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1. Introduction

We consider the numerical solution of the problem of recovering the electrical conductivity o in a bounded domain
Q c R d=2,3 filled with the conductive medium from the magnitude of current density field in €. This problem arises
in coupled physics conductivity imaging (see, e.g., [15,22] for detail).

Suppose the boundary 92 of € is Lipschitz, and the conductivity o is isotropic and positive. For simplicity, we assume
that two identical electrodes e are placed on the boundary, so that e C 92 are two connected subsets with the mutually
disjoint closures, |e.| = |e_| = |e|, and the electrodes have the same effective electrode impedance z4 =z_ =z > 0. The
direct currents I+ are injected into and ejected from 2 through the electrode electrical circuit. Because of no electrical
charges in a conductive medium, I_ =1, =, and the voltage potential u satisfies the Robin problem

V- (0(®Vu)=0inQ, (1)
subject to
o(Vu-v)+eu= fonoL, (2)
where v denotes the outer unit normal to the boundary, and
_J1/z,xecey, _JRe/) LI, x€e1,
(p(x)_{ﬂ/z,xeasz\ei, and f(")—{o,xeasz\ei. 3)
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The constant R, > 0 accounts for the effective electrode resistance, and 0 < 8 « 1 is a small number, such that z/8 accounts
for the very large boundary electrical impedance outside the electrodes. Note that the need to introduce the number g is
due to a sufficient condition of uniqueness of the solution (see Section 2 and also Theorem 1b in [23]). It is well known
that the forward problem (1), (2) has a unique solution in H!().

Exploiting the Ohm’s law and introducing the internal data a = o |Vu|, one could formally transform the equation (1) to
a weighted 1-Laplacian with the weight function a and formulate a coupled physics inverse conductivity problem in terms
of finding a solution to this equation given a single internal data a. Once its solution u is found, the conductivity may be
reconstructed as o =a/|Vu| at least for the regions where the gradient Vu is not vanished. This attempt was first made in
[5]. However, such an inverse problem is ill-posed in the sense of Hadamard, and some nonexistence and non-uniqueness
examples were demonstrated in [5] in the case of the Neumann boundary condition. Therefore, a reconstruction algorithm
employing the magnitudes of two internal current densities was proposed in [5].

The reconstruction of conductivity using just one internal data a was originated with the fact that equipotential surfaces
are minimal surfaces in a Riemannian space determined by this internal data [12]. Using the co-area formula (e.g., [27]), this
fact further lead to the weighted least gradient formulation for the Dirichlet problem in [13] and [14]. Both the existence
and uniqueness of such weighted gradient problems were studied in [4] and [10] and extended to the unique determination
of the shape and position of the perfectly insulated and conducting inclusions in [9,10]. In this paper we present the
method for quantitative imaging where the conductivity is bounded. Under some a priori assumptions, a structural stability
result for a weighted least gradient problem can be found in [17]. When the entire current density field is available inside
the stability results were established in [7] for the unperturbed Dirichlet data and in [8] for the partial data. The existing
numerical reconstruction methods using knowledge of one current density field are based either on the level set methods
[6], [12] and [24] or on the variational approach to the weighted least gradient Dirichlet problems [10], [13]. However,
current practices of acquiring the internal data requires two rotations made by a MRI system [20], yielding any additional
measurements of the boundary voltage potential impractical.

Motivated by the challenge to completely eliminate the boundary data, in [16] the coupled physics inverse conductivity
problem was studied within the framework of the Complete Electrode Model [21]. However, the characterization of the
non-uniqueness result given in [16] allows for reducing only a part, though essential, of boundary data that is needed to
ensure the uniqueness result. This motivates us to introduce the Robin model (1)-(3) for use in the coupled physics inverse
conductivity problem. But even within the framework of this model, the issues of uniqueness and stability still remain
ambiguous. Indeed, if 8 =0 in (3), then for any v : Range(u) — Range(u) an increasing Lipschitz continuous function, satis-
fying ¥ (t) =t for t e u(e4) Uu(e_), one can verify that uy = ou is another solution of the Robin problem corresponding
to the conductivity o /(¥ o u), while the magnitude of the current density field does not change. It follows from [23] that
for 8 > 0, the conductivity o is uniquely determined by the unperturbed internal data a. However, in practice the inter-
nal data a is always perturbed due to the roundoff and truncation errors and measurement noise. Under these conditions,
for the small values of 8 > 0 a matrix resulted from the finite-difference approximation of the Robin problem (1)-(3) is
ill-conditioned. This implies numerical instability. To correct for the lack of numerical stability, we propose and develop
the method of regularized successive iterations that allows for constructing some minimizing sequences for the regularized
weighted least gradient Robin functional. Beginning from a certain number, the members of a minimizing sequence are used
to approximate the solution (o, u) of the coupled physics inverse conductivity problem.

In Section 2 we outline briefly some analytical results that are used in our paper. In Section 3 we introduce a regularized
weighted least gradient Robin functional and briefly sketch a compactness property of minimizing sequences and the con-
tinuous dependence of the regularized problem on the data. The method of regularized successive iterations is described in
Section 4. The model problem is introduced in Section 5 together with the description of computer simulations and some
results of numerical experiments. The paper is concluded with some remarks in Section 6.

2. Preliminaries
Suppose

o eC?(Q)ando € C2(3Q), o > 0. (4)

As in [13] we apply the variational approach to the inverse Robin model and introduce the functional

G(v;a,(p,h):/a|Vv|dx+%/g0(v—h)zds, (5)
Q aQ

where h = f /¢ and h = 0 on, respectively off the electrodes.

Since B > 0, for sufficiently smooth coefficients in the Robin condition (2), the uniqueness result established in [23]
can be restated as follows. Let BV,(€2) be the space of functions of bounded variation with square integrable trace on
the boundary. The differential expression |Vu|dx in the first term in (5) is understood as a Radon measure applied to the
bounded continuous function a.
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Theorem 1. Suppose the function o satisfies the condition (4), and the coefficients ¢ and f in (2) are chosen asin (3). Letu € H'(S2) be
the solution of the Robin problem (1)-(2). Then a € C'/?(Q), and u is the unique minimizer of the functional G(-; a, ¢, h) in BV5(),
ie.,

u=argmin{G(v;a,@,h):veBV,(Q)}. (6)
Moreover, u € C11/2(Q) and
a
= —. 7
o v (7)

This result allows us to elucidate the way of recovering the conductivity from the internal data, which consists in the
construction of minimizing sequences for the functional (5). However, it is not clear how to construct directly a minimizing
sequence. Therefore, we regularize the functional (5) that has the unique minimizer in H!(€2) for every « > 0. The main
difficulty is that the sequence of these minimizers may not be bounded in H' (), but, fortunately, it is bounded in BV(S2).
Then the Rellich-Kondrachov compactness theorem allows for convergence of a subsequence, and the uniqueness result
above allows one to conclude convergence of the entire sequence (see Theorem 2).

3. Regularization

It follows from the classical arguments and [12,13,10] that under our hypothesis on the regularity of the coefficients, the
internal data a = o |Vu| € C'/2() and it is bounded away from zero, i.e.,

infa > 0. (8)

Let up € H'() be the harmonic extension of h into €, i.e.,

Aup=0in &, 9)
up =honaQ. (10)
For an arbitrary fixed parameter & > 0 we introduce the regularized functional
G*(v;a) = /a|Vv|dx+ %/go(v — h)%ds + % / V(v — up)|?dx. (11)
Q aQ Q

For convenience, the explicit dependence on ¢ and h, which are fixed throughout the paper, is omitted. Note that if & =0,
then we obtain the functional (5). The unique solvability of the variational problem

argmin {G*(v;a) : v e H'(Q))

follows from the classical convex theory due to the weak lower semicontinuity of the first term in the functional (11) in
HY().

To establish the regularizing property of G¥(v;a), we make the following assumptions. Let {a,} C L%() be a sequence
of positive functions, such that

lan —allL, ) — 0asn — oo, (12)
and o, — 0 be a decreasing sequence, such that
lim lla—anll2q _

n— 00 op

0. (13)
For every n we denote u, the unique minimizer of G% (v;ay,), i.e.,

Up = argmin{G* (v; ay) : v e H(Q)). (14)

The regularizing property of G*(v; a) follows from Theorem 1 and compactness of the minimizing sequence {u,} established
in [23]. For clarity,

Theorem 2. Suppose 2 C RY, d = 2, 3 is a bounded Lipschitz domain with the connected boundary. Under the assumptions (8), (12)
and (13), let {un} be the sequence of minimizers in (14). Then the following convergence results hold

G (up; an) — G(u; a) asn — oo, (15)

and forall1 <q<d/(d—1),

lup — ulla@) — 0,u asn — oo. (16)
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Proof. We argue that the entire sequence is convergent. Indeed, it follows from [23] that the sequence {uy} is bounded in
W1L1(Q) and by the Rellich-Kondrachov compactness embedding in LI(S2) it is compact. It was also shown in [23] that any
limit point u* € L9(2) of a convergent subsequence which has the bounded total variation, has a square integrable trace on
0Q. Besides, it is a minimizer of the functional G(-;a) in BV,(2). By the uniqueness result in Theorem 1, any such limit u*
must coincide with u. Hence, the entire sequence {uy} is convergent.

4. The method of regularized successive iterations
4.1. The a-parametric Robin problems

Recall that for the fixed coefficients ¢ and h and regularization parameter « > 0 the regularized functional (11) depends
on the internal data a only. By analogy let us introduce the functional

1

F*(u;0) = 3 /o|Vv|2dx+a/ V(v — up)2dx + / Qv —up)?ds } . (17)
Q Q Ele}

We observe now that the functional F*(u; o) depends on the unknown conductivity o. However, this functional possesses

a key property for constructing the regularized successive iterations. Namely, using the identity

/Vuh -Vvdx = /(Vuh -v)vds,
Q aQ

it is easy to show that F%(v; o) is the energy functional for the o-parametric Robin problem
V.-(c+a)Vu=0inQ, (18)
(o0 +a)(Vu-v)+pu=o(Vu -v)on dQ. (19)
Moreover, if uy € H'(Q) is the solution to the problem (18)-(19), then
F(Ug :0) < F¥(v:0) Vv e H(RQ). (20)

The following result provides a theoretical justification for the method of regularized successive iterations using the
o-parametric Robin problem instead of applying the existing methods for minimizing the functional G* (v; a).

Theorem 3. Suppose a € L%(2), ¢ € L™(R) are positive. Let u, € H'($2) be the harmonic extension of h € H'/2(32). Let v € H' ()
be such that a/|Vv| € Loo(S2), and let uy, € H () be the solution to the Robin problem

v-(;—vﬁoz)w:omsz, (21)

<|Vaiv| —I—a) (Vu-v)+ou=u0(Vuy -v) on Q. (22)
Then

G%(ug; a) < G*(v;a), (23)

and if the equality in (23) holds, then u, = v.
Proof. Since ug is the global minimizer of F¥(v; o) in H' (), we have

G"‘(v;a):/a|Vv|dx+%/|V(v—uh)|2dx+/<p(v—h)2ds,
Q

Q Q2
- l/a|Vv|ax+ Fo(v; =, (24)
2 Vvl
Q
> l/a|v\/|alx+ F (Ugs ——)
=5 as V|
Q

Estimating the term
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a \1/2 a \1/2
/aqualdx:/ —) [Vv] - <—> [Vug|dx
J Vv Vv

Q
12 12
a a
< /—|Vv|2dx | [ == 1Vuel?dx
[Vv| [Vv|
Q Q
1 1 a
<— | aVvidx+ = | ——|Vug|%dx,
< 2/ Vv +2 |VV|| ol
) )

we obtain

G“(ua;a)zfa|wa|dx+%/W(ua —uh)|2dx+/(p(ua — h)2ds,
Q Q 02

< /a|Vv|dx+ Fo <ua; L) <GY(v:a). (25)
[Vv|

Then the estimate (23) follows from (24) and (25). If the equality holds in (23), then it also holds in (24). In particular,

a
F* uo,;—a =F*lv;—|.
Vv Vv
a

This means that v is also the global minimizer of F¥ (v; W) in H'(). Because of uniqueness of the minimizer, uy = v.

4.2. Constructing the regularized successive iterations

Based on Theorems 1, 2, and 3 we propose a simple, but computationally efficient, iterative procedure for constructing a
minimizing sequence for the functional G*(v; a). Assume that an upper bound & of conductivity is known apriori, and the
harmonic extension uy and its normal derivative 1 = Vuy - v have been precomputed.

o Initialization. Given a, ¢, h, uy, ¥, @, and a decreasing sequence a, — 0T, and set og =1 in Q.
e Iteration 1. Solve the problem

V-(oo+a1)Vu=0in £,
(00 +a1)(Vu-v) +¢u = a1y on 9%,

and set ug equals its solution.
o Iteration k. Assume that the (k — 1)s iteration was made in which the pair (oy_1, ux_1) was computed. Then we update
to

a _
Ok = max <7 a},
[Vug_1|

and solve the problem

V- (0% + Q1) Vi = 0in ©,
Ok + otk+1) (VU - V) + pu = o1 0n 92

Set uy equals its solution.
In each kth iteration check the stopping criteria

P
max || Vug| — [Vug_1]] < =

and
llok — ok—1ll2
llok 2

where A is the prescribed level of the roundoff and truncation error and TOL is the tolerance level. If they are not
satisfied, reassign the quantities for k — 1 :=k and repeat Iteration k. Otherwise, set 0% = o}, and u® = uy.

<TOIL,
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4.3. A difference scheme for the o.-parametric Robin problem

To implement the method of regularized successive iterations, at each iteration for the fixed parameter o one needs to
solve numerically the Robin problem (18)-(19). Clearly, the rate of convergence of the iterative procedure and accuracy of
reconstruction depend strongly on how accurate this problem is solved numerically. To ensure the appropriate accuracy, we
use the following difference scheme.

Since the harmonic extension uy is precomputed, it is natural to represent the solution of the problem (18)-(19) in the
form uy = w + up, where the function w satisfies the inhomogeneous Robin problem

V. (0qVW) = -V - (04Vuy) in 2, (26)
0u(VW V) +ow = fron <, (27)
where 0y =0 +«, fn = —0(Vuy-v)—@uy. The physical interpretation is that in a conductive medium, the voltage potential
up induces the current density field J, = —6 Vuy, the divergence of which generates the secondary source distribution Fj

in Q in accordance with the Kirchhoff's law. This representation is advantageous also because the harmonic extension up
can be computed with high-order accuracy.

Without loss of generality, we consider further the o-parametric Robin problem (26)-(19) in two dimensions. Suppose
the closure of Q is the unit square

Q={(x1,%):0<x <1,0<x; <1}.

In this case, the problem (26)-(19) is written as

2
> O (0w (X5, W) = —Fp(x) in Q, (28)
m=1
& .
aa8x1w=zw—yn ifx; =0, (29)
1 .
aaa,(zw:;w—yu if x, =0, (30)
& .
—O'aaxIW:EW—]/Z] ifx; =1, (31)
1 .
—UaaxZW:EW—sz ifx, =1, (32)

where x = (x1,x2), 0 =0 +«, Fp =V - (0, Vuy), and
& .
Y11 = —(0 0 up + ;Uh) ifxy =0,
1 .
V12 = —(0 g, Up + ZUn ify x =0,
£ .
Y21 = —0 Ox Up + Euh ifxy=1,

1 .
Y22 = —0 O, Up + Euh ifxy=1.

Note also that the Dirichlet boundary condition (10) takes the form

up=0ifx; =0, (33)
up = —Rel ifx =0, (34)
up=0ifx; =1, (35)
Up=Rel ifx; =1. (36)

Following [19], we approximate the problem (28)-(32) with a second-order difference scheme as follows. On the closure
Q we introduce a uniform grid

G = {xijj = (x1(i), x2(j)) : x1(i)) = ih, x2(j) = jh, AN =1,i,j=0,1, ..., N}.

Let y be a grid function defined on G. Then the problem (28)-(32) is approximated by its difference analogue which is a
system of linear equations

Ay=F, (37)
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where F = Fj + (2/h)(I'1 + I'z), and the self-adjoint difference operator A has the form

A=A1+ Ay, A =A3,
where
2@ yx — V) if x¢ =0,
Ay = (kY% )x, ifh<x <1-h, (38)
2(—aryz, — VY ifxe =1,
Vik ifx =0,
I'={ 0 ifh<x<1-—h, (39)
Vik ifxe =1,
ifx;=0o0rx; =0,
ifxy=1orx;=1.

The entries of the matrix A are given by
1 . . . . 1 . . . .
=7 [0 (x1(D), X2(J)) + 0 (x1(1 — 1), x2(j))], az= 5 [Oa (x1(D), X2(J)) + 0o (x1(D), X2(j — )],

1 1
q:Emmm+umm+%mmmmmﬂ=y%mmmu+m+%mmmm»

The corresponding derivatives are approximated by the finite differences

1 . . .

@Y5)n = 3 (@41, HWis1,j — Yi)) — a1l DWij — Yi-1.)
1 . . ..

@2¥%,)x, = %) (a2 + 1, NWiv1,j — Vi) — a2, DWij— Yie1,))

1 1
Yx = E(J’i-H,j —Yij), Y = E(Yi,j+1 = Yi.j),

1 1
Yo = E(J’i.j —Yi-1,j)» Yz, = E(J’i,j = Yi,j-1)-

Although the system (37) is uniquely solvable, the matrix A is ill-conditioned. To solve (37) numerically, a precondi-
tioned conjugate gradient method (see, e.g., [3]) may be used. However, in some situations, e.g., when the dimension N
is sufficiently large and data a is perturbed, it is difficult to construct a preconditioner from the original matrix A that
would ensure the appropriate accuracy of a numerical solution. As an alternative, the regularized Kranosel'sky successive
approximations [25] may also be used. Being tested on several systems with the ill-conditioned matrices, both techniques
have demonstrated the high rate of convergence and computational efficiency. The relative I, and I, errors do not exceed
107>,

5. Computer simulations of coupled physics conductivity imaging

In this section we demonstrate both the numerical convergence and computational effectiveness of the proposed method
by performing computer simulations of coupled physics conductivity imaging (see, e.g., [15]). The numerical convergence
study is also motivated by the following. Although the convergence of regularized successive iterations is established in
Theorem 2, the Lax-Richtmyer equivalency theorem that consistent numerical approximation, stability and convergence
are equivalent does not take place for the nonlinear and ill-posed problems. Moreover, in practice the internal data a is
corrupted by noise. Under these conditions, the convergence result established in Theorem 2 does not take place at the
fixed noise level and in finite precision. Here, the numerical convergence is understood in the sense that there exists a
natural number K, such that for the fixed noise level and sufficiently fine grid the regularized successive iterations are
close enough to the true solution for k > K. In computer simulations all computations are performed on the Dell Precision
workstation T5400 running under IDL 6.2.

5.1. Data simulation

The model conductivity o is simulated as follows. A real abdominal CT image of a human, which is shown in the left
upper corner in Fig. 3, is embedded into the unit square €, so that the space between the image and sides of the square
is supposed to be filled with a homogeneous conductive medium with o (x) = 1. The actual Hounsfield units of the linear
attenuation coefficient measurements are rescaled to the realistic range [1, 1.8] S/m of the electrical conductivity typical to
the biological tissues. The conductivity bounds are set up as ¢ =0.9 S/m and & =2 S/m. The electrodes injecting/ejecting
the dc-currents into 2 are placed on the opposite sides of the square, so that the electrode supports are given by
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e_={(x1,0):a<x;<b,0<a<0,0<b<1)}
er ={(x1,1):a<x;<b,0<a<0,0<b<1}.

The electrode aperture b — a varies from 1 to few step sizes, and —I_ =1, =5-10"3 A, z=8-10"3 Q-m?.

Given the model conductivity o and the parameters indicated above, the forward Robin model (1)-(2) is used to sim-
ulate the voltage potential us in €. As in [16] and [26], the standard Galerkin finite element method is utilized to solve
numerically this forward problem. To provide a sufficiently small truncation error, the basis elements and mesh density are
accurately chosen. We find that using the first-order element basis with the number of elements of order of tens of thou-
sands, as well using preconditioners when solving the resulting system of linear equations, allows for a small relative error
of order 10~>. Once u; is computed, the simulated interior data is calculated as as = o |us|. Note that due to the roundoff
and truncation errors, d is just an approximation of the model data o |Vu|, where u is the solution of the forward problem
(1)-(2). To simulate the measured interior data d, we exploit the model of the additive normally distributed noise

R
IRII2”

where § is the prescribed level of error and R = R(0, 1) is the normally distributed pseudo-random matrix with the zero
mean and standard deviation 1.

a:a5+8 (41)

5.2. Choice of the regularization parameter o
Suppose a certain approximation a of a is obtained from measurements, so that

lla —allL,@) < 8.

It follows from the theory of regularization (see, e.g., [1]) that the pair (@, §) is the minimal a priori information needed to
construct a regularized solution of the coupled physics inverse conductivity problem. Since the coupled physics inverse con-
ductivity problem is nonlinear and ill-posed, exploiting the residual principle (see, e.g., [1]) for choosing the regularization
parameter « does not ensure obtaining approximations in a sufficiently small proximity to the model conductivity o. In this
paper we utilize a priori choice of the regularization parameter. According to [1] and based on (12) and (13), we choose a
function o = () > 0, such that

F)
lim «(8) =0and lim — =0. (42)
5§—0 §—0 a(8)

For example, the functions

a(8) =CsP, (43)

where C = const > 0, satisfy this condition for any 0 < p < 1. Because of the continuous dependence of a minimizer u, on
the parameter «, one may choose «(8), so that

la —aas) @ < lla —all@) <6,

where ay(5) = 0q(5)| Vg, and the pair (oys), Ue) is a regularized solution to the inverse conductivity problem.
5.3. On the reconstruction

We use the method of regularized successive iterations described in the section 4 in order to recover a regularized
(minimum residual) conductivity o, from the perturbed internal data a. The perturbations are due to the roundoff and
truncation errors, as well as to the additive normally distributed noise. In the numerical experiments the level § of pertur-
bations varies from 10> to 5-10~2. We observe that the values of p ranging from 7/16 to 10/16 provide almost the same
accuracy of reconstruction. Therefore, in the numerical experiments we fix p = 1/2. When approximating the coefficients ¢
and h in the Robin condition, varying the parameter & from 5-10~> to 10~ does not significantly change the accuracy of
reconstruction. Therefore, in the numerical experiments we use the fixed parameter ¢ = 1073, In simulations of the noisy
data we use the data samples each of which contains up to 20 sampling units modeling measurements. Since we perform
reconstruction for every sampling unit, a regularized conductivity is represented by the mean reconstructed conductivity.
In assessing the quality of reconstruction we use not only a comparison of o, with the model conductivity o, but also
we compare o, with the results of reconstruction obtained by another method. As such, we choose the Alternating Split
Bregman (ASB) algorithm developed in [11] for coupled physics conductivity imaging, because it is tolerant to critical points
of the boundary voltage potentials that may arise in the Robin model. As pointed out in [13], this is needed to provide
the uniqueness to the weighted least gradient Dirichlet problem, and the ASB algorithm exploits the relation between the
weighted least gradient Dirichlet and dual problems via the Bregman distance. Note that the method of finding extrema
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Fig. 1. Rates of numerical convergence for the ASB algorithm (asterisks) and method of regularized successive iterations (bullets) for the full electrode
length.

of general convex functionals was originally proposed in convex optimization by Bregman [2] and later applied to image
processing by Osher [18]. Since the ASB algorithm was developed for a weighted least gradient Dirichlet problem, we use
the trace of us on the boundary 92 as the Dirichlet condition in the ASB algorithm.

5.4. Some results of numerical experiments

In this section we demonstrate the computational effectiveness of the proposed method in the numerical experiments
and compare its performance with the performance of the ASB algorithm.

5.4.1. The rate of numerical convergence and accuracy of reconstruction

The rate of numerical convergence and accuracy of reconstruction are two important quantitative characteristics of the
computational effectiveness of a numerical method. To characterize the proposed method, we terminate the iterative process
after 5, 10, 30, 50, 70, 100, 150, and 200 iterations, compute the mean reconstructed conductivities and calculate the relative
Iy-errors versus the model conductivity (see its image in Fig. 3 at the left upper corner). In these experiments we set
les| =le—| =1, i.e, the electrode length equals the side length of the unit square. In Fig. 1 we show the dependence of the
relative lr-error on the number of iterations. The results for the numbers 5 and 10 are omitted because of the large values
of errors. As in [11] (see Figure 7), we observe that both methods exhibit almost the same rate of numerical convergence,
whereas the accuracy of reconstruction provided by the method of regularized successive approximations is much better
(3-1073 vs. 1.5-1072)). This is also confirmed visually (see images in Fig. 3 in the middle of the upper row and at the right
upper corner).

5.4.2. Effects of the electrode length

The other important characteristic is the sensitivity of a numerical method to variations of the electrode length. Although
a medium is supposed to be conductive, the equipotential lines, being beginning and ending on the electrodes, span dif-
ferently the domain 2 containing the inhomogeneities. The shrinking of the electrode length implies a redistribution of
equipotential lines inside €2, which is becoming more and more nonuniform as shrinking goes to be smaller and smaller.
As a result of such an effect, the many-to-one boundary voltage potentials may arise. Apparently, this effect is particularly
pronounced for the small electrode length and manifests itself in the appearance of some singularity points at the top of
the images in the right corner of the lower row in Fig. 3. Therefore, one may expect that variations of the electrode length
would influence the accuracy of the proposed method. To further investigate this effect, we perform reconstructions for
the various electrode lengths ranging from few step sizes to the full electrode length. We have found that variations do
not affect the rate of numerical convergence for both methods. As an example, in Fig. 2 we show the rates of convergence
for the two step size electrode length. The variations of the electrode length affect slightly the accuracy of reconstruction,
though the method of regularized successive approximations is more tolerant to such variations than the ASB algorithm.

5.4.3. Robustness
To further investigate robustness of the proposed method, i.e., its ability to cope with perturbations, we perform the
numerical experiments with the statistically perturbed data a which is simulated in accordance with (41). The regularized
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Fig. 2. Rates of numerical convergence for the ASB algorithm (asterisks) and method of regularized successive iterations (bullets) for the two step size
electrode length.

Fig. 3. Comparison of the mean reconstructed conductivities recovered from the noiseless internal data.

conductivity is recovered from the perturbed internal data @ with the noise level § varying from 10~3 to 5-1072. The
constant 1 < C < 10 in the formula (43) is chosen by trials in order to provide the best accuracy. Correspondingly to the
noise level, we set C =1.05, 1.2, and 1.24. Fig. 4 demonstrates performance of the proposed method. In the upper row we
show the mean reconstructed conductivities for the full electrode length and the noise level 10~3, 102, and 5- 102 (from
left to right). The corresponding relative l,-errors of reconstruction are 4.5-1073, 7.9-1073, and 4.3-10~2. In the lower row
we show the mean reconstructed conductivities recovered for the electrode length of 1/2,1/4, and two step sizes (from left
to right)) witzh the fixed noise level 1072, The corresponding relative l,-errors of reconstruction are 1.1-1072, 1.8-1072,
and 5.3-107~.

6. Concluding remarks

In this paper we have proposed and developed the method of regularized successive approximations for the numeri-
cal solution of an inverse conductivity problem arising in coupled physics conductivity imaging. The new method is based
on a regularized weighted least gradient Robin problem. It follows from the analysis of this problem that some good ap-
proximations of conductivity can be approximately recovered from the magnitude of one internal current density field
without knowledge of the boundary voltage potential. We have developed the computationally efficient iterative procedure
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Fig. 4. Comparison of the means reconstructed conductivities recovered from the noisy interior data.

for constructing the minimizing sequences for the regularized weighted least gradient functional. This procedure consists of
successive numerical solutions of the approximate Robin problems. We have performed the numerical convergence study
and demonstrated that the proposed method, being sufficiently fast and robust, allows for the appropriate accuracy of reg-
ularized solutions even for the small electrode lengths. The results of some numerical experiments give rise to the idea
that exploiting the concept of the variable regularization parameter may improve the rate of numerical convergence and
accuracy of reconstruction. We reserve investigating this issue for further work.

Acknowledgement

The work of A. Tamasan has been supported by the NSF grant DMS-1907097. The work of A. Timonov has been supported
by the NSF grant DMS-1818882.

References

[1] A. Bakushinsky, A. Goncharsky, Ill-Posed Problems: Theory and Applications, Springer, New York, 1999.
[2] L. Bregman, The relaxation method of finding the common points of convex sets and its application to the solution of problems of convex optimization,
USSR Comput. Math. Math. Phys. 7 (1967) 200-217.
[3] G.H. Golub, C.F. Van Loan, Matrix Computations, 3rd ed., The Johns Hopkins University Press, 1996.
[4] R.L. Jerrard, A. Moradifam, A.I. Nachman, Existence and uniqueness of minimizers of general least gradient problems, ]. Reine Angew. Math. 734 (2018)
71-97.
[5] S. Kim, O. Kwon, J.K. Seo, J.R. Yoon, On a nonlinear partial differential equation arising in magnetic resonance electrical impedance tomography, SIAM
J. Math. Anal. 34 (2002) 511-526.
[6] O. Kwon, J.Y. Lee, ].R. Yoon, Equipotential line method for magnetic resonance electrical impedance tomography, Inverse Probl. 18 (2002) 1089-01100.
[7] C. Montalto, P.I. Stefanov, Stability of coupled physics inverse problems with one internal measurement, Inverse Probl. 29 (2013) 125004.
[8] C. Montalto, A. Tamasan, Stability in conductivity imaging from partial measurements of one interior current, Inverse Probl. Imaging 11 (2017) 339-353.
[9] A. Moradifam, A. Nachman, A. Tamasan, Conductivity imaging from one interior measurement in the presence of perfectly conducting and insulating
inclusions, SIAM J. Math. Anal. 44 (2012) 3669-3690.
[10] A. Moradifam, A. Nachman, A. Tamasan, Uniqueness of minimizers of weighted least gradient problems arising in conductivity imaging, Calc. Var.
Partial Differ. Equ. 57 (2018) 6-27.
[11] A. Moradifam, A. Nachman, A. Timonov, A convergent algorithm for the hybrid problem of reconstructing conductivity from minimal interior data,
Inverse Probl. 28 (2012) 084003.
[12] A. Nachman, A. Tamasan, A. Timonov, Conductivity imaging with a single measurement of boundary and interior data, Inverse Probl. 23 (2007)
2551-2563.
[13] A. Nachman, A. Tamasan, A. Timonov, Recovering the conductivity from a single measurement of interior data, Inverse Probl. 25 (2009) 035014.
[14] A. Nachman, A. Tamasan, A. Timonov, Reconstruction of planar conductivities in subdomains from incomplete data, SIAM J. Appl. Math. 70 (2010)
3342-3362.
[15] A. Nachman, A. Tamasan, A. Timonov, Current density impedance imaging, Contemp. Math.- Am. Math. Soc. 559 (2011) 1335-1351.
[16] A. Nachman, A. Tamasan, J. Veras, A weighted minimum gradient problem with complete electrode model boundary conditions for conductivity imag-
ing, SIAM J. Appl. Math. 76 (2016) 1321-1343.
[17] Z. Nashed, A. Tamasan, Structural stability in a minimization problem and applications to conductivity imaging, Inverse Probl. Imaging 5 (2010)
219-236.
[18] S. Osher, et al., An iterative regularization method for total variation-based image restoration, Multiscale Model. Simul. 4 (2005) 460-489.
[19] A.A. Samarskii, Theory of Difference Schemes, Marcell Decker Inc., New York, 2001.
[20] D.C. Scott, M.L. Joy, R.L. Armstrong, et al., Measurement of nonuniform current density by magnetic resonance, IEEE Trans. Med. Imaging 10 (1991)
362-374.


http://refhub.elsevier.com/S0168-9274(19)30208-9/bib4247s1
http://refhub.elsevier.com/S0168-9274(19)30208-9/bib627265676D616Es1
http://refhub.elsevier.com/S0168-9274(19)30208-9/bib627265676D616Es1
http://refhub.elsevier.com/S0168-9274(19)30208-9/bib676F6C7562s1
http://refhub.elsevier.com/S0168-9274(19)30208-9/bib6A6572726172643939s1
http://refhub.elsevier.com/S0168-9274(19)30208-9/bib6A6572726172643939s1
http://refhub.elsevier.com/S0168-9274(19)30208-9/bib73656Fs1
http://refhub.elsevier.com/S0168-9274(19)30208-9/bib73656Fs1
http://refhub.elsevier.com/S0168-9274(19)30208-9/bib6A65756E2D726F636Bs1
http://refhub.elsevier.com/S0168-9274(19)30208-9/bib6D6F6E74616C746F53746566616E6F76s1
http://refhub.elsevier.com/S0168-9274(19)30208-9/bib6D6F6E74616C746F54616D6173616Es1
http://refhub.elsevier.com/S0168-9274(19)30208-9/bib4D4E54615F5349414Ds1
http://refhub.elsevier.com/S0168-9274(19)30208-9/bib4D4E54615F5349414Ds1
http://refhub.elsevier.com/S0168-9274(19)30208-9/bib4D4E543137s1
http://refhub.elsevier.com/S0168-9274(19)30208-9/bib4D4E543137s1
http://refhub.elsevier.com/S0168-9274(19)30208-9/bib4D4E54s1
http://refhub.elsevier.com/S0168-9274(19)30208-9/bib4D4E54s1
http://refhub.elsevier.com/S0168-9274(19)30208-9/bib4E54543037s1
http://refhub.elsevier.com/S0168-9274(19)30208-9/bib4E54543037s1
http://refhub.elsevier.com/S0168-9274(19)30208-9/bib4E54543039s1
http://refhub.elsevier.com/S0168-9274(19)30208-9/bib4E54543130s1
http://refhub.elsevier.com/S0168-9274(19)30208-9/bib4E54543130s1
http://refhub.elsevier.com/S0168-9274(19)30208-9/bib4E54543131s1
http://refhub.elsevier.com/S0168-9274(19)30208-9/bib4E54563136s1
http://refhub.elsevier.com/S0168-9274(19)30208-9/bib4E54563136s1
http://refhub.elsevier.com/S0168-9274(19)30208-9/bib6E617368656454613130s1
http://refhub.elsevier.com/S0168-9274(19)30208-9/bib6E617368656454613130s1
http://refhub.elsevier.com/S0168-9274(19)30208-9/bib6F73686572s1
http://refhub.elsevier.com/S0168-9274(19)30208-9/bib73616Ds1
http://refhub.elsevier.com/S0168-9274(19)30208-9/bib6A6F79s1
http://refhub.elsevier.com/S0168-9274(19)30208-9/bib6A6F79s1

30 A. Tamasan, A. Timonov / Applied Numerical Mathematics 147 (2020) 19-30

[21] E. Somersalo, M. Cheney, D. Isaacson, Existence and uniqueness for electrode models for electric current computed tomography, SIAM ]. Appl. Math.
54 (1992) 1023-1040.

[22] A. Tamasan, A. Timonov, Coupled physics electrical conductivity imaging, Eurasian ]. Math. Comput. Appl. 2 (2014) 5-29.

[23] A. Tamasan, A. Timonov, A regularized weighted least gradient problems for conductivity imaging, Inverse Probl. 35 (2019) 045006.

[24] A. Tamasan, A. Timonov, J. Veras, Stable reconstruction of regular 1-harmonic maps with a given trace at the boundary, Appl. Anal. 94 (6) (2015),
https://doi.org/10.1080/00036811.2014.918260.

[25] A. Timonov, Factorised preconditionings of successive approximations in finite precision, BIT Numer. Math. 41 (2001) 582-598.

[26] P. Vauhkonen, M. Vauhknoen, T. Savolainen, et al., Three-dimensional electrical impedance tomography based on the complete electrode model, IEEE
Trans. Biomed. Eng. 46 (1999) 1150-1160.

[27] W.P. Ziemer, Weakly Differentiable Functions, Springer, New York, 1969.


http://refhub.elsevier.com/S0168-9274(19)30208-9/bib736F6D657273616C6F4368656E65794973616163736F6Es1
http://refhub.elsevier.com/S0168-9274(19)30208-9/bib736F6D657273616C6F4368656E65794973616163736F6Es1
http://refhub.elsevier.com/S0168-9274(19)30208-9/bib54543134s1
http://refhub.elsevier.com/S0168-9274(19)30208-9/bib54616D54696D3139s1
https://doi.org/10.1080/00036811.2014.918260
http://refhub.elsevier.com/S0168-9274(19)30208-9/bib74696Ds1
http://refhub.elsevier.com/S0168-9274(19)30208-9/bib566175686B6F6E656E3939s1
http://refhub.elsevier.com/S0168-9274(19)30208-9/bib566175686B6F6E656E3939s1
http://refhub.elsevier.com/S0168-9274(19)30208-9/bib7A69656D6572s1

	The method of regularized successive iterations for coupled physics conductivity imaging from a single internal data
	1 Introduction
	2 Preliminaries
	3 Regularization
	4 The method of regularized successive iterations
	4.1 The α-parametric Robin problems
	4.2 Constructing the regularized successive iterations
	4.3 A difference scheme for the α-parametric Robin problem

	5 Computer simulations of coupled physics conductivity imaging
	5.1 Data simulation
	5.2 Choice of the regularization parameter α
	5.3 On the reconstruction
	5.4 Some results of numerical experiments
	5.4.1 The rate of numerical convergence and accuracy of reconstruction
	5.4.2 Effects of the electrode length
	5.4.3 Robustness


	6 Concluding remarks
	Acknowledgement
	References


