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We consider the numerical solution of an inverse conductivity problem that arises in 
coupled physics conductivity imaging. We propose and develop the method of regularized 
successive iterations based on a regularized weighted least gradient Robin problem. Unlike 
the existing numerical techniques, the main novelty is that recovering the electrical 
conductivity from a single internal data does not require the boundary data. The 
performance of the proposed method is demonstrated by computer simulations of coupled 
physics conductivity imaging.
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1. Introduction

We consider the numerical solution of the problem of recovering the electrical conductivity σ in a bounded domain 
� ⊂ Rd, d = 2, 3 filled with the conductive medium from the magnitude of current density field in �. This problem arises 
in coupled physics conductivity imaging (see, e.g., [15,22] for detail).

Suppose the boundary ∂� of � is Lipschitz, and the conductivity σ is isotropic and positive. For simplicity, we assume 
that two identical electrodes e± are placed on the boundary, so that e± ⊂ ∂� are two connected subsets with the mutually 
disjoint closures, |e+| = |e−| = |e|, and the electrodes have the same effective electrode impedance z+ = z− = z > 0. The 
direct currents I± are injected into and ejected from � through the electrode electrical circuit. Because of no electrical 
charges in a conductive medium, I− = I+ = I , and the voltage potential u satisfies the Robin problem

∇ · (σ (x)∇u) = 0 in �, (1)

subject to

σ(∇u · ν) + ϕu = f on ∂�, (2)

where ν denotes the outer unit normal to the boundary, and

ϕ(x) =
{

1/z, x ∈ e±,

β/z, x ∈ ∂� \ e±,
and f (x) =

{
(Re/z) ± I, x ∈ e±,

0, x ∈ ∂� \ e±.
(3)
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The constant Re > 0 accounts for the effective electrode resistance, and 0 < β � 1 is a small number, such that z/β accounts 
for the very large boundary electrical impedance outside the electrodes. Note that the need to introduce the number β is 
due to a sufficient condition of uniqueness of the solution (see Section 2 and also Theorem 1b in [23]). It is well known 
that the forward problem (1), (2) has a unique solution in H1(�).

Exploiting the Ohm’s law and introducing the internal data a = σ |∇u|, one could formally transform the equation (1) to 
a weighted 1-Laplacian with the weight function a and formulate a coupled physics inverse conductivity problem in terms 
of finding a solution to this equation given a single internal data a. Once its solution u is found, the conductivity may be 
reconstructed as σ = a/|∇u| at least for the regions where the gradient ∇u is not vanished. This attempt was first made in 
[5]. However, such an inverse problem is ill-posed in the sense of Hadamard, and some nonexistence and non-uniqueness 
examples were demonstrated in [5] in the case of the Neumann boundary condition. Therefore, a reconstruction algorithm 
employing the magnitudes of two internal current densities was proposed in [5].

The reconstruction of conductivity using just one internal data a was originated with the fact that equipotential surfaces 
are minimal surfaces in a Riemannian space determined by this internal data [12]. Using the co-area formula (e.g., [27]), this 
fact further lead to the weighted least gradient formulation for the Dirichlet problem in [13] and [14]. Both the existence 
and uniqueness of such weighted gradient problems were studied in [4] and [10] and extended to the unique determination 
of the shape and position of the perfectly insulated and conducting inclusions in [9,10]. In this paper we present the 
method for quantitative imaging where the conductivity is bounded. Under some a priori assumptions, a structural stability 
result for a weighted least gradient problem can be found in [17]. When the entire current density field is available inside 
the stability results were established in [7] for the unperturbed Dirichlet data and in [8] for the partial data. The existing 
numerical reconstruction methods using knowledge of one current density field are based either on the level set methods 
[6], [12] and [24] or on the variational approach to the weighted least gradient Dirichlet problems [10], [13]. However, 
current practices of acquiring the internal data requires two rotations made by a MRI system [20], yielding any additional 
measurements of the boundary voltage potential impractical.

Motivated by the challenge to completely eliminate the boundary data, in [16] the coupled physics inverse conductivity 
problem was studied within the framework of the Complete Electrode Model [21]. However, the characterization of the 
non-uniqueness result given in [16] allows for reducing only a part, though essential, of boundary data that is needed to 
ensure the uniqueness result. This motivates us to introduce the Robin model (1)–(3) for use in the coupled physics inverse 
conductivity problem. But even within the framework of this model, the issues of uniqueness and stability still remain 
ambiguous. Indeed, if β = 0 in (3), then for any ψ : Range(u) → Range(u) an increasing Lipschitz continuous function, satis-
fying ψ(t) = t for t ∈ u(e+) ∪ u(e−), one can verify that uψ = ψ ◦ u is another solution of the Robin problem corresponding 
to the conductivity σ/(ψ ′ ◦ u), while the magnitude of the current density field does not change. It follows from [23] that 
for β > 0, the conductivity σ is uniquely determined by the unperturbed internal data a. However, in practice the inter-
nal data a is always perturbed due to the roundoff and truncation errors and measurement noise. Under these conditions, 
for the small values of β > 0 a matrix resulted from the finite-difference approximation of the Robin problem (1)–(3) is 
ill-conditioned. This implies numerical instability. To correct for the lack of numerical stability, we propose and develop 
the method of regularized successive iterations that allows for constructing some minimizing sequences for the regularized 
weighted least gradient Robin functional. Beginning from a certain number, the members of a minimizing sequence are used 
to approximate the solution (σ , u) of the coupled physics inverse conductivity problem.

In Section 2 we outline briefly some analytical results that are used in our paper. In Section 3 we introduce a regularized 
weighted least gradient Robin functional and briefly sketch a compactness property of minimizing sequences and the con-
tinuous dependence of the regularized problem on the data. The method of regularized successive iterations is described in 
Section 4. The model problem is introduced in Section 5 together with the description of computer simulations and some 
results of numerical experiments. The paper is concluded with some remarks in Section 6.

2. Preliminaries

Suppose

σ ∈ C1/2(�) and σ ∈ C2(∂�), σ > 0. (4)

As in [13] we apply the variational approach to the inverse Robin model and introduce the functional

G(v;a,ϕ,h) =
∫
�

a|∇v|dx + 1

2

∫
∂�

ϕ(v − h)2ds, (5)

where h = f /ϕ and h = 0 on, respectively off the electrodes.
Since β > 0, for sufficiently smooth coefficients in the Robin condition (2), the uniqueness result established in [23]

can be restated as follows. Let B V 2(�) be the space of functions of bounded variation with square integrable trace on 
the boundary. The differential expression |∇u|dx in the first term in (5) is understood as a Radon measure applied to the 
bounded continuous function a.
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Theorem 1. Suppose the function σ satisfies the condition (4), and the coefficients ϕ and f in (2) are chosen as in (3). Let u ∈ H1(�) be 
the solution of the Robin problem (1)–(2). Then a ∈ C1/2(�), and u is the unique minimizer of the functional G(·; a, ϕ, h) in B V 2(�), 
i.e.,

u = argmin {G(v;a,ϕ,h) : v ∈ B V 2(�)} . (6)

Moreover, u ∈ C1,1/2(�) and

σ = a

|∇u| . (7)

This result allows us to elucidate the way of recovering the conductivity from the internal data, which consists in the 
construction of minimizing sequences for the functional (5). However, it is not clear how to construct directly a minimizing 
sequence. Therefore, we regularize the functional (5) that has the unique minimizer in H1(�) for every α > 0. The main 
difficulty is that the sequence of these minimizers may not be bounded in H1(�), but, fortunately, it is bounded in B V 2(�). 
Then the Rellich-Kondrachov compactness theorem allows for convergence of a subsequence, and the uniqueness result 
above allows one to conclude convergence of the entire sequence (see Theorem 2).

3. Regularization

It follows from the classical arguments and [12,13,10] that under our hypothesis on the regularity of the coefficients, the 
internal data a = σ |∇u| ∈ C1/2(�) and it is bounded away from zero, i.e.,

inf a > 0. (8)

Let uh ∈ H1(�) be the harmonic extension of h into �, i.e.,


uh = 0 in �, (9)

uh = h on ∂�. (10)

For an arbitrary fixed parameter α > 0 we introduce the regularized functional

Gα(v;a) =
∫
�

a|∇v|dx + 1

2

∫
∂�

ϕ(v − h)2ds + α

2

∫
�

|∇(v − uh)|2dx. (11)

For convenience, the explicit dependence on ϕ and h, which are fixed throughout the paper, is omitted. Note that if α = 0, 
then we obtain the functional (5). The unique solvability of the variational problem

argmin
{

Gα(v;a) : v ∈ H1(�)
}

follows from the classical convex theory due to the weak lower semicontinuity of the first term in the functional (11) in 
H1(�).

To establish the regularizing property of Gα(v; a), we make the following assumptions. Let {an} ⊂ L2(�) be a sequence 
of positive functions, such that

‖an − a‖L2(�) → 0 as n → ∞, (12)

and αn → 0 be a decreasing sequence, such that

lim
n→∞

‖a − an‖L2(�)

αn
= 0. (13)

For every n we denote un the unique minimizer of Gαn (v; an), i.e.,

un = argmin{Gαn(v;an) : v ∈ H1(�)}. (14)

The regularizing property of Gα(v; a) follows from Theorem 1 and compactness of the minimizing sequence {un} established 
in [23]. For clarity,

Theorem 2. Suppose � ⊂ Rd, d = 2, 3 is a bounded Lipschitz domain with the connected boundary. Under the assumptions (8), (12)
and (13), let {un} be the sequence of minimizers in (14). Then the following convergence results hold

Gαn(un;an) → G(u;a) as n → ∞, (15)

and for all 1 ≤ q < d/(d − 1),

‖un − u‖Lq(�) → 0, u as n → ∞. (16)
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Proof. We argue that the entire sequence is convergent. Indeed, it follows from [23] that the sequence {un} is bounded in 
W 1,1(�) and by the Rellich-Kondrachov compactness embedding in Lq(�) it is compact. It was also shown in [23] that any 
limit point u∗ ∈ Lq(�) of a convergent subsequence which has the bounded total variation, has a square integrable trace on 
∂�. Besides, it is a minimizer of the functional G(·; a) in B V 2(�). By the uniqueness result in Theorem 1, any such limit u∗
must coincide with u. Hence, the entire sequence {un} is convergent.

4. The method of regularized successive iterations

4.1. The α-parametric Robin problems

Recall that for the fixed coefficients ϕ and h and regularization parameter α > 0 the regularized functional (11) depends 
on the internal data a only. By analogy let us introduce the functional

F α(u;σ) = 1

2

⎧⎨
⎩

∫
�

σ |∇v|2dx + α

∫
�

|∇(v − uh)|2dx +
∫
∂�

ϕ(v − uh)
2ds

⎫⎬
⎭ . (17)

We observe now that the functional F α(u; σ) depends on the unknown conductivity σ . However, this functional possesses 
a key property for constructing the regularized successive iterations. Namely, using the identity∫

�

∇uh · ∇vdx =
∫
∂�

(∇uh · ν)vds,

it is easy to show that F α(v; σ) is the energy functional for the α-parametric Robin problem

∇ · (σ + α)∇u = 0 in �, (18)

(σ + α) (∇u · ν) + ϕu = α(∇uh · ν) on ∂�. (19)

Moreover, if uα ∈ H1(�) is the solution to the problem (18)–(19), then

F α(uα : σ) ≤ F α(v : σ) ∀v ∈ H1(�). (20)

The following result provides a theoretical justification for the method of regularized successive iterations using the 
α-parametric Robin problem instead of applying the existing methods for minimizing the functional Gα(v; a).

Theorem 3. Suppose a ∈ L2(�), ϕ ∈ L∞(�) are positive. Let uh ∈ H1(�) be the harmonic extension of h ∈ H1/2(∂�). Let v ∈ H1(�)

be such that a/|∇v| ∈ L∞(�), and let uα ∈ H1(�) be the solution to the Robin problem

∇ ·
(

a

|∇v| + α

)
∇u = 0 in �, (21)

(
a

|∇v| + α

)
(∇u · ν) + ϕu = α(∇uh · ν) on ∂�. (22)

Then

Gα(uα;a) ≤ Gα(v;a), (23)

and if the equality in (23) holds, then uα = v.

Proof. Since uα is the global minimizer of F α(v; σ) in H1(�), we have

Gα(v;a) =
∫
�

a|∇v|dx + α

2

∫
�

|∇(v − uh)|2dx +
∫
∂�

ϕ(v − h)2ds,

= 1

2

∫
�

a|∇v|dx + F α(v; a

|∇v| ), (24)

≥ 1

2

∫
�

a|∇v|dx + F α(uα; a

|∇v| ).

Estimating the term
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∫
�

a|∇uα |dx =
∫
�

(
a

|∇v|
)1/2

|∇v| ·
(

a

|∇v|
)1/2

|∇uα |dx

≤
⎛
⎝∫

�

a

|∇v| |∇v|2dx

⎞
⎠

1/2

·
⎛
⎝∫

�

a

|∇v| |∇uα |2dx

⎞
⎠

1/2

≤ 1

2

∫
�

a|∇v|dx + 1

2

∫
�

a

|∇v| |∇uα |2dx,

we obtain

Gα(uα;a) =
∫
�

a|∇uα |dx + α

2

∫
�

|∇(uα − uh)|2dx +
∫
∂�

ϕ(uα − h)2ds,

≤
∫
�

a|∇v|dx + F α

(
uα; a

|∇v|
)

≤ Gα(v;a). (25)

Then the estimate (23) follows from (24) and (25). If the equality holds in (23), then it also holds in (24). In particular,

F α

(
uα; a

|∇v|
)

= F α

(
v; a

|∇v|
)

.

This means that v is also the global minimizer of F α
(

v; a
|∇v|

)
in H1(�). Because of uniqueness of the minimizer, uα = v .

4.2. Constructing the regularized successive iterations

Based on Theorems 1, 2, and 3 we propose a simple, but computationally efficient, iterative procedure for constructing a 
minimizing sequence for the functional Gα(v; a). Assume that an upper bound σ of conductivity is known apriori, and the 
harmonic extension uh and its normal derivative ψ = ∇uh · ν have been precomputed.

• Initialization. Given a, ϕ, h, uh, ψ, σ , and a decreasing sequence αn → 0+ , and set σ0 ≡ 1 in �.
• Iteration 1. Solve the problem

∇ · (σ0 + α1)∇u = 0 in �,

(σ0 + α1)(∇u · ν) + ϕu = α1ψ on ∂�,

and set u0 equals its solution.
• Iteration k. Assume that the (k − 1)s iteration was made in which the pair (σk−1, uk−1) was computed. Then we update 

to

σk = max

(
a

|∇uk−1| , σ
}
,

and solve the problem

∇ · (σk + αk+1)∇u = 0 in �,

(σk + αk+1)(∇u · ν) + ϕu = αk+1ψ on ∂�.

Set uk equals its solution.
In each kth iteration check the stopping criteria

max ||∇uk| − |∇uk−1|| ≤ δ

σ

and

‖σk − σk−1‖2

‖σk‖2
≤ T O L,

where 
 is the prescribed level of the roundoff and truncation error and T O L is the tolerance level. If they are not 
satisfied, reassign the quantities for k − 1 := k and repeat Iteration k. Otherwise, set σα = σk and uα = uk .
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4.3. A difference scheme for the α-parametric Robin problem

To implement the method of regularized successive iterations, at each iteration for the fixed parameter α one needs to 
solve numerically the Robin problem (18)–(19). Clearly, the rate of convergence of the iterative procedure and accuracy of 
reconstruction depend strongly on how accurate this problem is solved numerically. To ensure the appropriate accuracy, we 
use the following difference scheme.

Since the harmonic extension uh is precomputed, it is natural to represent the solution of the problem (18)–(19) in the 
form uα = w + uh , where the function w satisfies the inhomogeneous Robin problem

∇ · (σα∇w) = −∇ · (σα∇uh) in �, (26)

σα(∇w · ν) + ϕw = fh on ∂�, (27)

where σα = σ +α, fh = −σ(∇uh ·ν) −ϕuh . The physical interpretation is that in a conductive medium, the voltage potential 
uh induces the current density field Jh = −σ̂∇uh , the divergence of which generates the secondary source distribution Fh
in � in accordance with the Kirchhoff’s law. This representation is advantageous also because the harmonic extension uh
can be computed with high-order accuracy.

Without loss of generality, we consider further the α-parametric Robin problem (26)–(19) in two dimensions. Suppose 
the closure of � is the unit square

� = {(x1, x2) : 0 ≤ x1 ≤ 1,0 ≤ x2 ≤ 1} .

In this case, the problem (26)–(19) is written as

2∑
m=1

∂xm

(
σα(x)∂xm w

) = −Fh(x) in �, (28)

σα∂x1 w = ε

z
w − γ11 if x1 = 0, (29)

σα∂x2 w = 1

z
w − γ12 if x2 = 0, (30)

− σα∂x1 w = ε

z
w − γ21 if x1 = 1, (31)

− σα∂x2 w = 1

z
w − γ22 if x2 = 1, (32)

where x = (x1, x2), σα = σ + α, Fh = ∇ · (σα∇uh), and

γ11 = −(σ ∂x1 uh + ε

z
uh) if x1 = 0,

γ12 = −(σ ∂x2 uh + 1

z
uh if) x2 = 0,

γ21 = −σ∂x1 uh + ε

z
uh if x1 = 1,

γ22 = −σ∂x2 uh + 1

z
uh if x2 = 1.

Note also that the Dirichlet boundary condition (10) takes the form

uh = 0 if x1 = 0, (33)

uh = −Re I if x2 = 0, (34)

uh = 0 if x1 = 1, (35)

uh = Re I if x2 = 1. (36)

Following [19], we approximate the problem (28)–(32) with a second-order difference scheme as follows. On the closure 
� we introduce a uniform grid

G = {xij = (x1(i), x2( j)) : x1(i) = ih, x2( j) = jh,hN = 1, i, j = 0,1, ..., N}.
Let y be a grid function defined on G . Then the problem (28)–(32) is approximated by its difference analogue which is a 
system of linear equations

Ay = F , (37)
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where F = Fh + (2/h)(�1 + �2), and the self-adjoint difference operator A has the form

A = A1 + A2, A1 = A�
2,

where

Ak y =
⎧⎨
⎩

2
h (a+

k yxk − ψ y) if xk = 0,

(ak yxk
)xk if h ≤ xk ≤ 1 − h,

2
h (−ak yxk

− ψ y) if xk = 1,

(38)

�k =
⎧⎨
⎩

γ1k if xk = 0,

0 if h ≤ xk ≤ 1 − h,

γ1k if xk = 1,

(39)

ψ =
{ ε

z if x1 = 0 or x2 = 0,
1
z if x1 = 1 or x2 = 1.

(40)

The entries of the matrix A are given by

a1 = 1

2
[σα(x1(i), x2( j)) + σα(x1(i − 1), x2( j))] , a2 = 1

2
[σα(x1(i), x2( j)) + σα(x1(i), x2( j − 1))] ,

a+
1 = 1

2
[σα(x1(i + 1), x2( j)) + σα(x1(i), x2( j))] ,a+

1 = 1

2
[σα(x1(i), x2( j + 1)) + σα(x1(i), x2( j))] .

The corresponding derivatives are approximated by the finite differences

(a1 yx1)x1 = 1

h2

(
a1(i + 1, j)(yi+1, j − yi, j) − a1(i, j)(yi, j − yi−1, j)

)
,

(a2 yx2)x2 = 1

h2

(
a2(i + 1, j)(yi+1, j − yi, j) − a2(i, j)(yi, j − yi−1, j)

)
,

yx1 = 1

h
(yi+1, j − yi, j), yx2 = 1

h
(yi, j+1 − yi, j),

yx1 = 1

h
(yi, j − yi−1, j), yx2 = 1

h
(yi, j − yi, j−1).

Although the system (37) is uniquely solvable, the matrix A is ill-conditioned. To solve (37) numerically, a precondi-
tioned conjugate gradient method (see, e.g., [3]) may be used. However, in some situations, e.g., when the dimension N
is sufficiently large and data a is perturbed, it is difficult to construct a preconditioner from the original matrix A that 
would ensure the appropriate accuracy of a numerical solution. As an alternative, the regularized Kranosel’sky successive 
approximations [25] may also be used. Being tested on several systems with the ill-conditioned matrices, both techniques 
have demonstrated the high rate of convergence and computational efficiency. The relative l2 and l∞ errors do not exceed 
10−5.

5. Computer simulations of coupled physics conductivity imaging

In this section we demonstrate both the numerical convergence and computational effectiveness of the proposed method 
by performing computer simulations of coupled physics conductivity imaging (see, e.g., [15]). The numerical convergence 
study is also motivated by the following. Although the convergence of regularized successive iterations is established in 
Theorem 2, the Lax-Richtmyer equivalency theorem that consistent numerical approximation, stability and convergence 
are equivalent does not take place for the nonlinear and ill-posed problems. Moreover, in practice the internal data a is 
corrupted by noise. Under these conditions, the convergence result established in Theorem 2 does not take place at the 
fixed noise level and in finite precision. Here, the numerical convergence is understood in the sense that there exists a 
natural number Kα , such that for the fixed noise level and sufficiently fine grid the regularized successive iterations are 
close enough to the true solution for k ≥ Kα . In computer simulations all computations are performed on the Dell Precision 
workstation T5400 running under IDL 6.2.

5.1. Data simulation

The model conductivity σ is simulated as follows. A real abdominal CT image of a human, which is shown in the left 
upper corner in Fig. 3, is embedded into the unit square �, so that the space between the image and sides of the square 
is supposed to be filled with a homogeneous conductive medium with σ(x) = 1. The actual Hounsfield units of the linear 
attenuation coefficient measurements are rescaled to the realistic range [1, 1.8] S/m of the electrical conductivity typical to 
the biological tissues. The conductivity bounds are set up as σ = 0.9 S/m and σ = 2 S/m. The electrodes injecting/ejecting 
the dc-currents into � are placed on the opposite sides of the square, so that the electrode supports are given by
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e− = {(x1,0) : a ≤ x1 ≤ b,0 ≤ a < 0,0 < b ≤ 1}
e+ = {(x1,1) : a ≤ x1 ≤ b,0 ≤ a < 0,0 < b ≤ 1}.

The electrode aperture b − a varies from 1 to few step sizes, and −I− = I+ = 5 · 10−3 A, z = 8 · 10−3 � · m2.
Given the model conductivity σ and the parameters indicated above, the forward Robin model (1)–(2) is used to sim-

ulate the voltage potential us in �. As in [16] and [26], the standard Galerkin finite element method is utilized to solve 
numerically this forward problem. To provide a sufficiently small truncation error, the basis elements and mesh density are 
accurately chosen. We find that using the first-order element basis with the number of elements of order of tens of thou-
sands, as well using preconditioners when solving the resulting system of linear equations, allows for a small relative error 
of order 10−5. Once us is computed, the simulated interior data is calculated as as = σ |us|. Note that due to the roundoff 
and truncation errors, as is just an approximation of the model data σ |∇u|, where u is the solution of the forward problem 
(1)–(2). To simulate the measured interior data ã, we exploit the model of the additive normally distributed noise

ã = as + δ · R

||R||2 , (41)

where δ is the prescribed level of error and R = R(0, 1) is the normally distributed pseudo-random matrix with the zero 
mean and standard deviation 1.

5.2. Choice of the regularization parameter α

Suppose a certain approximation ã of a is obtained from measurements, so that

‖ã − a‖L2(�) < δ.

It follows from the theory of regularization (see, e.g., [1]) that the pair (ã, δ) is the minimal a priori information needed to 
construct a regularized solution of the coupled physics inverse conductivity problem. Since the coupled physics inverse con-
ductivity problem is nonlinear and ill-posed, exploiting the residual principle (see, e.g., [1]) for choosing the regularization 
parameter α does not ensure obtaining approximations in a sufficiently small proximity to the model conductivity σ . In this 
paper we utilize a priori choice of the regularization parameter. According to [1] and based on (12) and (13), we choose a 
function α = α(δ) > 0, such that

lim
δ→0

α(δ) = 0 and lim
δ→0

δ

α(δ)
= 0. (42)

For example, the functions

α(δ) = Cδp, (43)

where C = const > 0, satisfy this condition for any 0 < p < 1. Because of the continuous dependence of a minimizer uα on 
the parameter α, one may choose α(δ), so that

‖ã − aα(δ)‖L2(�) ≤ ‖ã − a‖L2(�) < δ,

where aα(δ) = σα(δ)|∇uα |, and the pair (σα(δ), uα) is a regularized solution to the inverse conductivity problem.

5.3. On the reconstruction

We use the method of regularized successive iterations described in the section 4 in order to recover a regularized 
(minimum residual) conductivity σα from the perturbed internal data ã. The perturbations are due to the roundoff and 
truncation errors, as well as to the additive normally distributed noise. In the numerical experiments the level δ of pertur-
bations varies from 10−5 to 5 · 10−2. We observe that the values of p ranging from 7/16 to 10/16 provide almost the same 
accuracy of reconstruction. Therefore, in the numerical experiments we fix p = 1/2. When approximating the coefficients ϕ
and h in the Robin condition, varying the parameter ε from 5 · 10−5 to 10−3 does not significantly change the accuracy of 
reconstruction. Therefore, in the numerical experiments we use the fixed parameter ε = 10−3. In simulations of the noisy 
data we use the data samples each of which contains up to 20 sampling units modeling measurements. Since we perform 
reconstruction for every sampling unit, a regularized conductivity is represented by the mean reconstructed conductivity. 
In assessing the quality of reconstruction we use not only a comparison of σα with the model conductivity σ , but also 
we compare σα with the results of reconstruction obtained by another method. As such, we choose the Alternating Split 
Bregman (ASB) algorithm developed in [11] for coupled physics conductivity imaging, because it is tolerant to critical points 
of the boundary voltage potentials that may arise in the Robin model. As pointed out in [13], this is needed to provide 
the uniqueness to the weighted least gradient Dirichlet problem, and the ASB algorithm exploits the relation between the 
weighted least gradient Dirichlet and dual problems via the Bregman distance. Note that the method of finding extrema 
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Fig. 1. Rates of numerical convergence for the ASB algorithm (asterisks) and method of regularized successive iterations (bullets) for the full electrode 
length.

of general convex functionals was originally proposed in convex optimization by Bregman [2] and later applied to image 
processing by Osher [18]. Since the ASB algorithm was developed for a weighted least gradient Dirichlet problem, we use 
the trace of us on the boundary ∂� as the Dirichlet condition in the ASB algorithm.

5.4. Some results of numerical experiments

In this section we demonstrate the computational effectiveness of the proposed method in the numerical experiments 
and compare its performance with the performance of the ASB algorithm.

5.4.1. The rate of numerical convergence and accuracy of reconstruction
The rate of numerical convergence and accuracy of reconstruction are two important quantitative characteristics of the 

computational effectiveness of a numerical method. To characterize the proposed method, we terminate the iterative process 
after 5, 10, 30, 50, 70, 100, 150, and 200 iterations, compute the mean reconstructed conductivities and calculate the relative 
l2-errors versus the model conductivity (see its image in Fig. 3 at the left upper corner). In these experiments we set 
|e+| = |e−| = 1, i.e., the electrode length equals the side length of the unit square. In Fig. 1 we show the dependence of the 
relative l2-error on the number of iterations. The results for the numbers 5 and 10 are omitted because of the large values 
of errors. As in [11] (see Figure 7), we observe that both methods exhibit almost the same rate of numerical convergence, 
whereas the accuracy of reconstruction provided by the method of regularized successive approximations is much better 
(3 · 10−3 vs. 1.5 · 10−2)). This is also confirmed visually (see images in Fig. 3 in the middle of the upper row and at the right 
upper corner).

5.4.2. Effects of the electrode length
The other important characteristic is the sensitivity of a numerical method to variations of the electrode length. Although 

a medium is supposed to be conductive, the equipotential lines, being beginning and ending on the electrodes, span dif-
ferently the domain � containing the inhomogeneities. The shrinking of the electrode length implies a redistribution of 
equipotential lines inside �, which is becoming more and more nonuniform as shrinking goes to be smaller and smaller. 
As a result of such an effect, the many-to-one boundary voltage potentials may arise. Apparently, this effect is particularly 
pronounced for the small electrode length and manifests itself in the appearance of some singularity points at the top of 
the images in the right corner of the lower row in Fig. 3. Therefore, one may expect that variations of the electrode length 
would influence the accuracy of the proposed method. To further investigate this effect, we perform reconstructions for 
the various electrode lengths ranging from few step sizes to the full electrode length. We have found that variations do 
not affect the rate of numerical convergence for both methods. As an example, in Fig. 2 we show the rates of convergence 
for the two step size electrode length. The variations of the electrode length affect slightly the accuracy of reconstruction, 
though the method of regularized successive approximations is more tolerant to such variations than the ASB algorithm.

5.4.3. Robustness
To further investigate robustness of the proposed method, i.e., its ability to cope with perturbations, we perform the 

numerical experiments with the statistically perturbed data ã which is simulated in accordance with (41). The regularized 
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Fig. 2. Rates of numerical convergence for the ASB algorithm (asterisks) and method of regularized successive iterations (bullets) for the two step size 
electrode length.

Fig. 3. Comparison of the mean reconstructed conductivities recovered from the noiseless internal data.

conductivity is recovered from the perturbed internal data ã with the noise level δ varying from 10−3 to 5 · 10−2. The 
constant 1 < C < 10 in the formula (43) is chosen by trials in order to provide the best accuracy. Correspondingly to the 
noise level, we set C = 1.05, 1.2, and 1.24. Fig. 4 demonstrates performance of the proposed method. In the upper row we 
show the mean reconstructed conductivities for the full electrode length and the noise level 10−3, 10−2, and 5 · 10−2 (from 
left to right). The corresponding relative l2-errors of reconstruction are 4.5 ·10−3, 7.9 ·10−3, and 4.3 ·10−2. In the lower row 
we show the mean reconstructed conductivities recovered for the electrode length of 1/2, 1/4, and two step sizes (from left 
to right)) with the fixed noise level 10−2. The corresponding relative l2-errors of reconstruction are 1.1 · 10−2, 1.8 · 10−2, 
and 5.3 · 10−2.

6. Concluding remarks

In this paper we have proposed and developed the method of regularized successive approximations for the numeri-
cal solution of an inverse conductivity problem arising in coupled physics conductivity imaging. The new method is based 
on a regularized weighted least gradient Robin problem. It follows from the analysis of this problem that some good ap-
proximations of conductivity can be approximately recovered from the magnitude of one internal current density field 
without knowledge of the boundary voltage potential. We have developed the computationally efficient iterative procedure 
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Fig. 4. Comparison of the means reconstructed conductivities recovered from the noisy interior data.

for constructing the minimizing sequences for the regularized weighted least gradient functional. This procedure consists of 
successive numerical solutions of the approximate Robin problems. We have performed the numerical convergence study 
and demonstrated that the proposed method, being sufficiently fast and robust, allows for the appropriate accuracy of reg-
ularized solutions even for the small electrode lengths. The results of some numerical experiments give rise to the idea 
that exploiting the concept of the variable regularization parameter may improve the rate of numerical convergence and 
accuracy of reconstruction. We reserve investigating this issue for further work.
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