SIAM J. Sc1. COMPUT. (© XXXX Society for Industrial and Applied Mathematics
Vol. 0, No. 0, pp. 000-000

NUMERICAL SOLUTION OF A REGULARIZED WEIGHTED MEAN
CURVATURE FLOW PROBLEM FOR ELECTRICAL
CONDUCTIVITY IMAGING*

ALEXANDRE TIMONOVT

Abstract. We propose a new approach to the numerical solution of a coupled physics inverse
conductivity problem underlying current density impedance imaging (CDII), which is one of the
coupled physics electrical conductivity imaging modalities which has emerged recently in medical
diagnostics. The approach is based on a regularized weighted mean curvature flow problem, which is
considered to be a novel mathematical model of CDII. It is an alternative to an existing model based
on the weighted least gradient problem relative to the Dirichlet condition. A numerical study is
performed to demonstrate the consistency and computational feasibility of the regularized weighted
mean curvature model presented.
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1. Introduction. In this article we study coupled physics electrical conductivity
imaging, in which the interactions between the electric and some other fields, such as
electromagnetic or acoustic, are utilized, thereby providing useful interior functionals.
Coupling the physical fields is advantageous, because it allows for both high spatial
and contrast resolutions which are deprived of the traditional electrical impedance
tomography. Current density impedance imaging (CDII) (see, e.g., [21]) is one of the
coupled physics imaging modalities which has emerged recently in medical diagnostics
(see, e.g., [2]). In this article, CDII is understood in the sense that an underlying
inverse conductivity problem is formulated as follows.

Let Q@ C R™,n > 2, be a smooth domain with the connected Lipschitz bound-
ary 0Q, the electrical conductivity o is supposed to be scalar, positive, essentially
bounded, and bounded away from zero. Imposing the voltage potential f on 02 gen-
erates in ) the electric field whose interior voltage potential v satisfies the problem

V:(o(z)Vu) =0 in Q,
u=f on 9.

A,_\
_ =
N =
— ~—

In turn, the electric field generates in ) a current density field in accordance with

Ohm’s law J = —oVu. Recall that if f € H'/?(99), then this problem has a unique

weak solution u € H*(2). In practice, the boundary data f are at our disposal, and

the interior data |J| can be obtained from magnetic resonance measurements (see,
, [30]). Given the data (f,|J]), find the pair of functions (u, o) in Q.
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Representing o = |J|/|Vul in accordance with Ohm’s law, the problem (1.1)—(1.2)
can be recast as the weighted 1-Laplacian

Vu

(1.3) v <|J|(x)m) =0inQ

subject to (1.2). However, it was shown in [20] that due to the singularity and elliptic
degeneracy of the differential operator in the left-hand side of (1.3), it may have no
solutions or there are many solutions. Therefore, the weighted least gradient Dirichlet
problem

(1.4) argmin {/ |[J||Vuldz : u € WJlrl(Q) NCQ),u=f on 89}
Q

was chosen as a mathematical model of CDII. We denote Wj_’l (€2) the space of L1(€2)
maps with gradients in L () for which the set of points where the gradients vanish
has at most Lebesgue measure zero. It was proved in [20] that if f € C1*(9Q), |J| €
Ccv(Q), v € (0,1), and |J| > 0 a.e. in Q, and the data (f,|J|) are admissible, i.e.,
there exists a positive conductivity o that is essentially bounded and bounded away
from zero, such that if u € H'(2) is a weak solution to the problem (1.1)—(1.2) then
|J| = o|Vul, then the problem (1.4) is uniquely solvable in W11(Q) N C(Q), and
o = |J|/|Vu| is Holder continuous. It was also shown that (1.3) is, formally, the
Euler-Lagrange equation of the energy functional in (1.4) and that the solution of
the variational problem (1.4) is a weak solution to (1.3). Later, the existence and
uniqueness results were established in [12, 19] for the general weighted least gradient
problems in BV (Q):

(1.5) argmin {/Q a(z)|Du| : w € BV(2),u= f on 89} )

where either a € C*1(Q), f € C(9Q) [12] or a € C(Q), a > 0, and the pair (f,]J]) is
admissible [19]. Based on these results, as well as on convexity of the energy functional,
two computational algorithms [18, 20] for solving the problem (1.4) were developed
and used for reconstructions of the planar conductivity from the data (f,|J]).

Unlike the weighted least gradient problems (1.4), (1.5), in this article for an arbi-
trary T' > 0 we introduce the level set representation of the weighted mean curvature
flow (MCF) equation

Vu

(16) = 909 (1)

> in QT:QX (O,T],

which is relevant to (1.3). Each level set of u evolves in accordance with the weighted

mean curvature v
u

H=V- — .

v (1l o

Introducing such an evolution model is motivated by the following. It is well
known that the MCF equation, i.e., (1.6) with |J| = 1, received a lot of attention in
differential geometry in relation to motion of the level sets of the solution by mean
curvature. It has also been of particular interest in many applications of fluid dy-
namics, combustion, and image processing. In the earlier works of Osher and Sethian
[24], Sethian [31], and Alvarez, Lions, and Morel [1] the level set representation of the
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MCF equation was utilized for propagating interfaces and image selective smoothing
and edge detection. In particular, it was observed in [1] that the mean curvature
diffuses u in the direction orthogonal to Vu, whereas diffusion does not take place in
the direction of Vu. This property is widely used in image processing for improving
the spatial resolution of an image. Also, the evolution of u(z,t) can be considered as
a smoothed field of a certain initial condition ug, which is dissipated at a sufficiently
large time T'. The theoretical justification of the Osher—Sethian approach was given
by Evans and Spruck [8, 9, 10] and Chen, Giga, and Goto [6] for the Cauchy problem
for the MCF equation. They established the existence and uniqueness results based
on the concept of viscosity solutions [7].

In [32] Sternberg and Ziemer investigated the MCF equation subject to the bound-
ary and initial conditions

(1.7) u= f(x) on 00 x (0,77,
(1.8) u = up(x) in Q x {0}

under an assumption that the boundary 0f2 has positive mean curvature. By analogy,
we consider the initial boundary value problem (1.6)—(1.8) as an evolution model of
CDII. As in [32], we assume that the weighted mean curvature H is positive, so that
the lateral boundary condition (1.7) holds in the classical sense.

However, it was shown in [32] that there exists a continuum of equilibria for the
flow described by (1.6)—(1.8) with |J| = 1, among which there is only one function
of least gradient. This means that uniqueness of viscosity solutions to the problem
(1.6)—(1.8) cannot be guaranteed. That is, this problem is ill-posed in the sense of
Hadamard. Therefore, we regularize this problem as follows. Following [8], the term
|Vu| is approximated by the e-parametric functions

9e(|Vul) = (€ + |Vu>)'/2, > 0.

To treat the degeneracy of the differential operator, we add the viscosity term aAu,
0 < a < 1, to the weighted mean curvature following [23]. As a result, for an arbitrary
T > 0 we obtain the regularized weighted MCF problem

(19) g (VulN)u*) = V- o, |[Vul®D ) Vul*®) in Qr,
(1.10) w9 (t,z) = f(z) on 092 x (0,71,
(1.11) u(®) (z,0) = uo(z) in Q x {0},
where

o(z,p) = V@) +a, p=|Vul®|

ge(p)

Also we assume that the compatibility condition is satisfied, i.e., the function f(x)
on the lateral surface 9§ x (0, T is the trace of ug(x) on the boundary 9€2. Once the
solution u(®®) of the problem (1.9)-(1.11) is found, we define the regularized solution
of the coupled physics inverse conductivity problem as the pair (u(o‘a), 0(0‘5))7 where

o) = | J|/|Vul*?)].
By analogy with [10], we think of

Ty lee)
H,. =V- |J|“—
VE2 + |Vuleo) |2

as being the approximate weighted mean curvature for the level sets of u(®¢).
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In this article, the subject of our consideration is the problem (1.9)—(1.11). The
reason is twofold. First, due to the ill-posedness of the problem (1.6)—(1.8), compu-
tations cannot be performed without its regularization. Second, the results of the
numerical study can be used to formulate conjectures for further analysis of regu-
larity conditions for the problem (1.6)—(1.8). The numerical study is aimed at the
central question of whether the sequence of regularized solutions u(*¢) will approach
the function u* of the weighted least gradient as the parameters € and o approach
zero at a sufficiently large time T'.

To the best of the author’s knowledge, there are no publications available in the
mathematics literature on the methods and algorithms for the numerical solution of
the problem (1.6)—(1.8). In the case |J| = 1, along with the algorithms for propagating
interfaces developed in [24] and [31], there are several algorithms developed for image
processing. In [1] the semi-implicit method of discretization in ¢ was directly applied
to the MCF equation subject to the homogeneous Neumann boundary condition, and
the degenerate diffusion operator |Vu|V - (Vu/|Vu|) was approximated on a grid by
the finite differences. Based on the direct application of the finite element method to
the MCF equation, an algorithm was developed in [34], though uniqueness was not
theoretically guaranteed. This drawback was eliminated in subsequent works [15] and
[14] where a combination of schemes from [1] and [34] was presented. In [22] an explicit
convergent finite-difference scheme was developed but it suffers from low accuracy.

Unlike the approaches indicated above, our approach is not based on the theory
of viscosity solutions, and we do not apply the finite element method to the evo-
lution equation, as well as we do not approximate directly the degenerate diffusion
operator by finite differences. Instead, we first eliminate both the singularity and
degeneracy of the differential operator in (1.6), thereby approximating the ill-posed
problem (1.6)—(1.8) by a family of quasi-linear parabolic problems (1.9)—(1.11) whose
unique solvability in an appropriate Holder space follows from Ladyzhenskaya’s theory
[16]. In other words, we approximate the originally ill-posed problem by a family of
well-posed problems. Then, by applying Rothe’s method to the regularized problem
(1.9)—(1.11) with the fixed parameters € and «, we transform it to a family of second-
order linear elliptic problems, the finite-difference schemes of which are well studied
and available in the mathematics literature (see, e.g., [5, 13, 26, 27, 28]). Note that
applicability of the Rothe’s method to the regularized problem (1.9)—(1.11), as well as
its convergence, follows directly from the results by Ladyzhenskaya [17] and Ventzel
[33].

As mentioned above, in our further analytical investigation the ae-regularization
is going to be used to obtain existence and uniqueness for the weighted MCF problem
(1.6)-(1.8) by passing the sequence u(®®) to the double limit as a,e — 0. This
implies that in the presented numerical study of the regularized problem (1.9)—(1.11)
the positive parameters « and ¢ are fixed and they can be taken arbitrarily close to
zero. The question of a special choice of these parameters (e.g., like in Tikhonov’s
regularization), being interesting by itself, is beyond the scope of this paper.

The paper is formatted as follows. In the next section, we discuss briefly the
issues of existence and uniqueness of the weak and classical solutions of the regularized
weighted MCF problem. In section 3 we apply Rothe’s method to this problem. In
section 4 we present the finite-difference approximation of an elliptic problem resulting
from applying Rothe’s method and outline the resularized successive approximations.
In section 5 we demonstrate and discuss some results of the numerical study. Finally,
we conclude our investigation in section 6 and formulate two conjectures for further
analysis.
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2. On the well posedness of the regularized weighted MCF problem.
Let Q C R™ be a bounded domain and 9(2) be a sufficiently smooth boundary
with positive weighted mean curvature. Since in general the function |J|(z) may be
discontinuous, a classical solution to the regularized weighted MCF problem (1.9)-
(1.11) may not necessarily exist. Therefore, we first consider a weak solution to
this problem. In accordance with the standard definition, it is a function u(®®) e
C([0,T]); HY(Q)), such that for all test functions w € H?(Qr) vanishing on 9 x
(0,T) and on Q x {T} it satisfies the identity

/ [—g;lu(o‘g)wt + oVulo®) . Vw} dxdt — / 9= fugw(x,0)dz =0
Qr Q

and the condition (1.10). Here,

HY(Qr) = {w(t,x) : 83_15 € Ly((0,7); La(2)),w € La((0,T); W,}(Q))} .

The existence and uniqueness results for the linear and quasilinear parabolic problems
were established by Ladyzhenskaya (see, e.g., [16]). Here we indicate these results in
relation to the problem (1.9)—(1.11).

PROPOSITION 2.1. Suppose f € HY2(9Q), |J| € Loo(Q), |J] > 0, and uy €
Lo(Q)). Then for the fired 0 < o < 1, € > 0, there exists a unique weak solution
u(®®) € C([0,T]; H(Q)) to the problem (1.9)—(1.11).

Taking into account the compatibility condition on 052, in accordance with the
maximum principle, we obtain

[ 1@z < ol no o)

If the Holder regularity conditions are satisfied, i.e.,
1. 90 € C?V,
2. feC?(09), up € C*v(Q),
3. |J] € CHV(Q),

then, representing (1.9) in the nondivergent form

n

21)  u® = g.(VuIN N (s |vw€>|6mu;z‘;>+zalu<%>

4,5=1
n (ae) (ae)
g-(|Vu'*)]) U, Us, (
=> 7 1 8ij — - o)
Z | |($) ( ta |J|({E) J €2 &+ |Vu(oz5)|2 Ug,z;

ij=1
+ Z |J|wiu§c6:6)v
=1

where d;; is the Kronecker symbol, we obtain from [16, Chapter VI, Theorem 4.2]
that the regularized weighted MCF problem has a unique classical solution u(*%)
C?*+:Hv/2(Qr), and the following bound takes place:

||u||c2+u,1+u/2(QT) < C||UOHC2,1/(Q)7
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where C' = const > 0 that does not depend on ¢. Recall that a classical solution of
the problem is also a weak solution.

From both the analytical and computational points of view, it is convenient to
represent the solution of the problem (1.9)—(1.11) as

(2.2) w(®) (z,t) = v(x, t) + up (),
where the function uj solves an auxiliary problem

(2.3) Aup =0 in Q,

(2.4) up, = f on 0NQ.

The harmonic function uj represents the “stationary” voltage potential induced by
the given boundary voltage f in the domain 2 filled with the homogeneous conductive
medium with o = 1, whereas the voltage potential v(x,t) evolves being modulated
by |J|. By setting ug = up, the problem (1.9)—(1.11) is transformed to the initial
boundary value problem with the homogeneous conditions

(2.5) = = 9(IV(un +0) )V - (o (2, [V(un + v)[) Vo)

+V - (o(z,|V(up +0)])Vup)} in Qr,
(2.6) v(z,t) =0 on 99 x (0,T),
(2.7) v(x,0) =0 in Q x {0}.

As was shown in [17], vanishing v(x,t) on the lateral surface of the cylinder Qr is
required for establishing convergence of Rothe’s method.

3. Applying Rothe’s method. The choice of Rothe’s method [25] for the nu-
merical solution of the problem (2.5)—(2.7) is motivated by the fact that Ladyzhen-
skaya [17] and Ventzel [33] used it for the first time for establishing the existence and
uniqueness results for quasi-linear parabolic equations with the Dirichlet boundary
condition. Their proofs are constructive in the sense that they rely on the existence
of a limit of the sequence of Rothe’s functions. In other words, the convergence of
this sequence naturally follows from the Ladyzhenskaya—Ventzel technique of prov-
ing existence and uniqueness of the initial boundary value problem for quasi-linear
parabolic equations. We use this observation in relation to the problem (2.5)—(2.7).

According to Rothe’s method, we intersect cylinder Q7 by hyperplanes t, =
kr, T=T/K (k=0,1,...,K). Let Q be its kth cross section. For ¢ = ¢}, we define
the function v, (z,t) that satisfies the linear elliptic equation

(3.1) (v )z, tr) = 9= (IV (un + )V - (o, [V (up +0F 1)) Vo)

+ V- (o(z, |V (up +0* D)) Vuy} in Q,
subject to the Dirichlet condition
(3.2) o®) =0 on O,

where v(®) () = v, (, 1), and the temporal derivative in the left-hand side of (2.5) is
approximated by the backward difference formula

v () — oD (1)

(00 el te) = -
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Thus, for any fixed integer K we obtain the finite sequence {v(¥) ()} of solutions to the
elliptic problems (3.1)-(3.2). Let {v,(z,t)} be a sequence of functions v, (z,t), (x,t) €
Qr, such that v, (z,0) = 0. As an example, we indicate Rothe’s function, i.e., the
linear interpolant in ¢,

t—1tp_1
-

(3.3) vp(z,t) = v (z) + (™ (2) —v* =V (2)) for ty_y <t < ts.

In [17] and [33] the global existence and uniqueness of both the classical and weak
solutions of quasi-linear parabolic equations were established by passage v, (z,t) to
the limit as 7 — 0. Utilizing the Ladyzhenskaya—Ventzel technique, convergence of
Rothe’s method can also be established for our case.

PROPOSITION 3.1. Suppose €2 is a bounded domain with the C*"-boundary, and
|J| € CY¥(Q). Then for an arbitrary T > 0 and fized parameters 0 <e <1, 0 < a <
1, the sequence of Rothe’s functions {v.(x,t)} converges uniformly in the t-variable
to the unique weak solution v(x,t) of the problem (2.5)—(2.7) as T — 0.

The proof is analogous to that given in [17] and it is based on the Schauder theory
[11, 29] for an elliptic Dirichlet problem (3.1)—(3.2) and on a priori estimates for the
problem (2.5)—-(2.7):

lvr| < e,
ov,
< co,
‘8331 =2
K n n
TZ/ V() + Z (321,1]_1)7(33,1514))2 + TZ(&M’UT;(QJ, tr))? » dr < c3,
k=179 ij=1 i=1

where c1, co, c3 > 0 are constants which do not depend on 7, as well as on the unique-
ness result for (2.5)—(2.7).

Also, it follows directly from [17] and [33] that if |J|(z) € C*¥(£), then the limit
function v(x,t) is the classical solution of the problem (2.5)—(2.7).

4. On the numerical solution to the elliptic problem (3.1)—(3.2). Rothe’s
method reduces the quasi-linear problem (1.9)—(1.11) to a family of linear elliptic prob-
lems (3.1)—(3.2) with the homogeneous boundary conditions. For every t = ¢, k > 1,
we rewrite (3.1)—(3.2) as

-y _297 (”(k_” o | I @p® = PO (@) in o,
(4.2) v® =0 on dQy,
where

9 = ge(IV (un + M),

o W@,
(k)
9ge
1
(k) _
q =
ngk)

F® =v . (6®vuy) + ¢* o).
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Under the conditions indicated in the previous section, a priori estimate |v,(x,tx)| <
C, C > 0, takes place for all t;, < T. According to Schauder’s theory [11, 29], it
ensures the unique solvability of the problem (4.1)—(4.2).

In the mathematics literature there are available several efficient finite-difference
schemes (see, e.g., [5, 13, 26, 27, 28]). Without loss of generality, consider the problem
(4.1)-(4.2) in two dimensions and approximate it by its difference analogue following
[27]. Let ) be a unit square,

ﬁk = {($1,$2) 0<x; <1, (7, = ]_72)}’
on which we define the uniform grids

g ={(z1,22) : @y = lh, X2y, =mh, hN =1, (I,m=0,1,...,N)},
g={(x1,22) : ®1y = lh, xop, =mh, AN =1, (I,m=1,2,...,N — 1)},
so that v = g\ g is the discrete boundary. On g we introduce the grid function

¥y = yim and on g we approximate the differential operator in the left-hand side of
(4.1) as follows:

(43) IAJy = (SlyTJIl + (SQyT2)12a
where
1
(Slyfl)wl = ﬁ[(sl)lJrlm(lerlm - ylm) - (Sl)lm(ylm - ylflm)]a
1
(52y52)w2 = ﬁ[(52)lm+l(ylm+l - ylm) - (82)lm(ylm - ylmfl)]a
1
(81)im = §[a(xlz_1,x2m) + oz, Tam)],
1
($2)im = 5[0@11, Tom—1) + o (11, Tam)]-

Denoting ¢ = q(x1;,x2m), F = F(x1;,zam), we arrive at the following difference
scheme

(4.4) —Ly+qy=F, x € g,
(4.5) y=0, x €.

It follows from [27] that this difference scheme approximates the problem (4.1)—(4.2)
to second order. If v(z,t) is the classical solution to this problem, then it follows from
[27] that the solution of the difference problem (4.4)—(4.5) converges in the discrete
Ly and W4 norms, and the error bounds are given by

ly = dllL, < pah®, |u—llwy < pah®? if | J|(z) is smooth,
u— 0|y < 3h1/2 if |J|(x) is discontinuous
Wy w )

where 0 = v(z1;, Z2m) and the constants pq, p2, p3 > 0 do not depend on h. Similar
error bounds take place in the case of a weak solution (see [13]).

Let H be a set of all discrete functions y on g which vanish on ~. If we introduce
in H the norm and scalar product as

N
||ZH = (2,2)1/2, (va) = h2 Z 21 Wm,,

l,m=1
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then the set H becomes a Hilbert space, and one can describe the difference scheme
(4.4)—(4.5) as the operator equation

(4.6) Dy=F, y FeH,

where
Dy = _[(51y51)11 + (SZyiz)Iz] =+ Ljy

Using the difference analogue of the Greens’ formula, one can easily show that the
operator D : H — H is positive definite and self-adjoint. Hence, the corresponding
matrix D is symmetric and positive definite, so that its spectrum consists of positive
real eigenvalues and it is bounded for any fixed N. In this case there exists a bounded
inverse D~ of D on H, i.e., the operator equation (4.6) has a unique solution. The
corresponding matrix D is a special band symmetric matrix that consists of five
diagonals. Nonzero entries of D are located on the main diagonal, on two super-
and sub-diagonals adjacent to the main one, and on two remote diagonals located
symmetrically with respect to the main one, so that its bandwidth is equal to the
distance between the main diagonal and any of the remote diagonals.

It is observed in the numerical experiments that for the sufficiently small param-
eters a and ¢ and step size h and for a sufficiently large local variation of ¢(*) (a high
contrast) a small change in entries of D and in the right-hand side 2 may cause a
significant change in the solution of (4.6). Under this condition, the Krylov subspace
methods, e.g., conjugate gradient method, either do not ensure the convergence or
possess extremely low rates of convergence. There is available in the mathematics
literature a variety of preconditioning techniques (see, e.g., surveys in [3, 4]) which
ensure the efficient computations at a reasonable cost and, therefore, they may be
used for the numerical solution of (4.6). In our numerical experiments we use an
implicit version of the preconditioned conjugate gradient method (see, e.g., [28]), in
which the error of each iteration is minimized in the energy norm, and the correction
vector from the Krylov subspace is determined.

5. Numerical study. In this section we study some properties of the numerical
solutions to the regularized weighted MCF problem. All computations were performed
with double precision on the Dell Precision workstation T5400 running under IDL.

5.1. Data simulations. In computer simulations we consider a planar domain
Q= (0,1) x (0,1). To simulate the conductivity distribution in €2, we use two model
functions. The first C'°°-smooth model function is given by

0'($1,$2)

=11+ 0.3{0.3(1 —32)% - exp[227 + (3w — 2)%] — (gz —272% — (3(w — 1))5>
-exp[92% + 9(w — 1)?] — exp[(3z + 1)* + 9(w — 1)2]},

where z = 21 — 1, w = 2x5. The second model function is constructed from a real
abdominal computed tomography (CT) image of a human, which we embed into (2.
The actual Hounsfield units are rescaled of the realistic range [1, 1.8] S/m of the
electrical conductivity typical of the biological tissues. Due to the pixel structure of
a CT image, the second model function is discontinuous. For both model functions,
the conductivity bounds are chosen as ¢ = 0.9 S/m and @ = 2 S/m. In a planar
domain a two-to-one map f ensures the positivity of |.J| almost everywhere in §2 [20].
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FiG. 1. A C°-smooth model. Figures go from top to bottom and from left to right. In the first
column: u* and o* for the two-to-one boundary map. In the second u* and o* for the many-to-one
boundary map, A =0.1,k =9.

Recall that a map on a connected boundary is said to be two-to-one if the set of local
maxima is either one point or one connected arc. To simulate the boundary voltage
potential f, we use two continuous functions defined on sides on the unit square. One
of these functions is two-to-one,

fl(xlva) = T2,
whereas another one is many-to-one,
f2(1‘1, 1‘2) = f1(1‘1, 1‘2) + ASiIl(k'ﬂ':L'Q),

where 0 < A < 1 is a real number and k£ > 2 is an integer.

Given the pair (o, f), the standard Galerkin finite element method is used to solve
numerically the forward problem (1.1)—(1.2). Let us be its solution. Then the simu-
lated interior data are computed as |J| = o|Vus| in order to ensure the admissibility.
To provide an appropriate accuracy, the basis elements and mesh density are carefully
chosen. In the numerical experiments with several test problems we have found that
using the first-order element basis with the number of elements of order of tens of
thousands allows for a small relative error of order 1075. The simulated data (f,|J|)
are first used to find the weighted least gradient function u* and the corresponding
conductivity o*. The Picard-like algorithm from [20] is used to minimize the energy
functional in (1.4) for f;. In the case of the many-to-one function fo the alternating
split Bregman algorithm developed in [18] is utilized, because it provides higher ac-
curacy. The pairs of functions (u*,c*) for the smooth conductivity model are shown
in Figure 1. In Figure 2 the corresponding pairs are shown for the discontinuous
conductivity model.
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F1a. 2. A realistic discontinuous model. Figures go from top to bottom and from left to right.
In the first column: u* and o* for the two-to-one boundary map. In the second column: u* and o*
for the many-to-one boundary map, A =0.1,k =9.

5.2. Large time behavior of the regularized solutions. As an alternative
to the weighted least gradient Dirichlet problem for conductivity imaging (1.4), we
propose using the weighted MCF problem (1.6)—(1.8). However, it was shown in [32]
that even for |J| = 1 there is a continuum of equilibria for the flow described by (1.6)—
(1.8). Because this is important, we reproduce here an example of nonuniqueness from
[32].

Let p, |u| < 1 be a numerical parameter. Then the p-parametric family of func-

tions
2(E%—1 if|x1|2,/1+7“7 |x2|§ 1_7“7
(5.1) up(rr,m2) =4 g i ] < (/5 Jae| <4552,

1—223 if |aq] > /122, |zo| > /554,

are equilibria for the problem (1.6)—(1.8), i.e., they are viscosity solutions to (1.3)
with |J| = 1 subject to (1.2). But there is only one function u, for p = 0 that is a
solution to the problem (1.4). This means that the flow governed by (1.6)—(1.8) does
not necessarily approach a function of the weighted least gradient. Moreover, if we
assume that uo = u, with g # 0 in (1.6)—(1.8), then

(5.2) lim lim lim «(*® # lim lim lim «(*9.
t—o00 e—0 a—0 e—=0a—=0t—o0
Clearly, this fact is one of challenges for further analysis of the weighted MCF problem.
In this section we demonstrate in the numerical experiments that for sufficiently
small parameters a and e the level sets of the regularized solutions u(*¢) are condensed
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F1G. 3. The time behavior of the energy functional for ug = up.

in close proximity of the unique minimizer u* of the weighted least gradient functional
(1.4), i.e., for sufficiently small o and ¢ at a sufficiently large T we obtain

) (z,t) = u(2), 0% (2,t) ~ o* ().

It was proved in [9] and [32] that the functional

/Q|Vu(x,t)|dx

is nonincreasing. In Figure 3 we observe even stronger behavior of the energy func-
tional

/ 12|V ()| de,

which is decreasing. Following [10], one can also show that the functional

/ |Hpe(z,t)|dx

is nonincreasing in ¢ for any «,e € (0, 1] and it is bounded in L, i.e.,

sup bup/ |Hpe(x,t)|de < co.
a,e€(0,1] t20

The monotonicity property is important for further analysis of the relation between
the limit of u®*® and a function of the weighted least gradient. Moreover, the relation
(5.2) does not take place anymore because of the admissibility condition.

At a consciously large T' = 100 the a-dependence of the regularized solutions is
shown for the discontinuous generating conductivity, many-to-one boundary map fo
and ¢ = 107° is shown in Figure 4. The e-dependence for the fixed o = 107° is
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Fic. 4. Figures go from left to right and from top to bottom. In the first row: the recon-
structed voltage potentials u(®®) for o = 10~1, 1073, 10~5. In the second row: the corresponding
reconstructed conductivities o(@€) .

similar. Based on these results, the parameters o and ¢ have been set to 107° in the
next numerical experiments.
In Figure 5 we show the T-dependence of the relative error

g u*||2

[l

ol

for all the model conductivities and boundary maps. We observe that in the case
of the unperturbed interior data |.J| the relative error attains the level of 1.17 - 1073
at T' = 50 for both the smooth and discontinuous model conductivities and weakly
fluctuates around this level with a further increase in T' because of the roundoff and
truncation errors. In the case of many-to-one boundary map the T-dependence of the
relative error is qualitatively the same. However, it attains the levels of 1.84 - 1073
and 3.78 - 1073 for the smooth and discontinuous conductivities.

Recall that the difference scheme indicated in sections 3 and 4 is homogeneous
and implicit. The convergence and accuracy of difference schemes of such types for the
quasi-linear parabolic equations were studied in [26]. In particular, it follows from [26]
that the step sizes 7 and h can be independently chosen. In the following numerical
experiments we demonstrate how the temporal step size 7, which is characterized by
the Courant number

C = max (U(V|u(°‘5)|)%),
influences the accuracy of u(*®) and o(®¢) = |.J|/|Vu(®®)|. For brevity, we show only
the numerical results with the two-to-one boundary map for N = 128 (h = 7.81:1073),
though the similar results take place for the many-to-one map. Given the maximum
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F1G. 5. Relative error as a function of T': the solid line—for the smooth model conductivity
and two-to-one boundary map; the dotted line—for the smooth model conductivity and many-to-one
boundary map; the dashed line—for the discontinuous model conductivity and one-to-one boundary
map; and the dash dot line—for the discontinuous model conductivity and many-to-one boundary
map.

values of ¢(®®) used in computer simulations, the temporal step sizes were set to 1.56,
0.39, and 0.195, so that the corresponding Courant numbers were 63935, 15983, and
7993. In Figures 6 and 7 the series of regularized solutions u(*¢) and reconstructed
o(@2) are shown. We observe that in computations with the finite precision a further
increase in T', as well as a decrease in C or 7, does not lead to a significant improvement
in accuracy.

5.3. Robustness. To simulate the perturbed interior data |:] |, we use the simple
stochastic model of the additive normally distributed noise

1112
R,
(P

(5.3) |J|=|J|+0-

where 0 is the prescribed level of error and R = R(0,1) is the normally distributed
pseudorandom matrix with the zero mean and standard deviation 1. The original and
perturbed interior data with a noise level of 5% for both smooth and discontinuous
model conductivities are shown in Figure 8.

Due to the stochastic nature of |J|, the pseudorandom matrix R has been gener-
ated twenty times and a sample of reconstructed conductivities has been formed for
each noise level 4. In Figure 9 the means for every sample are shown for T' = 50, K =
256. As in [1], we observe that the regularized weighted mean curvature term repre-
sents an effect that diffuses the voltage potential (%) in the directions orthogonal to
the gradient Vu(*®) and does not diffuse in the other directions. This means that as

t — oo the evolution quickly “forgets” about the initial condition uéaa) and further
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Fia. 6. Figures go from left to right. In the first row u(®®) are shown at T = 0.1,1,50 for the
fized 7 = 0.195. In the second row w(@€) gre shown for 7 =1.56,0.39,0.195 at the fired T' = 50.

Fia. 7. Figures go from left to right. In the first row o(®¢) are shown at T = 0.1,1,50 for the
fized T = 0.195. In the second row o(®®) are shown for T = 1.56,0.39,0.195 at the fized T = 50.
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F1c. 8. Figures go from left to right and from top to bottom. In the first row: the shaded
surfaces of |J| and |J| for the smooth model conductivity. In the second row: the shaded surfaces of
|J| and |J| for the piecewise constant model conductivity.

Fi1c. 9. Figures go from left to right and from top to bottom. In the first row: means for the
smooth model with the 0.5,1,5% noise level. In the second row: means for the discontinuous model
with the 0.5,1,5% noise level.
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diffuses the voltage potential u(*¢) everywhere except for some geometrical objects,
such as points, lines, etc., where Vu(®®) is large.

6. Concluding remarks. We have presented a new mathematical model for
CDII. The model is based on the regularized weighted MCF equation subject to the
boundary and initial conditions. It is an alternative to the weighted least gradient
Dirichlet problem currently used in CDII. The reconstruction algorithm based on
Rothe’s method and second-order finite-difference approximation of the resulting el-
liptic problems is stable and easy to implement. We have performed the numerical
study, in which the feasibility of the alternative model and algorithm was established.
In particular, we have demonstrated that at a sufficiently large time the numerical so-
lutions of the regularized weighted MCF problem are in close proximity to the unique
solution to the weighted least gradient Dirichlet problem. The numerical evidence
of robustness of the proposed algorithm has been obtained. Based on the results of
numerical study, we formulate two conjectures for further analysis.

CONJECTURE 1. Let Q C R™, n > 2, be a smooth domain with the connected
Lipschitz boundary 0. Suppose |J| > 0 on Q, the data (f,|J]) € C>¥(9Q) x C¥(Q)
are admissible in the sense of [20], and the boundary OQ has everywhere a positive
weighted mean curvature. Then for every fixed ¢ € (0,1] there exists a function
w® € C*(Q) and Lipschitz on 99, such that (1) limg_0 limg_ oo u(®®) = we uniformly
on Q, (2) |Vw?| is bounded on Q, and (3) w® satisfies the Dirichlet problem

Vo 7)) —2 ) i,
NEER e

w® = f on 9N.

CONJECTURE 2. Suppose w® satisfies the conditions of Conjecture 1 for every
e € (0,1]. Then the sequence {w®} converges uniformly on Q to the function of the
weighted least gradient

u* = argmin {/ |J|(z)|Vuldz : u € W}rl(Q) NCQ),u = f on 89} .
Q

The proof of these conjectures will be the subject of further work.

Acknowledgment. The idea of introducing the weighted MCF problem as a
mathematical model of CDII appeared for the first time during the discussions with
Adrian Nachman in the spring 2006.
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