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Abstract  

(Meta-) materials with granular microstructures exhibit nonlinear dispersive wave propagation, 

which is typically attributed to the presence of a microstructure.  However, this behavior can 

arise from two additional sources in a linear non-dissipative system – the grain-scale or 

micromechanical characteristics and the grain-scale or micro-inertial characteristics. The 

microstructure, the grain-scale mechanical and the grain-scale inertial properties in combination 

may be designated as micro-mechano-morphology. From a continuum modeling viewpoint, the 

observed dispersion behavior that accounts for micro-mechano-morphology of materials with 

granular microstructures can be described using a granular micromechanics based micromorphic 

model (Nejadsadeghi and Misra 2019b, Misra and Poorsolhjouy 2016). Following the approach 

outlined in these works, we elaborate on the effect of micro-scale inertia upon the wave 

propagation behavior. The work is motivated by the observation of negative group velocity of 

optical waves seen in simulations using discrete models of granular media. We show that higher-

order inertia is necessary for describing this phenomena using continuum models. We further 

show that this phenomena can be modulated by micro-scale mass density distributions, thus 

affecting the widths of potential frequency band-gaps, including the negative group velocity of 

the acoustic branch. 

Keywords: granular microstructure; granular micromechanics; higher-order inertia; dispersion 

relation; frequency band gaps; granular metamaterials. 

 

 



 

1. Introduction 

1.1 Micro-mechano-morphological effects 

Materials with granular microstructure are characterized as materials composed of many 

individual grains mediated by interfaces. Due to their prevalence in diverse areas of engineering 

and science, it is necessary to promote the understanding on how such materials behave when 

excited externally. In addition to the materials with granular microstructure found in nature, 

recently emerged granular metamaterials also share many features with granular solids and are 

worth studying, especially for vibration mitigation applications [1,2]. The collective behavior of 

granular structures (granular solids and granular metamaterials) is mainly connected to their 

micro-mechano-morphology. In other words, grain-pair interactions, composition and 

morphological aspects of granular structures in micro-scale dictate their macro-scale mechanical 

behavior. While for problems consisting of hundreds to thousands of grains a discrete model may 

be utilized [3–5], as the size of the structure grows (e.g. for granular structures comprising 

millions of grains) continuum models remain the most efficient. Continuum description of a 

material with granular microstructure expresses the macroscopic behavior of the material in an 

averaged sense based on the microstructural properties of the structure in a less computationally 

expensive manner. Indeed, continuum models do not predict the trajectory of each grain inside 

the granular structure. However, given the incomplete information about the granular structure in 

terms of the grain-pair interaction properties and the accurate positions and geometries for all the 

grains in contact, an approximate description based on insufficient data is adequate. 

Classical continuum mechanics declares a material point with its size approaching zero. Such a 

description is enough to describe and characterize the local effects (immediate neighborhood). 

However, the complexity of the granular medium in both mechanical and morphological aspects 

necessitates a refined description of the behavior of granular materials that takes into account the 

non-local effect of grain-interactions [6] and grain rotations [7], to predict phenomena such as 

dispersion in propagating elastic waves [8–12]. Dispersion in waves propagating through 

granular structures is pertinent to the existence of an inherent characteristic length comparable to 

the wavelength of excitation at high frequencies [9,13]. The characteristic length is often 

attributed to granular materials microstructural aspects (see for example [14]), however, it should 



also account for the micro- or grain-scale mechanical characteristics and the micro- or the grain-

scale inertial characteristics. The microstructure, the grain-scale mechanical and the grain-scale 

inertial properties in combination can be designated as micro-mechano-morphology. It is, 

therefore, imperative to include the information about the granular material’s micro-mechano-

morphology in formulating the continuum wave equations. Granular micromechanics approach 

(GMA) results in a non-classical continuum mechanics model for describing the mechanical 

behavior of granular structures considering the micro-mechano-morphological effects using 

refined kinematics [6,15]. As a generalization of the classical continuum mechanics viewpoint, a 

material point in GMA is considered a collection of grains interacting with each other via 

different inter-granular mechanisms. The GMA treats the problem in a statistical sense by 

considering the mean behavior of grain pairs.   

 

1.2 Motivation 

In its most general forms, the GMA leads to micromorphic models of degree n [6], and treats 

grain-spins using as independent kinematic quantities [7]. In its simplest form, the GMA 

devolves to the classical Cauchy-form of continuum models. In our earlier publications, we have 

studied the elastic wave propagation in a material with granular microstructure utilizing GMA 

based micromorphic theory of degree 1 described in [6,15]. The results from our previous work 

[9] have shown interesting information about wave propagation in granular media. These include 

wave dispersion as well as the occurrence of a slow longitudinal wave that follows the primary 

longitudinal wave as seen in the discrete simulations reported by [5]. It is noteworthy, however, 

that in nonlinear-dissipative systems (as in [5]), wave dispersion may be affected by multiple 

dissipation mechanisms (including viscous, frictional dissipation at the grain scales), and 

therefore, can depend upon the loading history in addition to the micro-mechano-morphology. 

The relative influences of these factors need careful investigations. The GMA based continuum 

model provides a systematic way to explore the influences of the many confounding factors, 

such as grain-pair elastic and dissipative interactions and grain inertia, which influence the 

macro-scale behavior of granular systems [6,7,16]. For example, longitudinal and transverse 

elastic wave propagation in 1D granular materials studied using GMA based model revealed the 

existence of multiple wave branches in both forward and backward waves, dispersion in wave 



propagation, where waves with different frequencies propagate with different velocities, and the 

possibility of the existence of frequency band gaps [9]. This model, enhanced to account for the 

effect of the external electric field, showed the possibility of modulating and tuning wave 

dispersion in granular materials composed of dielectric grains [8]. Thus, the GMA based 

continuum model can serve as a basis for designing experiments as well as discrete simulations. 

To this end, we note that our previous model failed to capture completely certain aspects of 

phononic negative group velocity (NGV) that are predicted by discrete models and recent works 

on wave propagation characteristics in granular media, e.g., [17].  

We remark that phononic waves with NGV are known for 1D composite materials described by 

Rytov model of layered system using wave equations of classical continuum mechanics and 

specification of the layer properties [18–20]. The phenomenon of NGV has also been observed 

in other systems. For example, the appearance of NGV has been recognized in layered materials 

in electromagnetics [21] and in metamaterials with negative permittivity and negative 

permeability [22]. In soft composites, NGV in transverse or shear waves is believed to cause 

elastic instabilities in fibrous composites [23]. In elastic composites with periodic microstructure, 

NGV was accomplished by utilizing the idea of local resonances to produce low-frequency 

negative passband [24], or by embedding stiff inclusions in soft matrix [25]. NGV was also 

observed in 2D metamaterials modeled as mass spring systems with nonlocal effect [26] and in 

1D lattice chain incorporating nonlocal effects [27]. Moreover, in solids with multi-scale 

microstructure, NGV is predicted for particular material parameters [28]. The present paper 

focuses upon granular materials that are homogeneous at the scale of investigation but are 

microscopically inhomogeneous. The aim of the present work is to develop non-classical wave 

equations that addresses different aspects of wave dispersion in macroscopically homogeneous 

granular systems. 

To illustrate the issue of negative group velocity in granular media, we consider a discrete bead-

spring model of 20 grains as shown in Fig. 1a. This set of grains are taken to comprise the 

representative volume element (RVE) of an infinitely extending 1D granular material. The grain-

pair interactions are modeled as linear elastic springs (denoted as , 1,2,...,ik i n ) whose 

stiffnesses have no asymmetry under tension or compression (such that the grains maintain 

enduring interactions during the wave propagation). Further, the spring stiffnesses are randomly 



distributed in a prescribed range and the grains are treated as rigid masses (denoted as 

, 1,2,...,im i n ) of radius of 0.5 mm with varying grain mass densities. The distributions of 

grain-pair stiffnesses and grain mass densities used in our discrete simulations are shown in Fig. 

1b and Fig. 1c. The dispersion curve of the considered structure can be now calculated from the 

equations of motion for grains in the RVE, assuming a harmonic form of solution for their 

displacement, and applying periodic boundary conditions. The computed dispersion relation for 

this model in the irreducible Brillouin zone is illustrated in Fig. 2a. The dispersion curve shown 

here has as many wave branches as the degrees of freedom in the RVE. Here we focus upon the 

dispersion curves for the first two wave branches, one optical and the other acoustic, replotted in 

Fig. 2b, which are at the lowest frequency range for comparison with the lowest frequency 

modes that have been predicted by the GMA based micromorphic model of degree 1 [9]. The 

acoustic branch in both models (discrete model and the model in [9]) shows similar 

characteristics. However, the optical branch predicted by the discrete simulation shows negative 

group velocity, which is in contrast to the previous format of GMA [9] which predicts positive 

and increasing group velocity. 

This apparent discrepancy in predictions by the GMA based continuum model can be resolved 

by recognizing the existence of higher order inertia terms that appear in GMA based 

micromorphic theory of degree 1 as shown in our recent work on extended granular 

micromechanics approach [6]. We note that NGV is also predicted using classical micromorphic 

continuum models, by considering the cross-linking terms between macro- and micro-scale 

kinematic variables [29,30]. In contrast, the models that do not consider these cross-linking terms 

predict positive group velocity in the optical branch [9,31,32]. In the present paper, we show that 

models that do not consider the cross-linking of macro- and micro-scale kinematic variables 

terms but include higher order inertia terms also predict NGV. Notably, the higher-order inertia 

term is, typically, absent in the classical micromorphic theories of degree 1, although such 

inertial terms are often included in 2nd gradient elasticity (see for example [33–36]). The higher 

order inertia terms arise from the variations in the micro-inertial properties as a combined effect 

of grain-sizes, compositions and the grain scale morphology (granular arrangement). Vibration 

and wave propagation characteristics of granular systems have been shown to be affected by 

specific granular arrangements and varying grain sizes in the recent works of [37–39]. In 

particular, mass ratio of the grains within a diatomic granular structure has been shown to affect 



the width and location of the frequency band gap, which reveals the micro-inertial effects on the 

band structure [17]. However, to the knowledge of the authors, no study has yet been done to 

generalize the micro-inertial influence on the propagating waves in a granular structure. To this 

end, we introduce an extended form of kinetic energy that includes the rates of micro-scale 

kinematic measures and its conjugate higher order micro-inertia. Our aim in the present paper is 

to highlight the role of higher order micro-inertia terms in the dispersive behavior of granular 

materials through the example of wave propagation in an infinite 1D continuum with granular 

microstructure. In particular, we illustrate how the grain mass density distribution can lead to 

modulation of the dynamic behavior of materials with granular microstructure.  A 1D system 

proves to be expedient in describing the physics involved in the problem while reducing the 

complexity of the system under study, compared to a general 3D case.   

The organization of the paper is as follows. An overview of the granular micromechanics 

approach is provided in section 2, where the kinematics of GMA based micromorphic theory of 

degree 1 and the variational approach to obtain the balance equations are described. Section 3 is 

devoted to study the longitudinal elastic wave propagation in a 1D material with granular 

microstructure taking into account the effect of higher order inertia terms. Finally, section 4 

presents the summary of the work and the concluding remarks. 

 

2. GMA based micromorphic theory of degree 1 

2.1. Kinematic variables 

In this section, we briefly introduce the continuum framework for GMA. The reader is referred 

to the references [6,15] for an extensive description of the approach. In GMA, a granular 

structure is considered as a continuum with the volume V bounded by the surface S where the 

material point P can be identified using a macro-scale Euclidean coordinate system ix  (see Fig. 

3). The material point P is assumed to have the macro-scale mass density  , volume dV V  , 

and differential mass dm dV V    . Denoting by X and ( , )tx χ X  the position vectors of 

the point P at initial and current configurations (at time t), respectively, the macro-scale 

displacement vector u ascribed to the point P is defined as -u x X . The material point P, 



microscopically, is an assemblage of grains and can be referred to as a statistical/representative 

volume element (RVE) with volume dV V  . The positions of grains inside the RVE can be 

distinguished utilizing a micro-scale coordinate system ix  attached to the center of mass (COM) 

of the material point P, parallel to the macro-scale coordinate system ix , and moving with the 

macro-scale displacement u. Denoting by X  and ( , , )t  x χ X X  the position vectors of the 

grain p centroid at initial and current configurations, respectively, the micro-scale displacement 

vector u  ascribed to the grain p is defined as -  u x X . 

In the current format of GMA, we consider, in both micro- and macro-scales, infinitesimal 

deformation in granular media. We also assume that macro-scale and micro-scale displacements 

are both continuous and differentiable functions of ix  and ix  up to the desired order. Therefore, 

we have the following form for the macro- and micro-scale displacements 

   , , , ,i i j i i j ju u x t u u x x t    .        (1) 

For a micromorphic theory of degree 1, the micro-scale displacement iu  can be written using a 

polynomial expansion and keeping up to the second order terms with respect to x  about the 

COM of the RVE as [6] 

i ij j ijk j ku x x x      .          (2) 

In Eq. (2), ij  and ijk  are, respectively, second and third rank micro-deformation tensors only 

functions of x  and t. In Eq. (2) and henceforward, summation convention over repeated indices 

is implied unless noted otherwise. Without loss of generality, we further assume that the micro-

deformation tensor ijk  is symmetric with respect to indices j and k [6,40]. With regards to Eq. 

(2), the total displacement vector for the grains inside the RVE can be written as 

i i i i ij j ijk j ku u x x x           .        (3) 

where i iu   is adopted to harmonize the variable names with previous publications [6,8–10,15]. 

We introduce the following relative deformation tensors [6,30,40] 

, ,,ij i j ij ijk ij k ijk         ,        (4) 



where, henceforth, comma in the subscript denotes differentiation with respect to the spatial 

coordinates. In Eq. (4), the differentiation is taken with respect to the macro-scale coordinate 

system basis vectors. For a micromorphic theory of degree 1, and as a constitutive choice, we 

assume that the relative deformation tensor ijk  is zero. Such an assumption reads ,ijk ij k  . As 

noted in [6], this assumption changes the independent nature of ijk  to a dependent one. We 

further note that under additional assumptions of vanishing relative deformation tensor ij , the 

theory will devolve to a 2nd gradient theory, which is known to have wide applications [41–43] 

and has been deduced through homogenization of certain lattice structures (see for example [44–

46]).  

For the neighboring grains n and p, utilizing Eq. (3) and Eq. (4), the relative displacement 

between grains can be decomposed as 

np p n M m g

i i i i i i          ,         (5) 

where the following micro-scale kinematic measures are recognized 

M np m np np

, ,, , g

i i j j i ij j i ij k jkJ J J        .       (6) 

In Eq. (5) and Eq. (6), we have defined the geometry moment measures 
np p n

j j jJ l l   and 

np p p n n

jk j k j kJ l l l l  , where 
q

jl  represents the jth component of the vector joining the COM of the 

RVE to the grain q centroid. Moreover, M  indicates the part of the relative displacement due to 

the macro-scale displacement gradient, m  denotes the portion of the relative displacement due 

to the fluctuation between the macro-scale gradient ,x  and the micro-scale kinematic measure 

 , and g  represents the part of the relative displacement due to the second gradient. 

The macro-scale rotation, i , in the macro-scale coordinate system is defined as 

, ,

1 1

2 2
i lki k l lki k le u e   ,         (7) 



where the differentiation is with respect to the macro-scale coordinate system ix  and lkie  is the 

permutation symbol. Similarly, the micro-scale rotation, i , in the micro-scale coordinate 

system is defined as 

, ,

1 1

2 2
i lki k l lki k le u e   ,         (8) 

where the differentiation is with respect to the micro-scale coordinate system ix . The relative 

rotation of two neighboring grains n and p inside the material point P only takes into account the 

effect of the micro-scale rotation, i . We note here that the grain spin effect is not considered in 

the current formulation of GMA. Utilizing Eq. (8), the relative rotation between two neighboring 

grains n and p, 
u

i , can be written as 

np

,

u

i lki kl j je J  .          (9) 

The micro-scale kinematic measures introduced in Eq. (6) and Eq. (9) are considered 

deformation mechanisms in which the deformation energy is stored. 

2.2. Constitutive equations 

We assume the macro-scale deformation energy density to be a function of the macro-scale 

kinematic measures, i.e., of the form ( , ) ,( , , )i j ij ij kW W    , where ( , )i j  is the symmetric part of 

the macro-scale displacement gradient. Considering the assumed form of the macro-scale 

deformation energy density with its mentioned components ensures an objective expression for 

the energy density that is invariant to rigid rotation of the coordinate system. The macro-scale 

stress measures of Cauchy stress, relative stress, and double stress are defined as conjugates to 

the continuum kinematic measures, respectively as 

( , ) ,

, ,ij ij ijk

i j ij ij k

W W W
  

  

  
  
  

.       (10) 

The macro-scale deformation energy density can be identified in terms of the micro-scale 

deformation energy density as 



 α αM αm αg αu

α

1
, , ,i i i iW W

V
   


 ,        (11) 

where αW  represents the micro-scale deformation energy for the αth interacting pair of grains. 

Intergranular forces and moments can be defined as conjugates to the micro-scale kinematic 

measures as 

αζ αu

αζ αu
; M,m,g,i i

i i

W W
f m

 

 
  

 
.       (12) 

Substituting Eq. (11) into Eq. (10), and using Eq. (6), Eq. (9), and Eq. (12), it follows that the 

macro-scale stress measures can be expressed in terms of the intergranular forces and moments 

and the geometry moment measures [15]. For a non-dissipative linear system a quadratic form of 

micro-scale deformation energy density W  can be considered. To this end, the micro-scale 

kinematic measures in Eq. (6) and Eq. (9) can be decomposed into their normal (n) and two other 

tangential (s and t) components, with the normal being along the direction of the line connecting 

the centroids of the two grains. As an example, the micro-scale deformation energy density used 

in this paper can be expressed in the quadratic form    
2 21 1

2 2

u u

i i i i

i i

W K G    



     

with , ,i n s t , and M,m,g  , and where different K and G parameters represent grain-pair 

stiffness parameters for the macro-scale, M, micro-scale, m, and second gradient, g, mechanisms 

involved in the deformation [15]. We note that the assumed form for the micro-scale deformation 

energy density W  does not consider the terms that cross-link different micro-scale kinematic 

measures in the current analysis. The assumed form of micro-scale deformation energy density, 

Wα, leads to the macro-scale constitutive relationships presented below  [15,47] 

 M m g u

,, ,ij ijkl kl ij ijkl kl ijk ijklmn ijklmn lm nC C A A         .     (13) 

In Eq. (13), 
M

ijklC  and 
m

ijklC  are fourth rank stiffness tensors, and 
g

ijklmnA  and 
u

ijklmnA  are sixth rank 

stiffness tensors, defined as functions of the grain-pair interaction stiffnesses K and G and 

geometry moment measures for all the grain pairs within the RVE. In Eq. (13), the superscript M 

denotes macro-stiffness, m denotes the micro-stiffness, g denotes the second gradient stiffness, 

and u represents the rotational stiffness. 



 

2.3. Governing equations of motion 

In this paper, we obtain the equations of motion based on the principle of stationary action. 

Hamilton’s principle states that the action functional is minimum, and is expressed as 

 
1

0

0
t

ext
t

T W W dt    ,          (14) 

where the terms T , W , and extW  are defined in what follows. 
V

T TdV   is the total kinetic 

energy, where T is the kinetic energy density, utilizing König's theorem [48] defined as [6] 

, , ,

1 1 1 1 1

2 2 2 2
i i i i jm ij im jmn ij im n jkmn ij k im n

V
T dV

V
           


     

 
.  (15) 

In Eq. (14),   is the micro-scale mass density per unit macro-volume, which can be non-

uniform within the RVE (a function of the micro-scale coordinate system ix ), and each over-dot 

henceforward represents differentiation with respect to the temporal coordinate. Moreover, the 

following inertia measures have been defined [6] 

1 1 1 1
, , ,jm j m jmn j m n jkmn j k m n

V V V V
dV x x dV x x x dV x x x x dV

V V V V
       

   
                   

      
,(16) 

where, clearly, the macro-scale mass density   and other measures of inertia depend on the 

micro-scale mass density   and its distribution within the RVE. In what follows, we consider 

that the material is homogenous at the macro-scale, that is the macro-scale mass density   is 

independent of the macro-scale coordinate system, ix . The kinetic energy density defined in Eq. 

(15) is an extension of the ones introduced in earlier publications for GMA based micromorphic 

theory of degree 1, e.g. in [8–10,15]. The additional terms in the description of the kinetic energy 

affect the prediction of the dynamic behavior of granular media by introducing, or re-allocating, 

energies in the existing degrees of freedom of the problem. Moreover, the additional terms are 

accompanied by higher order inertia measures that were otherwise absent in [8–10,15]. Clearly, 

the micro-scale mass density distribution in the RVE can alter the higher order inertia measures, 



while potentially keeping the macro-scale mass density   constant. This allows us to imagine 

two morphologically different systems with identical constituents and equal macro-scale mass 

density showing different wave propagation characteristics or two morphologically identical 

systems with different constituents and equal macro-scale mass density showing different wave 

propagation characteristics. This reveals (micro-) morphological and compositional effects on 

vibration characteristics of granular media. Now if the grain-pair interactions between all 

constituent grains are kept constant, the dynamic properties of the granular medium changes 

solely because of the change in inertia measures. This aspect is elaborated in the following 

sections. 

In Eq. (14), 
V

W WdV   is the total macro-scale deformation energy, and extW  is the total 

external energy where its form is inspired by the expression for the total macro-scale 

deformation energy W , with components described below. Thus from  Eq. (14) we get [6] 

 

   

1 1

0 0

1 1

0 0

, ,,

, 0

t t

ij ij i i i ij ijk k ij jk ik jklm il mk ijjV V
t t

t t

i ij ij j i ij jkl il jklm il m ijk k ij
S S

t t

f dVdt dVdt

t n dSdt T n dSdt

          

        

            

          
   

   

   

 (17) 

In Eq. (17), if  is the non-contact body force per unit volume, it  is the contact traction defined as 

a surface force per unit area, ij  is the non-contact body double force per unit volume, and ijT  is 

the contact double traction defined as double force per unit area. Moreover, jn  represents the jth 

component of the normal to the surface S. In what follows, we assume zero non-contact body 

forces and double forces. 

Equations of motion and natural boundary conditions are obtained, utilizing the fundamental 

lemma of calculus of variations and the constitutive relations in Eq. (13), as 

  , ,

M m m

ijkl ijkl k lj ijkl kl j iC C C     ,        (18a) 

  , , ,

g u m m

ijklmn ijklmn lm nk ijkl k l ijkl kl jk ik jklm il mkA A C C           ,     (18b) 

 ij ij j in t             (19a) 



 ,jkl il jklm il m ijk k ijn T               (19b) 

It is noteworthy that the term ,jklm il mk   in Eq. (18b) is typically not considered in micromorphic 

models of degree 1, such as the previous models found in [8–10]. We further note that the 3rd 

rank inertial tensor appears in the boundary conditions and not in the governing equations. Note 

that in the 2nd gradient theory presented in [49], the 3rd rank inertial tensor appears in the 

governing equation, while there is no discussion of the boundary conditions. 

 

3. Longitudinal elastic wave propagation in a 1D continuum with granular 

microstructure 

We here focus on the longitudinal wave propagation in an infinite 1D continuum in macro- and 

micro-scales along the 
1x  axis. A representation of the general problem is shown in Fig. 4, where 

different grain colors represent different micro-scale mass density   and elastic properties. For 

brevity, we drop the subscript 1 from the axis 
1x  and denote it by x. Similarly, we represent 1  

and 11  by   and  , and 1111

MC , 1111

mC , and 111111

gA  by MC , mC , and gA , respectively. Note that 

in the 1D case under study, 111111 0uA   [15]. The equations of motion, Eq. (18), for the current 

1D case reduce to the following equations 

  , ,x

m mM

xxC C C     ,          (20a) 

, , 11 1111 ,

g m m

xx x xxC CA           .       (20b) 

Note that in Eq. (20), 11  and 1111  are the inertia measures defined in Eq. (16). 

For the equations of motion in Eq. (20), we assume plane wave solutions, solutions harmonic in 

both position, x, and time, t, expressed as 

   ( ) ( )Re , Rei kx t i kx tAie Be            (21) 



where k is the angular wavenumber,   is the angular frequency, and 2 1i   . Furthermore, A 

and B are the amplitudes and can assume complex values. Throughout this paper, “angular 

frequency” and “angular wavenumber” are referred to as “frequency” and “wavenumber” for 

brevity and have the units of radians per second and radians per meter, respectively. Upon 

substituting Eq. (21) in Eq. (20), the equations of motion can be recast in the following 

generalized eigenvalue problem 

2 2 2 2 2

20

2 4 22 2 2 2 2
1 21 1

1 0

0

A A

A A

A Ac k c k c k

kB Bc k c k c


 

      
            

,     (22) 

where we have defined the macro-scale, micro-scale relative deformation, and second gradient 

velocities 0c , Ac , and 1c , respectively, and two characteristic lengths 1  and 2 , respectively, as 

2 2 2 2 411 1111
0 1 1 2

11

, , , ,
M m g

A

AC C
c c c

 
 

    
     .     (23) 

Eq. (22) has nontrivial solution if 

  2 2 2 2 2 2 2 2 2 2 2 4 2 2 4 2

0 1 1 1 2 0A A Ac k c k c k c k c k            .     (24) 

Equation (24) is the dispersion relation for the problem under study and can be considered as the 

solution for an eigenvalue problem with matrix form of equations given in Eq. (22) (see Refs. 

[50,51] for rigorous mathematical description regarding phononic eigenvalue problems). This 

equation relates the frequency and the wavenumber and can be utilized to obtain dispersion 

curves. However, it is useful to nondimensionalize Eq. (24). To this end, we define the 

characteristic time p, dimensionless velocities, A , and 1 , dimensionless term corresponding to 

inertial effect,  , dimensionless frequency,  , and dimensionless wavenumber,  , as 

1 1 2
1 1

0 0 0 1

, , , , ,A
A

c c
p p k

c c c

 
      


      .    (25) 

Using Eq. (25), the dimensionless form of the dispersion relation in Eq. (24) is 

  2 2 2 2 2 2 2 2 4 2 2 4 2

1 0A A A                        (26) 



The maximum order of the dimensionless frequency   in Eq. (26) is four, meaning that there 

will be four solutions in the form ( )   . Two of the solutions are forward and the other two 

are backward wave branches. The forward and backward wave branches are symmetric with 

respect to the line 0   in the dispersion curve with horizontal and vertical axes as   and  , 

respectively. Therefore, we only consider the forward wave branches here. Furthermore, for each 

wave branch, the dimensionless phase velocity, pv , and group velocity, gv , are obtained as 

,p g

d
v v

d

 

 
  .          (27) 

Before analyzing the solutions of Eq. (26), it is fruitful to discuss the physical meaning of the 

parameters involved in Eq. (26). The dimensionless velocity A  is defined as the ratio of two 

velocities, whose definition can be simplified to 
m

A M

C

C
  . As a result, A , is a function of the 

macro-stiffness and micro-stiffness and represents the relative magnitude of micro-stiffness with 

respect to the macro-stiffness. The dimensionless velocity 1  can also be simplified to 

1

1

1 g

M

A

C



 , where contrary to the dimensionless velocity A , it is a function of both 

stiffnesses and inertia measures. The term 
g

M

A

C
 represents the static length scale for the current 

problem, therefore, the value of 1  is a ratio between the static and the dynamic length scale 1 . 

Keeping the granular structure unchanged in terms of the distribution of masses, as the second 

gradient stiffness increases, so does the value for 1 . On the other hand, keeping the stiffnesses 

of the granular material unchanged, as the second order inertia measure 11  increases (or 

equivalently as 1  increases), the value for 1  decreases. Finally, the expression for the 

dimensionless parameter   can be recast as 1111
4

2

11





 , which encompasses the effect of 

inertia. For a case where the micro-scale mass density   is constant, using Eq. (16), the 

expression for the dimensionless parameter   is simplified to 1.1583  . A different 



distribution for the micro-scale mass density   will result in different values for  , as 

exemplified in Fig. 5 for a variety of micro-scale mass density distributions. 

Returning to the dispersion relation in Eq. (26), we consider a granular medium with material 

constants 0.7A  , 6

1 10  , and 1.1583   to explore the GMA predictions of wave 

propagation characteristics. The chosen values are taken to be representative of a case in which 

band gaps are present [9,15]. The solutions of Eq. (26) when solved for dimensionless frequency 

are plotted in the dispersion curve presented in Fig. 6a. There exists one acoustic branch starting 

at the origin, and one optical branch starting at a nonzero dimensionless frequency. The starting 

dimensionless frequency point for the optical branch can be obtained using Eq. (26) and 

substituting 0  . This results in dimensionless frequency A  , as shown in Fig. 6a, or a real 

frequency 
11

mC



 . The asymptotes of the two wave branches can be obtained, discarding 

second order terms from Eq. (26), and solving for the dimensionless frequency. As a result, the 

asymptotes are 

2 1

4 2
1 ,

1
A

 
   

 
  


,        (28) 

or in terms of real frequency and wavenumber, 

2

1111 11

,
M m gC C A

k k
k

 
  


 


       (29) 

These asymptotes are shown in Fig. 6a. The asymptote 2 1A     is a straight line and as seen 

in Fig. 6a, it fits the optical wave branch at large wavenumber and frequencies. On the other 

hand, the asymptote 1

4 2 1

 


 



 is not a straight line and shows the asymptotic value the 

acoustic wave branch takes. For the very small value of 1 taken in this example, this asymptote 

can be approximated by 0  . This means that the acoustic branch ceases to propagate in very 

large wavenumbers (small wavelengths). For some frequency range depicted by a green box in 



Fig. 6a, there is no real solution for the wavenumber. This frequency range is called frequency 

band gap (or stop band), and is associated with frequencies that do not propagate through the 

medium. Fig. 6b shows the phase and group velocities associated with the acoustic and optical 

branches. The difference between the phase and group velocities for each wave branch can cause 

a change in the shape of propagating pulse. The phase velocity values for both wave branches 

decrease as wavenumber becomes larger, therefore, the granular material with the assumed 

material parameters shows normal dispersion. One interesting observation in Fig. 6b is the 

existence of certain wavenumbers in which the signs of phase and group velocities 

corresponding to each wave branch are opposite. This phenomena is called negative group 

velocity (NGV) in the literature and is associated with backward propagation of the peak of the 

pulse [52]. From a physical viewpoint, NGV in a material with granular microstructure results 

from the resonance of sub-wavelength micro-structural elements (grain-scales) inherent in 

granular materials. From a mathematical viewpoint, the NGV results from the presence of the 

higher order inertia conjugate to rate of micro-deformation that appears in the presented 

continuum model, which leads to the term  with both time and space derivatives in the 

equations of motion. As is seen in Fig. 6b, the NGV in the granular material is predicted to be 

wavenumber (frequency) dependent. Since group velocity is an integral entity depending on the 

collective behavior of a number of harmonics in relation to each other, the occurrence of NGV 

suggests smaller effective dispersion in the granular material [28]. To evaluate the physical 

mechanisms for the phenomena, we have performed parametric studies to investigate how the 

material parameters contribute to the appearance of NGV. Results (not shown here) revealed that 

for fixed values of 1  and  , larger values of the parameter A  (or equivalently larger micro-

scale stiffness mC  compared to a fixed value for the macro-scale stiffness MC ) result in 

increasing NGV. For fixed values of A  and  , larger values of 1  (which represents the ratio of 

static and dynamic length scales) result in positive group velocity, while NGV is observed for 

small values of 1 . For fixed values of A  and 1 , larger values of   predict higher NGV. To 

summarize, granular media with larger values of A  and  , and smaller value for the parameter 

1  are expected to show NGV in their optical branch. The parametric studies show that the NGV 

phenomena is controlled by the micro-deformation and its rate whose energy content can be 

modulated by parameters, 1 , A  and  .  Importantly, these parameters represent the effect of 



micro-mechano-morphology of granular material. For example, emergent micro-deformation 

phenomena for static case can be observed in defective granular structures as discussed in [47] or 

in granular structures with particular grain-pair interactions as in [16], as well as in discrete 

mass-spring models that include interactions with non-nearest neighbor [26,27]. It is also 

worthwhile to mention that NGV in longitudinal wave propagation has been observed in the 

context of axially moving materials with granular microstructure [10]. NGV phenomenon has 

also been predicted for transverse waves in granular systems with particular grain-pair 

interactions [9].  

As mentioned earlier in the paper, the current format of equations of motion for the problem 

under study includes an additional term corresponding to the effect of higher order inertia. It is 

worthwhile to study how this additional term contributes to the wave propagation characteristics 

of granular medium. Therefore, we consider two cases, where in one case the higher order inertia 

1111  is taken to be zero, reducing the equations of motion in Eq. (20) to the one adopted in [9], 

and in the other case the higher order inertia assumes a nonzero value and Eq. (20) holds fully. 

The dispersion curve of these cases are illustrated in Fig. 7a and are referred to as the current 

model and the reference model, respectively. In both cases we have used the same parameter 

constants used to produce the dispersion curve for Fig. 6, except for the dimensionless value  , 

which in the reference model is zero and in the current model has been assumed 1.4 to enhance 

the contrast between the findings of the two models. Results in Fig. 7a reveal the fact that the 

additional term corresponding to higher order inertia affects the acoustic wave branch in large 

wavenumbers, while altering the behavior of the optical wave branch at small wavenumbers. In 

other words, the acoustic wave branches for the two models agree in small wavenumbers, and 

the optical wave branches for the two models agree in large wavenumbers. To investigate such 

observations, we consider two regions of wavenumbers. In small wavenumbers, Eq. (26) can be 

approximated by 

    4 2 4 2 2 2 2 2 2 2

11 1 0A A A                .      (30) 

Eq. (30) is a quadratic equation in 2  and can be easily solved to give the equations for the 

acoustic and optical wave branches at small wavenumbers. For the optical branch, the first term 

on the left side in Eq. (30) is not small and contributes to the solution. This term contains the 



information about the micro-scale mass density distribution, and therefore, the optical branch 

behavior is affected by the higher order inertia in small wavenumbers. For the acoustic branch, 

however, further simplifications can be made. Since the acoustic branch starts at zero frequency, 

the first term on the left side can be neglected. As a result, the frequency solution for the acoustic 

wave branch at small wavenumbers can be simplified to 

 2 2 2 2

1 1

A

A A

 


   


  
.          (31) 

As is clear from Eq. (31), the acoustic wave branch frequency solution is independent of higher 

order inertia effect in small wavenumbers. The same argument can be stated for the large 

wavenumber (small wavelength) behavior of the two wave branches using the asymptotes in Eq. 

(29). Clearly, the optical branch is independent of the higher order inertia in large wavenumbers, 

while the acoustic branch is affected by the higher order inertia. 

We further note the change in stop band frequency range predicted by the two models, where the 

current model predicts stop band of frequencies lower than the one predicted by the reference 

model. Based on Fig. 7c and Fig. 7d, we note that, for the acoustic branch, the reference model 

predicts a diminishing positive group velocity and decreasing phase velocity for large 

wavenumbers, while the current model predicts a diminishing negative group velocity and 

vanishing phase velocity. For the optical wave branch, large wavenumber behavior of both 

models is the same, while in small wavenumbers, we observe that the current model predicts 

negative group velocity, which gradually reaches zero, and becomes positive as wavenumber 

increases. We further observe the change of location for the frequency stop bands in the two 

models, where the current model predicts lower frequency ranges for the band gaps, compared to 

the prediction of the reference model. While the model predictions can be extended to very large 

wavenumbers and frequencies, it is understood that the model predictions below wavelengths of 

the size of the RVE are not generally reliable as the homogenization is done in the scale of RVE. 

For example, for grains with diameters in the order of millimeters, and an RVE size in the order 

of 1000 grains, the dimensionless wavenumber limit of reliability on the theory predictions is 

less than 0.4. The reference model and current model predictions in the corresponding limiting 

wavenumber range are depicted in Fig. 7b. Finally, assuming negligible values for the 



dimensionless parameters 1  and A , the dispersion curve in Eq. (26) simplifies to the 

nondispersive relation    which in terms of real frequency and wavenumber reads 0c k  . 

Therefore, the model developed here simplifies to a classical model. 

 

4. Conclusions 

In this paper, we have theoretically investigated the elastic wave dispersion characteristics in an 

infinite 1D continua with granular microstructure. We have focused on the effect of higher order 

inertia terms that appear in the enhanced micromorphic model based upon GMA [6]. The 

additional term, which is absent in the previous formats of micromorphic models of degree 1 

(including those presented by the authors [8–10,15]), has a profound effect on the dynamic 

behavior of granular media.  The results presented in the current paper, when compared to the 

previous model results, show, not only better agreement with the wave propagation 

characteristics observed experimentally and numerically in the literature, e.g., in [17,53,54], but 

predict additional effects. In particular, the higher order inertia terms most-noticeably affect the 

prediction of the optical wave branch behavior. It is remarkable that the higher-order inertia 

terms are controlled by the micro-scale mass density distribution in the RVE. Thus, it is possible 

to conceive of homogeneous materials with the same macro-scale mass density and different 

higher-order inertia. In these materials, the re-allocation of kinetic energies in the micro- and 

macro-scale degrees of freedom can introduce interesting modulation of wave propagation. The 

theoretical results reported in this paper can be a precursor and motivation for an experimental 

effort, which can otherwise be difficult to conceive, plan and execute given the multitude factors 

that can affect wave propagation and their measurements. Moreover, these theoretical results can 

promote the development of dynamic identification procedure that can be applied for simulating 

wave propagation in random granular assemblies across a wide range of frequencies. We note 

that the existing dynamic discrete models typically include dissipation, such that the intermixing 

of microstructural, micro-inertial and imposed dissipation effects confounds the results of wave 

propagation simulations. 

The micromorphic based continuum model presented in this paper assumes non-dissipative 

linear behavior in micro- and macro-scales. While many granular systems feature nonlinear 



grain-pair interactions, understanding linear elastic behavior has practical significance for small 

amplitude vibrations, where assuming a quadratic potential is valid. Furthermore, the considered 

model is specialized for infinitesimal deformations, and therefore, it is applicable to small 

amplitude vibrations. 

For an accurate description of a material with granular microstructure, one needs complete 

information about the micro-mechano-morphological aspect of the granular material, e.g., the 

position, size, and shape of the grains, their inertial properties, and the interaction mechanisms 

between all grains in contact. GMA treats the problem in an averaged sense by reducing the 

number of parameters from thousands (if not millions) to a few continuum material constants. 

The analysis presented in the current paper can be potentially used to identify the continuum 

material parameters of granular media from experiments or numerical simulations. To describe a 

one-dimensional material with granular microstructure using GMA introduced in the paper and 

the assumed form of deformation energy densities, one needs to identify 6 material constants. 

These constant are the macro-scale mass density, , micro-scale mass density, , and the 

knowledge on its distribution (which results in the dependent inertia measures  and ), 

the RVE size, , the macro-scale stiffness, , the micro-scale stiffness, , and the second 

gradient stiffness, . These 6 material parameters can be identified by performing a constrained 

optimization problem with the cost function being the difference between the results of the 

predictions of the theory and the experimental or discrete simulation results. A similar approach 

can be found in [29,55,56] where the material constants of a micromorphic model were 

determined based on experimental, atomistic, or finite element simulation results through phonon 

dispersion relations. We also note the identification methods discussed for static elastic 

properties in [47,57]. 

Furthermore, it is noteworthy that while atomistic and discrete simulations can describe the 

dispersive behavior of materials in very short wavelengths (large wavenumbers), when compared 

to such simulations, a micromorphic-based continuum model is able to describe the behavior of 

materials with good accuracy up to wavelengths suitably larger than the corresponding 

characteristic length of the system [29,56]. For smaller wavelengths, the accuracy of the results 

decreases and the predictions of the theory needs further investigation by comparison with 

experimental or discrete simulation results. It is encouraging to note that, the predicted zero 



group velocity in the optical branch suggesting non-propagating wave mode, has been observed 

for granular crystals with nonlinear grain-pair interactions in hybridized modes [58]. The use of 

the GMA based micromorphic model expands the applicability of continuum models to regions 

beyond what classical continuum mechanics is able to predict, while revealing the relevant 

micro-mechanisms. 

It is evident that the current approach is useful for not only describing the dynamic behavior of 

natural granular materials, but the methodology can be applied to design granular metamaterials 

for vibration mitigation purposes. Notably, such design can utilize granular-structure, grain-pair 

interaction properties as well as the micro-scale mass density effects in the macro-scale behavior 

of such media. We further note that since the GMA links the grain-scale behavior to the macro-

scale consisting of millions of particles, the resultant continuum model provides a systematic 

approach to explore the influences of both micro- and macro-scale parameters, which often have 

confounding and contradicting effects on the wave propagation behavior. We also note that a 

large number of published literature is focused upon problems that are restricted to study the 

systems with unit cells of one or very few grains, with limited variation in grain composition 

[17,53,54,59–61]  The advancements in additive manufacturing technology, however, allows us 

to envision and realize granular metamaterials with specified micro-scale mass density 

distributions resulting in tailored vibration characteristics predicted in the present paper. Further 

verification of the continuum predictions presented here will be performed using discrete 

simulations with grains in future publications. 
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