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ABSTRACT

Ford > 2 and all ¢ > qo(d) we give an efficient algorithm to approx-
imately sample from the g-state ferromagnetic Potts and random
cluster models on the torus (Z/ nZ)d for any inverse temperature
B = 0. This stands in contrast to Markov chain mixing time results:
the Glauber dynamics mix slowly at and below the critical temper-
ature, and the Swendsen-Wang dynamics mix slowly at the critical
temperature. We also provide an efficient algorithm (an FPRAS) for
approximating the partition functions of these models.

Our algorithms are based on representing the random cluster
model as a contour model using Pirogov-Sinai theory, and then com-
puting an accurate approximation of the logarithm of the partition
function by inductively truncating the resulting cluster expansion.
One important innovation of our approach is an algorithmic treat-
ment of unstable ground states; this is essential for our algorithms
to apply to all inverse temperatures 8. By treating unstable ground
states our work gives a general template for converting probabilistic
applications of Pirogov-Sinai theory to efficient algorithms.
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1 INTRODUCTION

The Potts model is a probability distribution on assignments of q
colors to the vertices of a finite graph G. Let

Hg(o) = Soi2a, 0 €lql" D= {1,294V,

(i.J)€E(G)
be the the number of bichromatic edges of G under the coloring o.
Then the g-state ferromagnetic Potts model at inverse temperature
B > 0 is the probability distribution H}(’;otts on [q]V(©) defined by

*ﬂHG(O')

e —
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The normalizing constant Zg‘)tts(ﬁ) is the Potts model partition
function. Since f > 0, monochromatic edges are preferred and the
model is ferromagnetic.

From a computational point of view, Zgons and ,ug‘ms define
families of functions and probability measures indexed by finite
graphs G, and there are two main computational tasks associated
to these objects. The first is the approximate counting problem:
for a partition function Zg and error tolerance € > 0, compute
a number Z so that e"€Z < Zg < e°Z. We say that such a Z is
an e-relative approximation to Zg. The second is the approximate
sampling problem: for a probability measure i and error tolerance
€ > 0, output a random configuration & with distribution /I so that
[l - pcllTv < €. We say 6 is an e-approximate sample from pg.

A fully polynomial-time approximation scheme (FPTAS) is an
algorithm that given G and € > 0 returns an e-relative approxima-
tion to Zg and runs in time polynomial in |[V(G)| and 1/e. If the
algorithm uses randomness it is a fully polynomial-time randomized
approximation scheme (FPRAS). A randomized algorithm that given
G and eoutputs an e-approximate sample from yg and runs in time
polynomial in both |V(G)| and ! is an efficient sampling scheme.

In this paper we give an FPRAS and an efficient sampling scheme
for the g-state Potts model on the discrete torus Tff = (Z/nZ)? for
all inverse temperatures f > 0, provided q is large enough as a
function of d.

THEOREM 1.1. For alld > 2 there exists qo = qo(d) so that for q >
qo and all inverse temperatures § > 0 there is an FPRAS and efficient
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sampling scheme for the g-state Potts model at inverse temperature f3
on the torus T%.

If € is not too small, meaning € > eXp(—O(nd_l)), our approx-
imate counting algorithm is deterministic. We comment on this
further below Theorem 1.2 in Section 1.4, but before stating our
more general results we briefly discuss the aspects of the Potts
model relevant to this paper. For a more comprehensive discus-
sion see, e.g., [15]. In the remainder of this paper we will focus on
the counting aspect of Theorem 1.1, deferring a discussion of the
sampling aspects to [7].

The Potts model is known to exhibit a phase transition on the
infinite lattice Z¢ when d > 2. Roughly speaking, this means that
there is a critical value 0 < f; < co such that the model is sensitive
to boundary conditions when > f., and insensitive when f < fc.
To make this more precise, consider the Potts model on a box in
7. Sensitivity can be formalized as follows. Monochrome boundary
conditions mean that all spins at the boundary of the box have a
single fixed color, say, red. Given monochromatic red boundary
conditions, what is the probability a spin at the center of the box is
red? If this probability is ¢! as the box size tends to infinity, the
boundary conditions are asymptotically irrelevant: it is as if the
spin is assigned a color uniformly at random from the g possible
colors. However, if this probability exceeds g1, the boundary con-
ditions have a macroscopic influence, and there is a sensitivity to
the boundary conditions. These notions can be formalized in terms
of Gibbs measures [17]; for our purposes what is important is that
there is a unique Gibbs measure when boundary conditions do not
play a role, and there are multiple Gibbs measure when there is a
sensitivity to boundary conditions.

When gq is sufficiently large the phase diagram for the g-state
Potts model has been completely understood for some time [30, 32].
There is a critical temperature . = f.(d, q) satisfying

e = B9 01/ 0

such that for f < f. there is a unique infinite-volume Gibbs mea-
sure, while if f > f. there are q extremal translation-invariant
Gibbs measures. Each of these low-temperature measures favors
one of the q colors. At the transition point f = f. there are ¢ + 1
extremal translation-invariant Gibbs measures; g of these mea-
sures favor one of the g colors, and the additional measure is the
‘disordered’ measure from f§ < f.. The precise meaning of these
statements will not be needed in what follows; we merely wish
to emphasize that there is a complete probabilistic understanding
of the model. We note that the phenomenology of the model is
q-dependent [15]. The preceding results require g large as they use
g~! as a small parameter in proofs.

The existence of multiple measures in the low-temperature phase
is reflected in the dynamical aspects of the model on finite graphs
like Tg. This is exemplified by the behavior of a simple Markov
chain with local updates called the Potts model Glauber dynamics.
These dynamics mix rapidly on Tz at sufficiently high temperatures,
but mix slowly, in time exp(@(nd_l)), when f > f. [8, 10]. Even the
global-move Swensden-Wang dynamics take time exp(@(nd_l)) to
mix when f = f. [8].
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The results just discussed were primarily obtained by making
use of a sophisticated form of Pirogov—Sinai theory. Pirogov—-Sinai
theory is an important tool from statistical physics which involves
representing a lattice spin model in terms of contours. Roughly,
contours are geometric objects that separate spins into regions
that are aligned with different ground states. This is quite similar
to what is done in the famous Peierls argument for proving the
existence of a phase transition for the Ising model. It was recently
shown that in some special circumstances Pirogov-Sinai theory can
be used to develop efficient algorithms for approximate counting
and sampling [26]. The major restriction of this method is that it
only applied to models in which all ground states are stable, i.e., all
ground states have the same truncated free energy. Most applica-
tions of Pirogov—-Sinai theory, including the results concerning the
Potts model described in the previous paragraphs, involve working
with both stable and unstable ground states, and the main achieve-
ment of this paper is to show how to develop efficient algorithms
when unstable ground states play a significant role. We discuss our
methods in more detail in the subsections that follow.

1.1 Methods and Related Results

Prior to this paper, efficient algorithmic results for the Potts model
on Z4 for d > 2 were restricted to either B < Pc (see [6] and
references therein), f > S [4, 26], or the special cases of g = 2 [28]
or the planar case of Z? [5, 21, 22, 42]. The results in the planar case
make use of planar duality to map results from § < . to § > f.
More broadly, meaning beyond Z¢ and beyond the Potts model,
algorithms for low-temperature models have only recently been
developed, and have been based primarily on cluster expansion
methods [4, 11-13, 27, 34]. Our algorithms make use of cluster
expansion methods as well, albeit with significant refinements that
we describe below. All of these low temperature algorithms belong
to the same circle of ideas as Barvinok’s interpolation method [3]
and subsequent improvements due to Patel and Regts [36].
Barvinok’s method relies on the existence of a region in the
complex plane that is free of zeros for the partition functions that
one wants to approximate. The zero-free hypothesis presents a
significant difficulty for using the method to study the Potts model
partition functions Zggtts at criticality. Namely, there is no open set

in the complex plane centered at B that is zero-free uniformly in
the side length n of the torus, precisely because there is a phase tran-
sition at f3¢, which implies complex zeroes of the partition functions
must approach . as n — oo. This connection between complex
zeroes of partition functions and phase transitions is the Lee-Yang
theory of phase transitions [33]. To deal with this, we develop algo-
rithms based directly on the cluster expansion, and avoid the use
of complex zero-free regions and Barvinok’s interpolation method
that were used in [26].

To describe the most important advance of the present paper
we must first recall the basic idea of Pirogov-Sinai theory. For
a discrete statistical mechanics model, ground states are locally
optimal configurations, i.e., configurations whose energy is only
increased by making local changes. For example, the all-plus and
all-minus configurations are ground states for the Ising model,
and the monochromatic configurations are ground states for the
Potts model. Informally, a ground state is stable if it is globally
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optimal in the sense that a significant fraction of the partition
function is accounted for by this ground state and small deviations
from it. For the Ising model with a positive magnetic field the all-
plus configuration is stable, while the all-minus configuration is
unstable. In [26] it was shown how to create efficient algorithms
using Pirogov-Sinai theory at very low temperatures in models
in which all ground states are stable. The restriction to very low
temperatures plays an important role, as ! plays the role of a small
parameter that ensures certain power series expansions converge.

To control the Potts model at all temperatures, we make use of
a sophisticated form of Pirogov—Sinai theory for the Potts model
that was initiated in [8]. This theory begins by considering the
random cluster model representation of the Potts model using the
Edwards—Sokal coupling (see Section 1.4 below). The random clus-
ter model is a family of probability distributions on edge sets of
graph parameterized by q and f. The random cluster model has
two ground states: the ordered ground state consisting of all edges
occupied and the disordered ground state consisting of no occupied
edges. Significantly, these two ground states are not symmetric,
unlike the g ground states of the Potts model.

The Pirogov-Sinai representation of the random cluster model
is a representation of the partition function in terms of contours
separating ordered and disordered regions. This rewriting of the
partition function allows one to use g~! < 1 as the small parameter
that controls convergence of the relevant power series. In particular,
it is possible to obtain convergence when f§ > f, for an explicit
Pr smaller than f.. There is a price to pay, however: unlike the
spin representation of the Potts model with symmetric (and hence
stable) ground states, this formulation has unstable ground states
when f # f.. To make use of this representation, an essential
task is therefore the development of algorithms that work with
unstable ground states. We outline how this is done in more detail
in Section 1.3 below.

We remark that while the present paper directly discusses only
the Potts and random cluster models, our approach to the treat-
ment of unstable ground states can be carried out for other models.
Thus the present paper provides a blueprint for developing efficient
algorithms whenever Pirogov—Sinai theory can be applied.

One further remark concerning related literature is in order. Our
algorithms for f < f. are also based on the cluster expansion and
Pirogov—-Sinai theory. It is believed that the Glauber dynamics mix
rapidly on the torus for all < f, which would yield a much faster
sampling algorithm than the one we have given here. It may be
possible to combine results and proof techniques from [2, 16, 35] to
prove this. However, we were not able to do this and are not aware
of any existing statement in the literature which would directly
imply rapid mixing in the whole range f < f.. We leave this
as an open problem. Further open problems can be found in the
conclusion of this paper, Section 6.

1.2 Discussion of Broader Context

Recall the results of Weitz and Sly [39, 43] and subsequent ex-
tensions [18, 40] that show that the phase transition point of the
hard-core model on the infinite A-regular tree coincides with the
computational threshold for efficient sampling algorithms for the
class of graphs with maximum degree A. Recall also the connection
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mentioned above between non-uniqueness of Gibbs measure and
slow mixing of certain Markov chains. Finally, recall that in the set-
ting of search and optimization problems on random graphs, there
is a beautiful series of predictions that link certain phase transitions
and the accompanying structural changes to the solution space to
computational hardness (e.g. [1, 14, 20, 31]). All of these results raise
a fascinating, if imprecise, question: what is the relation between
phase transitions in statistical mechanics and phase transitions in
computational complexity?

Closely related to the results of Sly and Weitz is the question
of #BIS, the complexity class defined by the task of approximately
counting independent sets on bipartite graphs [23]. It is conjectured
that (approximate) #BIS lies between P and NP-hard; that is, there
is no polynomial-time algorithm yet the problem is not NP-hard.
Resolving this question is a central open problem in the field of
approximate counting. For some intuition regarding the significance
of the bipartite restriction, recall that while finding a maximum size
independent set in a general graph is an NP-hard problem, finding
a maximum size independent set in a bipartite graph is in P.

The connection of these results and conjectures to the subject
of the present paper is the fact that approximating the partition
function of the ferromagnetic Potts model is #BIS-hard [19, 23]. One
motivation for this article was the desire to rule out a connection
between the phase transition for the Potts model on Z¢ and any
(conjectural) computational barriers to #BIS. While our results do
not allow us to draw this conclusion in total generality, they repre-
sent a significant step forward, precisely because Theorem 1.1 (and
Theorem 1.2 below) applies to all temperatures including the critical
temperature. Extensions of our results to more general boundary
conditions, which we expect to be possible, will be further evidence
against any connection.

Beyond this, we also expect that it will also be possible to gener-
alize our methods beyond 74, In this way we view our results as a
step towards clarifying the connection between physical and com-
putational phase transitions. In this respect, it is important to note
that our results rely crucially on the fact that the g-state Potts model
and random cluster model with g > 1 undergo entropy-driven first
order phase transitions, a type of transition that probabilists and
mathematical physicists understand deeply and have sophisticated
tools for analyzing. More precisely, the methods that we use in this
paper at § = f. rely on the fact that the random cluster model
with g > 1 has a finite correlation length at f, i.e., correlations
decay exponentially fast in a large box under either the ordered or
disordered boundary conditions. We expect that developing algo-
rithms for models with second-order phase transitions, which do
not have finite correlation length at criticality, will require making
use of a similarly deep understanding of the underlying physical
phenomena.

1.3 Proof Overview

This section contains an outline of the main steps of our proof.
Since the proof itself involves a substantial amount of machinery,
we focus here on giving an outline that does not enter into non-
essential technicalities.

As will be clear from this outline, this paper uses the methods
and framework developed in [8] and [26]. For the ease of the reader
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who wishes to see the proofs of results we use from [8] we have
largely stuck to the definitions presented in that paper, and have
made careful note whenever we have chosen alternative definitions
that facilitate our algorithms. Due to space constraints, we omit
many proofs in the present article. Full details can be found in [7].

1.3.1 Section 2. We recall the notion of a polymer model along
with a convenient convergence criterion for the associated cluster
expansion. We then recall from [26] how this can be used for ap-
proximation algorithms, and present an important improvement
upon [26] by showing how algorithms can be obtained by working
directly with the cluster expansion (and using approximate instead
of exact weights) rather than using Barvinok’s method [4]. The
essential idea is to make use of the explicit error estimates provided
by a convergent cluster expansion. We recall from Section 1.1 that
this avoidance of Barvinok’s method is crucial for what follows.

The second part of this section makes use of the polymer model
algorithm to obtain algorithms for the random cluster model at very
high temperatures, meaning < f;, = 31:%. Note that f, < fe.
The precise value of f, is not important; it was chosen to cover
the range of f§ where the Pirogov—Sinai methods of subsequent
sections do not apply. This is the first place in the paper where we
exploit ¢ > 1 as a small parameter. Similar ideas are also behind
the Pirogov—-Sinai methods used in the subsequent sections.

1.3.2  Section 3. We recall and develop further the Pirogov—-Sinai
theory tools for the Potts model that were introduced in [8]. The
upshot of the section is a so-called ‘contour model” formulation of
the random cluster model, together with lemmas that ensure that
it is possible to efficiently construct the polymers relevant for our
algorithms. To help the reader, we provide a few wayposts.

The first target of this section is the derivation of the formu-
las (14) for Zyis and Zyq along with the geometric interpretations
given by (12) and (13). Estimates established in later sections will
show that the sum of the partition functions Zg;s and Z,,4 gives a
good approximation of the random cluster partition function Z.

Having introduced contours as geometric objects, it is then nec-
essary to show that we can efficiently construct the contours used
in our algorithms. This occupies the majority of Sections 3.5 and 3.6.
The reader who wishes to first see how to obtain the contour model
representation used for our algorithms should read up to Lemma 3.4
and then skip to Section 3.7.

1.3.3  Section 4. This section concerns estimates for the contour
model representation derived in Section 3 when g > 1. The initial
parts of this section recall inputs that we need from [8]. Using
these inputs we then prove some new results that are needed for
our algorithms. The crucial new estimate is Lemma 4.6. Roughly
speaking, this estimate controls how quickly unstable contours
‘flip’ to becoming stable contours. The fact that this flipping occurs
quickly is an essential property for our algorithms to be efficient
and the key new ingredient for dealing with unstable ground states.

This section focuses on the most interesting case of f§ > f¢. The
case Py < f < P, which is very similar to f > . and also uses
estimates from [8], is discussed in [7].
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1.3.4  Section 5. This section presents our approximate counting
algorithms. The central difficulty in using the polymer model algo-
rithms of Section 2 for the contour models that result from Pirogov—
Sinai theory is that the weights of contours models involve ratios of
partition functions. In [26] it was shown how to accurately approx-
imate these weights in an inductive manner when all ground states
are stable. The importance of this last assumption arises because
the partition functions that appear in contour weights have bound-
ary conditions; the possible boundary conditions are the ground
states. Pirogov-Sinai theory based algorithms give good approx-
imations for partition functions with boundary conditions from
stable ground states, and this was an important part of the inductive
approach in [26].

When f = . all ground states are stable for our contour model,
and implementing the ideas of [26] is fairly straightforward. How-
ever, when f§ > f. not all ground states are stable for our contour
model, and this necessitates significant new ideas. As mentioned
above, the main idea is to use the fact that unstable contours ‘flip’
quickly, i.e., deep inside an unstable contour it is likely to look like
the interior of a stable contour. We implement this idea by showing
that it is possible to explicitly enumerate the most likely ways in
which an unstable boundary conditions reverts to being a stable
boundary condition. This is formalized in Lemma 5.3; given this
lemma the remainder of the analysis is similar to the case f = f,.

Similar refinements for the treatment of unstable ground states
are used for the development of sampling algorithms, see [7].

1.4 Random Cluster Model

As remarked above, an essential component of our algorithms and
analysis is using the random cluster representation of the Potts
model. This also means that our results apply more generally than to
the Potts model on the torus: they also give efficient approximation
algorithms for the more general random cluster model on both
the torus and on a broad class of subsets of Z¢. To make this more
precise, recall that given a finite graph G = (V(G), E(G)) the random
cluster model is a probability distribution on edge sets of G given
by
RCy 4 plAl(1 - p)lEG)I=1A] 4e(Ga)
Hg (A) = RC >
Zg ® 9

where ¢(G4) is the number of connected components of the graph
Ga = (V(G),A) and

ch(p, q) = Z pIAI(l _p)\E(G)\—IAIqC(GA)
ACE(G)

ACEWG), (2

is the random cluster model partition function.

The Potts model and the random cluster model can be put onto
the same probability space via the Edwards—Sokal coupling. This
result, see, e.g., [7, Appendix A], gives the relation, for f > 0 and
integer g > 2,

25" = HONZE 1 - e g).

With the parameterizationp = 1— ¢ P the random cluster model
onZ4,d > 2, also has a critical inverse temperature fc = fi(q, d)
that satisfies (1) and that coincides with the Potts critical inverse
temperature for integer q. For § < f. the random cluster model
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has a unique infinite volume measure (the disordered measure),
while for f > B the ordered measure is the unique infinite volume
measure. For f = . the two measures coexist for large g.

Our counting and sampling algorithms extend to the random
cluster model on finite subgraphs of 74 with two different types of
boundary conditions. To make this precise requires a few definitions.
Let A be a finite set of vertices of Z¢ and let G, be the subgraph
induced by A. We say Gy is simply connected if Gp is connected and
the subgraph induced by A¢ = Z4 \ A is connected. The random
cluster model with free boundary conditions on Gy is just the random
cluster model on the induced subgraph G, as defined by (2). The
random cluster model with wired boundary conditions on Gy is the
random cluster model on the (multi-)graph G/’\ obtained from Gy
by identifying all of the vertices on the boundary of A to be one
vertex; see [15, Section 1.2.2] for a formal definition. We refer to
the Gibbs measures and partition functions with free and wired

boundary conditions as p/f\, By s Zﬁ, Z. Explicitly,

= 3 pMla - p)EOIFAIGEGA), ang
ACE(Gyp)

zZy = Z p\AI(l_p)|E(G;\)|—|A|qc(GA),
ACE(G))

where ¢(G4) is the number of connected components of the graph
(A, A) and ¢(G',) is the number of components of the graph (A’, A)
in which we identify all vertices on the boundary of A.

THEOREM 1.2. Ford > 2 there exists qo = qo(d) so that for g > qo
the following is true.

For f > P, there is an FPTAS and efficient sampling scheme for
the random cluster model on all finite, simply connected induced
subgraphs ond with wired boundary conditions.

For B < f¢ there is an FPTAS and efficient sampling scheme for
the random cluster model on all finite, simply connected induced
subgraphs ond with free boundary conditions.

Theorem 1.2 yields an FPTAS, while Theorem 1.1 gave an FPRAS
for the torus. The reason for this is that our Pirogov-Sinai based
methods become more difficult to implement on the torus if the
error parameter € is smaller than exp(—O(n?~1)). The algorithm
for Theorem 1.1 circumvents this by making use of the Glauber
dynamics for this range of €. This is possible because, despite being
slow mixing, the Glauber dynamics are fast enough when given
time O(e™!) for e this small by [8]. By using Glauber dynamics in a
similar manner we could obtain an FPRAS for the random cluster
model on T¢.

We note that our methods are certainly capable of handling
boundary conditions other than those described above, but we
leave an investigation of this for the future.

2 POLYMER MODELS, CLUSTER
EXPANSIONS, AND ALGORITHMS

This section describes how two related tools from statistical physics,
abstract polymer models and the cluster expansion, can be used to
design efficient algorithms to approximate partition functions.
An abstract polymer model [24, 29] consists of a set C of polymers
each equipped with a complex-valued weight w, and a non-negative
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size ||y||. The set C also comes equipped with a symmetric compat-
ibility relation ~ such that each polymer is incompatible with itself,
denoted y ~ y. Let G denote the collection of all sets of pairwise
compatible polymers from C, including the empty set of polymers.
The polymer model partition function is defined to be

Z(C,w) = Z ]_[ wy. 3)

TeGyel

In (3) w is shorthand for the collection of polymer weights.

Let T be a non-empty tuple of polymers. The incompatibility
graph Hr of T has vertex set I' and edges linking any two incom-
patible polymers, i.e., {y,y’} is an edge if and only if y »= y’. A
non-empty ordered tuple I of polymers is a cluster if its incompat-
ibility graph Hr is connected. Let G¢ be the set of all clusters of
polymers from C. The cluster expansion is the following formal
power series for log Z(C, w) in the variables wy:

log Z(C, w) = Z ¢(Hp)l—lwy. (4)

rege yel

In (4) ¢(H) denotes the Ursell function of the graph H = (V(H), E(H)),

ie.,

- 1 _p)lAl
PH) = o > Ml

ACE(H)
(V(H),A) connected
For a proof of (4) see, e.g., [17, 29]. Define ||| := 2y r Ily|l, and
define the truncated cluster expansion by

Tn(Cow):= . ¢(Hp) [ [wy -
rege yer
Tl <m
Henceforth we will restrict our attention to a special class of
polymer models defined in terms of a graph G with maximum
degree A on N vertices. Namely, we will assume that each polymer
is a connected subgraph y = (V(y), E(y)) of G. The compatibility
relation is defined by disjointness in G: y ~ y" iff V(y) N V(y’) = 0.
We write |y| for |V(y)|, the number of vertices in the polymer y.
A useful criteria for convergence of the formal power series in (4)
is given by the following adaptation of a theorem of Kotecky and
Preiss [29].

LEMMA 2.1. Suppose that polymers are connected, induced sub-
graphs of a graph G of maximum degree A on N vertices. Suppose
further that for some b > 0 and ally € C,

llyll = BIE(y)I, ®)
hwy| < (R Iy Il (©)

Then the cluster expansion (4) converges absolutely, and form € N,

T (C, w) — log Z(C, w)| < Ne 3™

Moreover, if instead all polymers are connected, induced subgraphs
of G, and for someb > 0 and ally € C,

3+log A
Iyl = blyl, and |wy|<e "o Yl

then the same conclusion holds.
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This lemma implies that if conditions (5) and (6) hold, then
exp(Tm(C, w)) is an e-relative approximation to Z(C, w) for m >
log(N/e)/3.

Because clusters are connected objects arising from a bounded-
degree graph, the truncated cluster expansion can be computed
efficiently. Recall that N = |[V(G)].

LEMMA 2.2. Suppose the conditions of Lemma 2.1 hold. Then given
a list of all polymersy of size at most m along with the weights wy
of these polymers, the truncated cluster expansion T;,(C, w) can be
computed in time O(N exp(O(m))).

The next lemma says that, for the purposes of approximating
a polymer partition function, it is sufficient to have approximate
evaluations wy, of the weights wy.

LEmMA 2.3. Let v: C — [0, 0) be a non-negative function on
polymers such that v(y) < |ly||>. Suppose 0 < € < N1, and let
m = log(8/€)/3. Suppose the conditions of Lemma 2.1 hold and that
forally € C with |ly|| < m, wy is an ev(y)-relative approximation
to wy. Then exp(Tin(C, w)) is an Ne/4-relative approximation to
Z(C,w).

Proor. Using the definition of m and applying Lemma 2.1, we
have

|log Zg(C, w) — T;m(C, w)| < Ne/8,
so by the triangle inequality it is enough to show that
|Tm(C, w) — Tn(C, w)| < Ne/8. (7)

Define r, by logw) = logw) +ry. To prove (7), note the identity

Tm(C, W) =T (C,w) = Z ¢(Hr) l_[ wy - |exp Z ry |- 1.
reg*(G) yel yer
It <m
Our hypotheses imply |r,| < ev(y), and hence by the triangle
inequality we obtain

Tn(CW) =T Cow) < ) (exp( Y evy)=1) [p(HD) | | wy .

reGg¢(G) yer yer
ITll<m

where we have used the elementary inequality |e? — 1| < eb -1
when |a| < b to bound the term in square brackets. Since v(y) <
lly|I? this yields, after ordering the sum over clusters according to
their size k,

m-1
ITn(C %) = T Cw) < ) (explek®) = 1) > |¢(HD) [ [ wy
k=1 Fﬁrgnc—(kG) yelr

m-1
< Z (exp(ekz) - 1)Ne_3k.
k=1

The last inequality follows from the (proof of the) convergence of
the cluster expansion. Since € < N~ we can bound ek’ — 1 by
2€k?, and (7) follows since Y1 k2e3k < 1/16. O
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Putting Lemmas 2.1, 2.2, and 2.3 together we see that the parti-
tion function Z(C, w) can be approximated efficiently if: (1) condi-
tions (5) and (6) hold, (2) polymers of size at most m can be enu-
merated efficiently, i.e., in time polynomial in N and exponential in
m, and (3) the polymer weights w), can be approximated efficiently,
i.e., in time polynomial in the size of y.

2.1 High Temperature Expansion

The polymer model algorithm of the previous section yields efficient
counting and sampling algorithms for the random cluster model

when q is sufficiently large and § < f, = 31:5(1. In fact, the simpler

setting of f < f, allows for greater generality: we will derive an
algorithm that applies to the random cluster model on any graph
G of maximum degree at most 2d.

THEOREM 2.4. Supposed > 2 and q = q(d) is sufficiently large.
Then for B < Py, there is an FPTAS and efficient sampling scheme for
the Potts model and the random cluster model withp =1 —e¢~# on
all graphs of maximum degree at most 2d.

ProorF oF THEOREMS 1.1 AND 1.2 FOR f# < f8,. Theorem 1.1 fol-
lows immediately from Theorem 2.4 since T‘,f is 2d-regular.

By (1), B < Pc when gq is large enough. Thus Theorem 1.2
requires we provide approximate counting and sampling algorithms
for free boundary conditions. Since induced subgraphs of 74 have
degree bounded by 2d, the result follows by Theorem 2.4. O

3 CONTOUR MODEL REPRESENTATIONS

Contour models refer to a class of polymer models that arise in
Pirogov-Sinai theory [38]. For a given spin configuration, contours
represent geometric boundaries between regions dominated by
different ground states; the precise definition for the purposes of
this paper will be given below. This section describes an impor-
tant contour model representation for the random cluster model
on the torus Tg that is the basic combinatorial object in our algo-
rithms. This contour representation was originally developed for
obtaining optimal lower bounds on the mixing time for Glauber and
Swensden-Wang dynamics [8]. In addition to recalling the construc-
tion from [8] this section also develops the additional ingredients
necessary for algorithmic applications of the representation.

3.1 Continuum Embedding

The contour model representation from [8] is based on the natural
embedding of the discrete torus T¢ = (Z/nZ)? of side-length n € N
into the continuum torus Tg := (R/nR)?. This subsection recalls
the basic definitions, and explains how they can be rephrased in
terms of discrete graph-theoretic notions.

In what follows we abuse notation slightly and write Tg for the
graph (T<, E), where E is the edge set of the discrete torus. We will
follow the convention that bold symbols, e.g., V, denote subsets of
T‘,f, while objects denoted by non-bold symbols like V reside in Tg.
Thus each vertex v € T¢ is identified with a point v € T‘,{, and we
will identify each edge e = {u, v} € E with the unit line segment

! This continuum construction allows for tools from algebraic topology to be used. We
have chosen to follow the continuum terminology to allow the interested reader to
easily consult [8].
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eC Tg that joins u to v. We will also drop T¢ from the notation
when possible, e.g., E for E(T%).

Recall that Q = 2F is the set of configurations of the random
cluster model on Tﬁ. Letc C Tg denote a closed k-dimensional
hypercube with vertices in Tg for some k = 1,...,d. We say a
hypercube c is occupied with respect to A € Q if for all edges e with
e C ¢, e is in A. Define

1
A= {x € Tg | there exists ¢ occupied s.t. doo(x, €) < Z} ,

where do is the {o-distance, and the distance from a point to a set
is defined in the standard way: deo(x, ¢) = infyec doo(x, y). Thus A
is the closed 1/4-neighborhood of the occupied hypercubes of A.
The connected components of the (topological) boundary 6 A of the
set A are the crucial objects in what follows. Since each connected
component arises from an edge configuration in Q, it is clear that
the set of possible connected components is a finite set. As the
connected components of JA are continuum objects, it may not be
immediately apparent how to represent them in a discrete manner.
We briefly describe how to do this now.

Let %Tg denote the graph (%Z/ nZ)%; as a graph this is equivalent
to the discrete torus (Z/ (2n)Z)d. The notation %T‘,{ is better because
we will embed %TZ in T‘,{ such that (i) 0 coincides in T¢ and %T‘,{
and (ii) the nearest neighbors of 0 in %Tg are the midpoints of the
edges e containing 0 in Tg.z

An important observation is that A can be written as a union
of collections of adjacent closed d-dimensional hypercubes of side-
length 1/2 centered at vertices in %Tg where two hypercubes are
called adjacent if they share a (d —1)-dimensional face. Adjacency of
a set of hypercubes means the set of hypercubes is connected under
the binary relation of being adjacent. By construction the connected
components of A correspond to the connected components of the
edge configuration A.

The boundary dA of A is just the sum, modulo two, of the bound-
aries of the hypercubes whose union gives A. These boundaries are
(d — 1)-dimensional hypercubes dual to edges in %T‘,{; here dual
means that the barycenter of the (d — 1)-dimensional hypercube is
the same as barycenter of the edge in %Tg The (d — 1)-dimensional
hypercubes that arise from this duality are the vertices in (%Tg)*,
the graph dual to %T‘,’f; two vertices in (%Tg)* are connected by an
edge if and only if the corresponding (d — 1)-dimensional hyper-
cubes intersect in one (d—2)-dimensional hypercube. The preceding
discussion implies JA can be identified with a subgraph of (%Tg)*

In the sequel we will discuss components of dA as continuum
objects; by the preceding discussion this could be reformulated in
terms of subgraphs of (%T,‘f)*, see [7, Appendix C].

3.2 Contours and Interfaces

An important aspect of the analysis in [8] is that it distinguishes
topologically trivial and non-trivial components of dA. To make
this precise, for i = 1,...,d we define the ith fundamental loop
L; to be the set {y € T¢ | y; = 1forall j # i}. The winding vector

2More formally, since 74 ¢ %Zd c R4, we obtain a common embedding of %Tg
and Tﬁ inT ﬁ
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N(y) € {0,1}¢ of a connected component y € dA is the vector
whose ith component is the number of intersections (mod 2) of y
with L;.

DEFINITION 1. Let A € Q be an edge configuration.

(1) The set of contours I'(A) associated to A is the set of connected
components of 0A with winding vector 0.

(2) The interface network S(A) associated to A is the set of con-
nected components of A with non-zero winding vector. Each
connected component of an interface network is an interface.

Without reference to any particular edge configuration, a subsety C
T‘,f is a contour if there is an A € Q such that y € T(A). Interfaces
and interface networks are defined analogously.

Since each fundamental loop intersects each (d — 1)-dimensional
face of a hypercube centered on %Tg exactly zero or one times, we
have the following lemma, which ensures contours can be efficiently
distinguished from interfaces.

LEMMA 3.1. Supposey € 0A is comprised of K (d —1)-dimensional
faces. Then the winding vector of y can be computed in time O(nK).

Proor. Fix i € {1,2,...,d}. Each fundamental loop L; has
length O(n), and hence the set F; of faces that have non-trivial
intersection with L; has cardinality |F;| = O(n). Given the list of
faces in y we can compute the ith component of the winding vector
by (i) iterating through the list of faces of y and adding one each
time we find a face in F;, and (ii) taking the result modulo two. O

The connected components of Tﬁll \ 0A are subsets of either A
or Tﬁ \ A. In the former case we call a component ordered and in
the latter case disordered. We write Aq (resp. Agjs) for the union
of the ordered (resp. disordered) components associated to A.

DEFINITION 2. The labelling £4 associated to A is the map from
the connected components osz \ 0A to the set {dis, ord} that assigns
ord to components in A,,q and dis to components in A g;.

DEFINITION 3. Two contoursy;, i = 1,2 are compatible if
doo(y1:¥2) 2 % We extend this definition analogously to two inter-
faces, or one interface and one contour.

DEFINITION 4. A matching collection of contours I' and inter-
faces S is a triple (T', S, €) such that S is an interface network and

(1) The contours and interfaces inT U S are pairwise compatible,
and

(2) € is a map from the set of connected components of T‘,{ \
Uyerusy to the set {dis, ord} such that for everyy e T U S,
distinct components adjacent toy are assigned different labels.

LEmMMA 3.2. The map from edge configurations A € Q to triples
(T, S, €) of matching contours and interfaces is a bijection.

ProoF. See [8, p.15]. m]

3.3 Contour and Interface Formulation of Z

By Lemma 3.2 we can rewrite the partition function in terms of
matching collections of contours and interfaces by re-writing the
weight w(A) of a configuration A in terms of its contours and
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interfaces. By weight w(A) we mean the numerator of (2), i.e.,
w(A) = plAl(1 - p)IE\AIge(V-A) T, this end, define

1
eord = —dlog(1 - e P), egs = dp - logg, «:= 3 log(eﬁ -1).

Further, define the size ||y|| of a contour y (resp. size ||S|| of an
interface S) by

yﬂUe

ecE

ISl =

SﬂUe.

ecE

Iyl = ®)

This is the number of intersections of y (resp. S) with |, cf e. For
a continuum set A we write |A| for |A N Tflll, that is, the number
of vertices of TZ in A in the embedding of T¢ into T¢. This will
cause no confusion as we never need to measure the volume of a
continuum set.

Using these definitions, w(A) can be written as

W(A) — qC(Aord)e_edis|Adis|e_eord |Aord‘ l_[ e_K”S” 1_[ e—KH}’H’ (9)
SeS yer

where c(Aprq) is the number of connected components of Ay 4. The
products run over the sets of interfaces and contours associated to
the edge configuration A, respectively. We indicate the derivation
of (9) in Section 3.3.1 below; see also [8, p.13-15]. Since

Z = qu;g(l - e_ﬁ,q) = Z w(A),
" A€Q
it follows from (9) and Lemma 3.2 that

7 = Z qC(Aord)e_edislAdis|e_eord|Aord‘ l_[ e_K”S” l_[ e—KHV”’

(8.1) SeS yel
(10)

where the sum runs over matching collections of contours and
interfaces. This is the contour and interface network representation
of the random cluster model partition function.

In what follows it will be necessary to divide the contributions
to Z. To this end, let

Quunnel = {A€ Q[ S(A) # 0},  Qrest == Q\ Quunnels

and define the corresponding partition functions

Ztunnel = Z W(A),  Zrest = Z w(A).
A€Qunnel AEQrest

By (10) Zyest can be expressed in terms of contours alone. We will
see later that Zy ;] is small compared to Zyegt, and so the task of
approximating Z is essentially the task of approximating Zyest.

We briefly indicate how to obtain (9). Recall that G4 denotes the
graph (V(A), A). Let ||5A|| = |014] + |524], where 5 A is the set of
edges in E \ A that contain k vertices in V(A). Observe

c(V,4) = c(Ga) + VA V(A
2|A| = 2d|V(A)| - [I6A]|.
The first of these relations follows since every vertex not contained

in an edge of Abelongs to a singleton connected component, and the
second is a counting argument. Using these relations one obtains

w(A) = qCa)g=eus V\V(A)] g=ean VA = IBAI (17

To pass from (11) to (9) requires just a few observations. First,
¢(G4) equals the number of components of A, which is the number
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of connected components of Ay4. Second, |V(A)| = |Agrq|, and
similarly |V \ V(A)| = |Ag;s|- Lastly, ||0A]| is precisely the sum of
sizes of the contours and interfaces, as each contribution to ||6A]|| is
given by a transverse intersection of an edge e with the boundary
of A.

3.4 External Contour Representations

Next we will take the first steps to construct a representation of
Zrest as a sum of polymer model partition functions. We begin with
basic results and definitions. Fix an arbitrary point xo € Tg that
cannot be contained in any contour, and let LI denote disjoint union.

LEMMA 3.3 ([8, LEMma 4.3]). For any contoury, Tﬂ \'y has exactly
two components.

DEFINITION 5. Lety be a contour, and suppose Tﬁ \y=CuD.
Then the exterior Exty of y is C if |C| > |D|, and is D if the inequal-
ity is reversed. In the case of equality the exterior is the component
containing xo. The interior Inty of y is the component ong \ y that
is not Exty.

Note that the notion of exterior is defined relative to Tﬁ, though
we omit this from the notation.

REMARK. This is a different definition of exterior than is used in [8];
our definition is more convenient for algorithmic purposes. Most of
the results of [8] concerning the interiors/exteriors of contours apply
verbatim with this change, and whenever we use these results we will
remark on why they apply.

If two contours y and p’ are compatible, then we write (i) y < y’
ifInty C Inty” and (ii) yLy” if IntyNInty’ = 0. Given a matching
collection of contours T, y € T is an external contour if there does
not exist y’ € T such that y” < y. The exterior of a matching
collection of contours I' is

ExtT = ) Exty.
yer

IfT is matching, then ExtT is a connected subset of Tff. This follows
by noting that [8, Lemma 5.5] holds with Definition 5 of the interior
and exterijor, and given this, the connectedness of ExtT follows by
the argument in [8, Lemma 5.6]. Note that since ExtT is contained
in T‘,f \ Uyer y, this implies that ExtT is labelled either ord or dis.

As usual in Pirogov—-Sinai theory, see, e.g. [8, Section 6.2], it is
useful to resum the matching compatible contours that contribute
to (10) according to the external contours of the configuration.
To make this precise, we require several definitions. A matching
collection of contours I is mutually external if y Ly’ for all y #
y’ € I'. For a continuum set A Tg, we say a contour y is a contour
in A if doo(y, Tg \ A) > 1/2. The distance to the empty set is infinite
by convention.

Write C(A) for the set of contours in A, and C = C(Tg) for
the set of all contours. For A C Tﬁ define G*(A) to be the set of
matching mutually external contours in A, and then define

Zora(A) = Y e o AOEXTL T o oxl¥l 7 (inty) - (12)
reG™(A) yer

ZagoA) = ) enea MBI oxlYllgz, (it y), (13)
reggt(a) yer
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where the sums in (12) and (13) run over sets of matching mutually
external contours in which ExtT is labelled ord and dis, respectively.
This is the desired resummation. In the special case A = T‘,{ these
partition functions represent the sums of w(A) over

Qord = {A € Q\ Qtunnel | ExtT(A) is labelled ord},

Qgis = {A € Q\ Qtunnel | ExtT'(A) is labelled dis}.

That is, we get a decomposition Zrest = qZyrq + Zgis, Where

DL WAL Zag= ), wAd).  (19)

AeQord AEQdis

Zord = q_l

3.5 Labelled Contours

This subsection introduces labelled contours and establishes some
basic properties of these objects. These properties will ensure that
we can efficient enumerate labelled contours.

In Definition 2 we associated a labelling to an entire collection
of matching and compatible contours and interfaces. For collec-
tions of contours it is more convenient to associate the labelling to
individual contours. We do this by assigning a label to Int y (resp.
Ext y) according to the label of the region of T¢ \ Uyery adjacent
to y contained in Int y (resp. Ext y).

A compatible set of labelled contours T is a set of compatible
contours T such that the connected components of T¢ \ Uypery are
assigned the same labels by the labelled contours. More precisely,
for a component B of Tg \ Upery, 0B is a union of compatible
contours y, ...,y for some k > 0, and (up to relabelling) either
@ y; <pofori=1,...,kor(ii)y; L ¥Y; for i # j. The condition of
compatibility of the labels in the first case is that the interior label
of y, is the same as the exterior label of y; foralli = 1,...k, and
in the second case is that all exterior labels agree.

By construction, the set of collections of matching and compat-
ible contours is the same as the set of collections of compatible
labelled contours. The advantage of the latter is that it enables us to
define a labelled contour y to be ordered if its exterior label is ord,
and disordered if its exterior label is dis. We let C,,q(A) and Cgis(A)
denote the sets of labelled contours in A with external labels ord
and dis, respectively, with Cyq = Cord(T‘,’l') and Cgs = CdiS(T‘,f).
The next lemma gives a way to construct a labelled contour y from
an edge configuration.

LEMMA 3.4. Let £ € {ord, dis}, lety € Cp, and A = Inty. Then
o If¢ = dis, let E’(A) be set of edges contained in A. Then y is
the unique component of A where A = E'(A) C E.
o If¢ = ord, let E’(A) be the set of edges whose midpoints are

contained in A. Then y is the unique component of A where
A=E\E'(A).

Proor. These claims follows from [8, Lemma 5.1]; see the proof
of [8, Lemma 5.11].3 O

Lemma 3.4 gives a way to construct a given contour from some
set of edges A. For our algorithms it will be important to be able
to generate contours from a relatively small set of edges. We first
explain how to do this for disordered contours.

3These results rely only on the geometry of hypercubes and not on the definitions of
interior/exterior.
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Suppose y € Cyis and let A =Inty N Tg, Define
&y ={e={i.j} |ij €A deo(mid(e).y)>3/4},

where mid(e) denotes the midpoint of the edge e; this is the vertex
of %Tg on the two-step path from i to j in %T‘,{

LEmMMA 3.5. Supposey € Cyjs and let A = Inty. Suppose F C &,
and let A = E’ \ F, where E’ = E’(A) is defined as in Lemma 3.4.
Let T be the set of contours in JA. Theny € T, and for ally’ € T
with y’ # y we havey’ < y. Moreover, all sets of matching contours
consisting of y and contours in Inty arise from such F.

Proor. We begin by recalling an alternate construction of A
from [8]. Let E ¢ E(T%), and let D C E. Set D* to be the set of
(d — 1)-dimensional unit hypercubes dual to the edges of D, and set

V(D) = {x e V(T | {x,y} € Dif {x,y} € E} .

Set Dyg;s to be the union of the open 3/4-neighborhood of V_(D)
and the open 1/4-neighborhood of D*. Then by [8, Lemma 5.1,
(iv)],if D = E\ A, E \ A = Dyjs. Le., Dy is the disordered region
associated to A (relative to the region E).

To prove the lemma, we apply this construction with E = E’(A)
and D = F. The definition of &), ensures that both the open 3/4-
neighborhoods of the included vertices and the open
1/4-neighborhoods of the included dual facets are at distance at
least 1/2 from 7. This implies that y is a boundary component of
E \ F, and the first claim follows as all other boundary components
are adjacent to Dygjs. The second claim follows from the bijection
of Lemma 3.2, which restricts to a bijection in this setting. [m}

LEMMA 3.6. Supposey € Cgyjs. Then there is a connected graph
with edge set A such that (i) |A| < 2d||y|| and (ii) y is the outermost
contour in dA.

We now establish a similar way to construct an ordered contour
from a small edge set. The situation is slightly different due to the
differences between ordered and disordered contours in Lemma 3.4.
Define, for y € Corq, A =Inty N Tg,

8)/ = {{l’]} | i,j€ A}

LEMMA 3.7. Suppose’y € Cypg andF C Ey. Let A = (E\E'(A))UF,
where E’(A) is defined as in Lemma 3.4. Let T be the set of contours
in dA. Theny €T, and for ally’ € T withy’ #+y we havey’ < y.
Moreover, all sets of matching contours consisting of y and contours
in Inty arise from such F.

Two edges e, f € E are called 1-adjacent if dw(e, f) < 1. A set
of edges A is 1-connected if for any e, f € A, there is a sequence of
1-adjacent edges in A from e to f. In the next lemma, A€ is the
boundary of the thickening of the edge set A = E \ A.

LEMMA 3.8. Supposey € Copq. Then there is a 1-connected set of
edges A of size at most ||y|| such that y is the outermost contour in

0AC.

Proor. Let A be the set of all edges that intersect y. By the
definition of || - ||, |A| < [lyll. By Lemma 3.7 y is the outermost
contour in A€, as A° = E’(A) U Egis(A). The 1-connectedness of A
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follows from the connectedness of y and the observation that every
point of y is at most d distance 1/2 from an edge in A. O

3.6 Contour Enumeration

This section uses the results of the previous subsection to guarantee
the existence of an efficient algorithm for enumerating contours.
This requires a few additional lemmas.

LEmMA 3.9. Forally € C, |Inty| < llyll?, and |Inty| < (n/2)||yll.

Proor. This follows by [8, Lemma 5.7], as the interior of a con-
tour as defined by Definition 5 is always smaller than the definition
of the interior of a contour in [8]. O

LEmMA 3.10. There is an algorithm that determines the vertex set
Inty N'T¢ in time O(||y||?).

LEMMA 3.11. Fix an edge e € E. There is an algorithm to construct
all contoursy € Cyyy that (i) can arise from a connected edge set A
that contains e and (ii) have ||y|| < m. The algorithm runs in time
exp(O(m)).

Similarly, there is an exp(O(m))-time algorithm to construct all
contoursy € Cgj, that (i) can arise from an edge set A such that A°
is 1-connected and contains e and (ii) have ||y|| < m.

The next definition is useful for inductive arguments.

DEFINITION 6. The level L(y) of a contour y is defined induc-
tively as follows. If y is thin, meaning C(Inty) = 0, then L(y) = 0.
Otherwise, L(y) = 1+ max{L(y’) | y’ < y}.

Call a set A C Tg a region if A = Tﬁf or if A is a connected
component of T‘,i \ 0A for some A C E. In the former case set
OA = 0, and in the latter case set A to be the union of all connected
components of A incident to A. In particular if A = Int y for some
contour y, then A is a region and dA = y. Finally, for compatible
contours yy, ..., ¥, define [y, U--- Uyl = [ly Il + - + Iyl
We conclude this subsection by stating our main algorithmic result
on efficiently computing sets of contours.

PROPOSITION 3.12. There is an O((|A|+]|0A]]) exp(O(m)))-time al-
gorithm that, for all regions A, (i) enumerates all contours in Cypg(A)U
Cis(A) with size at most m and (ii) sorts this list consistent with the
level assignments.

3.7 Polymer Representations for Z,.4 and Z;

To obtain polymer model representations of Z,,q and Zy;s, define
Qord(A) and Qgis(A) to be the sets of compatible collections of
contours in A that are labelled ord and dis, respectively. Define

—xlly| Zdis(Inty) —klly || %Zord(Int y)
Zorda(Inty) | Zgis(Inty)

By following a well-trodden path in Pirogov-Sinai theory (see,
e.g., [8, p.28] or [26, p.28]), these definitions give the following
representations for Z,.4 and Zg;s as partition functions of abstract
polymer models:

Kora(y) =€ Kgis(y) = e

Zora(W) = et 3" T Kora(y) (15)
Iﬂeg:zorcl(A) yeI‘

Zaso(A) = ees LN T ] Kaio(y) (16)
reédls(A) yer
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where the sums run over collections of compatible labelled contours
in A with external label ord and dis, respectively.

In fact, for £ € {ord, dis}, the above formulas represent Z;(A) as
the partition function of a polymer model in the form discussed in
Section 2, i.e., where polymers are subgraphs of a fixed graph G with
bounded degree. In detail, recalling the discussion in Section 3.1,
we consider contours as subgraphs of (a subgraph of) the bounded-
degree graph (%T‘,{)* Thus || is the number of vertices in a contour
when represented as a subgraph. Condition (5) holds with b = 1
since ||y|| = |y| by (8). The more substantial hypothesis (6) will be
verified in later sections for appropriate choices of the label and of

B

In the sequel we will write |A|( L7d)x for the size of set of vertices
24n

of (%Tg)* that are part of some contour y in C¢(A) for some ¢. The
next technical lemma shows it is enough to find algorithms that
are polynomial time in |A|( L17d )

24n

LEMMA 3.13. Forall A, IA'(le)* is polynomial in |A|.
24n

4 CONTOUR MODEL ESTIMATES

In this section we state several estimates related to the contour
representations from the previous section.

LEMMA 4.1 (LEMMA 6.1 (a) [8]). There are constantsc > 0, qp =
qo(d) < o0, and ny < oo such that if ¢ > qo, n > ng, and > P,

Z
—tuZ""d < exp(—cfin

d-1 ) .

In what follows ¢ will always denote the constant from Lemma 4.1,
and qo and no will always be at least as large as the constants in the
lemma. Lemma 4.1 ensures that Zy 5] is neglectable when approx-
imating Z up to relative errors € > exp(—cﬂnd_l). We will also
need to know that Zg;s is neglectable when f > f.. This requires
two lemmas.

LEMMA 4.2. Ifq > qo, n > ng, and B > P there exist ags > 0 and
f > 0 so that ifep, = 2exp(—cfn), then

Zora = exp(=(f + en)n?),

_ Sdis _c
Zgis < exp(—f + en)n?) max e~ 2 IExIT] 1—[ e 2PVl
regy! yel

Proor. With agjs > 0 this follows from [8, Lemma 6.3] provided
f = ford for B = P, and that f = f,4 follows from [8, Lemma A.3].
What remains is to prove agis > 0 when f > f.. The results of [32]
imply that there is a unique Gibbs measure for the random cluster
model when f > f.. If ag was 0 for some f > f, then the
argument establishing [8, Lemma 6.1 (b)] implies the existence of
multiple Gibbs measures, a contradiction. O

LEMMA 4.3. Ifq > qo, n > ng, and 8 > P, then there exists a
constant bg;; > 0 so that

Z
% < 2exp(~bgn?d ™).

PRrROOF. SupposeT € ggfst Then we claim that

|ExtT| + Z llyll > 2n91 (17)
yer
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To see this, note that
[ExtT| + Z |Inty| = n?,
yel
which combined with Lemma 3.9 implies
n d
[ExtT| + Dyl =n
yer
which implies (17) when n > 2.

By Lemma 4.2, if n is large enough,

73 agi
Zdis < max e 2t XL l_[ e 2PlIYI, (18)
Zord  TeGyt

yer
Set bgis = min{agis, ¢cf} > 0. By (17),

_ Adis _c _
e~ 2 |ExtT| l_[e 2PIVI < exp(—bgin?™Y)
yer

forallT € gg;;t. The lemma now follows from (18). O

The next two lemmas will allow us to verify the Kotecky—-Preiss
condition for the contour models defined in the previous section.

LEMMA 4.4 (LEMMA 6.3 [8]). Ifq > qo and f = P, then
Kora(y) < e~BlIvll ana Kais(y) < e~chlivll

for ally in Cyyq and Cyg;s, respectively.
LEMMA 4.5 (LEMMA 6.3 [8]). Ifq > qo and > P, then

Kord(y) < e—CﬂH)’H’ ¥ € Cord

In particular, since > 31(?#, then for sufficiently large g the

contour weights K4 (for f > f.) and Kg;s (for § = ;) will satisfy
condition (6).

Next we will show that when > . and the disordered ground
state is unstable, that regions with disordered boundary conditions
‘flip’ quickly to ordered regions by way of a large contour; more
precisely, the dominant contribution to Zy;s(A) from collections of
contours with small external volume.

For a region A and M > 0 we define

HIP(A, M) = (T € GZUA) | [ExT A < M},
and
Z(filiif(A, M) = Z ¢~ Cdis [EXtTNA| l_l e Ilgz 4(nt y).
TeHyP(A.M) yer
Thus, c.f. (13), Z;liif (A, M) is the contribution to Zg;s(A) from contour
configurations with small exterior volume.

LEMMA 4.6. Supposeq > qo and § > fc. Then there exists ag; > 0
so that the following holds for all n > ng. Supposey € Cy,q4. For any
€>0,if

2 8 2
M> = logXd 4 2 (x+3)yl
Aadis € adis

Alip . . . .
then Z s (Inty, M) is an e-relative approximation to Z g;(Inty).
We end this section with a lemma concerning chllilsp.

PROPOSITION 4.7. There is an algorithm that given'y € C,,q and
M € N outputs (Hﬁlsp(lnty, M) in time ||y||eCUYI+M),
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5 APPROXIMATE COUNTING ALGORITHMS
This section describes our approximate counting algorithms for
B > Pp. The algorithms differ depending on whether g = f,
B > Pe,or By, < f < Pe. Recall that Zy(A) was defined for all
regions A in (12)-(13). The heart of this section is the following
lemma.

LEMMA 5.1. Ford > 2 and q > qq the following hold.
(1) If B = Pc there is an FPTAS to approximate Z,.4(A) and
Zgis(A).
(2) If B > B there is an FPTAS to approximate Z,,4(A).
(3) If B, < B < Pc there is an FPTAS to approximate Z j;(A).
In each case the FPTAS applies to any region A, with running time
polynomial in |A|, the number of vertices of T4 in A.

Sections 5.1 and 5.2 prove the first two cases of Lemma 5.1. The
case ffj, < B < P is very similar to f > f., and we defer the details
to [7]. In Section 5.3 we show how these results, together with a
result from [8], suffice to give an FPRAS for Z on the torus.

5.1 Proof of Lemma 5.1, f = .

We begin by defining a useful variant of the truncated cluster ex-
pansion for Z,.q(A) and Zgi5(A). Let K be a function from contours
to positive real numbers. For ¢ € {ord, dis} define

TmAK) = > o] |K@).
TeGE(A) yel
TN <m
so that by (15) and (16) Z¢(A) = exp(—ez|A|) Ty oo(A, K¢) provided
the cluster expansion for the polymer models converge.
Recall that the level of a contour was defined in Definition 6, and
that |A|( 1rd)x Was defined immediately prior to Lemma 3.13.

LEMMA 5.2. Supposed > 2,q > qo and = f.. Given A with
|A|(1Td)* = N, and an error parameter € > 0, let m = log(8N?/e)/3.
24n

Inductively (by level) define weights K,,d(y) and Izdis(y) for all con-
tours y in Corg(A) and Cyis(A) with size [y < m by:

(1) Ify is thin, then set
Koraly) = e~k llyli-(eas—eora)lInty|
Rais(y) = ge <17 lI=(coa—ead)linty|
(2) Ify is not thin, then define Kopg by
e KllylI-(eqis—eara) lInt y | exp [Tm,dis(Int}’» K) - T, ord(Inty, I%)] ,
and K gi; by
qe IV I=CCoameaty | exp [T, a(Inty, K) = Ty, gis(Inty, K)| .

Then for N sufficiently large e~ ¢ Al exp(Ty, m(A, Kp)) is an e-
relative approximation to Zg(A) for € € {ord, dis}.

ProOF. Suppose ¢ € {dis, ord}. First note that the inductive
definition of the weights K ¢(y) makes sense: to compute Kg(y) for
a contour y of level ¢ + 1 only requires knowing K,(y”) for contours
y’ of level ¢ and smaller.

Since f = B¢ and g > qo, Lemma 4.4 tells us that

K[(y) < e_cﬂ”)’” (19)
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for ¢ € {dis, ord} and for all y € C(A). If g9 is large enough then
(19) implies condition (??) holds since . grows like log g by (1).
Thus by Section 3.7 the hypotheses of Lemma 2.1 are satisfied and
the cluster expansion for Z¢(A) converges for £ € {ord, dis}.

Now let ¢’ = €/N, so that m = log(8N/e’)/3. We will apply
Lemma 2.3 with v(y) = |Inty|. This is a valid choice of v(y) by
Lemma 3.9. Lemma 2.3 says that

e_eord |A| exp (Tol‘d, m (A’ Kord))
and
eeaslAl gxp (Tdis,m(A, I%dis))

are e-relative approximations to Z,q(A) and Zgis(A) if for all y €
Cy(A) of size at most m, I%[(y) is an €’|Int y|-relative approximation
to K¢(y). We will prove this by induction on the level of y.

For a thin contour, Kg(y) = Ky(y). Now suppose that for all
contours y of level at most ¢ and size at most m, I%g(y) isan€’[Inty|-
relative approximation of K,(y). Consider a contour y of level
t + 1 and size at most m. Then all contours p’ that appear in the
expansions

Tm,dis(Int Y, Izdis) and Tm,ord(lnt Y, kord)

are of level at most t and size at most m, and so for each such y’,
by the inductive hypothesis Ky(y’) is an €’|Int p’|-relative approxi-
mation to Ky(y’). Then by Lemma 2.3, we have that

e_(edis_eord)unt 7l exp [Tm,dis(lnt Y, I%dis) - Tm,ord(lnt Y, Ieord)]

Zdis(Irlt Y)
Zord (Int Y)
dis and ord swapped). Multiplying by the prefactor e™* 71l for ord

is an |Int y|e’-relative approximation to (and likewise for

and by ge *I7Il for dis shows that K;(y) is an ¢’[Int p|-relative
approximation to K,(y) as desired. m]

PROOF OF LEMMA 5.1 WHEN f§ = fi.. Let N = |A|(1Td)* and let
24n

m = log(8N?/€)/3. We need to show that the expansion Te,m(A, Kf)
and the weights I%g(y) for all y of size at most m in C¢(A) can be
computed in time polynomial in N and 1/e for ¢ € {dis, ord}. We
can list the sets of contours in C,,4(A) and Cgis(A) of size at most
m, together with their labels and levels, in time O(N exp(O(m)) by
Proposition 3.12. Since m = log(8N?/¢)/3, O(N exp(O(m)) is poly-
nomial in N and 1/e. N itself is polynomial in |A| by Lemma 3.13.

To prove the lemma we must compute the weights Kg(y) and
the truncated cluster expansions Ty, ¢(Inty, Kp) for each contour
in the list. We do this inductively by level. For level zero contours
Kg(y) = K¢(y) only depends on ||y|| and |Inty|, so I%g(y) can be
computed in time O(||y||3) by computing these quantities by using
Lemma 3.10. We then continue inductively; each Ieg(y) can be
computed efficiently since the truncated cluster expansions can be
computed in time polynomial in N and 1/¢ using Lemma 2.2. O

5.2 Proof of Lemma 5.1, f > f3.

When f > f.(q, d) the ordered ground state is stable, but the disor-
dered state is unstable. For a definition of stability of ground states,
see, e.g., [9]; the upshot for this paper is that we cannot use the
cluster expansion to approximate Zg;s(A) for a region A.
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To deal with this complication we will appeal to Lemma 4.6. In
words, this lemma says that for f > ., a typical contour configu-
ration in a region with disordered boundary conditions will have
very few external vertices. We will exploit this fact to enumerate
all sets of typical external contours in the region. This is possible
since the number of external vertices is small. Once we have fixed
a set of external contours we are back to the task of approximating
partition functions with ordered boundary conditions.

We now make the preceding discussion precise. Given
K: Cora(A) — [0, ), define E} (A, K) to be

e€dis Al Z o~ €dis [EXtT| l_l e <Y llgexp [T, ora(Inty, K)] .

flip el
TeHP(A,M) y

LEMMA 5.3. Supposed > 2,q > qo and 8 > P.. Let A be a region
with |A|(1Td>* = N, fixe > 0, and letm = log(8N?/€)/3. Inductively
24n

(by level) define kord(Y) fory € Cora(A) with size ||y|| at most m by
(1) Ify is thin, then
Ropaly) = e <7 lI-(eas—eora)lIntyl

(2) Ify is not thin, define Korq by
e < Iy - (eas—eolinty| exp [_Tm,ord(lnty’ k)] E%S(I"f% Kord) )
. _ 2 32q
with M = 22 (1og(21) + (c + 3)m).

Then for all N large enough, e~ eord|Al exp (Tord’m(A, I%ord)) is an

e-relative approximation to Z,,4(A) .

5.3 Proof of Theorem 1.1

To prove Theorem 1.1 we will need the following result from [8]
about the mixing time of the Glauber dynamics.

THEOREM 5.4 ([8, THEOREM 1.1]). The mixing time of the Glauber
dynamics for the q-state ferromagnetic Potts model satisfies

d-1
7q.5(Ti) = 2",
where the O(-) in the exponent hides constants that depend on q, 5.

We will use this result to give an approximation algorithm when
the approximation parameter € is extremely small. The reason we
are able to combine the Glauber dynamics with our contour-based
algorithm to give an FPRAS is that [8] proves optimal slow mixing
results for the Glauber and Swendsen-Wang dynamics. That is,
up to a constant in the exponent, the upper bound of the mixing
time of the Glauber dynamics (or Swendsen-Wang dynamics) is the
inverse of the bound on Zyynpe1/Z from Lemma 4.1. Thus when € is
too small for the contour algorithms to work, the Glauber dynamics
can take over.

ProOF OF THEOREM 1.1. Let N = n? be the number of vertices
of T‘,f. We will use a simple fact several times below: if € € (0, 1),
Z,Z* > 0,and Z*/Z < €/2, then (Z — Z") is an e-relative approxi-
mation to Z.

We first consider the case f = f.. To give an FPRAS for Z = Z’]l“ﬂ
we consider two subcases. Let ¢ be the constant from Lemma 4.1.

Suppose € < 4e~¢fn ™' Since 2™ s polynomial in N and
1/€, we can use Glauber dynamics to obtain an e-approximate
sample in polynomial time. By using simulated annealing (e.g. [41])
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we can also approximate the partition function in time polynomial
in N and 1/e.

Ife > 4e_cﬁ”d71, then by Lemma 4.1, Zyest = Zgis + Zord 1S
an €/2-relative approximation to Z, so it suffices to find an €/4-
relative approximation to both Zg;s and Z,.4. This can be done in
time polynomial in N and 1/€ by Lemma 5.1.

Next we consider the case f > f.. Again there are two subcases.
Let ¢ be the constant from Lemma 4.1 as before, and let bg;s be the
constant from Lemma 4.3. If ¢ < 4e=¢An"™" 4 4¢=basn“™ then again
O™ i polynomial in N and 1/e and we can approximately
count and sample by using the Glauber dynamics.

Ife > e~ cPn | go=bain ! , then by Lemma 4.1 and Lemma 4.3,
Zord 1s an €/2-relative approximation to Z and so it suffices to give
an €/2-relative approximation to Z,.q. This can be done in time
polynomial in N and 1/e by Lemma 5.1.

Lastly, consider f < f.. The case f < fj was completed in
Section 2. The case fj, < f < fc is done exactly as the case § > f
with the roles of ord and dis reversed; see [7] for details. o

6 CONCLUSIONS

In this paper we have given efficient approximate counting and
sampling algorithms for the random cluster and g-state Potts models
on Z4 at all inverse temperatures § > 0, provided q > go(d) and
d > 2. We believe the ideas of this paper will, however, allow for
approximate counting and sampling algorithms to be developed for
a much broader class of statistical mechanics models.

Sufficient conditions to implement Pirogov-Sinai theory for a
given model are that there are only finitely many ground states
and that there is ‘sufficient 7-functionality’, see [9]; the ideas of
this paper show that these conditions also suffice for the develop-
ment of efficient algorithms. In particular, our methods allow for
the presence of unstable ground states, a significant improvement
compared to the algorithms in [26].

Our results suggest that the algorithmic tasks of counting and
sampling may be performed efficiently for a fairly broad class of
statistical mechanics models with first-order phase transitions, but
we leave a fuller investigation of this for future work. A related
interesting question is the existence of efficient algorithms for all
B = Pc in the presence of a second-order transition; we are not
aware of any results in this direction with the exception of the Ising
model, i.e., the g = 2 state Potts model [25, 28]. To conclude we list
some further open questions related to this paper.

(1) Our algorithms are restricted to ¢ > go(d) with qo(d) >
exp(25dlog d). Do efficient algorithms exist that avoid this
constraint? Since the physical phenomena behind our results
are believed to hold for ¢ > 3 when d > 3, there is likely
room for improvement.

(2) On the torus, we obtained an FPRAS (as opposed to an FP-
TAS) for the partition function because of the estimate on
Zyunnel from Lemma 4.1: the contribution of Zy,e] cannot
be ignored when € < exp(—Q(nd’l)). Fortunately, it is ex-
actly when e is this small that the Glauber dynamics mix in
time polynomial in 1/¢, but of course Markov Chain Monte
Carlo is a randomized algorithm. A method for systemati-
cally accounting for the interfaces that contribute to Ziynpel
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would likely enable the development of an FPTAS. We leave
this as an open problem.

(3) Our algorithms have at least two other features that could be

improved. The first is the running time: while our algorithms
are polynomial time, the degree of the polynomial is not
small. The second is that our algorithms rely on a priori
knowledge of whether or not § = f.
Both of these deficiencies have the potential to be addressed
by Glauber-type dynamics as described in [13]; see also [26,
Section 7.2]. Proving the efficiency of these proposed algo-
rithms would be very interesting.

(4) Our deterministic algorithms for f > f. (and f < f.) have
diverging running times as § | fc (B T fc). Are there deter-
ministic algorithms that do not suffer from this dependence?

(5) The algorithmic adaptation of other sophisticated contour-
based methods, e.g., [37], would be interesting, particularly
for applications to problems such as counting the number of
proper g-colorings of a graph.
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