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Abstract

In the literature of granular micromechanics it is standard to achieve, at the macro scale, non-standard enhanced
continuum models [1-2]. Among a panoply of exotic behaviors, these models predict that granular materials can show
chirality for a specific grain-pair interaction. To verify these predictions, a granular system with a specific grain-pair
interaction has been designed and its mechanical behavior under different types of loading has been evaluated via
numerical simulations. The resulting granular system, which can be referred to as a granular beam, is a linear array of
grains connected via the chosen grain-pair interaction law [1]. The chiral behavior of such mechanical system has been
observed experimentally during tensile test. To describe the experimental evidence and numerical results, a continuous
one-dimensional beam model has been defined and the four constitutive parameters, which characterize this specific
strain energy function, have been identified. The numerical simulations on this granular system, modeled as a 2D
deformable-body, have been performed employing the commercial finite element software COMSOL Multiphysics to
have a reference data set for the identification process. Comparisons between the results obtained from this 2D FE
model and the predictions of the same system analyzed via a specific non standard Timoshenko 1D beam model show
an astonishing agreement.
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1. Introduction

In the field of material science, the study of mechanical
behavior of materials and definition of suitable mathemat-
ical models faithfully representing reality is still of inter-
est. Specifically, we refer to the field of metamaterials5

-materials for which the microstructure present at a mi-
croscopic level has a non-negligible impact on macroscopic
mechanical behavior- whose analysis has been facilitated
by the continuous progress of additive manufacturing and
measuring techniques. The research is driven by the ev-10

idence that classical continuum models are not sufficient
when we consider microstructured materials. One signif-
icant example is granular solids. Indeed, a non-standard
enhanced continuum model based upon granular microme-
chanics approach is required for representing the grain-15

scale deformation modes [2, 3, 4]. At the spatial scale in
which the continuum description is generally defined, the
individual grain motion along with the grain-pair interac-
tion is latent. However, in all their forms, whether highly
consolidated dense solids or soft cellular membranes or20
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confined packings of non-cohesive particles, the grain pair
interactions play a paramount role in determining physi-
cal behavior of granular media. Further example is rep-
resented by pantographic structures [5, 6, 7, 8, 9, 10], for
which their exotic behavior has to be described with higher25

gradient continuum theories [11] or micromorphic theories
[12, 13].Lastly, we remark that granular system presented
herein shares some key features with tensegrity cell me-
chanical metamaterial as axially loaded one-dimensional
structures that have a broad literature on their dynamic30

behavior and their applications as energy absorption com-
ponents [14, 15, 16]. The new manufacturing possibilities
propel research to the point of reversing the paradigm used
to date in studying the mechanical behavior of materials.
We are now able to endow them with a micro-structure,35

which is potentially customizable and tunable according
to the applications to be addressed. Therefore, once the
system’s Lagrangian has been defined, more precisely once
the expression of the deformation energy density of the sys-
tem has been expressed in term of the chosen independent40

kinematic parameters, we can design the corresponding
mechanical system [17]. In the present work, we have con-
sidered a one-dimensional micropolar system with chirality
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which derives from a full understanding of the granular mi-
cromechanics model [1]. The geometric structure is a lin-45

ear array of grains, which will be referred to as grain beam,
whose grains are connected by a particular grain-pair con-
nection. The design of the interaction is such that the axial
displacement field is coupled with the transverse displace-
ment field, that yields to a chiral macroscopic behavior of50

the grain beam. A modified Timoshenko beam model is de-
fined to fulfill a micro-macro identification of the structure.
The work developed in this article demonstrates common
tracts with mechanical cable models in which the axial
and twist mechanical behaviors are coupled, which could55

have relevant impact in the field of manufactured rope
and cables or the analysis of DNA filaments [18, 19, 20].
The identification aims at determining the stiffness param-
eters which characterize the strain energy function of the
modified Timoshenko beam model. We have accounted60

as reference data set the results obtained from a series of
numerical simulation performed with the commercial Fi-
nite Element software Comsol Multiphysics. Specifically,
different sets of boundary conditions have been applied to
the granular structure which has been considered as a 2D65

Cauchy deformable-body.

2. Beam model

Let us consider a curve C in reference plane xy lying on
the x axis in the undeformed configuration. The current
configuration C′ of the curve is given by the map χ which70

depends on the generic x0 coordinate as shown in Fig.
1a. The analytical beam model that we are introducing
describes the configuration of the granular system, which
is characterized by the kinematic variables shown in Fig.
1b. Thus, we define the vector χ as75

χ(x) = {w(x), u(x), θ(x)}T (1)

whose components w(x), u(x), θ(x) correspond to the axial
displacement, transverse displacement and rotation of the
grains respectively. We now consider the following expres-
sion of elastic deformation energy density, based on the
kinematic parameters introduced

W =
1

2
Kew

′2+
1

2
Kfθ

′2+
1

2
Ks (u′ − θ)2−αw′ (u′ − θ) . (2)

Eq.(2) resembles a classical Timoshenko beam with an ad-
ditional term appearing in the expression. The stiffness
coefficient α couples, using the classical terms of beam
theories, the axial deformation measure w′ with the shear
deformation measure (u′ − θ). Rewriting Eq.(2) in matrix
form it can be noted that the stiffness matrix is no more
diagonal:

W =
1

2

[
w′ u′ − θ θ′

] Ke α 0
α Ks 0
0 0 Kf

 w′

u′ − θ
θ′



Moreover, the stiffness parameters must fulfill the follow-
ing conditions which ensure that the stiffness matrix is
positive definite

KeKs > α2; Kf > 0 (3)

The system of differential equations and boundary condi-

y

x

χ(x0)

x0 C

C′

l

(a) (b)

Figure 1: (a) Generic deformed configuration of the beam model in
the reference plane xy (b) graphic description of the kinematic fields
w(x), u(x) and θ(x).

tions have been obtained for the present beam model by
imposing the first variation of the strain energy functional
to be equal to 0.

Kew
′′ − α (u′′ − θ′) = 0

Ks (u′′ − θ′)− αw′′ = 0

Kfθ
′′ − αw′ + Ks (u′ − θ) = 0

(4.a)

(4.b)

(4.c)


[Kew

′ − α (u′ − θ)] δw = 0 at x=0, x=L

[Ks (u′ − θ)− αw′] δu = 0 at x=0, x=L

[Kfθ
′] δθ = 0 at x=0, x=L

(5.a)

(5.b)

(5.c)

We report the governing differential equations of the clas-
sical Timoshenko beam model in Eq. 6.a-6.b

d

dx
GAKs

(
ũ′ − θ̃

)
= 0

d

dx

(
EIθ̃′

)
−GAKs

(
ũ′ − θ̃

)
= 0

(6.a)

(6.b)

where ũ, θ̃, AGKs and EI represent the classic kinematic80

variables and stiffness parameters of Timoshenko beam
[21]. It is remarkable that the coupled system of differen-
tial equations of the derived model includes one additional
equation (Eq. 4.a). The latter comes from the accounting
of the longitudinal displacement w, which in the classi-85

cal Timoshenko model could be considered as an separate
problem. Further, the classical Timoshenko beam equa-
tions (Eq. 6.a-6.b) are enhanced with additional coupling
terms which appear in Eq. 4.b-4.c.

Finally, we can identify from Eq. 5, the normal force
N(x), the shear force T (x) and the bending moment M(x)
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of the 1D beam as:

N(x) = Kew
′ − α (u′ − θ) (7)

T (x) = Ks (u′ − θ)− αw′ (8)

M(x) = Kfθ
′ (9)

We report the expressions of shear force and bending mo-
ment of the classical Timoshenko beam model in Eq. 10-11

T̃ (x) = GAKs

(
ũ′ − θ̃

)
(10)

M̃(x) = EIθ̃′ (11)

and it can be remarked that while the bending moment90

has identical expression an additional terms appears in
the shear expression. Moreover, the equation Eq. 7 which
express the normal force in the 1D beam model, has a dif-
ferent expression with respect to the classical bar model
because an additional term due to the coupling appears.95

3. Numerical simulations and stiff-
nesses identification

A numerical technique is developed to identify the stiffness
values which characterize the energy density of the novel
beam model. The reference data set utilized to identify100

Ke, Kf , Ks and α has been obtained by performing nu-
merical simulation with the commercial finite element soft-
ware COMSOL Multiphysics in which the granular system
shown in Fig. 3 has been designed as a 2D deformable
continuum and subjected to different cases of boundary105

conditions. The geometrical parameters of the grain-pair
connection are depicted in Fig. 2 and their numerical val-
ues are listed in Table 1. The whole array used in the

(a)

Figure 2: Graphic visualization of the geometric features of the grain
pair connection.

simulation accounts for n = 30 grains, being the total
length l = 0.435 m. We have considered three different110

type of planar equilibrium problems, which depending on
the load direction and boundary conditions activate a sub-
set of the stiffnesses defined in the energy density equation

Table 1: Values of geometric features of the grain-pair connection.
Lengths are expressed in millimeters.

b h1 h2 r d

8.05 1.5 1.1 3.5 15

of Eq. (2). In Fig. 4 a graphic representation of the
tests employed to accomplish the identification are shown.115

The realization of these simulations on the 2D granular
system has been performed by considering the left and
right boundary grains as rigid domains. The three degrees
of freedom of the left rigid domain have been imposed
equal to zero while the right grain has been displaced of120

δ = 0.001l and rotated by an angle µ = 0.001 rad with
respect his centroid, for Identification Test 1 and Identi-
fication Test 2, respectively. Differently, for Identification
Test 3, zero horizontal and vertical displacement has been
prescribed for both left and right grain, and a rigid ro-125

tation around each centroids has been imposed, with the
angle µ = −0.001 rad and µ = 0.001 for the left and
right rigid domain respectively. In Table 2 we report the
corresponding analytical expression of the boundary con-
ditions imposed on the 1D beam model, with δ = 0.001l130

and µ = 0.001 rad. The deformed shape of the 2D gran-
ular system is shown in Fig. 5 for the three identification
tests. As a result of the peculiar grain pair interaction,
the system presents a vertical displacement when an axial
displacement is prescribed (Fig. 5a). We remark that the135

coupling effect is independent of the size of the grain array
and similar results are obtained for systems with different
numbers of grains. In Fig. 6 the vertical components of the
grain displacements under a load as Identification Test 1 is
shown for different system sizes. The plots in Fig. 6a,b,c140

refer to a 10-grain system, a 20-grain system and a 30-
grain system, respectively. Overall, the displacements of
the grains result to have comparable shapes with different
amplitude, which has been amplified 2 ·103 times to facili-
tate visualization. Moreover, the chirality of the system is145

evident: if we performed reflection with respect to a plane
parallel to the one on which the granular assembly lies by
means of an orthogonal matrix with determinant equal to
−1, we would obtain equal deformed shapes but opposite
in sign, for all the identification tests.150

Table 2: Analytical expression of boundary conditions of the Identi-
fication Tests.

Identification Test 1 Identification Test 2 Identification Test 3

w(0) = 0 w(0) = w(L) = 0 w(0) = w(L) = 0

u(0) = u(L) = 0 u(0) = u(L) = 0 u(0) = u(L) = 0

θ(0) = θ(L) = 0 θ(0) = 0 θ(0) = −µ
w(L) = δ θ(L) = µ θ(L) = µ

In the following procedure, a subset of the constitutive
parameters have been estimated comparing the expression
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Figure 3: Granular system microstructure employed for the numer-
ical simulation treating the system as a Cauchy continuum which
is solved using full FE discretization. In the magnifying frame we
show the mesh size for which the convergence is accomplished (the
number of DOF is equal to 89718). The discretization is realized
via triangular bi-dimensional elements whose displacement fields are
approximated using quadratic serendipity polynomials.

(a) (b) (c)

Figure 4: Graphic description of the boundary condition sets for (a)
Identification Test 1, (b) Identification Test 2 and (c) Identification
Test 3.

(a) (b)

(c)

Figure 5: Deformed shapes of Cauchy continuum model of the 2D
granular system for (a) Identification Test 1, (b) Identification Test
2 and (c) Identification Test 3.

(a) (b)

(c)

Figure 6: Vertical displacement of the 2D granular system for Iden-
tification Test 1. The red arrows represent the motion amplitude
amplified of 2 · 103 times for each grain, being the total number (a)
10 grains, (b) 20 grains, (c) 30 grains.

of total strain energy of the beam model

Ei =

∫ l

0

W(x)dx (12)

with the total strain energy obtained with the 2D gran-
ular system. The index i will indicate the identification
test to which the energy expression corresponds. The first
stiffness parameter taken into account was the bending
stiffness Kf . By imposing the set of boundary conditions
of Identification Test 3 (i = ID3), the expression of strain
energy of 1D beam is

EID3 =
2Kfµ

2

l
. (13)

We have evaluated the strain energy value from the FE
calculation of the analogous case, and the bending stiff-
ness of the 1D model have been calculated. The stiffness
parameter Ks has been identified by applying the bound-
ary condition of the Identification Test 2 (i = ID2), which
leads to the following expression for the strain energy

EID2 =
2Kf (36K2

f l + 3KfKsl
3 + K2

sl
5)µ2

(−12Kf l + Ksl3)2
. (14)

By equalizing Eq. (14) with the strain energy value eval-
uated via the 2D numerical simulation, two possible so-
lutions for Ks were obtained. A quantitative comparison
with the reference numerical simulation of the 2D granu-
lar system allowed to estimate the correct value of Ks. In
Fig. 7 the field u(x) of the beam model has been plot-
ted for the two values obtained, which we have indicated
with Ks1 and Ks2. As depicted in Fig. 7, only one of the
two values results in perfect agreement with the plot of
transverse displacement of 2D granular system. Finally,

0 0.1 0.2 0.3 0.4

−6

−4

−2

0

·10−5

x, m

u
,
m

Beam model Ks1 Beam model Ks2 2D model

Figure 7: Transverse displacement u(x) of the beam model for Ks1

and Ks2, and transverse displacement of 2D granular system, for
Identification Test 3.

the Identification Test 1 allowed to evaluate stiffnesses Ke

and α. The latter has been found to be strictly related to
the amplitude of the transverse motion under extension.
For the current Identification Test 1, the area A(x) that
the curve u(x) subtends with the x-axis has the following
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Figure 8: Comparison of kinematic fields between 2D granular sys-
tem and the analytical beam model. The plots refer to Identification
Tests of Table 2.

analytical expression:

A(x)ID1 =
(l − x)

2
x2αδ

24Kf + 2Ksl3
(15)

The value of Eq. (15) at x = l
2 has been compared

with the respective values obtained from the Cauchy bi-
dimensional continuum model, and we have evaluated the
stiffness parameter α. The extensional stiffness Ke has
been calculated via a comparison between the strain en-
ergy of the analytical beam model, which has the following
expression

EID1 =

(
12KeKf + KeKsl

2 + 3l2α2
)
δ2

24Kf l + 2Ksl3
(16)

and 2D continuum model. The final set of constitutive
parameters of the beam model are reported in Table 3.

A first verification of the identified value is reported in

Table 3: Stiffness values after identification process.

Ke [N ] Ks [N ] Kf

[
N ·m2

]
α [N ]

49545.4243 18819.4046 0.3307 −12048.7

Fig. 8. Considering the stiffness values of Table 3, we have
evaluated the kinematic fields w(x), u(x) and θ(x) of the155

beam model for Identification Test 1, Identification Test 2
and Identification Test 3. The plots have been compared
with the corresponding values obtained from the 2D nu-
merical simulations for the three tests. In each plot of Fig.
8, the solid line represents the components of the vector χ160

while the points represent the plane displacement compo-
nents and the rotation of each grain. It can be observed
that a precise overlap of results occurs except in one case.
The grain rotation of the 2D model has somewhat higher

values with respect to the field θ(x) of the beam model,165

for Identification Test 1. It is noted that the apparent mis-
match between plots of the axial displacement w(x) of the
two models for Identification Tests 2 and 3 is negligible as
the order of magnitude 10−9 is insignificant compared to
other kinematic quantities.170

4. Validation

In order to prove the actual forecasting capability of the
identified beam model toward the 2D granular system, we
compare the two for four independent tests different from
the ones used for the identification. A graphic represen-175

tation of boundary conditions of validation tests is shown
in Fig. 9. The realization of numerical simulations for the
2D granular system has been performed by considering the
boundary grains as rigid domains. The left grain has been
considered fixed for all the simulations, while on the right180

grain, the boundary conditions are listed in Table 4. In

Table 4: Prescribed displacements and rotations on the right grain
of 2D granular system for Validation Tests.

horizontal disp. transverse disp rotation

Val. Test 1 δ = −0.001l 0 0

Val. Test 2 δ = −0.001l δ = 0.001l 0

Val. Test 3 0 δ = 0.001l µ = 0.001 rad

Val. Test 4 δ = −0.001l δ = 0.001l µ = 0.001 rad

Table 5 we give the respective analytical expressions of
boundary conditions applied to 1D beam model. The de-
formation of the 2D continuum model of the granular sys-
tem has been evaluated for all the above mentioned sets of185

boundary loads, and each deformed shape is shown in Fig.
9. Similarly, we have evaluated the deformed configuration

(a) (b)

(c) (d)

Figure 9: Graphic description of the boundary condition sets for (a)
Validation Test 1 (b) Validation Test 2 (c) Validation Test 3 (d)
Validation Test 4

of the beam model employing the identified values of the
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constitutive parameters Ke, Ks, Kf , α for the 4 load cases
of Table 5, and the values of the kinematic fields w(x),190

u(x) and θ(x) were compared with the results obtained
from simulations of 2D model under the same loading con-
ditions. The plots for Validation Test 1 are shown in the
first column of Fig. 10, and they reveal a good agreement
between the 1D beam model and the reference data. It195

is noticeable that when the beam undergoes a compres-
sion of a small amount, a non negligible vertical displace-
ment field u(x) and a rotation field θ(x) arise. Moreover,
comparing the plots of the kinematic fields between Iden-
tification Test 1 (see Fig. 8) and Validation Test 1 (see200

Fig. 10), a precise symmetry with respect to the x-axis
can be observed. Lastly, it is evident that the behavior
of the present 1D beam model is different with respect to
a standard Timoshenko beam model undergoing identical
boundary conditions. The comparison between kinematic205

fields of 1D beam model and 2D granular system for Val-
idation Test 2 are reported in the second column of Fig.
10. An adequate agreement can be noted for the axial
and transverse displacements, but for the rotation field
θ(x) a slight dissimilarity occurs. This aspect, which must210

be investigated more in future works, can be related to a
boundary effect on the rotation of external grains of the
2D granular system. The third column of Fig. 10 shows
the displacement fields of 1D beam model and 2D gran-
ular system for Validation Test 3. A careful overlap can215

be observed for the transverse displacement u(x) and the
rotation θ(x). However, a discrepancy is present between
the kinematic field w(x) and the axial displacement of the
grains, but the relative error committed is negligible at
a length-scale of the field u(x) and the vertical displace-220

ment of the grain assembly. We have to remark that, the
displacement fields of 1D beam model produced by Vali-
dation Test 2 and 3 have similar behaviors compared to
those provided by a classical Timoshenko beam model un-
der respectively identical boundary conditions. The fourth225

column of Fig. 10 reports the plots of displacement field
of 1D beam model and the displacements of the 2D gran-
ular system for Validation Test 4. It can be observed that
the beam model faithfully describes the behavior of the
2D granular system in all the three components. As for230

Validation Test 1 a Timoshenko beam model under a set
of boundary conditions as Validation Test 4 gives different
behaviors for transverse displacement u(x) and rotation
field θ(x).

5. Conclusions and perspective235

One of the most recurrent themes in the literature of con-
tinuous mechanics is the formulation of reduced models for
describing structures and mechanical systems. Reducing
the size of the variables with which a physical system is
described has the immediate advantage of facilitating cal-240

culations and reducing their computation time. On the
other hand, the information we can access will be less ac-

Table 5: Analytical expression of boundary conditions of the Valida-
tion Tests

Val. Test 1 Val. Test 2 Val. Test 3 Val. Test 4

w(0) = 0 w(0) = 0 w(0) = w(l) = 0 w(0) = u(0) = 0

u(0) = u(l) = 0 u(0) = 0 u(0) = 0 θ(0) = 0

θ(0) = θ(l) = 0 θ(0) = θ(l) = 0 θ(0) = 0 θ(l) = µ

w(l) = −δ w(l) = −δ θ(l) = µ w(l) = −δ
u(l) = δ u(l) = δ u(l) = δ
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Figure 10: Comparison of kinematic fields between 2D granular sys-
tem and the analytical beam model. The plots refer to Validation
Tests of Table 5.

curate. As a remark, the transition from a refined model
to a reduced order one is necessary when we are dealing
with complex systems [22, 23, 24, 25, 26, 27]. In this paper,245

we have presented an identification process of constitutive
parameters that characterize the deformation energy den-
sity of a chiral beam model. This model can be considered
as an enhanced model of the Timoshenko beam with an
additional stiffness term that couples the horizontal and250

transverse displacement fields of the beam. As a result of
this coupling, chiral behavior is triggered. The identifi-
cation process has considered as a reference data set the
results of numerical simulations employing a 2D Cauchy
continuum in which a linear assembly of grains has pe-255

culiar granular interaction. The design of the grain-pair
connection has been inspired by the study on the consti-
tutive relations formulated for granular materials following
granular micromechanics approach [1]. The identification
has been proven to be effective via validation tests in which260

we have observed perfect agreement between the results of
the enhanced Timoshenko beam model and reference data.
Despite the results obtained, the present work represents
the first step toward a complete analysis of the introduced
micropolar granular system with chirality. A thorough ex-265

perimental survey seems necessary to (a) establish the chi-
ral behavior for a larger set of specimens and (b) to obtain
a consistent reference data set for future identification pro-
cesses. Moreover, the dynamics of microstructured mate-
rials and their mechanical response towards time-varying270

loads and waves propagation is a crucial point. In the
wake of earliest study investigating dynamics of granular
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system [28, 29, 30] and pantographic structures [31, 32, 33],
it is particularly useful to have both predictive continuum
models as well as innovative experimental evidence.275
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