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ABSTRACT
For d ≥ 2 and all q ≥ q0(d)we give an efficient algorithm to approx-

imately sample from the q-state ferromagnetic Potts and random

cluster models on the torus (Z/nZ)d for any inverse temperature

β ≥ 0. This stands in contrast to Markov chain mixing time results:

the Glauber dynamics mix slowly at and below the critical temper-

ature, and the Swendsen–Wang dynamics mix slowly at the critical

temperature. We also provide an efficient algorithm (an FPRAS) for

approximating the partition functions of these models.

Our algorithms are based on representing the random cluster

model as a contourmodel using Pirogov–Sinai theory, and then com-

puting an accurate approximation of the logarithm of the partition

function by inductively truncating the resulting cluster expansion.

One important innovation of our approach is an algorithmic treat-

ment of unstable ground states; this is essential for our algorithms

to apply to all inverse temperatures β . By treating unstable ground

states our work gives a general template for converting probabilistic

applications of Pirogov–Sinai theory to efficient algorithms.
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1 INTRODUCTION
The Potts model is a probability distribution on assignments of q
colors to the vertices of a finite graph G. Let

HG (σ ) B
∑

(i , j)∈E(G)

δσi,σj , σ ∈ [q]V (G) B {1, 2, . . . ,q}V (G),

be the the number of bichromatic edges of G under the coloring σ .
Then the q-state ferromagnetic Potts model at inverse temperature

β ≥ 0 is the probability distribution µPottsG on [q]V (G)
defined by

µPottsG (σ ) B
e−βHG (σ )

ZPotts

G (β)
, ZPotts

G (β) B
∑

σ ∈[q]V (G )

e−βHG (σ ).

The normalizing constant ZPotts

G (β) is the Potts model partition

function. Since β ≥ 0, monochromatic edges are preferred and the

model is ferromagnetic.

From a computational point of view, ZPotts

G and µPottsG define

families of functions and probability measures indexed by finite

graphs G, and there are two main computational tasks associated

to these objects. The first is the approximate counting problem:

for a partition function ZG and error tolerance ϵ > 0, compute

a number Ẑ so that e−ϵ Ẑ ≤ ZG ≤ eϵ Ẑ . We say that such a Ẑ is

an ϵ-relative approximation to ZG . The second is the approximate
sampling problem: for a probability measure µG and error tolerance

ϵ > 0, output a random configuration σ̂ with distribution µ̂ so that

∥µ̂ − µG ∥TV < ϵ . We say σ̂ is an ϵ-approximate sample from µG .
A fully polynomial-time approximation scheme (FPTAS) is an

algorithm that givenG and ϵ > 0 returns an ϵ-relative approxima-

tion to ZG and runs in time polynomial in |V (G)| and 1/ϵ . If the
algorithm uses randomness it is a fully polynomial-time randomized
approximation scheme (FPRAS). A randomized algorithm that given

G and ϵoutputs an ϵ-approximate sample from µG and runs in time

polynomial in both |V (G)| and ϵ−1 is an efficient sampling scheme.
In this paper we give an FPRAS and an efficient sampling scheme

for the q-state Potts model on the discrete torus Tdn = (Z/nZ)d for

all inverse temperatures β ≥ 0, provided q is large enough as a

function of d .

Theorem 1.1. For all d ≥ 2 there exists q0 = q0(d) so that for q ≥

q0 and all inverse temperatures β ≥ 0 there is an FPRAS and efficient
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sampling scheme for the q-state Potts model at inverse temperature β
on the torus Tdn .

If ϵ is not too small, meaning ϵ ≥ exp(−O(nd−1)), our approx-
imate counting algorithm is deterministic. We comment on this

further below Theorem 1.2 in Section 1.4, but before stating our

more general results we briefly discuss the aspects of the Potts

model relevant to this paper. For a more comprehensive discus-

sion see, e.g., [15]. In the remainder of this paper we will focus on

the counting aspect of Theorem 1.1, deferring a discussion of the

sampling aspects to [7].

The Potts model is known to exhibit a phase transition on the

infinite lattice Zd when d ≥ 2. Roughly speaking, this means that

there is a critical value 0 < βc < ∞ such that the model is sensitive

to boundary conditions when β > βc , and insensitive when β < βc .
To make this more precise, consider the Potts model on a box in

Zd . Sensitivity can be formalized as follows.Monochrome boundary
conditions mean that all spins at the boundary of the box have a

single fixed color, say, red. Given monochromatic red boundary

conditions, what is the probability a spin at the center of the box is

red? If this probability is q−1 as the box size tends to infinity, the
boundary conditions are asymptotically irrelevant: it is as if the

spin is assigned a color uniformly at random from the q possible

colors. However, if this probability exceeds q−1, the boundary con-

ditions have a macroscopic influence, and there is a sensitivity to

the boundary conditions. These notions can be formalized in terms

of Gibbs measures [17]; for our purposes what is important is that

there is a unique Gibbs measure when boundary conditions do not

play a role, and there are multiple Gibbs measure when there is a

sensitivity to boundary conditions.

When q is sufficiently large the phase diagram for the q-state
Potts model has been completely understood for some time [30, 32].

There is a critical temperature βc = βc (d,q) satisfying

βc =
logq

d
+O(q−1/d ) (1)

such that for β < βc there is a unique infinite-volume Gibbs mea-

sure, while if β > βc there are q extremal translation-invariant

Gibbs measures. Each of these low-temperature measures favors

one of the q colors. At the transition point β = βc there are q + 1
extremal translation-invariant Gibbs measures; q of these mea-

sures favor one of the q colors, and the additional measure is the

‘disordered’ measure from β < βc . The precise meaning of these

statements will not be needed in what follows; we merely wish

to emphasize that there is a complete probabilistic understanding

of the model. We note that the phenomenology of the model is

q-dependent [15]. The preceding results require q large as they use

q−1 as a small parameter in proofs.

The existence of multiple measures in the low-temperature phase

is reflected in the dynamical aspects of the model on finite graphs

like Tdn . This is exemplified by the behavior of a simple Markov

chain with local updates called the Potts model Glauber dynamics.

These dynamics mix rapidly on Tdn at sufficiently high temperatures,

but mix slowly, in time exp(Θ(nd−1)), when β ≥ βc [8, 10]. Even the

global-move Swensden–Wang dynamics take time exp(Θ(nd−1)) to
mix when β = βc [8].

The results just discussed were primarily obtained by making

use of a sophisticated form of Pirogov–Sinai theory. Pirogov–Sinai
theory is an important tool from statistical physics which involves

representing a lattice spin model in terms of contours. Roughly,
contours are geometric objects that separate spins into regions

that are aligned with different ground states. This is quite similar

to what is done in the famous Peierls argument for proving the

existence of a phase transition for the Ising model. It was recently

shown that in some special circumstances Pirogov–Sinai theory can

be used to develop efficient algorithms for approximate counting

and sampling [26]. The major restriction of this method is that it

only applied to models in which all ground states are stable, i.e., all
ground states have the same truncated free energy. Most applica-

tions of Pirogov–Sinai theory, including the results concerning the

Potts model described in the previous paragraphs, involve working

with both stable and unstable ground states, and the main achieve-

ment of this paper is to show how to develop efficient algorithms

when unstable ground states play a significant role. We discuss our

methods in more detail in the subsections that follow.

1.1 Methods and Related Results
Prior to this paper, efficient algorithmic results for the Potts model

on Zd for d ≥ 2 were restricted to either β < βc (see [6] and

references therein), β ≫ βc [4, 26], or the special cases of q = 2 [28]

or the planar case of Z2 [5, 21, 22, 42]. The results in the planar case

make use of planar duality to map results from β < βc to β > βc .

More broadly, meaning beyond Zd and beyond the Potts model,

algorithms for low-temperature models have only recently been

developed, and have been based primarily on cluster expansion

methods [4, 11–13, 27, 34]. Our algorithms make use of cluster

expansion methods as well, albeit with significant refinements that

we describe below. All of these low temperature algorithms belong

to the same circle of ideas as Barvinok’s interpolation method [3]

and subsequent improvements due to Patel and Regts [36].

Barvinok’s method relies on the existence of a region in the

complex plane that is free of zeros for the partition functions that

one wants to approximate. The zero-free hypothesis presents a

significant difficulty for using the method to study the Potts model

partition functions ZPotts

Tdn
at criticality. Namely, there is no open set

in the complex plane centered at βc that is zero-free uniformly in

the side lengthn of the torus, precisely because there is a phase tran-

sition at βc , which implies complex zeroes of the partition functions

must approach βc as n → ∞. This connection between complex

zeroes of partition functions and phase transitions is the Lee–Yang

theory of phase transitions [33]. To deal with this, we develop algo-

rithms based directly on the cluster expansion, and avoid the use

of complex zero-free regions and Barvinok’s interpolation method

that were used in [26].

To describe the most important advance of the present paper

we must first recall the basic idea of Pirogov–Sinai theory. For

a discrete statistical mechanics model, ground states are locally

optimal configurations, i.e., configurations whose energy is only

increased by making local changes. For example, the all-plus and

all-minus configurations are ground states for the Ising model,

and the monochromatic configurations are ground states for the

Potts model. Informally, a ground state is stable if it is globally
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optimal in the sense that a significant fraction of the partition

function is accounted for by this ground state and small deviations

from it. For the Ising model with a positive magnetic field the all-

plus configuration is stable, while the all-minus configuration is

unstable. In [26] it was shown how to create efficient algorithms

using Pirogov–Sinai theory at very low temperatures in models

in which all ground states are stable. The restriction to very low

temperatures plays an important role, as β−1 plays the role of a small

parameter that ensures certain power series expansions converge.

To control the Potts model at all temperatures, we make use of

a sophisticated form of Pirogov–Sinai theory for the Potts model

that was initiated in [8]. This theory begins by considering the

random cluster model representation of the Potts model using the

Edwards–Sokal coupling (see Section 1.4 below). The random clus-

ter model is a family of probability distributions on edge sets of

graph parameterized by q and β . The random cluster model has

two ground states: the ordered ground state consisting of all edges

occupied and the disordered ground state consisting of no occupied

edges. Significantly, these two ground states are not symmetric,

unlike the q ground states of the Potts model.

The Pirogov–Sinai representation of the random cluster model

is a representation of the partition function in terms of contours

separating ordered and disordered regions. This rewriting of the

partition function allows one to use q−1 ≪ 1 as the small parameter

that controls convergence of the relevant power series. In particular,

it is possible to obtain convergence when β ≥ βh for an explicit

βh smaller than βc . There is a price to pay, however: unlike the

spin representation of the Potts model with symmetric (and hence

stable) ground states, this formulation has unstable ground states

when β , βc . To make use of this representation, an essential

task is therefore the development of algorithms that work with

unstable ground states. We outline how this is done in more detail

in Section 1.3 below.

We remark that while the present paper directly discusses only

the Potts and random cluster models, our approach to the treat-

ment of unstable ground states can be carried out for other models.

Thus the present paper provides a blueprint for developing efficient

algorithms whenever Pirogov–Sinai theory can be applied.

One further remark concerning related literature is in order. Our

algorithms for β < βc are also based on the cluster expansion and

Pirogov–Sinai theory. It is believed that the Glauber dynamics mix

rapidly on the torus for all β < βc , which would yield a much faster

sampling algorithm than the one we have given here. It may be

possible to combine results and proof techniques from [2, 16, 35] to

prove this. However, we were not able to do this and are not aware

of any existing statement in the literature which would directly

imply rapid mixing in the whole range β < βc . We leave this

as an open problem. Further open problems can be found in the

conclusion of this paper, Section 6.

1.2 Discussion of Broader Context
Recall the results of Weitz and Sly [39, 43] and subsequent ex-

tensions [18, 40] that show that the phase transition point of the

hard-core model on the infinite ∆-regular tree coincides with the

computational threshold for efficient sampling algorithms for the

class of graphs with maximum degree ∆. Recall also the connection

mentioned above between non-uniqueness of Gibbs measure and

slow mixing of certain Markov chains. Finally, recall that in the set-

ting of search and optimization problems on random graphs, there

is a beautiful series of predictions that link certain phase transitions

and the accompanying structural changes to the solution space to

computational hardness (e.g. [1, 14, 20, 31]). All of these results raise

a fascinating, if imprecise, question: what is the relation between

phase transitions in statistical mechanics and phase transitions in

computational complexity?

Closely related to the results of Sly and Weitz is the question

of #BIS, the complexity class defined by the task of approximately

counting independent sets on bipartite graphs [23]. It is conjectured
that (approximate) #BIS lies between P and NP-hard; that is, there

is no polynomial-time algorithm yet the problem is not NP-hard.

Resolving this question is a central open problem in the field of

approximate counting. For some intuition regarding the significance

of the bipartite restriction, recall that while finding a maximum size

independent set in a general graph is an NP-hard problem, finding

a maximum size independent set in a bipartite graph is in P.

The connection of these results and conjectures to the subject

of the present paper is the fact that approximating the partition

function of the ferromagnetic Potts model is #BIS-hard [19, 23]. One

motivation for this article was the desire to rule out a connection

between the phase transition for the Potts model on Zd and any

(conjectural) computational barriers to #BIS. While our results do

not allow us to draw this conclusion in total generality, they repre-

sent a significant step forward, precisely because Theorem 1.1 (and

Theorem 1.2 below) applies to all temperatures including the critical

temperature. Extensions of our results to more general boundary

conditions, which we expect to be possible, will be further evidence

against any connection.

Beyond this, we also expect that it will also be possible to gener-

alize our methods beyond Zd . In this way we view our results as a

step towards clarifying the connection between physical and com-

putational phase transitions. In this respect, it is important to note

that our results rely crucially on the fact that the q-state Potts model

and random cluster model with q ≫ 1 undergo entropy-driven first

order phase transitions, a type of transition that probabilists and

mathematical physicists understand deeply and have sophisticated

tools for analyzing. More precisely, the methods that we use in this

paper at β = βc rely on the fact that the random cluster model

with q ≫ 1 has a finite correlation length at βc , i.e., correlations
decay exponentially fast in a large box under either the ordered or

disordered boundary conditions. We expect that developing algo-

rithms for models with second-order phase transitions, which do

not have finite correlation length at criticality, will require making

use of a similarly deep understanding of the underlying physical

phenomena.

1.3 Proof Overview
This section contains an outline of the main steps of our proof.

Since the proof itself involves a substantial amount of machinery,

we focus here on giving an outline that does not enter into non-

essential technicalities.

As will be clear from this outline, this paper uses the methods

and framework developed in [8] and [26]. For the ease of the reader
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who wishes to see the proofs of results we use from [8] we have

largely stuck to the definitions presented in that paper, and have

made careful note whenever we have chosen alternative definitions

that facilitate our algorithms. Due to space constraints, we omit

many proofs in the present article. Full details can be found in [7].

1.3.1 Section 2. We recall the notion of a polymer model along

with a convenient convergence criterion for the associated cluster

expansion. We then recall from [26] how this can be used for ap-

proximation algorithms, and present an important improvement

upon [26] by showing how algorithms can be obtained by working

directly with the cluster expansion (and using approximate instead

of exact weights) rather than using Barvinok’s method [4]. The

essential idea is to make use of the explicit error estimates provided

by a convergent cluster expansion. We recall from Section 1.1 that

this avoidance of Barvinok’s method is crucial for what follows.

The second part of this section makes use of the polymer model

algorithm to obtain algorithms for the random cluster model at very

high temperatures, meaning β ≤ βh B
3 logq
4d . Note that βh < βc .

The precise value of βh is not important; it was chosen to cover

the range of β where the Pirogov–Sinai methods of subsequent

sections do not apply. This is the first place in the paper where we

exploit q ≫ 1 as a small parameter. Similar ideas are also behind

the Pirogov–Sinai methods used in the subsequent sections.

1.3.2 Section 3. We recall and develop further the Pirogov–Sinai

theory tools for the Potts model that were introduced in [8]. The

upshot of the section is a so-called ‘contour model’ formulation of

the random cluster model, together with lemmas that ensure that

it is possible to efficiently construct the polymers relevant for our

algorithms. To help the reader, we provide a few wayposts.

The first target of this section is the derivation of the formu-

las (14) for Z
dis

and Z
ord

along with the geometric interpretations

given by (12) and (13). Estimates established in later sections will

show that the sum of the partition functions Z
dis

and Z
ord

gives a

good approximation of the random cluster partition function Z .
Having introduced contours as geometric objects, it is then nec-

essary to show that we can efficiently construct the contours used

in our algorithms. This occupies the majority of Sections 3.5 and 3.6.

The reader who wishes to first see how to obtain the contour model

representation used for our algorithms should read up to Lemma 3.4

and then skip to Section 3.7.

1.3.3 Section 4. This section concerns estimates for the contour

model representation derived in Section 3 when q ≫ 1. The initial

parts of this section recall inputs that we need from [8]. Using

these inputs we then prove some new results that are needed for

our algorithms. The crucial new estimate is Lemma 4.6. Roughly

speaking, this estimate controls how quickly unstable contours

‘flip’ to becoming stable contours. The fact that this flipping occurs

quickly is an essential property for our algorithms to be efficient

and the key new ingredient for dealing with unstable ground states.

This section focuses on the most interesting case of β ≥ βc . The
case βh < β < βc , which is very similar to β > βc and also uses

estimates from [8], is discussed in [7].

1.3.4 Section 5. This section presents our approximate counting

algorithms. The central difficulty in using the polymer model algo-

rithms of Section 2 for the contour models that result from Pirogov–

Sinai theory is that the weights of contours models involve ratios of

partition functions. In [26] it was shown how to accurately approx-

imate these weights in an inductive manner when all ground states

are stable. The importance of this last assumption arises because

the partition functions that appear in contour weights have bound-

ary conditions; the possible boundary conditions are the ground

states. Pirogov–Sinai theory based algorithms give good approx-

imations for partition functions with boundary conditions from

stable ground states, and this was an important part of the inductive

approach in [26].

When β = βc all ground states are stable for our contour model,

and implementing the ideas of [26] is fairly straightforward. How-

ever, when β > βc not all ground states are stable for our contour

model, and this necessitates significant new ideas. As mentioned

above, the main idea is to use the fact that unstable contours ‘flip’

quickly, i.e., deep inside an unstable contour it is likely to look like

the interior of a stable contour. We implement this idea by showing

that it is possible to explicitly enumerate the most likely ways in

which an unstable boundary conditions reverts to being a stable

boundary condition. This is formalized in Lemma 5.3; given this

lemma the remainder of the analysis is similar to the case β = βc .
Similar refinements for the treatment of unstable ground states

are used for the development of sampling algorithms, see [7].

1.4 Random Cluster Model
As remarked above, an essential component of our algorithms and

analysis is using the random cluster representation of the Potts

model. This alsomeans that our results applymore generally than to

the Potts model on the torus: they also give efficient approximation

algorithms for the more general random cluster model on both

the torus and on a broad class of subsets of Zd . To make this more

precise, recall that given a finite graphG = (V (G), E(G)) the random
cluster model is a probability distribution on edge sets of G given

by

µRCG (A) B
p |A |(1 − p) |E(G) |− |A |qc(GA)

ZRC

G (p,q)
, A ⊆ E(G) , (2)

where c(GA) is the number of connected components of the graph

GA = (V (G),A) and

ZRC

G (p,q) B
∑

A⊆E(G)

p |A |(1 − p) |E(G) |− |A |qc(GA)

is the random cluster model partition function.

The Potts model and the random cluster model can be put onto

the same probability space via the Edwards–Sokal coupling. This

result, see, e.g., [7, Appendix A], gives the relation, for β ≥ 0 and

integer q ≥ 2,

ZPotts

G (β) = eβ |E(G) |ZRC

G (1 − e−β ,q).

With the parameterization p = 1−e−β the random cluster model

on Zd , d ≥ 2, also has a critical inverse temperature βc = βc (q,d)
that satisfies (1) and that coincides with the Potts critical inverse

temperature for integer q. For β < βc the random cluster model
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has a unique infinite volume measure (the disordered measure),

while for β > βc the ordered measure is the unique infinite volume

measure. For β = βc the two measures coexist for large q.
Our counting and sampling algorithms extend to the random

cluster model on finite subgraphs of Zd with two different types of

boundary conditions. Tomake this precise requires a few definitions.

Let Λ be a finite set of vertices of Zd and let GΛ be the subgraph

induced by Λ. We sayGΛ is simply connected ifGΛ is connected and

the subgraph induced by Λc = Zd \ Λ is connected. The random

clustermodel with free boundary conditions onGΛ is just the random

cluster model on the induced subgraph GΛ as defined by (2). The

random cluster model with wired boundary conditions on GΛ is the

random cluster model on the (multi-)graph G ′
Λ obtained from GΛ

by identifying all of the vertices on the boundary of Λ to be one

vertex; see [15, Section 1.2.2] for a formal definition. We refer to

the Gibbs measures and partition functions with free and wired

boundary conditions as µ
f
Λ, µ

w
Λ ,Z

f
Λ,Z

w
Λ . Explicitly,

Z
f
Λ B

∑
A⊂E(GΛ)

p |A |(1 − p) |E(GΛ) |− |A |qc(GA), and

ZwΛ B
∑

A⊂E(G′
Λ)

p |A |(1 − p)|E(G
′
Λ)|−|A |qc(G

′
A),

where c(GA) is the number of connected components of the graph

(Λ,A) and c(G ′
A) is the number of components of the graph (Λ′,A)

in which we identify all vertices on the boundary of Λ.

Theorem 1.2. For d ≥ 2 there exists q0 = q0(d) so that for q ≥ q0
the following is true.

For β ≥ βc there is an FPTAS and efficient sampling scheme for
the random cluster model on all finite, simply connected induced
subgraphs of Zd with wired boundary conditions.

For β ≤ βc there is an FPTAS and efficient sampling scheme for
the random cluster model on all finite, simply connected induced
subgraphs of Zd with free boundary conditions.

Theorem 1.2 yields an FPTAS, while Theorem 1.1 gave an FPRAS

for the torus. The reason for this is that our Pirogov–Sinai based

methods become more difficult to implement on the torus if the

error parameter ϵ is smaller than exp(−O(nd−1)). The algorithm
for Theorem 1.1 circumvents this by making use of the Glauber

dynamics for this range of ϵ . This is possible because, despite being
slow mixing, the Glauber dynamics are fast enough when given

timeO(ϵ−1) for ϵ this small by [8]. By using Glauber dynamics in a

similar manner we could obtain an FPRAS for the random cluster

model on Tdn .
We note that our methods are certainly capable of handling

boundary conditions other than those described above, but we

leave an investigation of this for the future.

2 POLYMER MODELS, CLUSTER
EXPANSIONS, AND ALGORITHMS

This section describes how two related tools from statistical physics,

abstract polymer models and the cluster expansion, can be used to

design efficient algorithms to approximate partition functions.

An abstract polymer model [24, 29] consists of a set C of polymers
each equippedwith a complex-valuedweightwγ and a non-negative

size ∥γ ∥. The set C also comes equipped with a symmetric compat-

ibility relation ∼ such that each polymer is incompatible with itself,

denoted γ ≁ γ . Let G denote the collection of all sets of pairwise

compatible polymers from C, including the empty set of polymers.

The polymer model partition function is defined to be

Z (C,w) B
∑
Γ∈G

∏
γ ∈Γ

wγ . (3)

In (3)w is shorthand for the collection of polymer weights.

Let Γ be a non-empty tuple of polymers. The incompatibility
graph HΓ of Γ has vertex set Γ and edges linking any two incom-

patible polymers, i.e., {γ ,γ ′} is an edge if and only if γ ≁ γ ′. A
non-empty ordered tuple Γ of polymers is a cluster if its incompat-

ibility graph HΓ is connected. Let Gc
be the set of all clusters of

polymers from C. The cluster expansion is the following formal

power series for logZ (C,w) in the variableswγ :

logZ (C,w) =
∑
Γ∈Gc

ϕ(HΓ)
∏
γ ∈Γ

wγ . (4)

In (4)ϕ(H ) denotes theUrsell function of the graphH = (V (H ), E(H )),

i.e.,

ϕ(H ) B
1

|V (H )|!

∑
A⊆E(H )

(V (H ),A) connected

(−1) |A | .

For a proof of (4) see, e.g., [17, 29]. Define ∥Γ∥ B
∑
γ ∈Γ ∥γ ∥, and

define the truncated cluster expansion by

Tm (C,w) B
∑
Γ∈Gc

∥Γ ∥<m

ϕ(HΓ)
∏
γ ∈Γ

wγ .

Henceforth we will restrict our attention to a special class of

polymer models defined in terms of a graph G with maximum

degree ∆ on N vertices. Namely, we will assume that each polymer

is a connected subgraph γ = (V (γ ), E(γ )) of G. The compatibility

relation is defined by disjointness inG: γ ∼ γ ′ iff V (γ ) ∩V (γ ′) = ∅.

We write |γ | for |V (γ )|, the number of vertices in the polymer γ .
A useful criteria for convergence of the formal power series in (4)

is given by the following adaptation of a theorem of Kotecký and

Preiss [29].

Lemma 2.1. Suppose that polymers are connected, induced sub-
graphs of a graph G of maximum degree ∆ on N vertices. Suppose
further that for some b > 0 and all γ ∈ C,

∥γ ∥ ≥ b |E(γ )|, (5)

|wγ | ≤ e−(
4+log∆
b +3) ∥γ ∥ . (6)

Then the cluster expansion (4) converges absolutely, and form ∈ N,

|Tm (C,w) − logZ (C,w)| ≤ Ne−3m .

Moreover, if instead all polymers are connected, induced subgraphs
of G, and for some b > 0 and all γ ∈ C,

∥γ ∥ ≥ b |γ |, and |wγ | ≤ e−(
3+log∆
b +3) ∥γ ∥,

then the same conclusion holds.
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This lemma implies that if conditions (5) and (6) hold, then

exp(Tm (C,w)) is an ϵ-relative approximation to Z (C,w) form ≥

log(N /ϵ)/3.
Because clusters are connected objects arising from a bounded-

degree graph, the truncated cluster expansion can be computed

efficiently. Recall that N = |V (G)|.

Lemma 2.2. Suppose the conditions of Lemma 2.1 hold. Then given
a list of all polymers γ of size at mostm along with the weightswγ
of these polymers, the truncated cluster expansion Tm (C,w) can be
computed in time O(N exp(O(m))).

The next lemma says that, for the purposes of approximating

a polymer partition function, it is sufficient to have approximate

evaluations w̃γ of the weightswγ .

Lemma 2.3. Let v : C → [0,∞) be a non-negative function on
polymers such that v(γ ) ≤ ∥γ ∥2. Suppose 0 < ϵ < N−1, and let
m = log(8/ϵ)/3. Suppose the conditions of Lemma 2.1 hold and that
for all γ ∈ C with ∥γ ∥ ≤ m, w̃γ is an ϵv(γ )-relative approximation
to wγ . Then exp(Tm (C, w̃)) is an Nϵ/4-relative approximation to
Z (C,w).

Proof. Using the definition ofm and applying Lemma 2.1, we

have

| logZG (C,w) −Tm (C,w)| ≤ Nϵ/8,

so by the triangle inequality it is enough to show that

|Tm (C, w̃) −Tm (C,w)| ≤ Nϵ/8. (7)

Define rγ by log w̃γ = logwγ + rγ . To prove (7), note the identity

Tm (C, w̃)−Tm (C,w) =
∑

Γ∈Gc (G)

∥Γ ∥<m

ϕ(HΓ)
∏
γ ∈Γ

wγ ·

exp ©­«
∑
γ ∈Γ

rγ
ª®¬ − 1

 .
Our hypotheses imply |rγ | ≤ ϵv(γ ), and hence by the triangle

inequality we obtain

|Tm (C, w̃) −Tm (C,w)| ≤
∑

Γ∈Gc (G)

∥Γ ∥<m

(exp(
∑
γ ∈Γ

ϵv(γ ))−1)

������ϕ(HΓ)
∏
γ ∈Γ

wγ

������ ,
where we have used the elementary inequality |ea − 1| ≤ eb − 1

when |a | ≤ b to bound the term in square brackets. Since v(γ ) ≤
∥γ ∥2 this yields, after ordering the sum over clusters according to

their size k ,

|Tm (C, w̃) −Tm (C,w)| ≤

m−1∑
k=1

(exp(ϵk2) − 1)
∑

Γ∈Gc (G)

∥Γ ∥=k

������ϕ(HΓ)
∏
γ ∈Γ

wγ

������
≤

m−1∑
k=1

(exp(ϵk2) − 1)Ne−3k .

The last inequality follows from the (proof of the) convergence of

the cluster expansion. Since ϵ < N−1
we can bound eϵk

2

− 1 by

2ϵk2, and (7) follows since

∑
k≥1 k

2e−3k < 1/16. □

Putting Lemmas 2.1, 2.2, and 2.3 together we see that the parti-

tion function Z (C,w) can be approximated efficiently if: (1) condi-

tions (5) and (6) hold, (2) polymers of size at mostm can be enu-

merated efficiently, i.e., in time polynomial in N and exponential in

m, and (3) the polymer weightswγ can be approximated efficiently,

i.e., in time polynomial in the size of γ .

2.1 High Temperature Expansion
The polymermodel algorithm of the previous section yields efficient

counting and sampling algorithms for the random cluster model

when q is sufficiently large and β ≤ βh =
3 logq
4d . In fact, the simpler

setting of β ≤ βh allows for greater generality: we will derive an

algorithm that applies to the random cluster model on any graph

G of maximum degree at most 2d .

Theorem 2.4. Suppose d ≥ 2 and q = q(d) is sufficiently large.
Then for β ≤ βh there is an FPTAS and efficient sampling scheme for
the Potts model and the random cluster model with p = 1 − e−β on
all graphs of maximum degree at most 2d .

Proof of Theorems 1.1 and 1.2 for β ≤ βh . Theorem 1.1 fol-

lows immediately from Theorem 2.4 since Tdn is 2d-regular.
By (1), βh < βc when q is large enough. Thus Theorem 1.2

requires we provide approximate counting and sampling algorithms

for free boundary conditions. Since induced subgraphs of Zd have

degree bounded by 2d , the result follows by Theorem 2.4. □

3 CONTOUR MODEL REPRESENTATIONS
Contour models refer to a class of polymer models that arise in

Pirogov–Sinai theory [38]. For a given spin configuration, contours

represent geometric boundaries between regions dominated by

different ground states; the precise definition for the purposes of

this paper will be given below. This section describes an impor-

tant contour model representation for the random cluster model

on the torus Tdn that is the basic combinatorial object in our algo-

rithms. This contour representation was originally developed for

obtaining optimal lower bounds on the mixing time for Glauber and

Swensden–Wang dynamics [8]. In addition to recalling the construc-

tion from [8] this section also develops the additional ingredients

necessary for algorithmic applications of the representation.

3.1 Continuum Embedding
The contour model representation from [8] is based on the natural

embedding of the discrete torus Tdn = (Z/nZ)d of side-length n ∈ N

into the continuum torus Td
n B (R/nR)d . This subsection recalls

the basic definitions, and explains how they can be rephrased in

terms of discrete graph-theoretic notions.
1

In what follows we abuse notation slightly and write Tdn for the

graph (Tdn, E), where E is the edge set of the discrete torus. We will

follow the convention that bold symbols, e.g., V , denote subsets of

Td
n , while objects denoted by non-bold symbols like V reside in Tdn .

Thus each vertex v ∈ Tdn is identified with a pointv ∈ Td
n , and we

will identify each edge e = {u,v} ∈ E with the unit line segment

1
This continuum construction allows for tools from algebraic topology to be used. We

have chosen to follow the continuum terminology to allow the interested reader to

easily consult [8].
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e ⊂ Td
n that joins u to v . We will also drop Tdn from the notation

when possible, e.g., E for E(Tdn ).

Recall that Ω = 2
E
is the set of configurations of the random

cluster model on Tdn . Let c ⊂ Td
n denote a closed k-dimensional

hypercube with vertices in Tdn for some k = 1, . . . ,d . We say a

hypercube c is occupied with respect toA ∈ Ω if for all edges e with
e ⊂ c , e is in A. Define

A B

{
x ∈ Td

n | there exists c occupied s.t. d∞(x,c) ≤
1

4

}
,

where d∞ is the ℓ∞-distance, and the distance from a point to a set

is defined in the standard way: d∞(x,c) = infy∈c d∞(x,y). ThusA
is the closed 1/4-neighborhood of the occupied hypercubes of A.
The connected components of the (topological) boundary ∂A of the

set A are the crucial objects in what follows. Since each connected

component arises from an edge configuration in Ω, it is clear that
the set of possible connected components is a finite set. As the

connected components of ∂A are continuum objects, it may not be

immediately apparent how to represent them in a discrete manner.

We briefly describe how to do this now.

Let
1

2
Tdn denote the graph ( 1

2
Z/nZ)d ; as a graph this is equivalent

to the discrete torus (Z/(2n)Z)d . The notation 1

2
Tdn is better because

we will embed
1

2
Tdn inTd

n such that (i) 0 coincides in Tdn and
1

2
Tdn ,

and (ii) the nearest neighbors of 0 in
1

2
Tdn are the midpoints of the

edges e containing 0 in Tdn .
2

An important observation is that A can be written as a union

of collections of adjacent closed d-dimensional hypercubes of side-

length 1/2 centered at vertices in
1

2
Tdn , where two hypercubes are

called adjacent if they share a (d−1)-dimensional face. Adjacency of

a set of hypercubes means the set of hypercubes is connected under

the binary relation of being adjacent. By construction the connected

components of A correspond to the connected components of the

edge configuration A.
The boundary ∂A ofA is just the sum, modulo two, of the bound-

aries of the hypercubes whose union gives A. These boundaries are

(d − 1)-dimensional hypercubes dual to edges in
1

2
Tdn ; here dual

means that the barycenter of the (d − 1)-dimensional hypercube is

the same as barycenter of the edge in
1

2
Tdn . The (d − 1)-dimensional

hypercubes that arise from this duality are the vertices in ( 1
2
Tdn )

⋆
,

the graph dual to
1

2
Tdn ; two vertices in ( 1

2
Tdn )

⋆
are connected by an

edge if and only if the corresponding (d − 1)-dimensional hyper-

cubes intersect in one (d−2)-dimensional hypercube. The preceding

discussion implies ∂A can be identified with a subgraph of ( 1
2
Tdn )

⋆
.

In the sequel we will discuss components of ∂A as continuum

objects; by the preceding discussion this could be reformulated in

terms of subgraphs of ( 1
2
Tdn )

⋆
, see [7, Appendix C].

3.2 Contours and Interfaces
An important aspect of the analysis in [8] is that it distinguishes

topologically trivial and non-trivial components of ∂A. To make

this precise, for i = 1, . . . ,d we define the ith fundamental loop
Li to be the set {y ∈ Td

n | y j = 1 for all j , i}. The winding vector

2
More formally, since Zd ⊂ 1

2
Zd ⊂ Rd , we obtain a common embedding of

1

2
Tdn

and Tdn in T d
n .

N (γ ) ∈ {0, 1}d of a connected component γ ∈ ∂A is the vector

whose ith component is the number of intersections (mod 2) of γ
with Li .

Definition 1. Let A ∈ Ω be an edge configuration.

(1) The set of contours Γ(A) associated toA is the set of connected
components of ∂A with winding vector 0.

(2) The interface network S(A) associated to A is the set of con-
nected components of ∂A with non-zero winding vector. Each
connected component of an interface network is an interface.

Without reference to any particular edge configuration, a subset γ ⊂

Td
n is a contour if there is an A ∈ Ω such that γ ∈ Γ(A). Interfaces

and interface networks are defined analogously.

Since each fundamental loop intersects each (d − 1)-dimensional

face of a hypercube centered on
1

2
Tdn exactly zero or one times, we

have the following lemma, which ensures contours can be efficiently

distinguished from interfaces.

Lemma 3.1. Supposeγ ∈ ∂A is comprised ofK (d−1)-dimensional
faces. Then the winding vector of γ can be computed in time O(nK).

Proof. Fix i ∈ {1, 2, . . . ,d}. Each fundamental loop Li has

length O(n), and hence the set Fi of faces that have non-trivial

intersection with Li has cardinality |Fi | = O(n). Given the list of

faces inγ we can compute the ith component of the winding vector

by (i) iterating through the list of faces of γ and adding one each

time we find a face in Fi , and (ii) taking the result modulo two. □

The connected components of Td
n \ ∂A are subsets of either A

orTd
n \A. In the former case we call a component ordered and in

the latter case disordered. We write A
ord

(resp. A
dis
) for the union

of the ordered (resp. disordered) components associated to A.

Definition 2. The labelling ℓA associated to A is the map from
the connected components ofTd

n \ ∂A to the set {dis, ord} that assigns
ord to components in Aord and dis to components in Adis.

Definition 3. Two contours γ i , i = 1, 2 are compatible if
d∞(γ

1
,γ

2
) ≥ 1

2
. We extend this definition analogously to two inter-

faces, or one interface and one contour.

Definition 4. A matching collection of contours Γ and inter-

faces S is a triple (Γ,S, ℓ) such that S is an interface network and

(1) The contours and interfaces in Γ ∪ S are pairwise compatible,
and

(2) ℓ is a map from the set of connected components of Td
n \

∪γ ∈Γ∪Sγ to the set {dis, ord} such that for every γ ∈ Γ ∪ S,
distinct components adjacent to γ are assigned different labels.

Lemma 3.2. The map from edge configurations A ∈ Ω to triples
(Γ,S, ℓ) of matching contours and interfaces is a bijection.

Proof. See [8, p.15]. □

3.3 Contour and Interface Formulation of Z
By Lemma 3.2 we can rewrite the partition function in terms of

matching collections of contours and interfaces by re-writing the

weight w(A) of a configuration A in terms of its contours and
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interfaces. By weight w(A) we mean the numerator of (2), i.e.,

w(A) = p |A |(1 − p) |E\A |qc(V ,A)
. To this end, define

e
ord
B −d log(1 − e−β ), e

dis
B dβ − logq, κ B

1

2

log(eβ − 1).

Further, define the size ∥γ ∥ of a contour γ (resp. size ∥S ∥ of an

interface S) by

∥γ ∥ B

�����γ ∩
⋃
e ∈E

e

����� , ∥S ∥ B

�����S ∩
⋃
e ∈E

e

����� . (8)

This is the number of intersections of γ (resp. S) with
⋃
e ∈E e . For

a continuum set Λ we write |Λ| for |Λ ∩ Tdn |, that is, the number

of vertices of Tdn in Λ in the embedding of Tdn into Td
n . This will

cause no confusion as we never need to measure the volume of a

continuum set.

Using these definitions,w(A) can be written as

w(A) = qc(Aord)e−edis |Adis |e−eord |Aord |
∏
S ∈S

e−κ ∥S ∥
∏
γ ∈Γ

e−κ ∥γ ∥, (9)

where c(A
ord

) is the number of connected components ofA
ord

. The

products run over the sets of interfaces and contours associated to

the edge configuration A, respectively. We indicate the derivation

of (9) in Section 3.3.1 below; see also [8, p.13-15]. Since

Z = ZRC

Tdn
(1 − e−β ,q) =

∑
A∈Ω

w(A) ,

it follows from (9) and Lemma 3.2 that

Z =
∑
(S,Γ)

qc(Aord)e−edis |Adis |e−eord |Aord |
∏
S ∈S

e−κ ∥S ∥
∏
γ ∈Γ

e−κ ∥γ ∥,

(10)

where the sum runs over matching collections of contours and

interfaces. This is the contour and interface network representation

of the random cluster model partition function.

In what follows it will be necessary to divide the contributions

to Z . To this end, let

Ω
tunnel

B {A ∈ Ω | S(A) , ∅}, Ωrest B Ω \ Ω
tunnel

,

and define the corresponding partition functions

Z
tunnel

B
∑

A∈Ωtunnel

w(A), Zrest B
∑

A∈Ωrest

w(A).

By (10) Zrest can be expressed in terms of contours alone. We will

see later that Z
tunnel

is small compared to Zrest, and so the task of

approximating Z is essentially the task of approximating Zrest.
We briefly indicate how to obtain (9). Recall thatGA denotes the

graph (V (A),A). Let ∥δA∥ = |δ1A| + |δ2A|, where δkA is the set of

edges in E \A that contain k vertices in V (A). Observe

c(V ,A) = c(GA) + |V \V (A)|

2|A| = 2d |V (A)| − ∥δA∥.

The first of these relations follows since every vertex not contained

in an edge ofA belongs to a singleton connected component, and the

second is a counting argument. Using these relations one obtains

w(A) = qc(GA)e−edis |V \V (A) |e−eord |V (A) |e−κ ∥δA∥ . (11)

To pass from (11) to (9) requires just a few observations. First,

c(GA) equals the number of components ofA, which is the number

of connected components of A
ord

. Second, |V (A)| = |A
ord

|, and

similarly |V \V (A)| = |A
dis

|. Lastly, ∥δA∥ is precisely the sum of

sizes of the contours and interfaces, as each contribution to ∥δA∥ is
given by a transverse intersection of an edge e with the boundary

of A.

3.4 External Contour Representations
Next we will take the first steps to construct a representation of

Zrest as a sum of polymer model partition functions. We begin with

basic results and definitions. Fix an arbitrary point x0 ∈ Td
n that

cannot be contained in any contour, and let ⊔ denote disjoint union.

Lemma 3.3 ([8, Lemma 4.3]). For any contourγ ,Td
n \γ has exactly

two components.

Definition 5. Let γ be a contour, and supposeTd
n \γ = C ⊔ D.

Then the exterior Extγ of γ isC if |C | > |D |, and is D if the inequal-
ity is reversed. In the case of equality the exterior is the component
containing x0. The interior Intγ of γ is the component ofTd

n \γ that
is not Extγ .

Note that the notion of exterior is defined relative toTd
n , though

we omit this from the notation.

Remark. This is a different definition of exterior than is used in [8];
our definition is more convenient for algorithmic purposes. Most of
the results of [8] concerning the interiors/exteriors of contours apply
verbatim with this change, and whenever we use these results we will
remark on why they apply.

If two contoursγ andγ ′
are compatible, then we write (i)γ < γ ′

if Intγ ⊂ Intγ ′
and (ii)γ⊥γ ′

if Intγ ∩ Intγ ′ = ∅. Given a matching

collection of contours Γ, γ ∈ Γ is an external contour if there does
not exist γ ′ ∈ Γ such that γ ′ < γ . The exterior of a matching

collection of contours Γ is

Ext Γ B
⋂
γ ∈Γ

Extγ .

If Γ is matching, then Ext Γ is a connected subset of Tdn . This follows
by noting that [8, Lemma 5.5] holds with Definition 5 of the interior

and exterior, and given this, the connectedness of Ext Γ follows by

the argument in [8, Lemma 5.6]. Note that since Ext Γ is contained

in Tdn \
⋃
γ ∈Γ γ , this implies that Ext Γ is labelled either ord or dis.

As usual in Pirogov–Sinai theory, see, e.g. [8, Section 6.2], it is

useful to resum the matching compatible contours that contribute

to (10) according to the external contours of the configuration.

To make this precise, we require several definitions. A matching

collection of contours Γ is mutually external if γ⊥γ ′
for all γ ,

γ ′ ∈ Γ. For a continuum set Λ ⊆ Td
n , we say a contourγ is a contour

in Λ if d∞(γ,Td
n \Λ) ≥ 1/2. The distance to the empty set is infinite

by convention.

Write C(Λ) for the set of contours in Λ, and C = C(Td
n ) for

the set of all contours. For Λ ⊆ Td
n define Gext(Λ) to be the set of

matching mutually external contours in Λ, and then define

Z
ord

(Λ) B
∑

Γ∈Gext

ord
(Λ)

e−eord |Λ∩Ext Γ |
∏
γ ∈Γ

e−κ ∥γ ∥Z
dis

(Intγ ) (12)

Z
dis

(Λ) B
∑

Γ∈Gext

dis
(Λ)

e−edis |Λ∩Ext Γ |
∏
γ ∈Γ

e−κ ∥γ ∥qZ
ord

(Intγ ), (13)
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where the sums in (12) and (13) run over sets of matching mutually

external contours in which Ext Γ is labelled ord and dis, respectively.

This is the desired resummation. In the special case Λ = Td
n these

partition functions represent the sums ofw(A) over

Ω
ord
B {A ∈ Ω \ Ω

tunnel
| Ext Γ(A) is labelled ord},

Ω
dis
B {A ∈ Ω \ Ω

tunnel
| Ext Γ(A) is labelled dis}.

That is, we get a decomposition Zrest = qZord + Zdis, where

Z
ord
= q−1

∑
A∈Ωord

w(A), Z
dis
=

∑
A∈Ωdis

w(A). (14)

3.5 Labelled Contours
This subsection introduces labelled contours and establishes some

basic properties of these objects. These properties will ensure that

we can efficient enumerate labelled contours.

In Definition 2 we associated a labelling to an entire collection

of matching and compatible contours and interfaces. For collec-

tions of contours it is more convenient to associate the labelling to

individual contours. We do this by assigning a label to Intγ (resp.

Extγ ) according to the label of the region of Tdn \ ∪γ ∈Γγ adjacent

to γ contained in Intγ (resp. Extγ ).
A compatible set of labelled contours Γ is a set of compatible

contours Γ such that the connected components of Tdn \ ∪γ ∈Γγ are

assigned the same labels by the labelled contours. More precisely,

for a component B of Tdn \ ∪γ ∈Γγ , ∂B is a union of compatible

contours γ
0
, . . . ,γk for some k ≥ 0, and (up to relabelling) either

(i)γ i < γ0
for i = 1, . . . ,k or (ii)γ i ⊥ γ j for i , j . The condition of

compatibility of the labels in the first case is that the interior label

of γ
0
is the same as the exterior label of γ i for all i = 1, . . .k , and

in the second case is that all exterior labels agree.

By construction, the set of collections of matching and compat-

ible contours is the same as the set of collections of compatible

labelled contours. The advantage of the latter is that it enables us to

define a labelled contour γ to be ordered if its exterior label is ord,

and disordered if its exterior label is dis. We let C
ord

(Λ) and C
dis

(Λ)
denote the sets of labelled contours in Λ with external labels ord

and dis, respectively, with C
ord
= C

ord
(Td

n ) and C
dis
= C

dis
(Td

n ).

The next lemma gives a way to construct a labelled contour γ from

an edge configuration.

Lemma 3.4. Let ℓ ∈ {ord, dis}, let γ ∈ Cℓ , and Λ = Intγ . Then

• If ℓ = dis, let E ′(Λ) be set of edges contained in Λ. Then γ is
the unique component of ∂A where A = E ′(Λ) ⊂ E.

• If ℓ = ord, let E ′(Λ) be the set of edges whose midpoints are
contained in Λ. Then γ is the unique component of ∂A where
A = E \ E ′(Λ).

Proof. These claims follows from [8, Lemma 5.1]; see the proof

of [8, Lemma 5.11].
3 □

Lemma 3.4 gives a way to construct a given contour from some

set of edges A. For our algorithms it will be important to be able

to generate contours from a relatively small set of edges. We first

explain how to do this for disordered contours.

3
These results rely only on the geometry of hypercubes and not on the definitions of

interior/exterior.

Suppose γ ∈ C
dis

and let Λ = Intγ ∩ Tdn . Define

Eγ B {e = {i, j} | i, j ∈ Λ, d∞(mid(e),γ ) ≥ 3/4},

where mid(e) denotes the midpoint of the edge e ; this is the vertex
of

1

2
Tdn on the two-step path from i to j in 1

2
Tdn .

Lemma 3.5. Suppose γ ∈ Cdis and let Λ = Intγ . Suppose F ⊆ Eγ

and let A = E ′ \ F , where E ′ = E ′(Λ) is defined as in Lemma 3.4.
Let Γ be the set of contours in ∂A. Then γ ∈ Γ, and for all γ ′ ∈ Γ
with γ ′ , γ we have γ ′ < γ . Moreover, all sets of matching contours
consisting of γ and contours in Intγ arise from such F .

Proof. We begin by recalling an alternate construction of A
from [8]. Let E ⊂ E(Tdn ), and let D ⊂ E. Set D⋆

to be the set of

(d − 1)-dimensional unit hypercubes dual to the edges of D, and set

V−(D) =
{
x ∈ V (Tdn ) | {x,y} ∈ D if {x,y} ∈ E

}
.

Set D
dis

to be the union of the open 3/4-neighborhood of V−(D)
and the open 1/4-neighborhood of D⋆

. Then by [8, Lemma 5.1,

(iv)], if D = E \ A, E \A = D
dis
. I.e., D

dis
is the disordered region

associated to A (relative to the region E).
To prove the lemma, we apply this construction with E = E ′(Λ)

and D = F . The definition of Eγ ensures that both the open 3/4-

neighborhoods of the included vertices and the open

1/4-neighborhoods of the included dual facets are at distance at

least 1/2 from γ . This implies that γ is a boundary component of

E \ F , and the first claim follows as all other boundary components

are adjacent to D
dis
. The second claim follows from the bijection

of Lemma 3.2, which restricts to a bijection in this setting. □

Lemma 3.6. Suppose γ ∈ Cdis. Then there is a connected graph
with edge set A such that (i) |A| ≤ 2d ∥γ ∥ and (ii) γ is the outermost
contour in ∂A.

We now establish a similar way to construct an ordered contour

from a small edge set. The situation is slightly different due to the

differences between ordered and disordered contours in Lemma 3.4.

Define, for γ ∈ C
ord

, Λ = Intγ ∩ Tdn ,

Eγ B {{i, j} | i, j ∈ Λ}.

Lemma 3.7. Supposeγ ∈ Cord and F ⊆ Eγ . LetA = (E\E ′(Λ))∪F ,
where E ′(Λ) is defined as in Lemma 3.4. Let Γ be the set of contours
in ∂A. Then γ ∈ Γ, and for all γ ′ ∈ Γ with γ ′ , γ we have γ ′ < γ .
Moreover, all sets of matching contours consisting of γ and contours
in Intγ arise from such F .

Two edges e, f ∈ E are called 1-adjacent if d∞(e, f ) ≤ 1. A set

of edges A is 1-connected if for any e, f ∈ A, there is a sequence of
1-adjacent edges in A from e to f . In the next lemma, ∂Ac

is the

boundary of the thickening of the edge set Ac = E \A.

Lemma 3.8. Suppose γ ∈ Cord. Then there is a 1-connected set of
edges A of size at most ∥γ ∥ such that γ is the outermost contour in
∂Ac .

Proof. Let A be the set of all edges that intersect γ . By the

definition of ∥ · ∥, |A| ≤ ∥γ ∥. By Lemma 3.7 γ is the outermost

contour in Ac
, as Ac = E ′(Λ) ∪ E

dis
(Λ). The 1-connectedness of A
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follows from the connectedness ofγ and the observation that every

point of γ is at most d∞ distance 1/2 from an edge in A. □

3.6 Contour Enumeration
This section uses the results of the previous subsection to guarantee

the existence of an efficient algorithm for enumerating contours.

This requires a few additional lemmas.

Lemma 3.9. For all γ ∈ C,
��Intγ �� ≤ ∥γ ∥2, and

��Intγ �� ≤ (n/2)∥γ ∥.

Proof. This follows by [8, Lemma 5.7], as the interior of a con-

tour as defined by Definition 5 is always smaller than the definition

of the interior of a contour in [8]. □

Lemma 3.10. There is an algorithm that determines the vertex set
Intγ ∩ Tdn in time O(∥γ ∥3).

Lemma 3.11. Fix an edge e ∈ E. There is an algorithm to construct
all contours γ ∈ Cord that (i) can arise from a connected edge set A
that contains e and (ii) have ∥γ ∥ ≤ m. The algorithm runs in time
exp(O(m)).

Similarly, there is an exp(O(m))-time algorithm to construct all
contours γ ∈ Cdis that (i) can arise from an edge set A such that Ac

is 1-connected and contains e and (ii) have ∥γ ∥ ≤ m.

The next definition is useful for inductive arguments.

Definition 6. The level L(γ ) of a contour γ is defined induc-
tively as follows. If γ is thin, meaning C(Intγ ) = ∅, then L(γ ) = 0.
Otherwise, L(γ ) = 1 +max{L(γ ′) | γ ′ < γ }.

Call a set Λ ⊆ Td
n a region if Λ = Td

n or if Λ is a connected

component of Td
n \ ∂A for some A ⊂ E. In the former case set

∂Λ = ∅, and in the latter case set ∂Λ to be the union of all connected

components of ∂A incident to Λ. In particular if Λ = Intγ for some

contour γ , then Λ is a region and ∂Λ = γ . Finally, for compatible

contours γ
1
, . . . ,γ t , define ∥γ

1
∪ · · · ∪ γ t ∥ = ∥γ

1
∥ + · · · + ∥γ t ∥.

We conclude this subsection by stating our main algorithmic result

on efficiently computing sets of contours.

Proposition 3.12. There is anO((|Λ|+∥∂Λ∥) exp(O(m)))-time al-
gorithm that, for all regions Λ, (i) enumerates all contours in Cord(Λ)∪
Cdis(Λ) with size at mostm and (ii) sorts this list consistent with the
level assignments.

3.7 Polymer Representations for Zord and Zdis
To obtain polymer model representations of Z

ord
and Z

dis
, define

Ω̃
ord

(Λ) and Ω̃
dis

(Λ) to be the sets of compatible collections of

contours in Λ that are labelled ord and dis, respectively. Define

K
ord

(γ ) = e−κ ∥γ ∥ Zdis(Intγ )

Z
ord

(Intγ )
, K

dis
(γ ) = e−κ ∥γ ∥ qZord(Intγ )

Z
dis

(Intγ )
.

By following a well-trodden path in Pirogov–Sinai theory (see,

e.g., [8, p.28] or [26, p.28]), these definitions give the following

representations for Z
ord

and Z
dis

as partition functions of abstract

polymer models:

Z
ord

(Λ) = e−eord |Λ |
∑

Γ∈Ω̃ord(Λ)

∏
γ ∈Γ

K
ord

(γ ) (15)

Z
dis

(Λ) = e−edis |Λ |
∑

Γ∈Ω̃dis(Λ)

∏
γ ∈Γ

K
dis

(γ ) . (16)

where the sums run over collections of compatible labelled contours

in Λ with external label ord and dis, respectively.

In fact, for ℓ ∈ {ord, dis}, the above formulas represent Zℓ(Λ) as
the partition function of a polymer model in the form discussed in

Section 2, i.e., where polymers are subgraphs of a fixed graphG with

bounded degree. In detail, recalling the discussion in Section 3.1,

we consider contours as subgraphs of (a subgraph of) the bounded-

degree graph ( 1
2
Tdn )

⋆
. Thus |γ | is the number of vertices in a contour

when represented as a subgraph. Condition (5) holds with b = 1

since ∥γ ∥ ≥ |γ | by (8). The more substantial hypothesis (6) will be

verified in later sections for appropriate choices of the label and of

β .
In the sequel we will write |Λ|

( 1
2
Tdn )⋆

for the size of set of vertices

of ( 1
2
Tdn )

⋆
that are part of some contourγ in Cℓ(Λ) for some ℓ. The

next technical lemma shows it is enough to find algorithms that

are polynomial time in |Λ|
( 1
2
Tdn )⋆

.

Lemma 3.13. For all Λ, |Λ|
( 1
2
Tdn )⋆

is polynomial in |Λ|.

4 CONTOUR MODEL ESTIMATES
In this section we state several estimates related to the contour

representations from the previous section.

Lemma 4.1 (Lemma 6.1 (a) [8]). There are constants c > 0, q0 =
q0(d) < ∞, and n0 < ∞ such that if q ≥ q0, n ≥ n0, and β ≥ βc ,

Ztunnel
Z

≤ exp(−cβnd−1).

Inwhat follows c will always denote the constant fromLemma 4.1,

and q0 and n0 will always be at least as large as the constants in the

lemma. Lemma 4.1 ensures that Z
tunnel

is neglectable when approx-

imating Z up to relative errors ϵ ≫ exp(−cβnd−1). We will also

need to know that Z
dis

is neglectable when β > βc . This requires
two lemmas.

Lemma 4.2. If q ≥ q0, n ≥ n0, and β > βc there exist adis > 0 and
f > 0 so that if ϵn B 2 exp(−cβn), then

Zord ≥ exp(−(f + ϵn )n
d ),

Zdis ≤ exp((−f + ϵn )n
d ) max

Γ∈Gext
dis

e−
adis
2

|Ext Γ |
∏
γ ∈Γ

e−
c
2
β ∥γ ∥,

Proof. With a
dis

≥ 0 this follows from [8, Lemma 6.3] provided

f = f
ord

for β ≥ βc , and that f = f
ord

follows from [8, Lemma A.3].

What remains is to prove a
dis
> 0 when β > βc . The results of [32]

imply that there is a unique Gibbs measure for the random cluster

model when β > βc . If adis was 0 for some β > βc , then the

argument establishing [8, Lemma 6.1 (b)] implies the existence of

multiple Gibbs measures, a contradiction. □

Lemma 4.3. If q ≥ q0, n ≥ n0, and β > βc , then there exists a
constant bdis > 0 so that

Zdis
Z

≤ 2 exp(−bdisn
d−1) .

Proof. Suppose Γ ∈ Gext

dis
. Then we claim that

|Ext Γ | +
∑
γ ∈Γ

∥γ ∥ ≥ 2nd−1. (17)
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To see this, note that

|Ext Γ | +
∑
γ ∈Γ

|Intγ | = nd ,

which combined with Lemma 3.9 implies

|Ext Γ | +
n

2

∑
γ ∈Γ

∥γ ∥ ≥ nd

which implies (17) when n ≥ 2.

By Lemma 4.2, if n is large enough,

Z
dis

Z
ord

≤ 2 max

Γ∈Gext

dis

e−
a
dis

2
|Ext Γ |

∏
γ ∈Γ

e−
c
2
β ∥γ ∥ . (18)

Set b
dis
B min{a

dis
, cβ} > 0. By (17),

e−
a
dis

2
|Ext Γ |

∏
γ ∈Γ

e−
c
2
β ∥γ ∥ ≤ exp(−b

dis
nd−1)

for all Γ ∈ Gext

dis
. The lemma now follows from (18). □

The next two lemmas will allow us to verify the Kotecký–Preiss

condition for the contour models defined in the previous section.

Lemma 4.4 (Lemma 6.3 [8]). If q ≥ q0 and β = βc , then

Kord(γ ) ≤ e−cβ ∥γ ∥, and Kdis(γ ) ≤ e−cβ ∥γ ∥ ,

for all γ in Cord and Cdis, respectively.

Lemma 4.5 (Lemma 6.3 [8]). If q ≥ q0 and β > βc , then

Kord(γ ) ≤ e−cβ ∥γ ∥, γ ∈ Cord

In particular, since β ≥
3 logq
d , then for sufficiently large q the

contour weights K
ord

(for β ≥ βc ) and Kdis
(for β = βc ) will satisfy

condition (6).

Next we will show that when β > βc and the disordered ground

state is unstable, that regions with disordered boundary conditions

‘flip’ quickly to ordered regions by way of a large contour; more

precisely, the dominant contribution to Z
dis

(Λ) from collections of

contours with small external volume.

For a region Λ andM > 0 we define

H
flip

dis
(Λ,M) B {Γ ∈ Gext

dis
(Λ) | |Ext Γ ∩ Λ| ≤ M},

and

Z
flip

dis
(Λ,M) B

∑
Γ∈H

flip

dis
(Λ,M )

e−edis |Ext Γ∩Λ |
∏
γ ∈Γ

e−κ ∥γ ∥qZ
ord

(Intγ ).

Thus, c.f. (13),Z
flip

dis
(Λ,M) is the contribution toZ

dis
(Λ) from contour

configurations with small exterior volume.

Lemma 4.6. Suppose q ≥ q0 and β > βc . Then there exists adis > 0

so that the following holds for all n ≥ n0. Suppose γ ∈ Cord. For any
ϵ > 0, if

M ≥
2

adis
log

8q

ϵ
+

2

adis
(κ + 3)∥γ ∥

then Zflip
dis (Intγ,M) is an ϵ-relative approximation to Zdis(Intγ ).

We end this section with a lemma concerning H
flip

dis
.

Proposition 4.7. There is an algorithm that given γ ∈ Cord and
M ∈ N outputs Hflip

dis (Intγ,M) in time ∥γ ∥eO ( ∥γ ∥+M ).

5 APPROXIMATE COUNTING ALGORITHMS
This section describes our approximate counting algorithms for

β > βh . The algorithms differ depending on whether β = βc ,
β > βc , or βh < β < βc . Recall that Zℓ(Λ) was defined for all

regions Λ in (12)–(13). The heart of this section is the following

lemma.

Lemma 5.1. For d ≥ 2 and q ≥ q0 the following hold.
(1) If β = βc there is an FPTAS to approximate Zord(Λ) and

Zdis(Λ).
(2) If β > βc there is an FPTAS to approximate Zord(Λ).
(3) If βh < β < βc there is an FPTAS to approximate Zdis(Λ).

In each case the FPTAS applies to any region Λ, with running time
polynomial in |Λ|, the number of vertices of Tdn in Λ.

Sections 5.1 and 5.2 prove the first two cases of Lemma 5.1. The

case βh < β < βc is very similar to β > βc , and we defer the details
to [7]. In Section 5.3 we show how these results, together with a

result from [8], suffice to give an FPRAS for Z on the torus.

5.1 Proof of Lemma 5.1, β = βc
We begin by defining a useful variant of the truncated cluster ex-

pansion for Z
ord

(Λ) and Z
dis

(Λ). Let K be a function from contours

to positive real numbers. For ℓ ∈ {ord, dis} define

Tℓ,m (Λ,K) B
∑

Γ∈Gc
ℓ
(Λ)

∥Γ ∥<m

ϕ(Γ)
∏
γ ∈Γ

K(γ ).

so that by (15) and (16) Zℓ(Λ) = exp(−eℓ |Λ|)Tℓ,∞(Λ,Kℓ) provided

the cluster expansion for the polymer models converge.

Recall that the level of a contour was defined in Definition 6, and

that |Λ|
( 1
2
Tdn )⋆

was defined immediately prior to Lemma 3.13.

Lemma 5.2. Suppose d ≥ 2, q ≥ q0 and β = βc . Given Λ with
|Λ|

( 1
2
Tdn )⋆

= N , and an error parameter ϵ > 0, letm = log(8N 2/ϵ)/3.

Inductively (by level) define weights K̃ord(γ ) and K̃dis(γ ) for all con-
tours γ in Cord(Λ) and Cdis(Λ) with size ∥γ ∥ ≤ m by:

(1) If γ is thin, then set

K̃ord(γ ) = e−κ ∥γ ∥−(edis−eord) |Intγ |,

K̃dis(γ ) = qe
−κ ∥γ ∥−(eord−edis) |Intγ | .

(2) If γ is not thin, then define K̃ord by

e−κ ∥γ ∥−(edis−eord) |Intγ |
exp

[
Tm,dis(Intγ, K̃) −Tm,ord(Intγ, K̃)

]
,

and K̃dis by

qe−κ ∥γ ∥−(eord−edis) |Intγ |
exp

[
Tm,ord(Intγ, K̃) −Tm,dis(Intγ, K̃)

]
.

Then for N sufficiently large e−eℓ |Λ |
exp(Tℓ,m (Λ, K̃ℓ)) is an ϵ-

relative approximation to Zℓ(Λ) for ℓ ∈ {ord, dis}.

Proof. Suppose ℓ ∈ {dis, ord}. First note that the inductive

definition of the weights K̃ℓ(γ ) makes sense: to compute K̃ℓ(γ ) for
a contourγ of level t +1 only requires knowing K̃ℓ(γ

′) for contours

γ ′
of level t and smaller.

Since β = βc and q ≥ q0, Lemma 4.4 tells us that

Kℓ(γ ) ≤ e−cβ ∥γ ∥
(19)
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for ℓ ∈ {dis, ord} and for all γ ∈ Cℓ(Λ). If q0 is large enough then

(19) implies condition (??) holds since βc grows like logq by (1).

Thus by Section 3.7 the hypotheses of Lemma 2.1 are satisfied and

the cluster expansion for Zℓ(Λ) converges for ℓ ∈ {ord, dis}.

Now let ϵ ′ = ϵ/N , so that m = log(8N /ϵ ′)/3. We will apply

Lemma 2.3 with v(γ ) = |Intγ |. This is a valid choice of v(γ ) by
Lemma 3.9. Lemma 2.3 says that

e−eord |Λ |
exp

(
T
ord,m (Λ, K̃

ord
)

)
and

e−edis |Λ |
exp

(
T
dis,m (Λ, K̃

dis
)

)
are ϵ-relative approximations to Z

ord
(Λ) and Z

dis
(Λ) if for all γ ∈

Cℓ(Λ) of size at mostm, K̃ℓ(γ ) is an ϵ
′ |Intγ |-relative approximation

to Kℓ(γ ). We will prove this by induction on the level of γ .
For a thin contour, K̃ℓ(γ ) = Kℓ(γ ). Now suppose that for all

contoursγ of level at most t and size at mostm, K̃ℓ(γ ) is an ϵ
′ |Intγ |-

relative approximation of Kℓ(γ ). Consider a contour γ of level

t + 1 and size at mostm. Then all contours γ ′
that appear in the

expansions

Tm,dis(Intγ, K̃dis
) and Tm,ord(Intγ, K̃ord

)

are of level at most t and size at mostm, and so for each such γ ′
,

by the inductive hypothesis K̃ℓ(γ
′) is an ϵ ′ |Intγ ′ |-relative approxi-

mation to Kℓ(γ
′). Then by Lemma 2.3, we have that

e−(edis−eord) |Intγ |
exp

[
Tm,dis(Intγ, K̃dis

) −Tm,ord(Intγ, K̃ord
)
]

is an |Intγ |ϵ ′-relative approximation to
Zdis(Intγ )
Zord(Intγ )

(and likewise for

dis and ord swapped). Multiplying by the prefactor e−κ ∥γ ∥
for ord

and by qe−κ ∥γ ∥
for dis shows that K̃ℓ(γ ) is an ϵ ′ |Intγ |-relative

approximation to Kℓ(γ ) as desired. □

Proof of Lemma 5.1 when β = βc . Let N = |Λ|
( 1
2
Tdn )⋆

and let

m = log(8N 2/ϵ)/3.We need to show that the expansionTℓ,m (Λ, K̃ℓ)

and the weights K̃ℓ(γ ) for all γ of size at mostm in Cℓ(Λ) can be

computed in time polynomial in N and 1/ϵ for ℓ ∈ {dis, ord}. We

can list the sets of contours in C
ord

(Λ) and C
dis

(Λ) of size at most

m, together with their labels and levels, in time O(N exp(O(m)) by

Proposition 3.12. Sincem = log(8N 2/ϵ)/3, O(N exp(O(m)) is poly-

nomial in N and 1/ϵ . N itself is polynomial in |Λ| by Lemma 3.13.

To prove the lemma we must compute the weights K̃ℓ(γ ) and
the truncated cluster expansions Tm,ℓ(Intγ, K̃ℓ) for each contour

in the list. We do this inductively by level. For level zero contours

K̃ℓ(γ ) = Kℓ(γ ) only depends on ∥γ ∥ and
��
Intγ

��
, so K̃ℓ(γ ) can be

computed in time O(∥γ ∥3) by computing these quantities by using

Lemma 3.10. We then continue inductively; each K̃ℓ(γ ) can be

computed efficiently since the truncated cluster expansions can be

computed in time polynomial in N and 1/ϵ using Lemma 2.2. □

5.2 Proof of Lemma 5.1, β > βc
When β > βc (q,d) the ordered ground state is stable, but the disor-

dered state is unstable. For a definition of stability of ground states,

see, e.g., [9]; the upshot for this paper is that we cannot use the

cluster expansion to approximate Z
dis

(Λ) for a region Λ.

To deal with this complication we will appeal to Lemma 4.6. In

words, this lemma says that for β > βc , a typical contour configu-
ration in a region with disordered boundary conditions will have

very few external vertices. We will exploit this fact to enumerate

all sets of typical external contours in the region. This is possible

since the number of external vertices is small. Once we have fixed

a set of external contours we are back to the task of approximating

partition functions with ordered boundary conditions.

We now make the preceding discussion precise. Given

K : C
ord

(Λ) → [0,∞), define ΞM
dis

(Λ,K) to be

eedis |Λ |
∑

Γ∈H
flip

dis
(Λ,M )

e−edis |Ext Γ |
∏
γ ∈Γ

e−κ ∥γ ∥q exp
[
Tm,ord(Intγ,K)

]
.

Lemma 5.3. Suppose d ≥ 2, q ≥ q0 and β > βc . Let Λ be a region
with |Λ|

( 1
2
Tdn )⋆

= N , fix ϵ > 0, and letm = log(8N 2/ϵ)/3. Inductively

(by level) define K̃ord(γ ) for γ ∈ Cord(Λ) with size ∥γ ∥ at mostm by
(1) If γ is thin, then

K̃ord(γ ) = e−κ ∥γ ∥−(edis−eord) |Intγ | .

(2) If γ is not thin, define K̃ord by

e−κ ∥γ ∥−(edis−eord) |Intγ |
exp

[
−Tm,ord(Intγ, K̃)

]
ΞMdis(Intγ, K̃ord) ,

withM = 2

adis

(
log(

32q
ϵ ′ ) + (κ + 3)m

)
.

Then for all N large enough, e−eord |Λ | exp
(
Tord,m (Λ, K̃ord)

)
is an

ϵ-relative approximation to Zord(Λ) .

5.3 Proof of Theorem 1.1
To prove Theorem 1.1 we will need the following result from [8]

about the mixing time of the Glauber dynamics.

Theorem 5.4 ([8, Theorem 1.1]). The mixing time of the Glauber
dynamics for the q-state ferromagnetic Potts model satisfies

τq,β (T
d
n ) = eO (nd−1),

where the O(·) in the exponent hides constants that depend on q, β .

We will use this result to give an approximation algorithm when

the approximation parameter ϵ is extremely small. The reason we

are able to combine the Glauber dynamics with our contour-based

algorithm to give an FPRAS is that [8] proves optimal slow mixing

results for the Glauber and Swendsen–Wang dynamics. That is,

up to a constant in the exponent, the upper bound of the mixing

time of the Glauber dynamics (or Swendsen–Wang dynamics) is the

inverse of the bound on Z
tunnel

/Z from Lemma 4.1. Thus when ϵ is
too small for the contour algorithms to work, the Glauber dynamics

can take over.

Proof of Theorem 1.1. Let N = nd be the number of vertices

of Tdn . We will use a simple fact several times below: if ϵ ∈ (0, 1),

Z ,Z ∗ > 0, and Z ∗/Z < ϵ/2, then (Z − Z ∗) is an ϵ-relative approxi-
mation to Z .

We first consider the case β = βc . To give an FPRAS for Z = ZTdn
we consider two subcases. Let c be the constant from Lemma 4.1.

Suppose ϵ < 4e−cβn
d−1

. Since eO (nd−1)
is polynomial in N and

1/ϵ , we can use Glauber dynamics to obtain an ϵ-approximate

sample in polynomial time. By using simulated annealing (e.g. [41])
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we can also approximate the partition function in time polynomial

in N and 1/ϵ .

If ϵ ≥ 4e−cβn
d−1

, then by Lemma 4.1, Zrest = Z
dis
+ Z

ord
is

an ϵ/2-relative approximation to Z , so it suffices to find an ϵ/4-
relative approximation to both Z

dis
and Z

ord
. This can be done in

time polynomial in N and 1/ϵ by Lemma 5.1.

Next we consider the case β > βc . Again there are two subcases.

Let c be the constant from Lemma 4.1 as before, and let b
dis

be the

constant from Lemma 4.3. If ϵ < 4e−cβn
d−1
+4e−bdisn

d−1
, then again

eO (nd−1)
is polynomial in N and 1/ϵ and we can approximately

count and sample by using the Glauber dynamics.

If ϵ ≥ 4e−cβn
d−1
+4e−bdisn

d−1
, then by Lemma 4.1 and Lemma 4.3,

Z
ord

is an ϵ/2-relative approximation to Z and so it suffices to give

an ϵ/2-relative approximation to Z
ord

. This can be done in time

polynomial in N and 1/ϵ by Lemma 5.1.

Lastly, consider β < βc . The case β ≤ βh was completed in

Section 2. The case βh < β < βc is done exactly as the case β > βc
with the roles of ord and dis reversed; see [7] for details. □

6 CONCLUSIONS
In this paper we have given efficient approximate counting and

sampling algorithms for the random cluster andq-state Pottsmodels

on Zd at all inverse temperatures β ≥ 0, provided q ≥ q0(d) and
d ≥ 2. We believe the ideas of this paper will, however, allow for

approximate counting and sampling algorithms to be developed for

a much broader class of statistical mechanics models.

Sufficient conditions to implement Pirogov–Sinai theory for a

given model are that there are only finitely many ground states

and that there is ‘sufficient τ -functionality’, see [9]; the ideas of
this paper show that these conditions also suffice for the develop-

ment of efficient algorithms. In particular, our methods allow for

the presence of unstable ground states, a significant improvement

compared to the algorithms in [26].

Our results suggest that the algorithmic tasks of counting and

sampling may be performed efficiently for a fairly broad class of

statistical mechanics models with first-order phase transitions, but

we leave a fuller investigation of this for future work. A related

interesting question is the existence of efficient algorithms for all

β ≥ βc in the presence of a second-order transition; we are not

aware of any results in this direction with the exception of the Ising

model, i.e., the q = 2 state Potts model [25, 28]. To conclude we list

some further open questions related to this paper.

(1) Our algorithms are restricted to q ≥ q0(d) with q0(d) >
exp(25d logd). Do efficient algorithms exist that avoid this

constraint? Since the physical phenomena behind our results

are believed to hold for q ≥ 3 when d ≥ 3, there is likely

room for improvement.

(2) On the torus, we obtained an FPRAS (as opposed to an FP-

TAS) for the partition function because of the estimate on

Z
tunnel

from Lemma 4.1: the contribution of Z
tunnel

cannot

be ignored when ϵ ≤ exp(−Ω(nd−1)). Fortunately, it is ex-
actly when ϵ is this small that the Glauber dynamics mix in

time polynomial in 1/ϵ , but of course Markov Chain Monte

Carlo is a randomized algorithm. A method for systemati-

cally accounting for the interfaces that contribute to Z
tunnel

would likely enable the development of an FPTAS. We leave

this as an open problem.

(3) Our algorithms have at least two other features that could be

improved. The first is the running time: while our algorithms

are polynomial time, the degree of the polynomial is not

small. The second is that our algorithms rely on a priori
knowledge of whether or not β = βc .
Both of these deficiencies have the potential to be addressed

by Glauber-type dynamics as described in [13]; see also [26,

Section 7.2]. Proving the efficiency of these proposed algo-

rithms would be very interesting.

(4) Our deterministic algorithms for β > βc (and β < βc ) have
diverging running times as β ↓ βc (β ↑ βc ). Are there deter-
ministic algorithms that do not suffer from this dependence?

(5) The algorithmic adaptation of other sophisticated contour-

based methods, e.g., [37], would be interesting, particularly

for applications to problems such as counting the number of

proper q-colorings of a graph.
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