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Abstract

The mechanics of axially moving media is significant because of their broad engineering
applications. In many engineering applications, it is beneficial to understand the dynamical
material response from a microstructural viewpoint. Here we focus upon wave propagation in
axially moving materials with granular microstructure. To this end, the granular micromechanics
approach is utilized since the resulting continuum model is known to predict wave dispersion. To
consider axially moving materials, this approach is enhanced to account for the axial velocity
using an Eulerian description of the system accounting for convective terms in the material
derivatives and utilizing variational approach. The dispersive behavior of axially moving 1D
materials are then derived and compared with the dispersive behavior of non-moving materials.
In the absence of microstructure, the axially moving material model simplifies to published
literature and shows non-dispersive non-symmetric forward and backward waves. In the case of
axially moving materials with granular microstructure, the model predicts dispersive non-
symmetric waves. In this case, there are two acoustic and two optical wave branches. Axial
velocity leads to narrowing and widening in the frequency band gaps in the forward and
backward waves, respectively. Negative group velocity is also observed in certain wavenumber
ranges. Clearly, the stopbands created by the axial velocity and the non-symmetric dispersive
behavior studied here should be considered in engineering designs for vibration control when the
axially moving material possesses granular microstructure. The results presented here can also be
used to help obtain parameters needed for axially moving granular metamaterials to be designed
for particular applications.

Keywords: axially moving media; granular microstructure; dispersion relation; frequency band

gaps; granular metamaterials.



1. Introduction

Due to their engineering importance, axially moving materials have been investigated in a
number of previous studies. The interest in these problems have remained high (see for example
the review in [1]), with an increasing attention being expended to cases in which the materials
possess certain heterogeneities or microstructures (see recent works [2,3]), or undergo complex
deformation modes [4,5]. The recent studies on axially moving materials include, but are not
limited to, vibration, wave propagation, control and stability analysis of axially moving rods
[6,7], cables, belts and strings [1,4,8—17], beams [1,4,5,13—15,18-20], membranes [21], plates
[1,3,22], rotating rings [4], and periodic media [2,17]. Interesting application of moving media is
found in recently developed 2D graphene sheets [23—25] in which the vibration characteristics
[26,27] and stability have been determined to be affected by the axial velocity [28]. Other
examples of the applications of axially moving media are aerial tramways, mono-cable
ropeways, ski lifts, magnetic and paper tapes, band saw blades, and power transmission chains
and belts. These media are considered gyroscopic continua, involving translating and rotating
materials [16]. In problems involving such media, a stationary control volume that the material
flows through is taken as the domain of study. Although the moving material is typically a solid,
moving materials are closely related to flowing fluids than to structural mechanics [29]. For
problems involving axially moving materials an Eulerian frame of reference is needed to

formulate the problem.

As a large number of materials are granular microstructures, and as technological advancements
in additive manufacturing pave the way for production of (granular) metamaterials with desired
microstructures for special engineering applications, a need to study the response of moving
media with embedded microstructure is warranted. The existence of the microstructural
characteristic length comparable to the wavelength of excitation at large frequencies [30],
necessitates the inclusion of micro-mechano-morphological aspects of the microstructure in the
mathematical models describing moving media’s behavior. Note that “large frequencies” do not
necessarily mean frequencies in the order of, e.g., Megahertz, as much as microstructure should
not always be inferred as microscopic scale. In fact, the largeness of the frequency is conceived

with regards to the material and geometrical properties of the system of interest. In cases where



microstructure exists, the classical wave equation for elastic materials in the form of a hyperbolic
partial differential equation needs extra terms contributing to the effects of the micro-mechano-
morphology and inertia of the axially moving medium. The microstructural effect of granular
materials on their dispersive behavior is known to be responsible for the emergence of frequency
band gaps, as has been shown, along with the external electric field effect on the tunability of

such band gaps, in [31-33].

Unlike the experiments performed on axially moving media in the literature (see, for example,
[8-11,18,19]), the involvedness of evaluating parameters in experiments related to materials with
granular microstructure is typically intractable and experimental approaches have difficulty in
providing an exhaustive examination of the behavior of the materials incorporating granular
microstructure. Therefore, as the first step to understanding the dynamic behavior of axially
moving granular materials, a theoretical approach has been adopted and realized through
longitudinal elastic wave propagation analysis in an axially moving 1D granular continuum in
the present paper. With respect to the theoretical modeling of 1D vibrations accounting for
higher-order strain-gradient elasticity, we note the recent works focusing on the exact analytical
and asymptotic solutions of boundary-value problems of rods [34,35]. Considering a 1D problem
to study simplifies the mathematics involved, yet makes it possible to qualitatively describe the
phenomenon. Doing so, the granular micromechanics approach described in [33,36] is utilized to
investigate the dispersive behavior of axially moving media with granular microstructure. In this
method, a collection of grains interacting via different grain-pair mechanisms is modeled as the
material representative volume element (RVE), where considering the mean behavior of grain
pairs results in the treatment of the problem in statistical sense [37]. Such method is well suited
for continuum description of random granular media. An understanding of the effects of the axial
velocity and material properties of the moving material with granular microstructure on its
dispersive behavior will be beneficial for designing new (meta)materials with desired vibration
mitigation objectives as well as indispensable for understanding the stability behavior of existing

natural materials with granular microstructure.

The rest of the paper is ordered as follows. An outline of the granular micromechanics theory is
delivered in section 2, where we present the kinematics involved in the model and the variational

approach utilized to obtain the governing equations of motion. Section 3 is devoted to the study



of the dispersive behavior of an axially moving 1D continuum experiencing longitudinal elastic
deformation waves. Studying a 1D continuum model is to avoid complexities, and yet be able to
interpret the effects of the axial velocity. In Section 4, simpler forms of the problem reducing to
published literature are provided, and analyzed first. Thereafter, the general problem involving
axially moving 1D continuum with granular microstructure is investigated in terms of wave
propagation characteristics. Finally, section 5 summarizes the paper and provides concluding

remarks.

2. Mathematical Model for Axially Moving Materials with Granular

Microstructure

Granular micromechanics approach describes the continuum measures based upon the micro-
mechanics of grain-scale motions. Therefore, the collective behavior of grain-pair interactions is
related to the macro-scale continuum description of the material. Such a relationship identifies
the volume average of the interaction energies in the scale of individual grains with the macro-
scale deformation energy density. In what follows, the continuum modeling framework of
granular micromechanics approach is briefly presented. The reader is referred to the reference

[33] for more detailed derivations.

Each material point in the continuum model is considered to be a representative volume element
(RVE), as shown in Fig. 1. Now Let x be the global or macro-scale coordinate system for the
continuum. Further, let x> be the local or micro-scale coordinate system, parallel to the macro-
scale coordinate system x and attached to the center of mass of the material point P. Such micro-
scale coordinate system can distinguish the grains inside the RVE. The displacement of the

centroids of the grains are, therefore, described as
¢ = ¢(x;,x,0) )

where ¢, denotes the displacement of grain centroids. Now consider the displacement of the grain
p centroid, denoted by ¢”, as defined in [33]. The grain p resides in the continuum material point

(the RVE). Consider the neighboring grain n of grain p. One can write the displacement of the

centroid of grain n, ¢", using Taylor series expansion about the displacement of grain p centroid.



Keeping up to the quadratic term in the expansion, and denoting the difference between ¢° and

" as 9,7, results in

1] n n 1 n
5ip:¢ip_¢i :¢i,jlj+5¢i,jkljlk' 2

In Eq. (2), /; is the vector joining the centroids of n and p, and the tensor product /;/x (=Jj) is a
geometry moment tensor. The differentiation in Eq. (2) is with respect to the micro-scale
coordinate system. Henceforward, differentiation with respect to the spatial coordinate systems is
denoted by a comma in the subscript, and over-dots on the parameters express differentiation
with respect to time. Moreover, repeated indices in the subscript follow the summation
convention unless noted otherwise. The relative rotation of two neighboring grains, n and p,

denoted by 6" is found similarly as [33]

Hiu = ejki¢k,jplp ’ (3)

where e is the permutation symbol. In Eq. (3), the differentiation is with respect to the micro-
scale coordinate system. The decomposition of the displacement gradient field can be introduced

as [33,36,38]

l//ij:¢i,j:¢i,j_7ga 4)

where . is the micro-scale displacement gradient within the RVE, gZ” is the macro-scale
displacement gradient and is constant in a material point, and y, is the relative deformation due

to the fluctuations of the micro-displacement of the grains inside the RVE. Note that the micro-

scale deformation measure y; is homogenous within the material point and is only a function of

the macro-scale coordinate system. Using Eq. (4), the relative displacement of grains p and n is

written as
6" = é,jlj - 71‘/'[1' +%¢iajkljlk = é‘tM =" +57, )

where
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In Eq. (6), 6™ is related to the macro-scale (average) displacement gradient, ¢ ., 5™ is related
q i 1,j2 Ci

to the gradients of the fluctuation in grain displacement, y, , and &7 is due to the second gradient

term, ¢, , , which is same as the gradient of the relative deformation, y, .

Macro-scale deformation energy density, W, of the granular medium is considered to be a

function of the macro-scale kinematic measures, and reads
W:W(¢(i’j),]/y-,¢i’jk), (7)

where ¢7([’j) is the symmetric part of the macro-scale displacement gradient. Conjugates to the

macro-scale kinematic measures, are the macro-scale stress components written as
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where 7,

o;,and u, are Cauchy stress, relative stress, and double stress, respectively. Macro-
scale deformation energy density can also be written in terms of micro-scale deformation energy

density. Micro-scale deformation energy for the o™ interacting pair can be defined as

w* (5;‘M ,0,",0.¢, «91.““) . Therefore, the overall energy density of the RVE is given as
1

W==>w"(s™M,™,5%,0"). 9
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In Eq. (9), V' is the volume of the RVE. The intergranular forces, £, £*", £, and moment,

o

m, conjugates to the kinematic measures in Eq. (9) are introduced as

i

W oW
W _r =Mm,g, =m™. 10
sgw ~ A CMme. (10)

Substitution of Eq. (9) in Eq. (8), and utilizing Eq. (6) and Eq. (10), results in the equations
relating macro-scale stress measures to the grain-pair forces and moments, branch vectors and

geometry moment tensors as follows [33]
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A local coordinate system for each grain pair can be defined. The grain-pair forces and moments,

as well as displacement and rotation vectors can subsequently be decomposed in normal and

tangential components. Considering a quadratic form for W results in the macro-scale

constitutive relationships in the macro-scale coordinate system as follows [33]
M m u
T = Cijklgkl’ O, = Cijle wo My = (Af'k/mn + Aijklmn )¢l,mn 5 (12)

where Cj;, and Cj;, are fourth rank tensors, and 4%, and 4, are tensors of rank six, defined

ijklmn

as (refer to [33] for more details)

1 aza m 1 myagya
Cg/MM:VZK;/\cAZzlp Cijkl:VzKiklzlj’
o o (13)

1 1
g — g ga o u _ u aza
Aijklmn 1 Z Kil‘]mn‘]jk > Aijklmn 1 z quemlqejiplk ln :
Ve Ve

In Eq. (13), K, K™, K*, and G" denote average, fluctuation, second gradient, and rotational

inter-granular stiffness matrices. We note that, in general, grain-pair interaction is nonlinear and
includes dissipation. However, for small deformations (small amplitude of vibration) a quadratic
form of grain-pair deformation energy based on the micro-scale kinematic measures is

considered valid.

In what follows, we will derive the equations of motion for a moving granular medium observed
from a stationary reference frame. The granular medium is assumed to move with a known
constant velocity v, a vector with components in directions of Xi, X2, and X3, respectively, with
X being the stationary frame of reference. Although the axially moving continua are non-
conservative with respect to the fact that the total energy is not generally constant, and the
collection of material points establishing the material inside the control volume changes with
time, the standard form of Hamilton’s principle can still be applied to derive the equations of

motion, provided that the end supports are fixed [12,39].

The variation of macro-scale deformation energy density, using Eq. (4) and Eq. (8), can be

written as



SW =1,86, + 0,07, + 108, , =T,08, , +0, (58, ,, — 56, )+ 14,00, . (14)
Leibniz differentiation rule can be applied to Eq. (14), resulting

SW = [(z'” +0,)5%, ] ~(z, +o, )’j_ 58, = 0,00, + (140, ) = sV (15)

o]

Defining F 7 as the total macro-scale deformation energy, its variation is obtained

vy

utilizing Gauss’s divergence theorem and Eq. (15) as

S5 i +0,) 6V = (s, +0,)0w,dV + [ (7, +0, n,00dS + [ s1,m,59,dS . (16)

LA

With regards to Eq. (16), the following form for the variation of total external work is considered

2 BV +[ ®,8p,dV +| 16pdS+ T,5p,dS, (17)

vy

where f; is the non-contact volumic force per unit volume, ¢, is the contact surface force per
unit area, @, is the non-contact volumic double force per unit volume, and 7, is the contact

double force per unit area.

Non-relativistic kinetic energy density 7 associated with the material’s motion can be written,

using the Stokes’ (material) derivative

R:g+v£, (18)
Dt ot ox

and the defined forms of kinetic energy in [24,32] as

N\ s ~

r-L 1,0' v+ ' . (19)
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J

In Eq. (19), p' is defined as the micro-scale mass density per unit macro-volume. In general, p'
can be a non-uniform inside the RVE. Here we only consider a constant p' in the RVE and the

continuum. The macro-scale mass density, o, is obtained as

p= Vi jV, pdv' = % jV,dV' =p. (20)



Eq. (19), after substituting for ¢ and using Eq. (20), can be written as

T:i lp(vi-i-g..l

dar'. (21
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Expanding Eq. (21), and noting that the integrals of linear integrands in x/ vanish, the kinetic

energy density takes the form

T =§p(gm e L l,,,,.,,_/VmV_/)
(22)
1 .o .
+Epdjk (l/ F W;‘j,l‘//ik,nvlvn ) H
where d , is
1 r_! !
d, :Fjv'xkadV . (23)

We remark here that the expression for the kinetic energy density in Eq. (21) is significantly
different from that found in [31-33], which focuses upon non-moving granular media. In the
derived expression Eq. (22), the effect of velocity of the axially moving granular medium is
included by considering the Eulerian description of grain and the grain-structure motion. It is
notable that the Eq. (22) will simplify to the previously published work if one considers a
vanishing axial velocity for non-moving media. In this case, the Eulerian and Lagrangian

descriptions of motion give identical results and the kinetic energy density will reduce to

T :5 06, 5 w4~ . In the present derivation, the key aspect is the inclusion of the

convective terms in the kinetic energy density expression. These inclusion are two-fold, one due

to the classical convective term that will appear as a result of the bulk axial velocity v,, and the

second due to the effect of bulk axial velocity on the micro-motions.

Throughout the paper, we consider a cubic RVE with parallel edges to x’ and length of 2d. In

this case, Eq. (23) is written as

1
d, = gdzajk : (24)



where 6, is the Kronecker delta. The total kinetic energy I is written as

y B (25)

vy

Using Eq. (22) and Eq. (25), and integrating by parts with the assumption that the values of ¢7]

and y, are known at 7 =1,,1,, the variational of the kinetic energy functional is

5J:: i e pvivjE%,jdth—jt: Ithl.; y oo i
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Using Leibniz differentiation rule, we can write for the integrands of the first, third, fifth, seventh

and the ninth terms on the right hand side of Eq. (26),
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Gauss’s divergence theorem can now be applied to give, for the first, third, fifth, seventh and the

ninth terms on the right hand side of Eq. (26), using Eq. (27),
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Governing equations of motion are derived using Hamilton’s principle, written as

sf'(r T T . (29)

)

Substituting Eq. (16), Eq. (17), and Eq. (26) in Eq. (29), and using Eq. (28), result in the balance

equations

(Ti/ + O-ij ),j + j; - 2pvlg L . e by
, ] (30)
My i+ 0y + D@, _E'Od Vil
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Moreover, the advantage of the variational approach is that we can clearly define the boundary

conditions. The two natural boundary conditions given in terms of the stress measures are

(TU+O-1] _pvivj _png.-b ’ m j,;[,m)nj :ti’
1 5. : S
(/uijk _Epd Vi _,- vakl//g/,mjnk = T;I

Finally, displacement equations of motion can be derived, using the constitutive equations of Eq.
(12) in Eq. (30). Considering null volumic forces and volumic double forces, the displacement

equations of motion are

(q]Mkl + Cgr;ld )(ZM - C,;Illd‘//kz,j - 2:0"]-9. o) m e
g u m m 2 2 . (32)
(Aijklmn + Aijklmn )V/lm,nk + Cijkl¢k,l - ijkl'//kl - 5 pd v, Y



3. Dispersion analysis in axially moving 1D continuum

In what follows, we consider the longitudinal wave propagating along X; axis in a one
dimensional infinite continuum moving with velocity v; in X; direction between two fixed ends.
A schematic of the general problem has been shown in Fig. 2. A 1D homogenous continuum can
be non-homogenous in the RVE in terms of micro-scale mass density and grain-pair interactions.
Fig. 2 depicts the former, while the latter is rather difficult to picturize. Our focus in this section
is along the assumptions made to derive Eq. (32), and therefore we assume a constant micro-
scale mass density. Therefore, the inhomogeneity only comes from grain-pair interactions within
the RVE. For brevity, the subscript 1 will be dropped in the following equations. The

displacement equations of motion in this case are

(P+Q)d.—Qw. —2pv . . ..

- (33)
Ry .. +0¢,— Oy —2Iwy

where the symbols P, O, R, and I have been used for conciseness, and have the values of CY,,,

Clly» A + Ay, and % pd” , respectively. Eq. (33) are coupled partial differential equations

that describe axial deformations of the 1D continuum fragment confined within the shown
dashed boundaries in Fig. 2. As discussed before, while the material is moving, the control
volume is kept constant. The dashed boundary is assumed to be sufficiently large that the waves
do not reach the boundaries, i.e., reflection of the waves is neglected [2]. This assumption has
been taken to facilitate the comparison between the dispersive behavior of non-moving infinite

1D continuum [31,32] and the current problem. The convective acceleration terms in Eq. (33),
ie. 2vg; and 2w’ , (referred as skew-symmetric, gyroscopic, or with analogy to [12] Coriolis)
may result in complex modes with non-constant phase in the free motion analysis [14]. The
acceleration terms ',” and " are called local accelerations, while vz@Y and v’y are centripetal

components.

For a sufficiently large span length of the control volume, the solution is represented as

d’Alembert waves by assuming harmonic solutions for both position x and time ¢ [12].



Considering the solutions in Eq. (33) to be plane harmonic waves [31,32,38] results in oscillatory

motion in both time and spatial coordinate, written as
= Re(Aie"("’““”)) . = Re(Bei(kx_“”) ) (34)

where £ is the wavenumber, o is the angular frequency, Ai and B are the complex amplitudes of
the macro-displacement and micro-displacement-gradient, respectively, and i* = —1. Denoting
wavelength by A, the relation between the wavenumber and wavelength is expressed as

k== (35)

and the frequency fis related to @ with the expression

w=2rf. (36)

2

In what follows, for brevity, the term “frequency” is used for ® instead of the term “angular
frequency”. By substituting the solutions in Eq. (34) in Eq. (33), we have the system of linear

equations in the matrix form

cok® —Vk* + 2vok ck

| 4o (37)
= .
k> —vk* +—+2vok || B B

k
P’ p

where we have introduced the velocities co, c1, c4, and characteristic time p as [30-32]

c02=P+Q, CE:E czzg, p2:£_ (38)

p It p 0

In order to obtain the dimensionless form of the equations, we define, the dimensionless

wavenumber and frequency as

é::pc()ka n=pw, (39)

and dimensionless velocities as

7/A=C—A: Q . j/lzﬁz R \/E’ . (40)
C P+Q C, P+O\ 1 [N

<>
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Utilizing the dimensionless parameters defined in Eq. (39) and Eq. (40), we obtain the following

solutions for the dimensionless frequency

n :\3§+%\/2}/12§2 +2&2 +2\/714§4 —2plEN R 2+ EF Ay ER - 287 +1 4 2,

D=2 28 2 2 2 A E A S 2E 442,
(41)

n=vE +%\/2712§2 +2& —2\/7/1454 —2p E 42y ER + EF AR ER 28 +1 42,

D=2 28 2 E 2R 2 E A E A 28 4 42
Eq. (41) are the most general form of the frequency solutions for the problem at hand.
4. Effects of axial velocity and granular microstructure

Before analyzing these general solutions, we briefly study the simplified forms of the problem.
As a special simplified case where the microstructure, and correspondingly the material
properties related to microstructure are absent, Eq. (33) can be simplified. Upon substituting
plane wave solution form of the left equation in Eq. (34) and nondimensionalizing the axial

velocity using the last of Eq. (40), the following dispersion relation is found

(1) + 2k 2 g “2)

Eq. (42) is similar to what has been presented in [2], and after solving for o yields
w=c,(VE1)k. (43)

By multiplying both sides of Eq. (43) by a nonzero characteristic time constant p', the

dimensionless form of Eq. (43) is written as
d=(vx1)k, (44)

where

A
1

o=p'ow, k=p'ck, (45)



are the dimensionless frequency and wavenumber, respectively. Eq. (44) shows a non-dispersive
non-symmetric behavior in the propagating forward and backward wave branches for an axially
moving long thin 1D continuum (also referred to as rod in [2]). Fig. 3 shows the two forward and

backward branches for vanishing and non-zero values of v. Clearly, for the non-moving

(stationary) case where v =0, the dimensionless phase velocity (c?)/ k) and dimensionless group

velocity (dc?)/ dk) of the forward and backward wave branches are equal in magnitude and

different in sign, suggesting existence of symmetry in the propagating waves. In this case, the
slopes of the wave branches are unity and Eq. (44) simplifies to the dispersion relation of the

classical 1D wave and suggests elastic reciprocity in the forward and backward waves.

For the case where v =0, the effect of axial velocity on the dispersion curve can be analyzed
using Eq. (44). In this case, the phase and group velocities (the slopes) for the forward and
backward wave branches are v+1 and v—1, respectively. This suggests that the effect of axial
velocity on the dimensionless phase and group velocity values is observed as a translation by the
amount of the dimensionless axial velocity v. This change in velocities is attributed to a linear

momentum bias resulting from the axial velocity v [2]. The dimensionless form of the dispersion
relation for a non-moving 1D medium based upon classical analysis described as O=xk

undergoes a shift in frequency by the amount of Dk . When the dimensionless axial velocity is
less than unity (which corresponds to axial velocity less than the wave velocity in non-moving
medium), the phase and group velocities for the forward wave are positive in sign, while those
for the backward wave are negative in sign. For the extreme cases, where the dimensionless axial
velocity is 1 or greater than 1, the predictions of Eq. (44) are the following. For dimensionless
axial velocity V=1, the backward wave disappears and only one forward wave propagates. The
phase (and group) velocity for this forward propagating wave is twice that for the non-moving
medium. In this case, the stationary observer on one of the end supports will not experience any
vibration. For dimensionless axial velocities larger than unity (corresponding to axial velocities
larger than the wave velocity of the non-moving medium), the backward wave flips over the
forward side. The stationary observer on the support corresponding to the backward wave will
not experience aand vibration, while the observer on the support corresponding to the forward
wave will see two wave arrivals. Based on Eq. (44), for any real wavenumber, the frequency is

always real, therefore, there is no instability or attenuation for these propagating waves. It is also



notable that in the case of classical analysis, the absence of microstructural effects lead to non-
dispersive behavior as both dimensionless phase and group velocities are equal and constant for

each forward and backward wave.

For a material with granular microstructure, however, the wave propagation analysis exhibits
dispersive behavior, i.e., the wave velocities are functions of wavenumber (or frequency). For
vanishing values of axial velocity (stationary case), solutions presented in Eq. (41) take the form

[31]

7 %Jzyffz P2 2R 2 E A 28 A1 42,

(46)

7 %Jzyffz $28 2P 2 12 A 28 +1 42,

Dispersion curves for two different granular structures for zero axial velocity using Eq. (46) have
been plotted in Fig. 4. The material parameters chosen for Fig. 4(a) and Fig. 4(b) are
7,=0.7,7,=0.05,and y,=0.5,y =0.3, respectively. These values have been chosen to show

two different cases of wave propagation in terms of the existence of stopbands. Note that for a
specific granular structure, identification of material parameters can be done, for instance, as has
been described in [40]. The frequency solutions in Eq. (46) lead to the emergence of four wave
branches in two groups, two forward and two backward waves, with each group having one
acoustic and one optical branch. While the acoustic branches start at zero frequency and zero
wavenumber, for the optical branches, zero wavenumber produces a dimensionless frequency of
unity, meaning that for dimensionless frequencies smaller than unity, there is no optical branch.
In this case, the forward and backward waves are symmetrically propagating as their governing
equations are different only by a sign. This symmetry in propagating waves can also be attributed
to the lack of linear momentum bias in non-moving media. Different grain-pair interactions
and/or micro-morphological aspects in the microstructure of the granular material result in
different values in stiffness tensors, which consequently lead to different behaviors in the
propagation of waves. Two cases wherein one shows frequency band gaps and the other does
not, have been exemplified in Fig. 4(a) and Fig. 4(b), respectively. In both cases, corresponding
phase and group velocities for each wave branch have the same direction. In other words, for the

forward wave branches, phase and group velocities are positive in sign, and for the backward



wave branches, phase and group velocities are all negative in sign. Note that in these cases the

frequency solutions are all real, excluding instability or attenuation.

For a nonzero value of the dimensionless axial velocity, v, however, there exists asymmetry in
propagation of the forward and backward wave branches. The asymmetry coming from the
axially moving velocity of the medium, along with the microstructural length and inertial effects,
brings about interesting observations in wave propagation phenomenon. For the same value of
geometrical and mechanical properties of the granular structure studied in Fig. 4(a) and Fig. 4(b),
the dispersion curves for v=0.4 have been plotted in Fig. 5(a) and Fig. 5(b), respectively, based
upon Eq. (41). In this example the dimensionless axial velocity is taken to be 40% (which can be

considered somewhat large) of the conventional wave velocity, c,, such that the trends in the

plots are clearly visible.

For the case of Fig. 5(a), a comparison with Fig. 4(a) reveals narrowing and widening in the
frequency band gaps in the forward and backward waves, respectively. Of course, the axial
velocity in this case is large enough that the stopband for the forward waves has disappeared. As
is seen from Fig. 5(a), the symmetry between forward and backward waves is broken. This leads
to difference in velocities in the forward and backward acoustic, as well as optical, wave
branches. The same effects can also be seen by comparing Fig. 4(b) and Fig. 5(b). In this case,
non-existing frequency band gaps in the backward waves in Fig. 4(b) appear for the case of the
moving granular medium of Fig. 5(b). This created band gap is “induced” by the axial velocity of
the granular medium, and is in contrast to the “inherent” band gap shown by the non-moving
granular medium. One remarkable result is that in frequency ranges corresponding to the band
gap in the backward waves, the stationary observer on one end support experiences the vibration,
while the stationary observer on the other end support does not. Using Eq. (41), for axially
moving 1D granular media, the effect of axial velocity on the dimensionless phase and group
velocity values is seen to be a translation by the amount of the dimensionless axial velocity V.
This observation is similar to the findings for axially moving 1D continuum without
microstructure. Interestingly, the effect of axial velocity on the dispersion curve also follows

that of an axially moving 1D material without microstructure, where the frequency solutions

undergo a shift by the amount of Pk . When increasing the value of the dimensionless axial

velocity, v, the forward waves band gap (if exists) starts disappearing, and the backward waves



band gap (if exist) starts growing (or appearing and growing if it did not exist). As the value of
the axial velocity reaches v=1, Eq. (41) predicts a complete reversal of the backward acoustic
branch (in contrast to partial reversal in only certain wavenumbers observed in both cases in Fig.
5 for v=0.4), meaning that the acoustic branch is not propagated backward. The optical
backward branch still starts at a dimensionless frequency of magnitude 1 with negative phase

velocity and positive group velocity, but reaches the line 7=0 as its asymptote in large

wavenumbers, suggesting that the backward optical branch disappears for large wavenumbers.
As the value of the dimensionless axial velocity v becomes larger than unity, the backward
optical branch starts propagating as a forward wave, and hence, there will be no waves
propagating backwards and four wave branches propagating forward. In this case, the stationary
receiver on the support corresponding to the backward direction will not experience any

vibration.

One other interesting observation from Fig. 5 is the presence of regions (shown in the plots by
dash-dotted blocks) in which the sign of the phase and group velocities are different for the
particular wave branches. This phenomenon is generally known as negative group velocity
(NGV). In the case of NGV, “the peak of the transmitted pulse exits the material before the peak
of the incident pulse enters the material” [41]. A consequence of NGV is that the peak of the
pulse propagates in the opposite direction. However, energy maintains forward flow [42]. NGV
has also been recognized for deformation waves in micro-structured solids with multiple scales

[43] and for granular media with negative grain-pair second gradient stiffnesses [31].

5. Summary and conclusions

In this paper, the governing equations of motion for an axially moving material with granular
microstructure were derived using Hamilton’s Principle. Subsequently, the predicted dispersive
behavior of axially moving 1D materials with granular microstructure was explored. The study
presented can be summarized as follows: 1) The special simplified case where the micro-scale
effect is absent results in asymmetry in the forward and backward propagating waves for non-
zero axial velocities, but there is no dispersion as has been reported in the literature. This
simplified case considers the medium as a classical Cauchy material resulting in no distinction
between phase and group velocities for each forward and backward waves. 2) For a non-moving

medium with granular microstructure, there is symmetry in propagating forward and backward



waves, but the behavior is dispersive. There are two wave branches in forward and backward
waves, one acoustic and one optical branch, where the optical branches start at dimensionless
frequency of magnitude 1 corresponding to zero wavenumber, and the acoustic branches start at
dimensionless frequency and wavenumber of zero. 3) For an axially moving medium with
granular microstructure, asymmetry in propagation of wave branches for forward and backward
waves is observed. Such an asymmetry results in different phase and group velocities for forward
and backward waves (for both acoustic and optical branches), narrowing the frequency band
gaps range for forward waves, and widening frequency range for which backward stopband
exists. 4) In the cases where no band gap is observed for non-moving medium with granular
microstructure, it is possible that the stopband is created in the backward propagating waves.
This generally means that the backward waves in certain frequencies die exponentially in space,
and therefore, there is no vibration sensed by the support receiving the backward waves if the
excitation is in the bandgap range. 5) Finally, one notices regions where the phase and group

velocities are different in sign, resulting in the phenomenon called negative group velocity.

In what was presented, the effects of material parameters on the dispersive behavior was shown
using two examples of granular structures. The macro-mechanical parameters in the studied
theory are functions of grain-pair stiffnesses introduced in [33]. For a granular material, one can
obtain the macro-mechanical parameters using sufficient experiments with proper boundary
conditions, or using numerical techniques such as one described in [40] for a 2D granular
material. Such parameters can then be fed into the continuum models to investigate the
dispersive behavior of such media, using the approach introduced in this paper. Clearly, the
stopbands created by the axial velocity and the non-symmetric dispersive behavior of axially
moving granular materials should be considered in engineering design and application, especially
when stop-band filtering is of interest. The model presented here can be used to analyze dynamic
behavior of materials with granular microstructure when axially moved between two fixed ends.
Solution of inverse problems is also possible using granular micromechanics approach. Several
recent published works have studied stationary granular metamaterials’ behavior where grains
interactions can be customized to give preferred dynamic characteristics (see the review paper in
[44]). The analysis provided here can be used to obtain parameters needed for the design of
granular metamaterial for particular applications of axially moving medium in which vibration

control or stopbands over certain frequency range is required. The approach is rich as it can treat



granular metamaterials with periodic RVEs comprising more than one type of grain, and is
especially fruitful in treating physics involving axially moving media in which non-local and
higher gradient effects are important, e.g., biomedical nanorobotics devices (see for example
[20,22]). Further, the axially moving systems comprising granular metamaterials with dielectric
properties have the potential to be further tuned for their wave propagation characteristics to give
band gaps in desired frequency ranges [32]. The granular micromechanics approach for design
and analysis of the mentioned problem is as follows. Requiring a granular metamaterial for a
particular application with a desired dispersive behavior, one can find the macro-mechanical
parameters leading to the desired behavior, obtaining equalities and inequalities regarding the
grain-pair stiffness values. This is possible since the explicit form of the functions are available
in the theory of granular micromechanics, providing a complete domain to search for possible
solutions. The obtained microstructural parameters can then be realized through additive
manufacturing techniques, as for pantographic metamaterials [45-47], to develop a desired
granular metamaterial. Such inverse approach to design granular metamaterials using granular

micromechanics theory will be pursued in future publications.
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List of Figures

Fig 1. Schematic of the continuum material point, P, and its granular microstructure magnified

for better visualization, where the x’ coordinate system is attached to its barycenter.

Fig. 2. Schematic of the 1D axially moving media with granular microstructure. A material point
in the macro-scale coordinate system is itself a collection of grains that can differ in micro-

density, micro-morphology and micro-mechanical properties.

Fig. 3. Dispersion curves for an axially moving 1D continuum without microstructure for two

cases of zero and non-zero dimensionless velocities.

Fig. 4. Dispersion curves for non-moving 1D materials with granular microstructure. (a) The

case of y,=0.7,7, =0.05. (b) The case of y,=0.5,5,=0.3.

Fig. 5. Dispersion curves for axially moving 1D materials with granular microstructure with
dimensionless axial velocity V=0.4. (a) The case of y,=0.7,7 =0.05. (b) The case of

7,=0.5,7=03.
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Fig. 2. Schematic of the 1D axially moving media with granular microstructure. A material point
in the macro-scale coordinate system is itself a collection of grains that can differ in
micro-density, micro-morphology and micro-mechanical properties.

Fig. 3. Dispersion curves for an axially moving 1D continuum without microstructure for two
cases of zero and non-zero dimensionless velocities.
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Fig. 4. Dispersion curves for non-moving 1D materials with granular microstructure. (a) The
case of y, =0.7,y,=0.05. (b) The case of y,=0.5,y,=0.3.
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Fig. 5. Dispersion curves for axially moving 1D materials with granular microstructure with
dimensionless axial velocity V= 0.4. (a) The case of y, =0.7, y, =0.05. (b) The case of

7,=0.5,7=03.



