Yang [22] refined this result by showing that this task is #BIS-hard on graphs of
maximum degree ∆ when β > βo(q,∆), the order/disorder threshold of the infinite
∆-regular tree (see [22] for a precise definition of βo(q,∆); in particular, βo(q,∆) >
βc(q,∆), the uniqueness threshold on the infinite ∆-regular tree).

Our next theorem gives efficient counting and sampling algorithms for the ferromag-
netic Potts model at low enough temperatures on expander graphs. We say that a graph
G is an α-expander if |∂e(S)| ≥ α|S| for all subsets S ⊆ V (G) with |S| ≤ |V (G)|/2.
Here ∂e(S) denotes the edge boundary of S, the set of edges of G with one endpoint in
S and the other in V (G)\S.

Theorem 3. For all α > 0, ∆ ≥ 3, q ≥ 2 and β ≥ 4+2 log(q∆)
α , there is an FPTAS

and polynomial-time sampling algorithm for the q-color ferromagnetic Potts model at
inverse temperature β on all α-expander graphs of maximum degree ∆.

Our algorithms apply to the Potts model on the random ∆-regular graph as well.
Let G(n,∆) be the set of all ∆-regular graphs on n vertices, and let Gn,∆ be a uniformly
chosen graph from G(n,∆) (as long as this set is non-empty). We say that a property
holds for almost every ∆-regular graph if the property holds with probability → 1 as
n→∞ for Gn,∆.
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Corollary 4. There is an absolute constant C > 0 so that for every ∆ ≥ 3, q ≥ 2, and
all β > C log(q∆)

∆ , there is an FPTAS and polynomial-time sampling algorithm for the
ferromagnetic Potts model at inverse temperature β on almost every ∆-regular graph.
Moreover, there is a polynomial-time algorithm to certify conditions on a ∆-regular
graph G that suffice for the guarantees of the FPTAS and sampling algorithm, and
these conditions hold with probability 1− o(1) for Gn,∆.

Again to the best of our knowledge no efficient counting or sampling algorithms
were known previously for the q ≥ 3 Potts model on random regular graphs for β above
the uniqueness threshold βc(q,∆) of the infinite ∆-regular tree. The lower bound on β
needed in Corollary 4 is necessarily above the ordering threshold βo(q,∆) on the infinite
tree since our proof involves a phase coexistence result (Lemma 12). We note however
that our lower bound on β is within a constant factor of βo for ∆ fixed and q large
(since βo(q,∆) = (1 + oq(1))2 log q

∆ as q →∞ [22]).

1.2 Counting and sampling proper colorings on bipartite graphs

For q ≥ 3, let Xq(G) be the set of all proper q-colorings ofG. Let ZG(q) = |Xq(G)| and let
µG,q be the uniform distribution on Xq(G). In particular, if G is bipartite then Xq(G) is
guaranteed to be non-empty. We would like to approximate ZG(q) and sample from µG,q.
Galanis, Stefankovic, Vigoda, and Yang [22] show that these problems are #BIS-hard on
bipartite graphs of maximum degree ∆ when q ≤ ∆/(2 log ∆). Here we show that under
the stricter condition that q ≤ c

√
∆/ log2 ∆ (or equivalently ∆ ≥ Cq2 log2 q), these

problems are tractable on random regular bipartite graphs. This solves Conjecture 1
from the earlier extended abstract of this paper [29].

Theorem 5. There is an absolute constant C > 0 so that for all q ≥ 3, and for
∆ ≥ Cq2 log2 q, there is an FPTAS and polynomial-time sampling algorithm for proper
colorings on almost every ∆-regular bipartite graph.

Adapting techniques from [27, 29], Liao, Lin, Lu, and Mao [33] have recently and in-
dependently proved similar results to Theorems 2 and 5 with slightly stronger conditions
needed on λ and ∆ respectively to obtain efficient algorithms.

1.3 Discussion

We take ∆ ≥ 3 in all of our theorems since computing the relevant partition functions
exactly on paths and cycles takes linear time.

We also note that for the q = 2 case of the Potts mode (the Ising model), efficient al-
gorithms are known for all graphs and all temperatures: the approximate counting algo-
rithm of Jerrum and Sinclair [30], turned into a sampling algorithm via self-reducibility
by Randall and Wilson [41]; see also the recent proof of Guo and Jerrum [26] showing
polynomial-time mixing of the random-cluster dynamics.

The approximate counting and sampling problems for the hard-core and Potts mod-
els on random graphs have received considerable attention, with positive algorithmic re-
sults in the low-fugacity, high-temperature uniqueness regimes of the infinite ∆-regular
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tree, and some negative algorithmic results, in the form of torpid mixing of certain
Markov chains, in the high-fugacity and low-temperature regimes. Our results are
novel in providing positive algorithmic results in the high-fugacity and low-temperature
regimes.

In the low fugacity regime with λ < λc(∆), Weitz’s algorithm applies to Gbip
n,∆.

Efthymiou, Hayes, Štefankovic, Vigoda, and Yin [19] have also shown that the Glauber

dynamics have mixing time O(n log n) on Gbip
n,∆ for λ < (1 − ε(∆))λc(∆) for some

ε(∆)→ 0 as ∆→∞. For λ > λc(∆), the Glauber dynamics for the hard-core model on

Gbip
n,∆ are known to mix slowly [36], and perhaps Theorem 2 can be improved to work

for all λ > λc(∆), though this would likely require new ideas.
For the Potts model, a natural conjecture for the optimal bound on β for the

particular polymer-based algorithm we use here is the order/disorder transition point
βo(q,∆) = log q−2

(q−1)1−2/∆−1
. Galanis, Štefankovič, Vigoda, and Yang [22] have shown

that the Swendsen-Wang dynamics mix slowly at βo(q,∆) on the random ∆-regular
graph (for q large enough). In fact their analysis shows that the approximation lemmas
we use below fail for Gn,∆ and β ≤ βo(q,∆). The bound we obtain in Corollary 4 is
at worst a factor of order log ∆ away from this natural barrier and matches up to a
constant factor when q and ∆ are polynomially related.

In the high-temperature regime, Blanca, Galanis, Goldberg, Štefankovic, Vigoda,
and Yang [9] have recently given an efficient algorithm to obtain an n−c-approximate
sample (that is, a sample within total variation distance n−c for n-vertex graphs for
some constant c > 0) from the Potts model (ferromagnetic and anti-ferromagnetic) on
Gn,∆ when the parameters lie the uniqueness regime for the infinite ∆-regular tree.

While efficient counting and sampling algorithms for these problems on random reg-
ular graphs were previously only known for the uniqueness regime, the probabilistic
properties of these models are well understood at all fugacities and temperatures. Sly
and Sun [44] showed that the limiting free energy (the normalized log partition function)
of any sequence of locally tree-like bipartite graphs converges to the replica symmetric
solution predicted by the cavity method from statistical physics. This result applies in
particular to the hard-core model on random bipartite ∆-regular graphs. Dembo, Mon-
tanari, Sly, and Sun [16] then showed that the limiting free energy of the ferromagnetic
Potts model on a sequence of graphs converging locally to the infinite ∆-regular tree is
given by the replica symmetric solution from the cavity method.

For other recent work on algorithms for the Potts model and low temperature and
the hard-core model at high fugacity, see [6, 15, 12]. For further algorithmic applications
of abstract polymer models and the cluster expansion see [13].

1.4 Proof ideas

Our main technical contribution is to show that the hard-core, Potts and coloring models
are well approximated by mixtures of polymer models with convergent cluster expansions
in the relevant range of parameters. These polymer models each represent deviations
from one of a collection of ground states. For example, in the case of the Potts model, the
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ground states are the monochromatic configurations, while in the case of the hard-core
model the ground states are the two collections of independent sets with no occupied
even or odd vertices respectively.

The main steps in the proofs of Theorems 1 and 3 are as follows.

1. First we show that the partition function of the relevant model on (bipartite)
expanders is dominated by configurations that are ‘close’ to one of the ground
states.

2. For each ground state we define a polymer model representing deviations from
the given state. We show that α-expansion implies a strong upper bound on the
polymer weights, which allows us to verify the Kotecký-Preiss condition for the
convergence of the cluster expansion [32].

3. This last step allows us to implement a version of the approximate counting al-
gorithm from [27], based on truncating the cluster expansion. This algorithm is
inspired by Barvinok’s method of truncating the Taylor series of the log partition
function, but here we can work directly with the cluster expansion and avoid any
use of complex analysis.

4. The sampling algorithm is based on a form of self-reducibility for abstract polymer
models.

In Section 2 we define polymer models and the cluster expansion, we state the
Kotecký-Preiss condition, and describe the counting algorithm. We prove our results
for the Potts model in Section 3, for the hard-core model in Section 4, and for proper
colorings in Section 5. We conclude with some discussion and open problems in Sec-
tion 6.

2 Polymer models

2.1 Abstract polymer models

We define polymer models in sufficient generality for the purposes of this paper. A more
general treatment can be found, for example, in [25, 32].

A polymer γ is a connected subgraph of G. A polymer model consists of a set
of allowed polymers C(G) along with a complex-valued weight function wγ for each
polymer. We measure the size of a polymer by |γ|, the number of vertices of γ.

We say two polymers γ, γ′ are compatible if d(γ, γ′) > 1 and incompatible otherwise,
where d(·, ·) is the graph distance. Let G(G) be the collection of all finite subsets
(including the empty set) of C(G) consisting of mutually compatible polymers.

We can then define the polymer model partition function

Ξ(G) :=
∑

Γ∈G(G)

∏
γ∈Γ

wγ .
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The prototypical example of a polymer model is the low-fugacity hard-core model
on a graph G: the set of polymers C(G) is simply the set of vertices V (G). The
collection of sets of mutually compatible polymers G(G) is exactly I(G), the collection
of independent sets of G. If we set the weight function of every polymer to be wγ = λ,
then the abstract polymer partition function Ξ(G) is exactly the hard-core partition
function ZG(λ).

2.2 Convergent cluster expansions

A detailed probabilistic understanding of a polymer model can be obtained by showing
that the cluster expansion of its log partition function converges.

For a multiset of polymers Γ, the incompatibility graph H(Γ) has one vertex for
each polymer in the multiset (with multiplicity) with an edge between two vertices
corresponding to polymers γ, γ′ that are incompatible. A cluster is an ordered list
of polymers from C(G) (with repetitions allowed) whose incompatibility graph is con-
nected. The size of a cluster is |Γ| =

∑
γ∈Γ |γ|. Let Gclust(G) be the collection of all

clusters. The cluster expansion is then the (formal) power series in the variables wγ ,
γ ∈ C(G),

log Ξ(G) =
∑

Γ∈Gclust(G)

φ(Γ)
∏
γ∈Γ

wγ ,

where φ(Γ) is the Ursell function of the incompatibility graph H = H(Γ) defined by

φ(H) =
1

|V (H)|!
∑

A⊆E(H)
spanning, connected

(−1)|A| .

(The Ursell function φ(H) is an evaluation of the Tutte polynomial of H). In fact the
cluster expansion is simply the multivariate Taylor series for log Ξ(G) in the variables
wγ , as observed by Dobrushin [17]. See also Scott and Sokal [42] for a derivation of the
cluster expansion and much more.

A sufficient condition for the convergence of the cluster expansion is given by the
following specialization of a result of Kotecký and Preiss.

Theorem 6 ([32]). Fix a function g : C(G) → [0,∞), and extend g to clusters by
defining

g(Γ) =
∑
γ∈Γ

g(γ) .

Suppose that for all γ ∈ C(G) ∑
γ′:d(γ′,γ)≤1

|wγ′ |e|γ
′|+g(γ′) ≤ |γ| . (1)
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Then the cluster expansion converges absolutely and, moreover, for every v ∈ V (G),

∑
Γ∈Gclust(G)

Γ3v

∣∣∣∣∣∣φ(Γ)
∏
γ∈Γ

wγ

∣∣∣∣∣∣ eg(Γ) ≤ 1 , (2)

where we write v ∈ Γ if there exists γ ∈ Γ so that v ∈ γ.

We remark that the theorem appearing in [32] is more general. For instance it allows
a general choice of function f : C(G) → [0,∞) in lieu of the function | · | appearing
in (1). A more careful choice of the function f might lead to better dependencies
between the parameters in our results, although as far as we can tell only constant
factor improvements would be gained.

2.3 Algorithms

We can use Theorem 6 to approximate the partition function. For a given function
g : C(G)→ [0,∞) for which (1) holds, define the truncated cluster expansion

Tm(G) =
∑

Γ∈Gclust(G)
g(Γ)<m

φ(Γ)
∏
γ∈Γ

wγ .

We refer to g as a decay function for the polymer model. Under the Kotecky-Preiss
condition, truncating the cluster expansion with large enough m gives a good approxi-
mation to the log partition function.

Fact 7. If condition (1) holds and m ≥ log(|V (G)|/ε), then

|log Ξ(G)− Tm(G)| ≤ ε .

This fact follows from summing (2) over all v ∈ V (G).
Under mild conditions on the polymer model, and under the non-trivial condition of

zero-freeness of the partition function in a disc in the complex plane, Helmuth, Perkins,
and Regts gave an efficient approximation algorithm for the partition function [27,
Theorem 6]. The following theorem is an adaptation of that theorem.

Theorem 8. Fix ∆ and let G be some class of graphs of maximum degree at most ∆.
Suppose the following hold for a given polymer model with decay function g(·):

(i) There exists constants c1, c2 > 0 such that given a connected subgraph γ, deter-
mining whether γ ∈ C(G) and then computing wγ and g(γ) can be done in time
O
(
|γ|c1ec2|γ|

)
.

(ii) There exists ρ(∆) = ρ > 0 so that for every G ∈ G and every γ ∈ C(G), g(γ) ≥
ρ|γ|.

(iii) The Kotecký-Preiss condition (1) holds with the given function g(·).
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Then there is an FPTAS for Ξ(G) for G ∈ G. The running time of this algorithm is
n · (n/ε)O((log ∆+c2)/ρ).

The algorithm is as follows. Given ε > 0, and a graph G on n vertices, let m =
log(n/ε) and:

1. Enumerate all clusters Γ ∈ Gclust(G) with |Γ| < m/ρ; call the list of such clusters
L.

2. For each cluster Γ ∈ L compute φ(Γ),
∏
γ∈Γwγ , and g(Γ).

3. Compute Tm(G) by summing:

Tm(G) =
∑
Γ∈L

g(Γ)<m

φ(Γ)
∏
γ∈Γ

wγ .

4. Output exp(Tm(G)).

Proof of Theorem 8. Fact 7 along with condition (iii) of the theorem tells us that
exp(Tm(G)) is an ε-relative approximation to Ξ(G) and so we just need to show that
steps 1–3 can be done in time n · (n/ε)O((log ∆+c2)/ρ).

By condition (ii) of the theorem, we need to list clusters Γ with |Γ| < m/ρ, compute
the Ursell function for each cluster, and compute the product of polymer weights in each
cluster. Using the algorithm of [27, Theorem 6], we can list all clusters of size at most
m/ρ in time n∆O(m/ρ) and compute their associated Ursell functions (this result relies of
the algorithms of [38] for enumerating connected subgraphs in a bounded-degree graph
and [8] for evaluating the Tutte polynomial, and hence the Ursell function, of a graph
in time exponential in its number of vertices). Computing

∏
wγ for a single cluster can

be done in time (m/ρ)c1eO(c2m/ρ) using condition (i). Putting this together yields an
algorithm with running time n · (n/ε)O((log ∆+c2)/ρ).

We can also sample efficiently from a polymer model satisfying condition (1). We
define a probability measure νG on G(G):

νG(Γ) =

∏
γ∈Γwγ

Ξ(G)
, Γ ∈ G(G) .

Following [27, Theorem 10], the approximate counting algorithm also provides a
polynomial-time sampling algorithm for νG.

Theorem 9 ([27], Theorem 10). Under the conditions of Theorem 8, there is a polynomial-
time sampling algorithm for νG for all G ∈ G.

Theorem 9 is an application of self-reducibility to the abstract polymer model. We
briefly summarize the algorithm here for completeness and since we will use some of its
properties later.
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Let n = |V (G)|, and given ε > 0, let m = log(2n/ε). Let C(m)(G) be the set of all
polymers γ so that g(γ) < m, and let G(m)(G) be the collection of pairwise compatible
sets of polymers from C(m)(G). By Fact 7, with probability at least 1 − ε/2, Γ drawn
from νG belongs to G(m)(G), and so it suffices to sample from G(m)(G). The algorithm
builds such a configuration one polymer at a time.

Fix an arbitrary ordering of the vertices of G, v1, . . . , vn. Let Γ0 = ∅, and let
C1 = C(m)(G). Then for j = 1, . . . , n do the following:

1. List all polymers γ ∈ Cj so that vj ∈ γ; call this list Lj .

2. For each γ ∈ Lj , approximate the probability Pr[γ ∈ Γ|Γj−1 ⊆ Γ].

3. Choose at most one polymer from Lj according to these approximate probabilities
and add it to Γj−1 to form Γj ; if no polymer is chosen let Γj = Γj−1.

4. Let Cj+1 = Cj \ Lj .

Output Γ = Γn.
The algorithm is simply self-reducibility applied to the polymer model. Its correct-

ness relies on two facts: 1) at most one polymer from Lj can appear in Γ since any two
polymers in Lj are incompatible with each other 2) for each polymer γ ∈ C(m)(G) there
is exactly one step at which it can potentially be added to Γ: the step j corresponding
to the first vertex vj in γ according to the arbitrary vertex ordering. The efficiency of
the sampling algorithm relies on the fact that Lj can be formed efficiently and that the
conditional probabilities can be computed efficiently. The latter is done by approximat-
ing partition functions of polymer models with various subsets of polymers. Crucially,
if condition (1) holds for C(G) then it holds for any subset C′ ⊆ C(G).

While the algorithm of Theorem 8 does not use complex analysis or refer the zeros of
a partition function, it is closely related to and inspired by the approach of Barvinok [5]
for a broad range of approximation problems that involves truncating the Taylor series
of the log partition function and using the absence of zeros of the partition function
in the complex plane to deduce convergence. The cluster expansion itself is the mul-
tivariate Taylor series of log Ξ and the fact that it is supported on clusters which are
connected objects is related to the method for efficient computation of the coefficients
of graph polynomials in [37]. The algorithm of [27] for approximating a polymer model
partition function uses the cluster expansion in an indirect way: the cluster expansion
is used to prove that the partition function does not vanish in a disc around 0 in the
complex plane; then Barvinok’s algorithm of truncating the univariate Taylor series is
applied. Here we use the cluster expansion directly, truncating it to approximate the
log partition function, and using the guarantees of (2) to bound the approximation er-
ror. The technical reason zero-freeness and the Taylor series were needed in [27] is that
the weight functions of the more complicated contour models used there are ratios of
partition functions, instead of the explicit polymer weights used here.

To prove Theorems 1, 2, 3, and 5 we will take G to be the class of (bipartite) α-
expander graphs of maximum degree ∆. We will show that the hard-core and Potts
partition functions, at sufficiently high fugacity and low temperature respectively, and
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the number of proper q-colorings for q sufficiently small, can be approximated well by
sums of partition functions of abstract polymer models. This involves showing that the
expansion condition implies that almost all the weight of the given partition function
comes from configurations close to one of a small number of ground states.

We then verify in each case conditions (i) of Theorem 8, which is straightforward.
Conditions (ii) and (iii), choosing the function g and showing the Kotecký-Preiss

condition holds, are non-trivial, and it is here that the dependence of the temperature
and fugacity on the degree and expansion is determined.

We note that although we are working with low-temperature models, we are able to
use the polymer model formulation instead of the more complex contour model formula-
tion of Pirogov-Sinai theory used for the algorithms on Zd in [27]. The reason polymer
models suffice is that the strong expansion condition allows us to express our partition
functions in terms of deviations from the ground states directly and not in the recursive
fashion of a contour model.

3 The Potts model

3.1 Approximation by a polymer model

In this section we show that the Potts model partition function of an expander graph
can be well-approximated by the partition function of a certain polymer model. Recall
that our measure of approximation is the following.

Definition 10. Let Z be a real number. We call Ẑ an ε-relative approximation to Z if

e−εẐ ≤ Z ≤ eεẐ .

Given a graph G and a set S ⊆ V (G), recall that we let ∂S denote the set of
vertices in Sc (the complement of S in V (G)) adjacent to a vertex in S and we let
∂e(S) denote the set of edges in G with one endpoint in S and the other in Sc. We let
G[S] denote the subgraph of G induced by the vertex set S. Let S+ = S ∪ ∂S and let
∇(S) = E(G[S])∪∂e(S), the set of edges of G that are incident to a vertex in S. Recall
our notion of expansion.

Definition 11. A graph G is an α-expander if |∂e(S)| ≥ α|S| for all subsets S ⊆ V (G)
with |S| ≤ |V (G)|/2.

Let G(α,∆) denote the class of all α-expander graphs with maximum degree at
most ∆. For the remainder of this section we fix a graph G ∈ G(α,∆) on n vertices.

First we first show that the main contribution to the Potts model partition function
of G comes from colorings where one color dominates. To make this precise we make
a few definitions. First let Ω = [q] and let Ωn be the set of all (not necessarily proper)
colorings ω : V (G)→ [q], and recall that m(G,ω) denotes the number of monochromatic
edges of G induced by ω. The Potts model partition function is then

ZG,q(β) :=
∑
ω∈Ωn

eβ·m(G,ω) .

12



For j ∈ [q], let
Ωn
j = {ω ∈ Ωn : |ω−1({j})| > n/2} ,

let
ZjG(β) :=

∑
ω∈Ωn

j

eβ·m(G,ω),

and let

Z∗G(β) =

q∑
j=1

ZjG(β) .

Lemma 12. For β > 2 log(eq)/α, Z∗G(β) is an e−n-relative approximation to ZG,q(β).

Proof. Let Ωn
∗ =

⋃q
i=1 Ωn

j and note that this is a disjoint union. Let ω /∈ Ωn
∗ , then for

each j ∈ [q] we have

|ω−1({j})| ≤ n

2
.

Letting Sj = ω−1({j}) it follows that |∂e(Sj)| ≥ α|Sj |. The set Sj consists of all
vertices of G with the color j and so every edge lying between Sj and Scj is bichromatic.
Summing over colors j we thus have at least

1

2

q∑
j=1

|∂e(Sj)| ≥
1

2

q∑
j=1

α|Sj | =
αn

2

bichromatic edges and so

m(G,ω) ≤ e(G)− αn

2
.

Using the crude bound |Ωn\Ωn
∗ | ≤ |Ωn| = qn we then have

ZG,q(β)− Z∗G(β) =
∑
ω/∈Ωn

∗

eβ·m(G,ω) ≤ qneβ(e(G)−αn/2) ,

and so ∣∣∣∣1− Z∗G(β)

ZG,q(β)

∣∣∣∣ ≤ qneβ(e(G)−αn/2)

ZG,q(β)
≤ qn−1e−βαn/2 ≤ e−n ,

where for the second inequality we use the trivial lower bound ZG,q(β) > qeβe(G).

This allows us to focus on approximating Z∗G(β). Henceforth, let us fix r ∈ [q]. We
will refer to r as the color ‘red’. By symmetry

Z∗G(β) = q · ZrG(β) ,

and so we may in fact focus on approximating ZrG(β).
We now define a polymer model, whose partition function will serve as an approxi-

mation to ZrG(β).
Define a polymer to be a set γ ⊆ V (G) such that G[γ] is connected and |γ| ≤ n/2.

Following the set-up in Section 2, we say that two polymers γ1, γ2 are compatible if
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d(γ1, γ2) > 1. We let C = C(G) denote the set of all polymers of G and let G = G(G)
denote the family of all sets of mutually compatible polymers from C. To each polymer
γ ∈ C, we assign the weight

wγ := e−β|∇(γ)|ZG[γ],q−1(β) .

This defines a polymer model with partition function

Ξ(G) =
∑
Γ∈G

∏
γ∈Γ

wγ .

We remark that since G includes the empty set we have Ξ(G) ≥ 1.

Lemma 13. For β > 2 log(eq)/α

Z̃G(β) := eβ·e(G) · Ξ(G)

is an e−n-relative approximation to ZrG(β).

Proof. For S ⊆ V (G), let Ωn(S) denote the set of colorings ω ∈ Ωn such that ω(S) ⊆
[q]\{r} and ω(Sc) = {r}. Note that for ω ∈ Ωn(S), we have

m(G,ω) = e(G)− |∇(S)|+m(G[S], ω) . (3)

Note also that if {γ1, . . . , γk} are the connected components of G[S] then

e−β|∇(S)|ZG[S],q−1(β) =
∏
i∈[k]

e−β|∇(γi)|ZG[γi],q−1(β) . (4)

We call a subset S ⊆ V (G) small if |S| ≤ n/2 and large otherwise. We call S sparse
if each of the connected components of G[S] is small. Note that there is a one to one
correspondence between sparse subsets of V (G) and elements of G. We thus have by (3)
and (4) that

Z̃G(β) = eβ·e(G)
∑
Γ∈G

∏
γ∈Γ

e−β|∇(γ)|ZG[γ],q−1(β) ,

= eβ·e(G)
∑

S sparse

e−β|∇(S)|ZG[S],q−1(β) ,

=
∑

S sparse

∑
ω∈Ωn(S)

eβ·m(G,ω) .

On the other hand

ZrG(β) =
∑

S small

∑
ω∈Ωn(S)

eβ·m(G,ω) ,
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and so

Z̃G(β)− ZrG(β) =
∑

S sparse,
large

∑
ω∈Ωn(S)

eβ·m(G,ω).

Observe that if S is large and sparse then |∂e(S)| ≥ α|S| ≥ αn/2, and so by (3)
m(G,ω) ≤ e(G)− αn/2 for all ω ∈ Ωn(S). It follows that∣∣∣∣∣1− Z̃G(β)

ZrG(β)

∣∣∣∣∣ ≤ e−β·e(G)
(
Z̃G(β)− ZrG(β)

)
≤ qne−βαn/2 ≤ e−n ,

where we have the lower bound Z̃G(β) ≥ eβ·e(G) (since Ξ(G) ≥ 1) and the crude upper
bound of qn on the number of ω such that ω ∈ Ωn(S) for some large and sparse set
S.

Our aim is to apply Theorem 8 to this polymer model in order to obtain an FPTAS
for Ξ(G) when β is sufficiently large which, by Lemmas 12 and 13, will furnish us with
an FPTAS for ZG,q(β).

To this end we aim to verify conditions (i)–(iii) of Theorem 8 for our polymer model.
Verifying condition (i) is essentially immediate. Given γ, determining whether γ ∈ C
amounts to checking whether G[γ] is connected and of size at most n/2. This can be
done in O(|γ|) time by a depth-first search algorithm. Computing the weight function
wγ can be done in time O(∆|γ|(q − 1)|γ|) by calculating m(G[γ], ω) for all assignments
ω of (q − 1) colors to γ.

We now turn our attention to verifying conditions (ii) and (iii) for an appropriate
choice of function g.

3.2 Verifying the Kotecký-Preiss condition

We choose
g(γ) = |γ| .

Condition (ii) of Theorem 8 holds trivially with ρ = 1. It remains to show the Kotecký-
Preiss condition holds. That is, ∑

γ′:d(γ′,γ)≤1

wγ′e
2|γ′| ≤ |γ|

for all γ ∈ C(G). We begin by bounding wγ :

wγ = e−β|∇(γ)|ZG[γ],q−1(β)

≤ e−β|∂eγ|(q − 1)|γ|

≤ e−βα|γ|(q − 1)|γ| .
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For the first inequality we used that |∇(γ)| = |∂eγ| + e(G[γ]) and that ZG[γ],q−1(β) ≤
(q − 1)|γ|eβ·e(G[γ]). For the second inequality we used that G is an α-expander. It thus
suffices to show that ∑

γ′:d(γ′,γ)≤1

e(2−αβ+log(q−1))|γ′| ≤ |γ| .

If we could show that for each v ∈ V (G)∑
γ′:γ′3v

e(2−αβ+log(q−1))|γ′| ≤ 1

∆ + 1
, (5)

then by summing this inequality over all v ∈ γ+(= γ ∪ ∂γ) and noting that |γ+| ≤
(∆ + 1)|γ|, we would be done.

In order to establish (5) we borrow the following lemma:

Lemma 14 ([23], Lemma 2.1). In a graph of maximum degree at most ∆, the number
of connected, induced subgraphs of order t containing a fixed vertex v is at most (e∆)t.

It follows that the number of polymers γ of size t that contain a given vertex v is
bounded by (e∆)t, and so

∑
γ′:γ′3v

e(2−αβ+log(q−1))|γ′| ≤
∞∑
t=1

(
(q − 1)∆ · e(3−αβ)

)t
≤ 1

∆ + 1
,

for β ≥ 4+2 log(q∆)
α .

This verifies condition (iii) of Theorem 8 and so Theorem 8 gives an FPTAS for

Ξ(G) for all β ≥ 4+2 log(q∆)
α .

3.3 Proof of Theorem 3

We consider two cases separately. If ε ≤ e−n/2, then we proceed by brute force, calculat-
ing m(G,ω) for each of the qn possible colorings of G. In this way we can calculate the
partition function ZG,q(β) exactly in time O(n∆qn) and therefore in time polynomial
in 1/ε. Similarly we can obtain an exact sample from µG,q,β by brute force in time
polynomial in 1/ε.

Now we assume ε > e−n/2. Using Theorem 8, we can obtain Zalg, an ε/2-relative
approximation to eβe(G) ·Ξ(G) in time polynomial in n and 1/ε (here we use the fact that
for a polymer γ, wγ can be computed in time O(|γ|∆q|γ|)). By Lemma 13, eβe(G) ·Ξ(G)
is an e−n-relative approximation to ZrG(β) and so qeβe(G) · Ξ(G) is an e−n-relative
approximation to Z∗G(β) . By Lemma 12, it follows that qeβe(G) ·Ξ(G) is an ε/2-relative
approximation to ZG,q(β) and so qZalg is an ε-relative approximation to ZG,q(β) as

required. Lemmas 12 and 13 apply since 4+2 log(q∆)
α > 2 log(eq)/α.

For the approximate sampling algorithm, we will apply Theorem 9.
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Consider the following distribution µ̂ on Ωn. Choose r ∈ [q] uniformly at random
and then sample Γ from the measure νG,β on G(G) defined by

νG,β(Γ) =

∏
γ∈Γwγ

Ξ(G)
.

Then convert Γ into a q-coloring ω ∈ Ωn as follows: for each γ ∈ Γ, choose a (q − 1)
coloring (excluding color r) ωγ according to µG[γ],q−1,β . Then set ω(v) = ωγ(v) if v ∈ γ
for some γ ∈ Γ, and ω(v) = r otherwise. The resulting distribution of ω is µ̂.

By Lemmas 12 and 13 and the condition on ε,

‖µ̂− µG,q,β‖TV ≤ ε/2.

Thus to complete the proof of Theorem 3 it suffices to obtain an ε/2-approximate sample
from νrG,β in time polynomial in n and 1/ε, and to do this we appeal to Theorem 9.
Crucially, because of the truncation involved in the polymer sampling algorithm of
Theorem 9, we have |γ| = O(log(n/ε)) for each γ ∈ Γ and so for each γ a sample from
µG[γ],q−1,β can be obtained by brute force in time polynomial in n and 1/ε.

3.4 Proof of Corollary 4

In order to prove Corollary 4 we require a very brief review of spectral graph theory.
For a graph G on n vertices we let

h(G) := min
{S:|S|≤n/2}

|∂eS|
|S|

.

In other words, h(G) is the largest value of α for which G is an α-expander. The exact
determination of h(G), given G, is known to be coNP-complete. However, as shown by
Alon [1], one can efficiently approximate the expansion properties of a graph using its
spectrum. For a graph G on n vertices, we let λ1 ≥ . . . ≥ λn denote the eigenvalues of
the adjacency matrix of G (that is, the n×n matrix A, with rows and columns indexed
by V (G), where Aij = 1 if {i, j} ∈ E(G) and Aij = 0 otherwise).

The following lemma, one of Cheeger’s inequalities (see e.g. [28]), bounds h(G) in
terms of the second largest eigenvalue of G when G is regular.

Lemma 15. If G is a ∆-regular graph, then

h(G) ≥ ∆− λ2

2
.

We will also use the following celebrated result of Friedman on the spectral gap of
the random regular graph. For a graph G we let λ(G) = max(|λ2|, |λn|).

Theorem 16 (Friedman [20]). For every fixed ε > 0, almost every ∆-regular graph G
satisfies

λ(G) ≤ 2
√

∆− 1 + ε . (6)

17



Proof of Corollary 4. Fix ε = 1/100. Since the eigenvalues of a graph G can be calcu-
lated in polynomial time, there is a polynomial time algorithm to determine whether
a graph G satisfies (6). If G satisfies (6) then by Lemma 15, G is a ∆/40-expander
(since for ∆ ≥ 3, ∆ − 2

√
∆− 1 − 1/100 ≥ ∆/20). By Theorem 3 it follows that if

β > 200 log(q∆)
∆ , there is an FPTAS and polynomial-time sampling algorithm for the

ferromagnetic Potts model at inverse temperature β on G. We conclude by noting that
almost every ∆-regular graph satisfies (6) by Theorem 16.

4 The hard-core model

4.1 Approximation by a polymer model

In this section we prove Theorem 1 following the same strategy as in the previous
section. First we approximate the hard-core partition function by a sum of polymer
model partition functions, and then we verify the conditions of Theorem 8 for these
models.

We let G = (O, E , E) denote a bipartite graph with partition classes O, E and edge
set E. We will refer to vertices of O and E as ‘odd’ and ‘even’ vertices respectively.

Recall our notion of expansion for a bipartite graph.

Definition 17. For α > 0, a bipartite graph G = (O, E , E) is a bipartite α-expander if
|∂S| ≥ (1 + α)|S| for all S ⊆ O with |S| ≤ |O|/2 and all S ⊆ E with |S| ≤ |E|/2.

We remark that for regular bipartite graphs the expansion property of Definition 17
also follows from a spectral gap condition. Indeed if G is a ∆-regular connected bipartite
graph whose second largest eigenvalue is λ2, then a classical result of Tanner [46] implies
that G is a bipartite α-expander where α = (∆2 − λ2

2)/(∆2 + λ2
2).

Let Gbip(α,∆) denote the class of all bipartite α-expander graphs with maximum
degree at most ∆. From this point on, let us fix a graph G ∈ Gbip(α,∆) on n vertices
with partition classes O, E . Recall that I(G) denotes the family of all independent sets
in G.

Let us call a set S ⊆ O small if |S| ≤ |O|/2. We define small subsets of E similarly.

Lemma 18. Let I ∈ I(G), then at least one of the sets I ∩ O, I ∩ E is small.

Proof. Without loss of generality let |O| ≥ |E| and suppose that |I ∩O| > |O|/2. Since
G is a bipartite α-expander, by considering a subset of I ∩ O of size |O|/2, we have
|∂(I ∩ O)| ≥ (1 + α)|O|/2 and so

|I ∩ E| < |E| − (1 + α)|O|/2 < |E|/2 .

We now define two distinct polymer models whose partitions functions we will use
to approximate ZG(λ).

First let us introduce some notation and terminology. We let Gk denote the kth
power of the graph G, that is the graph on vertex set V (G) where two vertices are
adjacent if and only if they are at distance at most k in G.
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Definition 19. We say a subset S ⊆ V (G) is Gk-connected if the induced subgraph
Gk[S] is connected. We call the connected components of Gk[S], the Gk-connected
components of S.

Throughout this section we will be concerned only with G2-connected sets. Note
that a set S ⊆ O, E is G2-connected if and only if G[S+] is connected.

A polymer is any small G2-connected set γ which lies entirely in E or entirely in O;
in the first case we say it is an even polymer and in the second an odd polymer. The
size of a polymer γ, |γ|, is again the number of vertices in γ. We define a compatibility
relation on the set of even (odd) polymers, with γ1, γ2 compatible if dG(γ1, γ2) > 2
(that is if γ1∪γ2 is not G2-connected); otherwise γ1 and γ2 are incompatible. Note that
this is consistent with the definition of a polymer model in Section 2: a polymer is a
connected subgraph in G2 and two polymers γ, γ′ are compatible if their graph distance
in G2 is greater than 1.

For each polymer γ we assign a weight

wγ :=
λ|γ|

(1 + λ)|∂γ|
.

We let CE = CE(G) denote the set of all even polymers of G and let GE = GE(G)
denote the family of all sets of mutually compatible polymers from CE . We define CO,
GO similarly.

The set of polymers CE (CO) constitutes a polymer model with partition function
ΞE(G) (ΞO(G)). That is,

ΞE(G) =
∑

Γ∈GE

∏
γ∈Γ

wγ and ΞO(G) =
∑

Γ∈GO

∏
γ∈Γ

wγ .

Note that (1 + λ)|O|ΞE(G) represents the contribution to ZG(λ) from independent sets
that are dominated by odd occupied vertices, and vice-versa.

We now show that a certain linear combination of the partition functions ΞE(G),ΞO(G)
serves as a good approximation to ZG(λ).

Lemma 20. For λ > e11/α, the polynomial

Z̃G(λ) = (1 + λ)|O|ΞE(G) + (1 + λ)|E|ΞO(G)

is an e−n-relative approximation to ZG(λ).

Proof. Let us call a set A ⊆ E ,O sparse if its G2-connected components are all small.
Note that GE (GO) is in one to one correspondence with sparse subsets of E (O) and so

Z̃G(λ) = (1 + λ)|O|
∑

Γ∈GE

∏
γ∈Γ

λ|γ|

(1 + λ)|∂γ|
+ (1 + λ)|E|

∑
Γ∈GO

∏
γ∈Γ

λ|γ|

(1 + λ)|∂γ|

= (1 + λ)|O|
∑

sparse A⊆E

λ|A|

(1 + λ)|∂A|
+ (1 + λ)|E|

∑
sparse A⊆O

λ|A|

(1 + λ)|∂A|
. (7)
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Consider an independent I ∈ I(G) for which I ∩ E = A where A is some fixed
subset of E . The possible intersections I ∩ O are then precisely the subsets of O\∂A.
The contribution to ZG(λ) from independent sets I such that I ∩ E = A is therefore
λ|A|(1 + λ)|O|−|∂A|. Similarly the contribution to ZG(λ) from independent sets I such
that I ∩ O = B is λ|B|(1 + λ)|E|−|∂B|. Let us call an independent set I sparse if both
I ∩ E , I ∩ O are sparse. Since by Lemma 18, for any independent set I, at least one of
I ∩ E , I ∩O is small (and therefore sparse), the sums in (7) contain the contribution to
ZG(λ) from all I ∈ I(G) and double count the contribution from precisely the sparse
independent sets i.e.

Z̃G(λ) = ZG(λ) +
∑

I sparse

λ|I| .

Let I be a sparse independent set. Since I ∩ E , I ∩ O are composed of small G2-
connected components it follows that |∂(I ∩ E)| > (1 + α)|I ∩ E| and |∂(I ∩ O)| >
(1+α)|I∩O|. Since each vertex in ∂(I ∩E) and ∂(I∩O) must be unoccupied, it follows
that

|I ∩ E| < |E| − (1 + α)|I ∩ O|

and

|I ∩ O| < |O| − (1 + α)|I ∩ E| .

By summing these two inequalities we conclude that

|I| < n

2 + α
.

It follows that ∑
I sparse

λ|I| ≤ 2nλ
n

2+α .

Using the crude bound ZG(λ) ≥ λn/2 we have∣∣∣∣∣1− Z̃G(λ)

ZG(λ)

∣∣∣∣∣ < 2n
λ

n
2+α

λn/2
= 2nλ

− α
4+2αn ≤ e−n .

In order to approximate ZG(λ) we approximate ΞE(G) and ΞO(G) separately. We
focus on approximating ΞE(G), noting that the approximation algorithm for ΞO(G) will
be identical up to a change of notation.

We will verify conditions (i)–(iii) of Theorem 8 for the polymer model defined on CE
in order to obtain an FPTAS for ΞE(G). Verifying condition (i) is essentially immediate.
Given γ ⊆ V (G), determining whether γ ∈ CE amounts to checking whether γ ⊆ E and
whether G[γ+] is connected. This can be done in O(∆|γ|) time by a depth-first search
algorithm. Computing |γ|, |∂γ| and thus wγ can also clearly be done in O(∆|γ|) time.

We now turn our attention verifying conditions (ii) and (iii) for an appropriate choice
of function g.
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4.2 Verifying the Kotecký-Preiss condition

We choose
g(γ) = |γ| .

Condition (ii) of Theorem 8 holds trivially with ρ = 1. It remains to show the Kotecký-
Preiss condition holds. That is, ∑

γ′:d(γ′,γ)≤1

wγ′e
g(γ′)+|γ′| ≤ |γ|

for all γ ∈ CE . Note that since G is a bipartite α-expander, for γ ∈ CE we have

wγ =
λ|γ|

(1 + λ)|∂γ|
≤ λ|γ|

(1 + λ)(1+α)|γ| ≤ (1 + λ)−α|γ| .

It thus suffices to show that ∑
γ′:d(γ′,γ)≤1

(1 + λ)−α|γ
′| · e2|γ′| ≤ |γ| .

If we could show that for each v ∈ V (G)∑
γ′:γ′3v

(1 + λ)−α|γ
′| · e2|γ′| ≤ 1

∆2
, (8)

then by summing this inequality over all v ∈ E at distance at most 2 from γ (noting
that there are at most (∆(∆ − 1) + 1)|γ| ≤ ∆2|γ| such vertices), we would be done.

In order to establish (8), first observe that the graph G2 has maximum degree at
most ∆2 and so by Lemma 14 the number of G2-connected sets of size t containing
vertex v is at most (e∆2)t. We thus have

∑
γ′:γ′3v

(1 + λ)−α|γ
′| · e2|γ′| ≤

∞∑
t=1

(e3∆2(1 + λ)−α)t ≤ 1

∆2

provided λ > (2e3∆4)1/α.

4.3 Proof of Theorem 1

We consider two cases separately. If ε < 2−n, then we proceed by brute force, checking
all subsets of V (G) to see if they are independent. In this way we can calculate the
partition function ZG(λ) exactly in time O(n2n) and therefore count and sample in time
n/ε.

Now we assume ε > 2−n and take

λ > max
{

(2e3∆4)1/α, e11/α
}
.
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Assume without loss of generality that |O| ≥ |E|. Note that by the definition of a
bipartite expander we also have |E| ≥ |O|/2.

Using the FPTAS for ΞE(G) given by Theorem 8, we may find ZEalg, an ε/2-relative

approximation to (1 + λ)|O|ΞE(G) in (n/ε)O(log ∆)-time.
In identical fashion we may find ZOalg, an ε/2-relative approximation to (1+λ)|E|ΞO(G)

in (n/ε)O(log ∆)-time. It follows that Zalg := ZOalg +ZEalg is an ε/2-relative approximation

to Z̃G(λ) (as defined in Lemma 20). By Lemma 20, Z̃G(λ) is an ε/2-relative approxi-
mation to ZG(λ) and so Zalg is an ε-relative approximation to ZG(λ) as required.

The proof for the sampling algorithm is much like that for the Potts model except
that we lack the exact symmetry between ground states. Consider the distribution
µ̂ on I(G) defined as follows. First choose E or O with probability proportional to
(1 +λ)|O|ΞE(G) and (1 +λ)|E|ΞO(G) respectively. Then, supposing we chose O, sample
Γ from the measure

νOG (Γ) =

∏
γ∈Γwγ

ΞO(G)
.

We then set
I = J ∪

⋃
γ∈Γ

γ

where we sample J from the set E\
⋃
γ∈Γ ∂γ by including each vertex independently

with probability λ
1+λ . The distribution of I is µ̂.

By Lemma 20 we have

‖µ̂− µG,λ‖TV = O(e−n)

and so to obtain an ε-approximate sample from µG,λ efficiently, it suffices to obtain an
ε/2-approximate sample from µ̂. We do this as follows:

1. Compute ZEalg, an ε/8-relative approximation to (1 + λ)|O|ΞE(G), and ZOalg, an

ε/8-relative approximation to (1 + λ)|E|ΞO(G).

2. Choose O with probability
ZOalg

ZEalg+ZOalg

and E otherwise.

3. Then, supposing we chose O, take Γ, an ε/4 approximate sample from νOG , and
let

I = J ∪
⋃
γ∈Γ

γ

where we sample J from the set E\
⋃
γ∈Γ ∂γ by including each vertex independently

with probability λ
1+λ .

The resulting distribution on independent sets is within ε/2 total variation distance of
µ̂, and we can obtain the sample in time polynomial in n and 1/ε: the computation of
ZEalg and ZOalg is done as above, and the approximate sample from νOG or νEG is obtained
efficiently by applying Theorem 9.
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4.4 Proof of Theorem 2

To prove Theorem 2 we need a result on the expansion of random regular bipartite
graphs. In order to state the result we first generalize our notion of expansion slightly.

Definition 21. For ρ > 0 and σ ∈ (0, 1), a bipartite graph G = (O, E , E) is a bipartite
(σ, ρ)-expander if |∂S| ≥ ρ|S| for all S ⊆ O with |S| ≤ σ|O| and all S ⊆ E with
|S| ≤ σ|E|.

Note that our previous definition of a bipartite α-expander is the same notion as a
(1/2, 1 + α)-expander.

Theorem 22 (Bassalygo [7]). Almost every ∆-regular bipartite graph is an (σ, ρ)-
expander provided

∆ >
H(σ) +H(σρ)

H(σ)− σρH(1/ρ)
,

where H(p) = −p log2(p)− (1− p) log2(1− p) is the binary entropy function.

We will take advantage of the fact that small sets in the random regular bipartite
graph expand by a lot.

Lemma 23. There exists ∆0 such that for all ∆ ≥ ∆0, almost every ∆-regular bipartite

graph is a
(

4 log ∆
∆ , ∆

4 log ∆ −
1
2

)
-expander.

Proof. By Theorem 22 it suffices to verify that

∆ >
H(σ) +H(σρ)

H(σ)− σρH(1/ρ)
, (9)

where σ = 4 log(∆)/∆ and ρ = 1/σ − 1/2. Using the fact

H(x) =
x log(1/x) + x− x2/2

log 2
+O(x3) , (10)

(noting that this expansion is also valid for H(1 − x) by symmetry of the entropy
function) we have

H(σ) +H(σρ) =
6

log 2
· log2 ∆

∆
+O

(
log ∆

∆

)
and

H(σ)− σρH(1/ρ) =
8

log 2
· log2 ∆

∆2
+O

(
log3 ∆

∆3

)
.

It follows that there exists ∆0 such that (9) holds for all ∆ ≥ ∆0.

Henceforth we will assume that G = (O, E , E) is a ∆-regular
(

4 log ∆
∆ , ∆

4 log ∆ −
1
2

)
-

expander on n = 2m vertices. This strong expansion condition allows us to prove a
strengthened version of Lemma 18. Let us update our notion of a small set and say
that a set S ⊆ V (G) is tiny if |S| ≤ 4 log ∆

∆ m.
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Lemma 24. Let I ∈ I(G), then at least one of the sets I ∩ O, I ∩ E is tiny.

Proof. Suppose that |I ∩ E| ≥ 4 log ∆
∆ m, then by the expansion property

|∂(I ∩ E)| ≥
(

1− 2 log ∆

∆

)
m

and so |I ∩ O| ≤ 2 log ∆
∆ m.

We define two polymer models in identical fashion to Section 4.1: An even (odd)
polymer is any tiny G2-connected set γ which lies entirely in E (O). We say two even
(odd) polymers γ1, γ2 are compatible if dG(γ1, γ2) > 2 and for each polymer γ we assign
a weight

wγ :=
λ|γ|

(1 + λ)|∂γ|
.

We let CE denote the set of all even polymers of G and let GE denote the family of all
sets of mutually compatible polymers from CE . We define CO, GO similarly. Let us again
denote the partition functions associated to these polymer models by ΞE(G),ΞO(G)
respectively. As before a linear combination of these two partition functions serves a
good approximation to ZG(λ).

Lemma 25. There exists ∆0 such that for ∆ ≥ ∆0, λ > 20 log2 ∆
∆ , the polynomial

Z̃G(λ) = (1 + λ)m
(
ΞE(G) + ΞO(G)

)
is a (1 + λ)−n/4-relative approximation to ZG(λ).

Proof. As in the proof of Lemma 20, we have

Z̃G(λ) = ZG(λ) +
∑

I sparse

λ|I| , (11)

where we call an independent set I sparse if the G2-connected components of I ∩E and
I ∩ O are all tiny.

Let I be a sparse independent set. Since I ∩ E , I ∩ O are composed of tiny G2-

connected components it follows that |∂(I ∩E)| >
(

∆
4 log ∆ −

1
2

)
|I ∩E| and |∂(I ∩O)| >(

∆
4 log ∆ −

1
2

)
|I ∩O|. Since each element of ∂(I ∩ E) and ∂(I ∩O) must be unoccupied,

it follows that

|I ∩ E| < m−
(

∆

4 log ∆
− 1

2

)
|I ∩ O|

and

|I ∩ O| < m−
(

∆

4 log ∆
− 1

2

)
|I ∩ E| .
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By summing these two inequalities we conclude that

|I| < n
∆

4 log ∆ + 1
2

. (12)

We use the following well-known estimate

(
n

≤ cn

)
:=

bcnc∑
i=0

(
n

i

)
≤ 2H(c)n for c ≤ 1

2 .

It follows from (12) and (10) that for ∆ sufficiently large

∑
I sparse

λ|I| ≤
(

n

≤ 4 log ∆
∆ n

)
(1 + λ)

4 log ∆
∆ n

≤ exp

{
log 2 ·H

(
4 log ∆

∆

)
n+

4 log ∆

∆
log(1 + λ)n

}
≤ exp

{
5 log 2 · log2 ∆

∆
n+

4 log ∆

∆
log(1 + λ)n

}
≤ exp {log(1 + λ)n/4}
= (1 + λ)n/4 .

It follows from (11) and the crude bound Z∗O(λ) ≥ (1 + λ)n/2 that∣∣∣∣∣1− Z̃G(λ)

ZG(λ)

∣∣∣∣∣ < (1 + λ)−n/4 .

4.5 Verifying the Kotecký-Preiss condition

We will verify condition (1) with the function g(γ) = |γ| ∆
10 log ∆ log(1+λ). In particular,

we will show ∑
γ3v

wγe
|γ|+g(γ) ≤ 1

∆2
.

We have

wγ =
λ|γ|

(1 + λ)|∂γ|
≤ λ|γ|(1 + λ)

− ∆
5 log ∆ |γ| ,

and so proceeding as in Section 4.2 we have∑
γ3v

wγe
|γ|+g(γ) ≤

∑
k≥1

exp

[
k

(
2 log ∆ + 2 +

∆

10 log ∆
log(1 + λ) + log λ− ∆

5 log ∆
log(1 + λ)

)]
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=
∑
k≥1

exp

[
k

(
2 log ∆ + 2− ∆

10 log ∆
log(1 + λ) + log λ

)]

which, for ∆ large enough and λ ≥ 50 log2 ∆
∆ , is at most 1/∆2. We may now finish as in

Section 4.3, noting that this time we can take ρ = ∆/(10 log ∆), c1 = 1, and c2 = 0 in the
application of Theorem 8 so that the run-time of the approximate counting algorithm
is (n/ε)1+O(log2 ∆/∆). This completes the proof of Theorem 2.

5 Proper colorings

In this section we prove Theorem 5. Let G ∈ Gbip(n,∆). As in the proof of Theorem 2,

the only property we require of G is that it is a
(

4 log ∆
∆ , ∆

4 log ∆ −
1
2

)
-expander which

holds with high probability. As before we denote the two partition classes of G by O, E
and let V = V (G). Let m = n/2 (so that |O| = |E| = m) and fix an integer q ≥ 3.

Throughout this section all colorings will be proper vertex q-colorings. Let X = XG,q
be the set of all proper colorings f : V (G) → [q]. For a set S ⊆ V (G) and f ∈ X , we
let f(S) := {f(v) : v ∈ S} and we let f |S denote the restriction of f to S, that is, the
map f |S : S → [q] where f |S(v) = f(v) for all v ∈ S.

Our aim is to obtain an FPTAS for ZG(q) = |X | and an efficient sampling algorithm
for µG,q, the uniform distribution over X .

We have the following important class of colorings of G, which play the role of
ground states.

Definition 26. Let A,B be disjoint subsets of [q] such that A ∪ B = [q]. We call a
coloring f ∈ X an (A,B)-coloring if f(O) ⊆ A, f(E) ⊆ B. We call the pair (A,B) a
pattern.

This notion was inspired by the work of Peled and Spinka [39] where such patterns
play a similar role.

Let P denote the set of all patterns. Given a subset S ⊆ V , a coloring f ∈ X and
a pattern (A,B), we say that f agrees with (A,B) at v ∈ V if v ∈ O and f(v) ∈ A
or if v ∈ E and f(v) ∈ B. We say that f disagrees with (A,B) at v otherwise. Let
χA,B(S) be the set of colorings f ∈ X such that f disagrees with (A,B) at each v ∈ S
and agrees at each v ∈ V \S.

Suppose (A,B) ∈ P , S ⊆ V . We record the following simple bound for future use.
Recall that for S ⊆ V , ∂S denotes the set of vertices in V \S that are adjacent to a
vertex of S.

Lemma 27. For (A,B) ∈ P and S ⊆ V we have

|χA,B(S)| ≤ |A|m|B|m
(

1− 1

|A|

)|∂S∩O|(
1− 1

|B|

)|∂S∩E|( |A|
|B|

)|S∩E|−|S∩O|
.

Proof. For f ∈ χA,B(S), there are at most |A||S∩E||B||S∩O| choices for f |S and given
any such choice there are then at most (|A| − 1)|∂S∩O|(|B| − 1)|∂S∩E| choices for f |∂S .
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Finally, given any choice of f |S+ there are at most |A|m−|S+∩O||B|m−|S+∩E| choices for
f |V \S+ . The result follows.

Henceforth, let us call a set S ⊆ V little if |S| ≤ 4q log ∆
∆ m.

Lemma 28. For every f ∈ X , there is a pattern (A,B) and a little set S ⊆ V such
that f ∈ χA,B(S).

Proof. Given f ∈ X let

A′ = {i ∈ [q] : |f−1({i}) ∩ O| > 4 log ∆
∆ m} ,

B′ = {j ∈ [q] : |f−1({j}) ∩ E| > 4 log ∆
∆ m} .

Note that since G is a
(

4 log ∆
∆ , ∆

4 log ∆ −
1
2

)
-expander, we have that E(X,Y ) 6= ∅ for any

two subsets X ⊆ O, Y ⊆ E such that |X|, |Y | > 4 log ∆
∆ m. It follows that A′ and B′

are disjoint. Letting (A,B) be any pattern such that A′ ⊆ A and B′ ⊆ B, we have
f ∈ χA,B(S) for some little set S by construction.

We now define a collection of polymer models and partition functions, a linear
combination of which will serve as a good approximation to ZG(q) = |X |. We define
a polymer to be a little, G3-connected subset of G (see Definition 19). We note that
a subset S ⊆ V is G3-connected if and only if G[S+] is connected. We say that two
polymers γ1, γ2 are compatible if dG(γ1, γ2) > 3 (i.e. γ1 ∪ γ2 is not G3-connected). We
let C = C(G) denote the set of all polymers of G and let G = G(G) denote the family of
all sets of mutually compatible polymers from C. Let us now fix a pattern (A,B) ∈ P .
To each polymer γ ∈ C, we assign a weight

wA,B(γ) :=
|χA,B(γ)|
|A|m|B|m

.

This defines a polymer model with partition function

ΞA,B(G) =
∑
Γ∈G

∏
γ∈Γ

wA,B(γ) .

Lemma 29. There is an absolute constant C such that if ∆ ≥ Cq2 log2 q, then the sum

Z̃G(q) :=
∑

(A,B)∈P

|A|m|B|m · ΞA,B(G)

is a e−m/4q-relative approximation to ZG(q).

Proof. Let us fix (A,B) ∈ P and let S ⊆ V . Let χ̂A,B(S) be the set of colorings f |S+

where f ∈ χA,B(S). Given any g ∈ χ̂A,B(S), we may extend g to an element of χA,B(S)
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by arbitrarily assigning vertices of O\S+ with colors from A and arbitrarily assigning
vertices of E\S+ with colors from B. It follows that

|χA,B(S)|
|A|m|B|m

=
|χ̂A,B(S)|

|A||S+∩O||B||S+∩E| . (13)

If the G3-connected components of S are γ1, . . . , γk we therefore have

|χA,B(S)|
|A|m|B|m

=
∏
i∈[k]

wA,B(γi) .

We call a set S ⊆ V sparse if all of its G3-connected components are little. We note
that there is a one-one correspondence between sparse subsets of V and collections of
mutually compatible polymers (i.e. elements of G). It follows that∑

S sparse

|χA,B(S)| = |A|m|B|m
∑
Γ∈G

∏
γ∈Γ

wA,B(γ) = |A|m|B|m · ΞA,B(G)

and so
Z̃G(q) =

∑
(A,B)∈P

∑
S sparse

|χA,B(S)| .

We first show that Z̃G(q) is a good approximation to the sum

ẐG(q) :=
∑

(A,B)∈P

∑
S little

|χA,B(S)| .

To this end we need the following claim.

Claim 30. If S is sparse then |S| ≤ 12q log ∆
∆ m.

Proof of Claim 30. Let S be sparse and let Γ = {γ1, . . . , γk} be the G3-connected com-
ponents of S. Suppose that |S| > 12q log ∆

∆ m. Since each γi is little by assumption, we

may partition Γ = Γ1 ∪ Γ2 in such a way that
∑

γ∈Γj
|γ| ≥ 4q log ∆

∆ m for j = 1, 2. Let

Sj =
⋃
γ∈Γj

γ for j = 1, 2. Suppose without loss of generality that |S1 ∩O| ≥ 2q log ∆
∆ m.

Since G is a
(

4 log ∆
∆ , ∆

4 log ∆ −
1
2

)
-expander, by considering a subset of S1 ∩ O of size

4 log ∆
∆ m, we have

|∂(S1 ∩ O)| >
(

1− 2 log ∆

∆

)
m (14)

and so |S+
1 | > m. Similarly |S+

2 | > m so that S+
1 ∩S

+
2 6= ∅. It follows that γ+

i ∩ γ
+
j 6= ∅

for some γi ∈ Γ1, γj ∈ Γ2, contradicting the fact that γi, γj are distinct G3-connected
components of S.
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Suppose now that S ⊆ V is sparse and not little, and suppose without loss of

generality that |S ∩ O| ≥ 2q log ∆
∆ m. As in (14) we have |∂(S ∩ O)| ≥

(
1− 2 log ∆

∆

)
m

and so by Claim 30

|∂S ∩ E| >
(

1− 14q log ∆

∆

)
m >

m

2
.

By Lemma 27 we then have

|χA,B(S)| ≤ |A|m|B|m
(

1− 1

|A|

)|∂S∩O|(
1− 1

|B|

)|∂S∩E|( |A|
|B|

)|S∩E|−|S∩O|
≤ |A|m|B|m

(
1− 1

|B|

)m/2
q12q

log ∆
∆ m ,

where for the final inequality we have used the crude bounds |A|/|B| ∈ [1/q, q], ||S ∩
E| − |S ∩ O|| ≤ |S| and Claim 30. We thus have

Z̃G(q)− ẐG(q) =
∑

(A,B)∈P

∑
S sparse,
not little

|χA,B(S)| ,

≤
∑

(A,B)∈P

(
2m

12q log ∆
∆ m

)
|A|m|B|m

(
1− 1

|B|

)m/2
q12q

log ∆
∆ m ,

≤
∑

(A,B)∈P

|A|m|B|m exp

{
2 log 2 ·H

(
6q

log ∆

∆

)
m+ 12q log q

log ∆

∆
m− m

2q

}
,

≤ e−m/(3q)
∑

(A,B)∈P

|A|m|B|m ,

where for the first inequality we used the fact that there are at most
(

2m
12qmlog ∆/∆

)
sparse

subsets of V and for the final inequality we used the assumed lower bound on ∆. Using
the crude bound Z̃G(q) ≥

∑
(A,B)∈P |A|m|B|m we see that ẐG(q) is a e−m/(3q)-relative

approximation to Z̃G(q).
By Lemma 28 we have

X =
⋃

(A,B)∈P

⋃
S little

χA,B(S) .

Suppose now that (A,B), (C,D) ∈ P , S, T ⊆ V and χA,B(S) ∩ χC,D(T ) 6= ∅. Unless
(A,B, S) = (C,D, T ) we must have (A,B) 6= (C,D). WLOG suppose that |A| =
max{|A|, |B|, |C|, |D|}. Then |A∩C| ≤ |A|−1 and |B∩D| ≤ |B|. If S, T are both little
we then have

|χA,B(S) ∩ χC,D(T )| ≤ (|A| − 1)m|B|mq8q
log ∆

∆ m
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≤
(
q − 1

2

)2m

exp

{
8q log q

log ∆

∆
m

}
.

The first inequality comes from the fact that there are at most (|A| − 1)m ways to
color the vertices of O that agree with both (A,B) and (C,D) (and so are colored with
elements of A ∩ C), there are at most |B|m ways to color the vertices of E that agree

with both (A,B) and (C,D), and there are at most q8q
log ∆

∆ m ways to color the vertices
of S and T . We may therefore bound |X | by inclusion-exclusion as follows:

ẐG(q)− 22q

(
2m

4q log ∆
∆ m

)2(q − 1

2

)2m

exp

{
8q log q

log ∆

∆
m

}
≤ |X | ≤ ẐG(q) ,

where we have used the bound |P| ≤ 2q and that there are at most
(

2m
4qmlog ∆/∆

)
little

subsets of V . Using the bound ẐG(q) ≥
⌈ q

2

⌉m ⌊ q
2

⌋m
, it follows that ẐG(q) is a e−m/q-

relative approximation to |X |. The result follows.

We may therefore focus on approximating each partition function ΞA,B(G) individ-
ually. Henceforth let us fix a pattern (A,B) ∈ P .

We will verify conditions (i)–(iii) of Theorem 8 for the polymer model defined on C
with weight function wA,B in order to obtain an FPTAS for ΞA,B(G).

Verifying condition (i) is essentially immediate. Given γ ⊆ V (G), determining
whether γ ∈ C amounts to checking whether γ is G3-connected or equivalently whether
G[γ+] is connected. This can be done in O(∆|γ|) time by a depth-first search algorithm.
By (13), wA,B(γ) can be calculated in eO(∆ log q·|γ|) time by checking all possible colorings
of γ+.

We now turn our attention verifying conditions (ii) and (iii) for an appropriate choice
of function g.

5.1 Verifying the Kotecký-Preiss condition

For brevity we denote wA,B simply by w. We choose

g(γ) =
∆

10q2 log ∆
|γ| .

It remains to show the Kotecký-Preiss condition holds. That is,

∑
γ′:d(γ′,γ)≤3

w(γ′)e|γ
′|+g(γ′) ≤ |γ|

for all γ ∈ C. If we could show that for each v ∈ V (G)∑
γ′:γ′3v

w(γ′) · e|γ′|+g(γ′) ≤ 1

∆3
,
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then by summing this inequality over all v at distance at most 3 from γ in G (noting
that there are at most ∆(∆− 1)2 + 1 ≤ ∆3|γ| such vertices) we would be done.

The graph G3 has maximum degree at most ∆3 and so by Lemma 14 the number
of G3-connected sets of size t containing vertex v is at most (e∆3)t. Suppose now that

S ⊆ V is little. Since G is a
(

4 log ∆
∆ , ∆

4 log ∆ −
1
2

)
-expander, by considering a subset

T ⊆ S ∩ O such that |T | = |S∩O|
q ≤ 4 log ∆

∆ m we have

|∂(S ∩ O)| ≥
(

∆

4 log ∆
− 1

2

)
|S ∩ O|

q

and similarly

|∂(S ∩ E)| ≥
(

∆

4 log ∆
− 1

2

)
|S ∩ E|
q

.

By summing the above two inequalities we obtain

|∂S| ≥ |∂(S ∩ O)|+ |∂(S ∩ E)| − |S| ≥
(

∆

4 log ∆
− q − 1

2

)
|S|
q
.

If γ ∈ C, so that in particular γ is little, by Lemma 27 we then have

w(γ) ≤
(

1− 1

q

)|∂γ|
q|γ| ≤ exp

{
− ∆

5q2 log ∆
|γ|
}
,

where we’ve assumed that ∆ > Cq2 log2 q for a large absolute constant C as in Lemma 29.
Putting everything together we have

∑
γ′:γ′3v

w(γ′) · e|γ′|+g(γ′) ≤
∞∑
t=1

(e2∆3)t exp

{
− ∆

10q2 log ∆
t

}
≤ 1

∆3
. (15)

5.2 Proof of Theorem 5

We consider two cases separately. If ε < e−n/(8q), then we proceed by brute force,
checking all possible elements of [q]V (G) to see if they are a proper q-coloring. In this
way we can calculate ZG(q) exactly in time O(n∆qn) and therefore count and sample
in time polynomial in 1/ε.

Now we assume ε > e−n/(8q) and take

∆ > Cq2 log2 q ,

where C is chosen large enough so that Lemmas 23, 29 and inequality (15) all hold.
For each (A,B) ∈ P , using the FPTAS for ΞA,B(G) given by Theorem 8, we may

find Zalg
A,B, an ε/3-relative approximation to |A|m|B|mΞA,B(G) in time polynomial in

n and 1/ε. It follows that Zalg :=
∑

(A,B)∈P Z
alg
A,B is an ε/3-relative approximation to
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Z̃G(q) (as defined in Lemma 29). By Lemma 29, Z̃G(q) is an ε/3-relative approximation
to ZG(q) and so Zalg is an ε-relative approximation to ZG(q) as required.

We now turn our attention to the sampling algorithm. Let µ denote the uniform
distribution on X . Consider the distribution µ̂ on X defined as follows. First choose
(A,B) ∈ P with probability proportional to |A|m|B|mΞA,B(G). Then, sample Γ ∈ G
from the measure

νA,B(Γ) =

∏
γ∈ΓwA,B(γ)

ΞA,B(G)
.

Let S =
⋃
γ∈Γ γ. Uniformly choose a coloring of S+ which disagrees with (A,B) on

S and agrees on ∂S. Then extend this coloring to a coloring of G by coloring vertices
of O\S+ with elements of A and vertices of E\S+ with elements of B uniformly at
random. The distribution of the resulting coloring is µ̂. By Lemma 29 we have

‖µ̂− µ‖TV ≤ ε/2 .

Then to obtain an ε/2-approximate sample from µ̂ efficiently, we proceed as in Sec-
tion 4.3- first we approximate ΞA,B(G) for (A,B) ∈ P in order to approximately sam-
ple (A,B) ∈ P and then we apply Theorem 9 to obtain an approximate sample from
νA,B. As in Section 3, the polymer sampling algorithm of Theorem 9 guarantees that
|S+| = O(log(n/ε)) and so a uniformly random coloring of S+ which disagrees with
(A,B) on S and agrees on ∂S can be obtained by brute force in time polynomial in n
and 1/ε.

6 Concluding Remarks

The algorithms presented here are the first provably efficient counting and sampling
algorithms for #BIS-hard problems for the class of expander graphs. However, they are
presumably not optimal in terms of either their running time or the range of parameters
for which they are provably efficient.

One natural choice for more efficient algorithms would be those based on Markov
chains. A candidate algorithm for the Potts model is the Swendsen-Wang dynamics [45].
It is natural to conjecture that the Swendsen-Wang dynamics are rapidly mixing on
expander graphs at sufficiently low temperatures, and this would give a more efficient
sampling algorithm than the one presented here. Similarly, for the hard-core model on a
bipartite expander graph with symmetry between the sides of the bipartition, one could
follow the suggestion of [27] and start the Glauber dynamics in either the all even or all
odd occupied state with equal probability. Proving that such sampling algorithms are
indeed efficient is left as an open problem. Recently Chen, Galanis, Goldberg, Perkins,
Stewart, and Vigoda [15] have made some progress in this direction by showing that
a restricted version of Glauber dynamics for the Potts and hard-core models mixes in
polynomial time under similar conditions to those of Theorems 1 and 3.

For random graphs, we can ask if efficient algorithms for the problems addressed in
this paper exist for all ranges of parameters.
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Question 31. Is there a polynomial-time sampling algorithm for the Potts model on
random regular graphs at all inverse temperatures β? Are there efficient sampling algo-
rithms for the hard-core model and proper colorings on random regular bipartite graphs
at all fugacities λ and for all q?
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