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Abstract

(Meta-) materials with granular microstructures exhibit nonlinear dispersive wave propagation,
which is typically attributed to the presence of a microstructure. However, this behavior can
arise from two additional sources in a linear non-dissipative system — the grain-scale or
micromechanical characteristics and the grain-scale or micro-inertial characteristics. The
microstructure, the grain-scale mechanical and the grain-scale inertial properties in combination
may be designated as micro-mechano-morphology. From a continuum modeling viewpoint, the
observed dispersion behavior that accounts for micro-mechano-morphology of materials with
granular microstructures can be described using a granular micromechanics based micromorphic
model (Nejadsadeghi and Misra 2019b, Misra and Poorsolhjouy 2016). Following the approach
outlined in these works, we elaborate on the effect of micro-scale inertia upon the wave
propagation behavior. The work is motivated by the observation of negative group velocity of
optical waves seen in simulations using discrete models of granular media. We show that higher-
order inertia is necessary for describing this phenomena using continuum models. We further
show that this phenomena can be modulated by micro-scale mass density distributions, thus
affecting the widths of potential frequency band-gaps, including the negative group velocity of

the acoustic branch.

Keywords: granular microstructure; granular micromechanics; higher-order inertia; dispersion

relation; frequency band gaps; granular metamaterials.



1. Introduction

1.1 Micro-mechano-morphological effects

Materials with granular microstructure are characterized as materials composed of many
individual grains mediated by interfaces. Due to their prevalence in diverse areas of engineering
and science, it is necessary to promote the understanding on how such materials behave when
excited externally. In addition to the materials with granular microstructure found in nature,
recently emerged granular metamaterials also share many features with granular solids and are
worth studying, especially for vibration mitigation applications [1,2]. The collective behavior of
granular structures (granular solids and granular metamaterials) is mainly connected to their
micro-mechano-morphology. In other words, grain-pair interactions, composition and
morphological aspects of granular structures in micro-scale dictate their macro-scale mechanical
behavior. While for problems consisting of hundreds to thousands of grains a discrete model may
be utilized [3-5], as the size of the structure grows (e.g. for granular structures comprising
millions of grains) continuum models remain the most efficient. Continuum description of a
material with granular microstructure expresses the macroscopic behavior of the material in an
averaged sense based on the microstructural properties of the structure in a less computationally
expensive manner. Indeed, continuum models do not predict the trajectory of each grain inside
the granular structure. However, given the incomplete information about the granular structure in
terms of the grain-pair interaction properties and the accurate positions and geometries for all the

grains in contact, an approximate description based on insufficient data is adequate.

Classical continuum mechanics declares a material point with its size approaching zero. Such a
description is enough to describe and characterize the local effects (immediate neighborhood).
However, the complexity of the granular medium in both mechanical and morphological aspects
necessitates a refined description of the behavior of granular materials that takes into account the
non-local effect of grain-interactions [6] and grain rotations [7], to predict phenomena such as
dispersion in propagating elastic waves [8—12]. Dispersion in waves propagating through
granular structures is pertinent to the existence of an inherent characteristic length comparable to
the wavelength of excitation at high frequencies [9,13]. The characteristic length is often

attributed to granular materials microstructural aspects (see for example [14]), however, it should



also account for the micro- or grain-scale mechanical characteristics and the micro- or the grain-
scale inertial characteristics. The microstructure, the grain-scale mechanical and the grain-scale
inertial properties in combination can be designated as micro-mechano-morphology. It is,
therefore, imperative to include the information about the granular material’s micro-mechano-
morphology in formulating the continuum wave equations. Granular micromechanics approach
(GMA) results in a non-classical continuum mechanics model for describing the mechanical
behavior of granular structures considering the micro-mechano-morphological effects using
refined kinematics [6,15]. As a generalization of the classical continuum mechanics viewpoint, a
material point in GMA 1is considered a collection of grains interacting with each other via
different inter-granular mechanisms. The GMA treats the problem in a statistical sense by

considering the mean behavior of grain pairs.

1.2 Motivation

In its most general forms, the GMA leads to micromorphic models of degree n [6], and treats
grain-spins using as independent kinematic quantities [7]. In its simplest form, the GMA
devolves to the classical Cauchy-form of continuum models. In our earlier publications, we have
studied the elastic wave propagation in a material with granular microstructure utilizing GMA
based micromorphic theory of degree 1 described in [6,15]. The results from our previous work
[9] have shown interesting information about wave propagation in granular media. These include
wave dispersion as well as the occurrence of a slow longitudinal wave that follows the primary
longitudinal wave as seen in the discrete simulations reported by [5]. It is noteworthy, however,
that in nonlinear-dissipative systems (as in [5]), wave dispersion may be affected by multiple
dissipation mechanisms (including viscous, frictional dissipation at the grain scales), and
therefore, can depend upon the loading history in addition to the micro-mechano-morphology.
The relative influences of these factors need careful investigations. The GMA based continuum
model provides a systematic way to explore the influences of the many confounding factors,
such as grain-pair elastic and dissipative interactions and grain inertia, which influence the
macro-scale behavior of granular systems [6,7,16]. For example, longitudinal and transverse
elastic wave propagation in 1D granular materials studied using GMA based model revealed the

existence of multiple wave branches in both forward and backward waves, dispersion in wave



propagation, where waves with different frequencies propagate with different velocities, and the
possibility of the existence of frequency band gaps [9]. This model, enhanced to account for the
effect of the external electric field, showed the possibility of modulating and tuning wave
dispersion in granular materials composed of dielectric grains [8]. Thus, the GMA based
continuum model can serve as a basis for designing experiments as well as discrete simulations.
To this end, we note that our previous model failed to capture completely certain aspects of
phononic negative group velocity (NGV) that are predicted by discrete models and recent works

on wave propagation characteristics in granular media, e.g., [17].

We remark that phononic waves with NGV are known for 1D composite materials described by
Rytov model of layered system using wave equations of classical continuum mechanics and
specification of the layer properties [18-20]. The phenomenon of NGV has also been observed
in other systems. For example, the appearance of NGV has been recognized in layered materials
in electromagnetics [21] and in metamaterials with negative permittivity and negative
permeability [22]. In soft composites, NGV in transverse or shear waves is believed to cause
elastic instabilities in fibrous composites [23]. In elastic composites with periodic microstructure,
NGV was accomplished by utilizing the idea of local resonances to produce low-frequency
negative passband [24], or by embedding stiff inclusions in soft matrix [25]. NGV was also
observed in 2D metamaterials modeled as mass spring systems with nonlocal effect [26] and in
1D lattice chain incorporating nonlocal effects [27]. Moreover, in solids with multi-scale
microstructure, NGV is predicted for particular material parameters [28]. The present paper
focuses upon granular materials that are homogeneous at the scale of investigation but are
microscopically inhomogeneous. The aim of the present work is to develop non-classical wave
equations that addresses different aspects of wave dispersion in macroscopically homogeneous

granular systems.

To illustrate the issue of negative group velocity in granular media, we consider a discrete bead-
spring model of 20 grains as shown in Fig. la. This set of grains are taken to comprise the
representative volume element (RVE) of an infinitely extending 1D granular material. The grain-

pair interactions are modeled as linear elastic springs (denoted as k;,i=1,2,...,n) whose

stiffnesses have no asymmetry under tension or compression (such that the grains maintain

enduring interactions during the wave propagation). Further, the spring stiffnesses are randomly



distributed in a prescribed range and the grains are treated as rigid masses (denoted as

m,i=12,..,n) of radius of 0.5 mm with varying grain mass densities. The distributions of

grain-pair stiffnesses and grain mass densities used in our discrete simulations are shown in Fig.
1b and Fig. 1c. The dispersion curve of the considered structure can be now calculated from the
equations of motion for grains in the RVE, assuming a harmonic form of solution for their
displacement, and applying periodic boundary conditions. The computed dispersion relation for
this model in the irreducible Brillouin zone is illustrated in Fig. 2a. The dispersion curve shown
here has as many wave branches as the degrees of freedom in the RVE. Here we focus upon the
dispersion curves for the first two wave branches, one optical and the other acoustic, replotted in
Fig. 2b, which are at the lowest frequency range for comparison with the lowest frequency
modes that have been predicted by the GMA based micromorphic model of degree 1 [9]. The
acoustic branch in both models (discrete model and the model in [9]) shows similar
characteristics. However, the optical branch predicted by the discrete simulation shows negative
group velocity, which is in contrast to the previous format of GMA [9] which predicts positive

and increasing group velocity.

This apparent discrepancy in predictions by the GMA based continuum model can be resolved
by recognizing the existence of higher order inertia terms that appear in GMA based
micromorphic theory of degree 1 as shown in our recent work on extended granular
micromechanics approach [6]. We note that NGV is also predicted using classical micromorphic
continuum models, by considering the cross-linking terms between macro- and micro-scale
kinematic variables [29,30]. In contrast, the models that do not consider these cross-linking terms
predict positive group velocity in the optical branch [9,31,32]. In the present paper, we show that
models that do not consider the cross-linking of macro- and micro-scale kinematic variables
terms but include higher order inertia terms also predict NGV. Notably, the higher-order inertia
term is, typically, absent in the classical micromorphic theories of degree 1, although such
inertial terms are often included in 2" gradient elasticity (see for example [33-36]). The higher
order inertia terms arise from the variations in the micro-inertial properties as a combined effect
of grain-sizes, compositions and the grain scale morphology (granular arrangement). Vibration
and wave propagation characteristics of granular systems have been shown to be affected by
specific granular arrangements and varying grain sizes in the recent works of [37-39]. In

particular, mass ratio of the grains within a diatomic granular structure has been shown to affect



the width and location of the frequency band gap, which reveals the micro-inertial effects on the
band structure [17]. However, to the knowledge of the authors, no study has yet been done to
generalize the micro-inertial influence on the propagating waves in a granular structure. To this
end, we introduce an extended form of kinetic energy that includes the rates of micro-scale
kinematic measures and its conjugate higher order micro-inertia. Our aim in the present paper is
to highlight the role of higher order micro-inertia terms in the dispersive behavior of granular
materials through the example of wave propagation in an infinite 1D continuum with granular
microstructure. In particular, we illustrate how the grain mass density distribution can lead to
modulation of the dynamic behavior of materials with granular microstructure. A 1D system
proves to be expedient in describing the physics involved in the problem while reducing the

complexity of the system under study, compared to a general 3D case.

The organization of the paper is as follows. An overview of the granular micromechanics
approach is provided in section 2, where the kinematics of GMA based micromorphic theory of
degree 1 and the variational approach to obtain the balance equations are described. Section 3 is
devoted to study the longitudinal elastic wave propagation in a 1D material with granular
microstructure taking into account the effect of higher order inertia terms. Finally, section 4

presents the summary of the work and the concluding remarks.

2. GMA based micromorphic theory of degree 1
2.1. Kinematic variables

In this section, we briefly introduce the continuum framework for GMA. The reader is referred
to the references [6,15] for an extensive description of the approach. In GMA, a granular

structure is considered as a continuum with the volume V' bounded by the surface S where the
material point P can be identified using a macro-scale Euclidean coordinate system x; (see Fig.
3). The material point P is assumed to have the macro-scale mass density o, volume dV =V",
and differential mass dm= pdV = pV’. Denoting by X and x=y(X,#) the position vectors of

the point P at initial and current configurations (at time ¢), respectively, the macro-scale

displacement vector u ascribed to the point P is defined as u=x-X. The material point P,



microscopically, is an assemblage of grains and can be referred to as a statistical/representative

volume element (RVE) with volume dV =V". The positions of grains inside the RVE can be
distinguished utilizing a micro-scale coordinate system x; attached to the center of mass (COM)
of the material point P, parallel to the macro-scale coordinate system x,, and moving with the
macro-scale displacement u. Denoting by X' and x'=y'(X,X/,#) the position vectors of the

grain p centroid at initial and current configurations, respectively, the micro-scale displacement

vector u’ ascribed to the grain p is defined as u'=x'-X".

In the current format of GMA, we consider, in both micro- and macro-scales, infinitesimal

deformation in granular media. We also assume that macro-scale and micro-scale displacements
are both continuous and differentiable functions of x, and x, up to the desired order. Therefore,

we have the following form for the macro- and micro-scale displacements
ui:ui(xj,t), ul.':ui'(xj,x;.,t). (1)

For a micromorphic theory of degree 1, the micro-scale displacement u| can be written using a

polynomial expansion and keeping up to the second order terms with respect to x' about the

COM of the RVE as [6]
U =YX, WX, 2

In Eq. (2), v, and vy, are, respectively, second and third rank micro-deformation tensors only

functions of X and ¢ In Eq. (2) and henceforward, summation convention over repeated indices
is implied unless noted otherwise. Without loss of generality, we further assume that the micro-

deformation tensor y,, is symmetric with respect to indices j and & [6,40]. With regards to Eq.

(2), the total displacement vector for the grains inside the RVE can be written as
G =u +u =@ +y, X, +y Xx, . (3)

where @ =u, is adopted to harmonize the variable names with previous publications [6,8-10,15].

We introduce the following relative deformation tensors [6,30,40]

Vi=0, Wi Vi =Wis Wi “4)



where, henceforth, comma in the subscript denotes differentiation with respect to the spatial
coordinates. In Eq. (4), the differentiation is taken with respect to the macro-scale coordinate
system basis vectors. For a micromorphic theory of degree 1, and as a constitutive choice, we

assume that the relative deformation tensor y,, is zero. Such an assumption reads v, =y . As
noted in [6], this assumption changes the independent nature of w,, to a dependent one. We
further note that under additional assumptions of vanishing relative deformation tensor y,, the

theory will devolve to a 2" gradient theory, which is known to have wide applications [41-43]
and has been deduced through homogenization of certain lattice structures (see for example [44—

46]).

For the neighboring grains n and p, utilizing Eq. (3) and Eq. (4), the relative displacement

between grains can be decomposed as
G =g — g =0 -7+ 57 5)

where the following micro-scale kinematic measures are recognized

S =g, v, 5=y,

Lj% 2

S O =T ©)

v

In Eq. (5) and Eq. (6), we have defined the geometry moment measures J;* =[? -7 and
Ju =L =L, where [} represents the j™ component of the vector joining the COM of the
RVE to the grain q centroid. Moreover, 6" indicates the part of the relative displacement due to
the macro-scale displacement gradient, 6™ denotes the portion of the relative displacement due
to the fluctuation between the macro-scale gradient gg,x and the micro-scale kinematic measure

w,and 0 represents the part of the relative displacement due to the second gradient.

The macro-scale rotation, &, in the macro-scale coordinate system is defined as

1 1

K, = 5 it = Eelkigk,l ) (7



where the differentiation is with respect to the macro-scale coordinate system x, and e, is the
permutation symbol. Similarly, the micro-scale rotation, i_,, in the micro-scale coordinate

system is defined as

1

i > 'ua”li,l = E 1ki¢k,1 5 3

where the differentiation is with respect to the micro-scale coordinate system x;. The relative
rotation of two neighboring grains n and p inside the material point P only takes into account the
effect of the micro-scale rotation, i_, . We note here that the grain spin effect is not considered in
the current formulation of GMA. Utilizing Eq. (8), the relative rotation between two neighboring

grains n and p, 6, can be written as

1

O =eyy,J;" - (€]

J

The micro-scale kinematic measures introduced in Eq. (6) and Eq. (9) are considered

deformation mechanisms in which the deformation energy is stored.

2.2. Constitutive equations

We assume the macro-scale deformation energy density to be a function of the macro-scale
kinematic measures, i.e., of the form W = W(a(i,j), Vi Wix) > Where ¢7(i’j) is the symmetric part of

the macro-scale displacement gradient. Considering the assumed form of the macro-scale
deformation energy density with its mentioned components ensures an objective expression for
the energy density that is invariant to rigid rotation of the coordinate system. The macro-scale
stress measures of Cauchy stress, relative stress, and double stress are defined as conjugates to

the continuum kinematic measures, respectively as

oW ow ow

(10)

T, =—=—, O, =——, M, =—""7".
’ a¢(i,j) ’ 0y, ’ al//ij,k

y

The macro-scale deformation energy density can be identified in terms of the micro-scale

deformation energy density as



1 o caM com sag o
W= 2 W (o™, 50, 57,0 ), (11)

where W* represents the micro-scale deformation energy for the o interacting pair of grains.
Intergranular forces and moments can be defined as conjugates to the micro-scale kinematic

measures as

W ow
= %, {=Mm,g, =m™ . 12
25" /5 ¢ g o0 m (12)

Substituting Eq. (11) into Eq. (10), and using Eq. (6), Eq. (9), and Eq. (12), it follows that the
macro-scale stress measures can be expressed in terms of the intergranular forces and moments

and the geometry moment measures [15]. For a non-dissipative linear system a quadratic form of

micro-scale deformation energy density W“ can be considered. To this end, the micro-scale

kinematic measures in Eq. (6) and Eq. (9) can be decomposed into their normal () and two other

tangential (s and #) components, with the normal being along the direction of the line connecting

the centroids of the two grains. As an example, the micro-scale deformation energy density used

in this paper can be expressed in the quadratic form W = %ZZKI.“C (51.“: )2 +%ZGIF‘” (Q“” )2
¢ i i

with i=n,s,t, and {=M,m,g, and where different K and G parameters represent grain-pair
stiffness parameters for the macro-scale, M, micro-scale, m, and second gradient, g, mechanisms
involved in the deformation [15]. We note that the assumed form for the micro-scale deformation
energy density W“ does not consider the terms that cross-link different micro-scale kinematic
measures in the current analysis. The assumed form of micro-scale deformation energy density,

W*, leads to the macro-scale constitutive relationships presented below [15,47]

u

_ M _(m _ g
7, =Cuéy> O; = Cy‘kﬂ/ ws M = ( kimn T Ajimn )V/lm,n . (13)

In Eq. (13), Cxl and Cj, are fourth rank stiffness tensors, and 43, and 4, are sixth rank

ij ijkimn
stiffness tensors, defined as functions of the grain-pair interaction stiffnesses K and G and
geometry moment measures for all the grain pairs within the RVE. In Eq. (13), the superscript M
denotes macro-stiffness, m denotes the micro-stiffness, g denotes the second gradient stiffness,

and u represents the rotational stiffness.



2.3. Governing equations of motion

In this paper, we obtain the equations of motion based on the principle of stationary action.
Hamilton’s principle states that the action functional is minimum, and is expressed as

sf'(r 7 : (14)

)

where the terms 7, ¥ , and ¥ are defined in what follows. i " is the total kinetic

L4

energy, where T is the kinetic energy density, utilizing Konig's theorem [48] defined as [6]

1 1 .. ) .. -
I ] . . - s
)5 P G ) (15)

In Eq. (14), p’ is the micro-scale mass density per unit macro-volume, which can be non-
uniform within the RVE (a function of the micro-scale coordinate system x; ), and each over-dot

henceforward represents differentiation with respect to the temporal coordinate. Moreover, the

following inertia measures have been defined [6]

1 ! ! 1 r.r ! 1 1ot ! 1 ror !
p = ?J'V'p dV 4 p_/m = VIV'p ‘x_jxde 4 pjmn = ?J'V'p ‘x_j‘xmxl1dV 4 pjkmn = VJ.V,p ‘xj‘xkxm‘xndV

,(16)

where, clearly, the macro-scale mass density p and other measures of inertia depend on the
micro-scale mass density p' and its distribution within the RVE. In what follows, we consider
that the material is homogenous at the macro-scale, that is the macro-scale mass density p is
independent of the macro-scale coordinate system, x,. The kinetic energy density defined in Eq.

(15) 1s an extension of the ones introduced in earlier publications for GMA based micromorphic
theory of degree 1, e.g. in [8—10,15]. The additional terms in the description of the kinetic energy
affect the prediction of the dynamic behavior of granular media by introducing, or re-allocating,
energies in the existing degrees of freedom of the problem. Moreover, the additional terms are
accompanied by higher order inertia measures that were otherwise absent in [8-10,15]. Clearly,

the micro-scale mass density distribution in the RVE can alter the higher order inertia measures,



while potentially keeping the macro-scale mass density p constant. This allows us to imagine

two morphologically different systems with identical constituents and equal macro-scale mass
density showing different wave propagation characteristics or two morphologically identical
systems with different constituents and equal macro-scale mass density showing different wave
propagation characteristics. This reveals (micro-) morphological and compositional effects on
vibration characteristics of granular media. Now if the grain-pair interactions between all
constituent grains are kept constant, the dynamic properties of the granular medium changes
solely because of the change in inertia measures. This aspect is elaborated in the following

sections.

In Eq. (14), 2 7 is the total macro-scale deformation energy, and Vs the total

vy

external energy where its form is inspired by the expression for the total macro-scale

deformation energy ¥, with components described below. Thus from Eq. (14) we get [6]

U] . ]

J.IV|:(T[/+GH.)’j+ﬁ—p1”J y dt+J.J.V[U,-j+M-,-k,k+q)g,-_,0_,-k!" h dVdt

7

ot l (17)

+J1.J.S[tl.— T +0, ]5¢de¢+![ [ ; pjk,l " )nkpt//zdedt:O

In Eq. (17), f; is the non-contact body force per unit volume, ¢, is the contact traction defined as

1

a surface force per unit area, @, is the non-contact body double force per unit volume, and 7}, is

the contact double traction defined as double force per unit area. Moreover, n; represents the ji

component of the normal to the surface S. In what follows, we assume zero non-contact body

forces and double forces.

Equations of motion and natural boundary conditions are obtained, utilizing the fundamental

lemma of calculus of variations and the constitutive relations in Eq. (13), as

(Q%l inz )¢k i z;kl':”kl, P> (18a)
(Azjgklmn + A:/c/mn )‘// Imnk C;21¢k ! C;/izl/’kl =p jk@n C, (18b)

(Tt/JFO'tj)”.f =1 (19a)



(ijz'.” . )”k =T, (19b)

It is noteworthy that the term p,, 1"  in Eq. (18b) is typically not considered in micromorphic

Jklmi
models of degree 1, such as the previous models found in [8-10]. We further note that the 3™
rank inertial tensor appears in the boundary conditions and not in the governing equations. Note
that in the 2" gradient theory presented in [49], the 3™ rank inertial tensor appears in the

governing equation, while there is no discussion of the boundary conditions.

3. Longitudinal elastic wave propagation in a 1D continuum with granular

microstructure

We here focus on the longitudinal wave propagation in an infinite 1D continuum in macro- and

micro-scales along the x, axis. A representation of the general problem is shown in Fig. 4, where
different grain colors represent different micro-scale mass density p’ and elastic properties. For
brevity, we drop the subscript 1 from the axis x, and denote it by x. Similarly, we represent ¢,
and v, by ¢ and w,and CY, C" , and 4%, by C”, C" and 4%, respectively. Note that

in the 1D case under study, 4,,,, =0 [15]. The equations of motion, Eq. (18), for the current

1D case reduce to the following equations

(C"+C")g.~Cy. =p, (20a)
Ay +C"¢ —C'y=pt" " (20b)
Note that in Eq. (20), p,, and p,,,, are the inertia measures defined in Eq. (16).

For the equations of motion in Eq. (20), we assume plane wave solutions, solutions harmonic in

both position, x, and time, ¢, expressed as

¢ = Re(Aiei('“_”’) ), W= Re(Bei(k”_“’t)) (21)



where k is the angular wavenumber, @ is the angular frequency, and ;> =—1. Furthermore, 4
and B are the amplitudes and can assume complex values. Throughout this paper, “angular
frequency” and “angular wavenumber” are referred to as “frequency” and “wavenumber” for
brevity and have the units of radians per second and radians per meter, respectively. Upon
substituting Eq. (21) in Eq. (20), the equations of motion can be recast in the following

generalized eigenvalue problem

2k + k7 2k A 1 0 A
@ 2 o 2 zCAz 2 =0’ 2, 472 > (22)
ck ek +c, || B 0 & +&k ||B

where we have defined the macro-scale, micro-scale relative deformation, and second gradient

velocities ¢,, ¢, and ¢, respectively, and two characteristic lengths ¢, and &, , respectively, as

c c" A

002:—, ci:—, 6‘12:—’ 812:&, g;:—pllll X (23)
P P P P P

Eq. (22) has nontrivial solution if

(cok® +c3k° -0 ) (6], + ¢ — 8]0 — 5K 0" ) - cik” =0. (24)

Equation (24) is the dispersion relation for the problem under study and can be considered as the
solution for an eigenvalue problem with matrix form of equations given in Eq. (22) (see Refs.
[50,51] for rigorous mathematical description regarding phononic eigenvalue problems). This
equation relates the frequency and the wavenumber and can be utilized to obtain dispersion
curves. However, it is useful to nondimensionalize Eq. (24). To this end, we define the

characteristic time p, dimensionless velocities, y,, and y,, dimensionless term corresponding to

inertial effect, y, dimensionless frequency, 77, and dimensionless wavenumber, £, as

&, C C, &
p:_la 7A:_Aa 71:_]’ Zzg_za n=po, §:glk' (25)

Using Eq. (25), the dimensionless form of the dispersion relation in Eq. (24) is

(7’ =& =738 -r& v+ 1'En)-ri& =0 (26)



The maximum order of the dimensionless frequency 7 in Eq. (26) is four, meaning that there
will be four solutions in the form 7 =7(£). Two of the solutions are forward and the other two

are backward wave branches. The forward and backward wave branches are symmetric with

respect to the line 7 =0 in the dispersion curve with horizontal and vertical axes as & and 77,
respectively. Therefore, we only consider the forward wave branches here. Furthermore, for each

wave branch, the dimensionless phase velocity, v, , and group velocity, v, , are obtained as

p o, dn 27)
g fdé

Before analyzing the solutions of Eq. (26), it is fruitful to discuss the physical meaning of the

parameters involved in Eq. (26). The dimensionless velocity y, is defined as the ratio of two

velocities, whose definition can be simplified to 7, =,/—;; . As aresult, y,, is a function of the
C

macro-stiffness and micro-stiffness and represents the relative magnitude of micro-stiffness with

respect to the macro-stiffness. The dimensionless velocity p, can also be simplified to

1 [ A4® . . . . .
Vy=— o where contrary to the dimensionless velocity y,, it is a function of both
&

. o ’ A* .
stiffnesses and inertia measures. The term o represents the static length scale for the current

problem, therefore, the value of y, is a ratio between the static and the dynamic length scale &, .

Keeping the granular structure unchanged in terms of the distribution of masses, as the second

gradient stiffness increases, so does the value for y,. On the other hand, keeping the stiffnesses
of the granular material unchanged, as the second order inertia measure p,, increases (or

equivalently as & increases), the value for y, decreases. Finally, the expression for the

dimensionless parameter y can be recast as y = 4/&121“ , which encompasses the effect of
P

inertia. For a case where the micro-scale mass density p’ is constant, using Eq. (16), the

expression for the dimensionless parameter y is simplified to »=1.1583. A different



distribution for the micro-scale mass density p’ will result in different values for y, as

exemplified in Fig. 5 for a variety of micro-scale mass density distributions.

Returning to the dispersion relation in Eq. (26), we consider a granular medium with material
constants y,=0.7, y, =10°, and x=1.1583 to explore the GMA predictions of wave
propagation characteristics. The chosen values are taken to be representative of a case in which
band gaps are present [9,15]. The solutions of Eq. (26) when solved for dimensionless frequency
are plotted in the dispersion curve presented in Fig. 6a. There exists one acoustic branch starting
at the origin, and one optical branch starting at a nonzero dimensionless frequency. The starting

dimensionless frequency point for the optical branch can be obtained using Eq. (26) and
substituting £ =0. This results in dimensionless frequency 77 =y, as shown in Fig. 6a, or a real

m

frequency @ = . The asymptotes of the two wave branches can be obtained, discarding

11
second order terms from Eq. (26), and solving for the dimensionless frequency. As a result, the

asymptotes are

n=7 g p=—s 28)

or in terms of real frequency and wavenumber,

M m g
= /ﬁk, = +k (29)
P \Iplmk + 05

These asymptotes are shown in Fig. 6a. The asymptote 77 = /3> +1& is a straight line and as seen

in Fig. 6a, it fits the optical wave branch at large wavenumber and frequencies. On the other

%<
NZ'E+1

acoustic wave branch takes. For the very small value of y, taken in this example, this asymptote

hand, the asymptote 7 = is not a straight line and shows the asymptotic value the

can be approximated by 77 =0. This means that the acoustic branch ceases to propagate in very

large wavenumbers (small wavelengths). For some frequency range depicted by a green box in



Fig. 6a, there is no real solution for the wavenumber. This frequency range is called frequency
band gap (or stop band), and is associated with frequencies that do not propagate through the
medium. Fig. 6b shows the phase and group velocities associated with the acoustic and optical
branches. The difference between the phase and group velocities for each wave branch can cause
a change in the shape of propagating pulse. The phase velocity values for both wave branches
decrease as wavenumber becomes larger, therefore, the granular material with the assumed
material parameters shows normal dispersion. One interesting observation in Fig. 6b is the
existence of certain wavenumbers in which the signs of phase and group velocities
corresponding to each wave branch are opposite. This phenomena is called negative group
velocity (NGV) in the literature and is associated with backward propagation of the peak of the
pulse [52]. From a physical viewpoint, NGV in a material with granular microstructure results
from the resonance of sub-wavelength micro-structural elements (grain-scales) inherent in
granular materials. From a mathematical viewpoint, the NGV results from the presence of the
higher order inertia conjugate to rate of micro-deformation that appears in the presented
continuum model, which leads to the term ... with both time and space derivatives in the
equations of motion. As is seen in Fig. 6b, the NGV in the granular material is predicted to be
wavenumber (frequency) dependent. Since group velocity is an integral entity depending on the
collective behavior of a number of harmonics in relation to each other, the occurrence of NGV
suggests smaller effective dispersion in the granular material [28]. To evaluate the physical
mechanisms for the phenomena, we have performed parametric studies to investigate how the
material parameters contribute to the appearance of NGV. Results (not shown here) revealed that

for fixed values of y, and y, larger values of the parameter y, (or equivalently larger micro-
scale stiffness C” compared to a fixed value for the macro-scale stiffness C") result in
increasing NGV. For fixed values of y, and y, larger values of y, (which represents the ratio of

static and dynamic length scales) result in positive group velocity, while NGV is observed for

small values of y,. For fixed values of y, and y,, larger values of y predict higher NGV. To
summarize, granular media with larger values of y, and y, and smaller value for the parameter
7, are expected to show NGV in their optical branch. The parametric studies show that the NGV

phenomena is controlled by the micro-deformation and its rate whose energy content can be

modulated by parameters, y,, 7, and y. Importantly, these parameters represent the effect of



micro-mechano-morphology of granular material. For example, emergent micro-deformation
phenomena for static case can be observed in defective granular structures as discussed in [47] or
in granular structures with particular grain-pair interactions as in [16], as well as in discrete
mass-spring models that include interactions with non-nearest neighbor [26,27]. It is also
worthwhile to mention that NGV in longitudinal wave propagation has been observed in the
context of axially moving materials with granular microstructure [10]. NGV phenomenon has
also been predicted for transverse waves in granular systems with particular grain-pair

interactions [9].

As mentioned earlier in the paper, the current format of equations of motion for the problem
under study includes an additional term corresponding to the effect of higher order inertia. It is
worthwhile to study how this additional term contributes to the wave propagation characteristics
of granular medium. Therefore, we consider two cases, where in one case the higher order inertia

P 18 taken to be zero, reducing the equations of motion in Eq. (20) to the one adopted in [9],

and in the other case the higher order inertia assumes a nonzero value and Eq. (20) holds fully.
The dispersion curve of these cases are illustrated in Fig. 7a and are referred to as the current
model and the reference model, respectively. In both cases we have used the same parameter

constants used to produce the dispersion curve for Fig. 6, except for the dimensionless value y,

which in the reference model is zero and in the current model has been assumed 1.4 to enhance
the contrast between the findings of the two models. Results in Fig. 7a reveal the fact that the
additional term corresponding to higher order inertia affects the acoustic wave branch in large
wavenumbers, while altering the behavior of the optical wave branch at small wavenumbers. In
other words, the acoustic wave branches for the two models agree in small wavenumbers, and
the optical wave branches for the two models agree in large wavenumbers. To investigate such
observations, we consider two regions of wavenumbers. In small wavenumbers, Eq. (26) can be

approximated by
(£ +1)n* =((77 + 73 +1)& 473 )" +73€" =0. (30)

Eq. (30) is a quadratic equation in 7 and can be easily solved to give the equations for the

acoustic and optical wave branches at small wavenumbers. For the optical branch, the first term

on the left side in Eq. (30) is not small and contributes to the solution. This term contains the



information about the micro-scale mass density distribution, and therefore, the optical branch
behavior is affected by the higher order inertia in small wavenumbers. For the acoustic branch,
however, further simplifications can be made. Since the acoustic branch starts at zero frequency,
the first term on the left side can be neglected. As a result, the frequency solution for the acoustic

wave branch at small wavenumbers can be simplified to

. Vas _ (31)
Jr+r+1)E +7

As is clear from Eq. (31), the acoustic wave branch frequency solution is independent of higher
order inertia effect in small wavenumbers. The same argument can be stated for the large
wavenumber (small wavelength) behavior of the two wave branches using the asymptotes in Eq.
(29). Clearly, the optical branch is independent of the higher order inertia in large wavenumbers,

while the acoustic branch is affected by the higher order inertia.

We further note the change in stop band frequency range predicted by the two models, where the
current model predicts stop band of frequencies lower than the one predicted by the reference
model. Based on Fig. 7c and Fig. 7d, we note that, for the acoustic branch, the reference model
predicts a diminishing positive group velocity and decreasing phase velocity for large
wavenumbers, while the current model predicts a diminishing negative group velocity and
vanishing phase velocity. For the optical wave branch, large wavenumber behavior of both
models is the same, while in small wavenumbers, we observe that the current model predicts
negative group velocity, which gradually reaches zero, and becomes positive as wavenumber
increases. We further observe the change of location for the frequency stop bands in the two
models, where the current model predicts lower frequency ranges for the band gaps, compared to
the prediction of the reference model. While the model predictions can be extended to very large
wavenumbers and frequencies, it is understood that the model predictions below wavelengths of
the size of the RVE are not generally reliable as the homogenization is done in the scale of RVE.
For example, for grains with diameters in the order of millimeters, and an RVE size in the order
of 1000 grains, the dimensionless wavenumber limit of reliability on the theory predictions is
less than 0.4. The reference model and current model predictions in the corresponding limiting

wavenumber range are depicted in Fig. 7b. Finally, assuming negligible values for the



dimensionless parameters y, and y,, the dispersion curve in Eq. (26) simplifies to the
nondispersive relation 77 =¢& which in terms of real frequency and wavenumber reads @ =c k.

Therefore, the model developed here simplifies to a classical model.

4. Conclusions

In this paper, we have theoretically investigated the elastic wave dispersion characteristics in an
infinite 1D continua with granular microstructure. We have focused on the effect of higher order
inertia terms that appear in the enhanced micromorphic model based upon GMA [6]. The
additional term, which is absent in the previous formats of micromorphic models of degree 1
(including those presented by the authors [8-10,15]), has a profound effect on the dynamic
behavior of granular media. The results presented in the current paper, when compared to the
previous model results, show, not only better agreement with the wave propagation
characteristics observed experimentally and numerically in the literature, e.g., in [17,53,54], but
predict additional effects. In particular, the higher order inertia terms most-noticeably affect the
prediction of the optical wave branch behavior. It is remarkable that the higher-order inertia
terms are controlled by the micro-scale mass density distribution in the RVE. Thus, it is possible
to conceive of homogeneous materials with the same macro-scale mass density and different
higher-order inertia. In these materials, the re-allocation of kinetic energies in the micro- and
macro-scale degrees of freedom can introduce interesting modulation of wave propagation. The
theoretical results reported in this paper can be a precursor and motivation for an experimental
effort, which can otherwise be difficult to conceive, plan and execute given the multitude factors
that can affect wave propagation and their measurements. Moreover, these theoretical results can
promote the development of dynamic identification procedure that can be applied for simulating
wave propagation in random granular assemblies across a wide range of frequencies. We note
that the existing dynamic discrete models typically include dissipation, such that the intermixing
of microstructural, micro-inertial and imposed dissipation effects confounds the results of wave

propagation simulations.

The micromorphic based continuum model presented in this paper assumes non-dissipative

linear behavior in micro- and macro-scales. While many granular systems feature nonlinear



grain-pair interactions, understanding linear elastic behavior has practical significance for small
amplitude vibrations, where assuming a quadratic potential is valid. Furthermore, the considered
model is specialized for infinitesimal deformations, and therefore, it is applicable to small

amplitude vibrations.

For an accurate description of a material with granular microstructure, one needs complete
information about the micro-mechano-morphological aspect of the granular material, e.g., the
position, size, and shape of the grains, their inertial properties, and the interaction mechanisms
between all grains in contact. GMA treats the problem in an averaged sense by reducing the
number of parameters from thousands (if not millions) to a few continuum material constants.
The analysis presented in the current paper can be potentially used to identify the continuum
material parameters of granular media from experiments or numerical simulations. To describe a
one-dimensional material with granular microstructure using GMA introduced in the paper and
the assumed form of deformation energy densities, one needs to identify 6 material constants.
These constant are the macro-scale mass density, p, micro-scale mass density, p’, and the
knowledge on its distribution (which results in the dependent inertia measures p,, and p;;4;),
the RVE size, L, the macro-scale stiffness, C*, the micro-scale stiffness, €™, and the second
gradient stiffness, 49. These 6 material parameters can be identified by performing a constrained
optimization problem with the cost function being the difference between the results of the
predictions of the theory and the experimental or discrete simulation results. A similar approach
can be found in [29,55,56] where the material constants of a micromorphic model were
determined based on experimental, atomistic, or finite element simulation results through phonon
dispersion relations. We also note the identification methods discussed for static elastic

properties in [47,57].

Furthermore, it is noteworthy that while atomistic and discrete simulations can describe the
dispersive behavior of materials in very short wavelengths (large wavenumbers), when compared
to such simulations, a micromorphic-based continuum model is able to describe the behavior of
materials with good accuracy up to wavelengths suitably larger than the corresponding
characteristic length of the system [29,56]. For smaller wavelengths, the accuracy of the results
decreases and the predictions of the theory needs further investigation by comparison with

experimental or discrete simulation results. It is encouraging to note that, the predicted zero



group velocity in the optical branch suggesting non-propagating wave mode, has been observed
for granular crystals with nonlinear grain-pair interactions in hybridized modes [58]. The use of
the GMA based micromorphic model expands the applicability of continuum models to regions
beyond what classical continuum mechanics is able to predict, while revealing the relevant

micro-mechanisms.

It is evident that the current approach is useful for not only describing the dynamic behavior of
natural granular materials, but the methodology can be applied to design granular metamaterials
for vibration mitigation purposes. Notably, such design can utilize granular-structure, grain-pair
interaction properties as well as the micro-scale mass density effects in the macro-scale behavior
of such media. We further note that since the GMA links the grain-scale behavior to the macro-
scale consisting of millions of particles, the resultant continuum model provides a systematic
approach to explore the influences of both micro- and macro-scale parameters, which often have
confounding and contradicting effects on the wave propagation behavior. We also note that a
large number of published literature is focused upon problems that are restricted to study the
systems with unit cells of one or very few grains, with limited variation in grain composition
[17,53,54,59—-61] The advancements in additive manufacturing technology, however, allows us
to envision and realize granular metamaterials with specified micro-scale mass density
distributions resulting in tailored vibration characteristics predicted in the present paper. Further
verification of the continuum predictions presented here will be performed using discrete

simulations with grains in future publications.
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List of Figures

Fig 1. (a) Schematic of the 1D RVE modeled as masses and springs, (b) the variation in the
grain-pair stiffness in the RVE, and (¢) the variation in the grain mass density in the RVE.

Fig 2. (a) Dispersion curve from discrete simulation of the granular structure modeled as masses
and springs, and (b) the first two wave branches in the dispersion curve from discrete simulation
of the granular structure.

Fig 3. Schematic of the continuum material point, P, and its granular microstructure magnified
for better visualization, where the x’ coordinate system is attached to its center of mass.

Fig 4. Schematic of a 1D continuum in x, direction with granular micro-structure in x;

direction. A material point in the macro-scale coordinate system is a collection of grains that can
differ in micro-density, micro-morphology and micro-mechanical properties, represented here by
grains with different colors.

Fig 5. Examples of possible micro-scale mass density p" distributions in a 1D RVE and their

correspondent dimensionless value y .

Fig 6. (a) Dispersion curve for a 1D material with granular microstructure. (b) Phase and group

velocities for acoustic and optical wave branches in a 1D material with granular microstructure.

Fig 7. Dispersion curve comparison between the reference (Ref.) model in [9] and the current
(Curr.) model in (a) dimensionless wavenumbers ranging from 0 to 3, and (b) dimensionless
wavenumbers ranging from 0 to 0.4. (c) Phase velocity comparison between the reference model
and the current model. (d) Group velocity comparison between the reference model and the

current model.



k19 My kzo

m k m k
O =+O=0O~ - O
RVE @

a
1450 | 68‘ 2100
— (
s 2
;i; z 1000
=]
= 400 =
«
0 B g
1 10 20 1 10 20
grain number grain number

(b) (©)

Fig 1. (a) Schematic of the 1D RVE modeled as masses and springs, (b) the variation in the
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Fig 2. (a) Dispersion curve from discrete simulation of the granular structure modeled as masses
and springs, and (b) the first two wave branches in the dispersion curve from discrete simulation

of the granular structure.



X3,%;

Fig 3. Schematic of the continuum material point, P, and its granular microstructure magnified

for better visualization, where the x’ coordinate system is attached to its center of mass.

Fig 4. Schematic of a 1D continuum in x, direction with granular micro-structure in x;

direction. A material point in the macro-scale coordinate system is a collection of grains
that can differ in micro-density, micro-morphology and micro-mechanical properties,

represented here by grains with different colors.
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Fig S. Examples of possible micro-scale mass density o' distributions in a 1D RVE and

their correspondent dimensionless value y .
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Fig 6. (a) Dispersion curve for a 1D material with granular microstructure. (b) Phase and

group velocities for acoustic and optical wave branches in a 1D material with granular

microstructure.
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Fig 7. Dispersion curve comparison between the reference (Ref.) model in [9] and the current
(Curr.) model in (a) dimensionless wavenumbers ranging from 0 to 3, and (b) dimensionless
wavenumbers ranging from 0 to 0.4. (¢) Phase velocity comparison between the reference model
and the current model. (d) Group velocity comparison between the reference model and the

current model.



