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Abstract. We describe the image of general families of two-dimensional representa-
tions over compact semi-local rings. Applying this description to the family carried by

the universal Hecke algebra acting on the space of modular forms of level N modulo
a prime p, we prove new results about the coefficients of modular forms mod p. If

f =
∑∞
n=0 anq

n is such a form, for which we can assume without loss of generality that

an = 0 if (n,Np) > 1, calling δ(f) the density of the set of primes ` such that a` 6= 0,
we prove that δ(f) > 0 provided that f is not zero (and if p = 2, not a multiple of

∆). More importantly, we prove, when p > 2, a uniform version of this result, namely

that there exists a constant c > 0 depending only on N and p such that δ(f) > c for
all forms f except for those in an explicit subspace of infinite codimension of the space

of all modular forms mod p of level N . Forms in this subspace, called special modular

forms mod p, are proved to be closely related to certain classes of modular forms mod p
previously studied by the author, Nicolas and Serre, called cyclotomic and CM modular

forms mod p.
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1. Introduction

This article has two parts. In the first, we describe the image of general families of two-

dimensional representations of a pro-finite group. In the second, we use these descriptions

to study the behavior of the coefficients at primes of modular forms modulo an odd prime

p, focussing especially on results which are uniform in the modular form.
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2 J. BELLAÏCHE

1.1. Image of family of representations. Let Π be a profinite group, A a compact local

ring of maximal ideal m. The residue field F = A/m is thus a finite field, and we assume

throughout §1.1 that its characteristic p is different from 2.

The families we are interested in are families of two-dimensional representations of Π

carried by A. As past work using family of Galois representations has made clear, it is

important for many applications to consider not only families of representations that can

be described as a representation of Π on a rank-two free A-module, but more generally

two-dimensional pseudo-representations of Π over A. Hence we consider a family defined

as a continuous two-dimensional pseudo-representation1 (t, d) of Π over A.

We put certain restrictions to the family we consider. First, the residual representation

of the family may be irreducible or the sum of two characters. In the latter case, we assume

that those two characters are distinct, and also that Π satisfies the p-finiteness condition

of Mazur. Second, we assume that as a topological W (F)-algebra, A is generated by t(Π).

Third, we assume that d is constant, that is for every g ∈ Π, d(g) is the Teichmüller lift of

d̄(g). The last two are not serious restrictions: the second assertion can always be made

true by replacing A by its sub-algebra generated by t(Π), the third by twisting (t, d) by a

suitable character.

Though it is not always true that (t, d) comes from a representation ρ : Π → GL2(A),

there always exists a Generalized Matrix Algebra (or GMA, see [3, §1] or below, §2.2) R over

A and a representation ρ : Π→ R∗ with trace t and determinant d. We may assume that

R is faithful (see below 2.2), and generated as an A-module by ρ(Π), and if we do, R and

ρ are unique up to unique isomorphism, R has a natural topology and the representation

ρ is continuous.

We set G := ρ(Π) and call this closed subgroup of R∗ the image of our family (t, d). The

aim is to describe as precisely as possible the group G. We shall handle this group using

a slight generalization (from the case R = M2(A) to the case of arbitrary GMAs) of the

remarkable theory of Lie Algebras of Pink (see §4). This theory attaches to every closed

subgroup Γ of SR1 := {x ∈ R∗, detx = 1, x ≡ Id (mod radR)} a closed Lie subring

L = L(Γ) of (radR)0 = {x ∈ radR, trx = 0}. Contrarily to the classical theory of Lie

algebras, the subgroup Γ is not uniquely determined by L = L(Γ). However, its closed

derived subgroup Γ2 is, as well as all the further terms of its descending central series, so

that the knowledge of L gives us a good, if partial, grasp on what Γ is. We apply this

theory to the subgroup Γ = G ∩ SR1, which has finite index in G.

We obtain a complete description of the Lie ring L after extending the scalars from Zp
to W (F), the ring of Witt vectors of the finite field F. Note that W (F)/Zp is only a small

extension, finite and unramified, which is harmless in the applications to modular forms (we

do not extend the scalars to A, which would be much more destructive). The description

of W (F)L we obtain depends, unsurprisingly, of the nature of the projective image of

1We use Chenevier’s notion [6] of pseudo-representations, which is the most general and the most elegant,

though since we assume p > 2 for most of this paper, Chenevier’s notion is equivalent to Rouquier’s one.
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the representation ρ̄. There are five cases to consider, according to the projective image

being exceptional (that is, either isomorphic to A4, S4, A5) or large (that is isomorphic to

PGL2(Fq) or PSL2(Fq) for some subfield Fq of F), dihedral of order > 4, dihedral of order

4, cyclic of order > 2, cyclic of order 2.

Rather than giving all the results, which the reader will find in Theorems 6.4.1, 6.5.1,

6.6.1. 6.7.1 and 6.8.1, let us just illustrate them by giving two examples:

• in the large or exceptional projective image case, we prove that there exists a

closed W (F)-submodule I1 of A such that I2
1 ⊂ I1 and W (F)L =

(
I1 I1
I1 I1

)0
is the

set of matrices of trace 0 with coefficients in I1;

• in the cyclic of order > 2 projective image case, we can write the GMA R =(
A B
C A

)
with B,C two A-modules with a bilinear map B × C → A denoted

as multiplication, and we prove that there exists a W (F)-module I1 such that

BC ⊂ I1 ⊂ A satisfying I3
1 ⊂ I1 and W (F)L =

(
I1 B
C I1

)0
.

Moreover, we prove in each case that the description of W (F)L we obtain is optimal, in

the sense that any W (F)-Lie algebra satisfying the given description can be obtained from

a family of representations of the type considered. In other words, nothing more can be

said on W (F)L.

In many cases (for instance when F = Fp or when the projective image of ρ̄ is large, or

when this image is cyclic of order n such that gcd(n, p − 1) > 2, etc.) we obtain, better

than a description of W (F)L, a description of L which we again prove to be optimal. We

refer the reader to the Theorems cited above for the precise statements.

Recently there has been a surge in activity concerning the study of the image of families

of Galois representations, represented by papers by Hida [12], Lang [15], and Conti-Iovita-

Tilouine [8]. In these articles, the authors study the image of families of Galois representa-

tions attached to Hida or Coleman families of modular forms. Among the five possibilities

concerning the projective image of ρ̄ enumerated above, these authors only consider two,

namely the cases when the projective image of ρ̄ is large/exceptional or dihedral of order

> 4. Their main result is that except if all forms in the family is CM, and under various

supplementary assumptions, the image G of the family is large, in the following sense:

there is an explicit subring A0 of A such that the family of representations is virtually

defined over A0 (i.e. is defined over A0 after restricting it to an open subgroup Π0 of the

Galois group, which is explicit in their work), and the image G0 of Π0 contains a non-trivial

congruence subgroup of SL2(A0). (Actually, the result of Conti-Iovita-Tilouine is slightly

weaker, as it only proves this for G0 replaced by its Zariski closure).

In Section 7 (which is not used in the rest of the paper), we prove a similar result

in the case where ρ̄ is large or exceptional, dihedral of order > 4 and cyclic of order

> 2. In the two remaining cases (cyclic of order 2, and dihedral of order 4), we show in

section 9 that no result of this type is to be expected. Our result is more general than the

ones mentioned above in that it works for almost arbitrary families of representations of
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an arbitrary profinite group Π, instead of only specific families of representations of the

absolute Galois group of Q (though it fails to deal with a few representations that Lang’s

result is able to deal with). Dually, our methods are much more elementary, in that we use

only basic group theory and Pink’s theory of Lie algebras, rather than the theory of classical

and p-adic modular forms, the structure of the Galois group, and advanced Hodge-Tate

theory as in the afore-mentioned articles.

1.2. Coefficients of modular forms.

1.2.1. Individual density result. Let N ≥ 1 be an integer, p any prime, k ∈ Z/(p−1)Z. For

F a finite extension of Fp, we shall denote by Mk(N,F) the algebra of modular forms of level

Γ0(N), weight k, with coefficients in F, in the sense of Swinnerton-Dyer. If f =
∑∞
n=0 anq

n

is an element of Mk(N,F), then the set {` prime , a` 6= 0} is Frobenian, as was known

already to Serre in the seventies (cf. [29]), and therefore has a density, which is a rational

number between 0 and 1. We shall denote this number by δ(f), and refer to it as the

density of f .

Let Fk(N,F) be the subspace of Mk(N,F) of forms f =
∑
anq

n such that an 6= 0 ⇒
(n,Np) = 1. Equivalently, Fk(N,F) is the intersection of the kernels of the operators U` for

` prime, ` | Np, defined by U`(
∑
anq

n) =
∑
an`q

n (those operators leave Mk(N,F) stable,

see [13].) When studying δ(f), there is no loss of generality in supposing f ∈ Fk(N,F),

because for any f =
∑∞
n=0 anq

n ∈Mk(N,F), the q-series

f ′ =

∞∑
n=0,(n,Np)=1

anq
n

belongs to Fk(N2,F) and obviously satisfies δ(f ′) = δ(f). We shall henceforth restrict our

attention to the subspace Fk(N,F) of Mk(N,F).

Example. We let ∆ ∈ Fp[[q]] be the product q
∏
n≥1(1 − qn)24. It is the reduction mod

p of the q-expansion of the unique normalized cuspidal eigenform of weight 12 and level 1,

and ∆ =
∑
n≥1 τ(n)qn where τ is the reduction mod p of the usual Ramanujan τ -function.

One has ∆ ∈ M12(N,Fp). Let us denote by ∆′ (depending implicitly of p and N) the

q-series
∑
n≥1, (n,Np)=1 τ(n)qn, which belongs to F12(N,F). For p = 2, N = 1 one has

∆ = ∆′ =
∑
n odd qn

2

Theorem I. Let F be a finite extension of Fp, k ∈ Z/(p− 1)Z and f ∈ Fk(N,F). Assume

that f 6= 0 (resp. f 6∈ F∆′ if p = 2). Then δ(f) > 0.

The theorem will be proved in §10.3.

Corollary. Let f =
∑
anq

n, g =
∑
bnq

n ∈ Fk(N,F). Assume that a` = b` for all primes

` except for a set of density 0 (and that a1 = b1 if p = 2). Then f = g.

Proof — Since δ(f − g) = 0, Theorem I implies f − g = 0 if p > 2, and f − g ∈ F∆′ if

p = 2. In this case, since a1(f − g) = 0, f − g = 0 as well. �
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1.2.2. Uniformity? We now turn to the main subject of this paper, the question of uni-

formity in the lower bound of Theorem I: when f varies in the infinite-dimensional space

Fk(N,F), we know that δ(f) > 0, but is it possible that δ(f) goes to 0, or will δ(f) stay

bounded away from 0, at least when f is supposed to stay in some large subset of Fk(N,F)?

This question of uniformity is not only natural, but of crucial importance if we hope to

obtain new results for coefficients of weakly holomorphic modular forms of half-integral

weight, such as the inverse Dedekind η-function, η−1, whose coefficients are the value of

the partition function p(n). Indeed, those weakly holomorphic modular forms are in an ap-

propriate sense limits of classical modular forms. We plan to go back to these applications

in a subsequent paper.

Example 1.2.1. In the caseN = 1, p = 2, the vector space F = F0(1,Fp) has (∆n)n=1,3,5,7,...

as a basis. It was proved by the author (letter to Nicolas and Serre, July 2012) that for

p = 2, and any integer r ≥ 1,

(1.2.1) δ(∆2r+1) = 2−b
r−1
2 c−2, δ(∆(22r+1+1)/3) = 2−r−1

Hence those forms (except perhaps a finite number of them) must be excluded if we want a

positive lower bound for δ(f). For other odd powers of ∆, experimental computations done

with SAGE and certain partial results strongly suggest a different and striking pattern: it

seems that δ(∆n) = 1/8 for all n > 1 not of the form 2r + 1 or 2(2r+1)+1

3 .

Though in this paper we are forced to exclude the case p = 2 (both because Pink’s

theory requires p > 2 and because our GMA methods require a multiplicity free hypothesis

which is not satisfied if p = 2), the example above, together with analogous computations

done by Medvedovsky in the case p = 3, showed that to obtain a uniform lower bound

δ(f) > c > 0, it is necessary to exclude some exceptional forms f , and at the same time

suggested that such a lower bound was otherwise possible. Indeed we prove:

Theorem II. (cf. §10.6.) Let us assume that p > 2. There exists a canonical subspace

Fk,spe(N,F) of Fk(N,F), of infinite codimension, and a constant c > 0 (depending only on

N,F) such that for every modular form f ∈ Fk(N,F)−Fk,spe(N,F), one has δ(f) > c.

The constant c is effective (we can take c = p−1
pn where n is the product of the orders of

the image of all representations ρ̄ ∈ R(k,N,F), see below).

The definition of the subspace Fspe(N,F), which we call the subspace of special forms

of F , is given in 10.4. This definition uses the image of the natural Galois pseudo-

representation over the semi-local Hecke algebra A acting of F , as well as the Pink’s Lie

algebra of that image. To analyze this subspace in more detail, we need to introduce some

notations and recall some elementary facts.

1.2.3. Decomposition of Fk(N,F). For simplicity we shall often drop the level N , the weight

k (which are fixed during all the discussion) and the finite field F from the notation and

write F for Fk(N,F), Fspe for Fk,spe(N,F).
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The space F is endowed with an action of the Hecke operators T` for ` - Np. After

replacing F by a large enough finite extension, we may assume (cf. [13]) that all eigenvalues

of these operators are in F. Let Ak(F) for k ∈ Z/(p − 1)Z be the closed F-subalgebra of

EndF(Fk(F)) generated by the Hecke operators T` for ` not dividing Np. The sequences

(λ`)`-Np with λ` ∈ F which are systems of eigenvalues for the operators T` of a common

eigenvector in F are in bijection, by a theorem of Deligne, with a certain setR = R(k,N,F)

of semi-simple continuous Galois representations ρ̄ : GQ,Np → GL2(F): the correspondence

is given by λ` = tr ρ̄(Frob `) for all ` - Np. This set R(k,N,F) can be described as the set of

all semi-simple representations ρ̄ : GQ,Np → GL2(F) of determinant ωk−1
p and Serre’s level

N . This is the content of Serre’s conjecture, now a theorem of Khare and Wintenberger.

If ρ̄ corresponds to a system of eigenvalues (λ`), we shall denote by Fρ̄ = Fρ̄(N,F) the

generalized eigenspace in F for the T` (` - Np) with eigenvalues λ`, that is the set of forms

f ∈ F such that ∀` - Np, ∃n ∈ N, (T` − λ`)nf = 0.

We thus have a decomposition

F =
⊕
ρ̄∈R
Fρ̄(1)

of F into generalized eigenspaces.

1.2.4. Special modular forms in Fρ̄. We define Fρ̄,spe as the space of modular forms in Fρ̄
that are special, that is Fρ̄,spe = Fρ̄ ∩Fspe. The following result refines the statement that

Fspe is of infinite codimension given in Theorem II.

Theorem III. (cf. §10.5) Let ρ̄ be any representation in R. Assume that p > 2, and if

p = 3, assume also that ρ̄ is a twist of 1 ⊕ ω3, where ω3 is the cyclotomic character. The

space Fρ̄,spe has infinite codimension in Fρ̄.

1.2.5. Special modular forms, K-abelian forms, cyclotomic forms. For many representa-

tions ρ̄, we are able to give a much more precise description of Fρ̄,spe.

Definition. Let f =
∑
anq

n ∈ F . Let K be a quadratic extension of Q. We shall say that

f is cyclotomic (resp. K-abelian) if there exists a finite cyclotomic extension L/Q (resp.

an abelian extension L/K, Galois over Q) such that such that for ` prime not dividing Np,

the coefficient a` of f depends only on ` through Frob `,L/Q.

Thus, a form f is cyclotomic if there exists M ≥ 1 such that a` depends only on `

(mod M).

Example 1.2.2. In the case p = 2, N = 1, it was proved by Nicolas and Serre ([24]) that

the forms ∆n for n = 2r + 1 and n = (22r+1 + 1)/3 appearing in (1.2.1) are K-abelian, and

it was proved by the author (letter to Serre and Nicolas, October 2013) that only for those

odd values of n were ∆n K-abelian (for K = Q(i) or K = Q(i
√

2)) but not cyclotomic.

The forms ∆n are known to be cyclotomic for n = 1, 3, 5, 7, 19, 21 and conjectured not to

be so for other values of n. There also exists forms which are K-abelian or cyclotomic not

of the form ∆n: they have been classified and their density δ has been computed, and often

goes to zero along infinite sequences of such forms.
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Once again, though we exclude the case p = 2, this example suggested a close relation

between the K-abelian and cyclotomic forms on the one hand, and the so-called special

modular forms which we need to exclude in Theorem II, in the other hand. Indeed, we

prove

Theorem IV. (cf. Cor. 11.2.8, Cor. 11.3.4 and §11.4). We assume p > 2.

• If ρ̄ has large projective image, the space of special modular forms Fρ̄,spe is finite-

dimensional.

• If ρ̄ has a dihedral projective image which is of order n with n > 4, 4 | n, then

the space of special modular forms Fρ̄,spe contains as a finite codimension subspace

the space of K-abelian forms, where K is the quadratic extension of Q fixed by the

unique quotient of order 2 of the projective image of ρ̄.

• If ρ̄ has cyclic projective image which is not of order 2, then the space of special

modular forms Fρ̄,spe is exactly the space of cyclotomic modular forms.

Moreover, in all the cases considered above, the space Fρ̄,spe is stable by all Hecke operators.

By contrast, in the remaining two degenerate cases where the projective image of ρ̄ is

Z/2Z or Z/2Z × Z/2Z, the space of special modular forms Fρ̄,spe is not in general stable

by all the Hecke-operators, and while it may be proved to contain all2 cyclotomic and

K-abelian forms in Fρ̄, I do not know at this point how much larger Fρ̄,spe is.

1.2.6. A rough outline of the proofs. To prove Theorems I, II, III and IV, we consider the

Hecke algebra A acting on the space of modular forms F mod p. This is by construction

a compact semi-local Hecke algebra, which carries a natural pseudo-representation (t, d)

of the Galois group GQ,Np. A crucial ingredient is the description of the image G of this

pseudo-representation, or at least, of its Pink’s Lie algebra, a special case of the general

results described in 1.1 and proved in section 6.

A form f in F defines an open and closed subset Nf of the compact group G (namely

Nf = {g ∈ G, a1(tr (g)f) 6= 0}) such that µG(Nf ) = δ(f) (as is shown by a simple

application of Chebotarev, see §10.3), where µG is the probability Haar measure on G.

Theorem I is thus reduced to checking that Nf is not empty (except when f = 0, or in the

case p = 2, when f is proportional to ∆′), which is not hard (see §10.3).

To prove the other theorems we need to understand how µG(Nf ) varies with f . Since

we have more control on the finite index subgroup Γ of G that on G itself, we cut Nf into

parts related to Γ-cosets. To be precise, if X is a set of representatives in G of G/Γ, so that

G =
∐
x∈X xΓ, we cut Nf into pieces Nf,x := x−1Nf∩Γ, so that µG(Nf ) =

∑
x∈X µG(Nf,x)

and our problem is to understand for a given x, how µG(Nf,x) varies with f .

Since Nf,x is a subset of Γ, we can transport the question to the Lie Algebra L of Γ, that

is study instead µL(Mf,x) where Mf,x = Θ(Nf,x) ⊂ L, Θ being the ‘logarithm’ in Pink’s

2In the case of projective image Z/2Z×Z/2Z, there exists non-zero K-abelian forms, but no cyclotomic
forms, in Fρ̄, for exactly three quadratic fields K. In the case when the projective image is of order 2, there
exists non-zero K-abelian forms for exactly one quadratic field, plus non-zero cyclotomic modular forms.
For more about cyclotomic forms and K-abelian forms, see §11.
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Lie theory. (Here I ignore, for simplicity, the fact that Θ is not always a measure-preserving

bijection between Γ and L. This is remedied by replacing Γ and L by Γ2 and L2, their

derived subgroup and derived Lie algebra respectively. However, this changes is the source

of important, and essential, complications. See Remark 8.2.3 for a more detailed discussion

of this fine point).

The Lie algebra L is an infinite-dimensional vector space over Fp, and it turns out

that Mf,x is the complement in L of an algebraic hypersurface of L (here I am assuming

F = Fp for simplicity), that is the zero subset of a polynomial on L involving finitely many

variables. Thus, µL(Mf,x) is the proportion of points that does not lie on an hypersurface

in a finite-dimensional space over Fp. Unfortunately the dimension of the ambient space

as well as the degree of that hypersurface depend on f , and the estimates given by the

Weil’s conjectures proved by Deligne are not sufficient to get the desired lower bound for

µL(Mf,x) in general.

However, when we choose for x the image c of a complex conjugation in G, we can show

that the equation defining Mf,c is, after a measure-preserving change of variables, affine.

This is the main point of the proof of Theorem II, and is dealt with in a more general

settings in §8.2. If we denote by M ′f,c the transform of Mf,c by this change of variable,

µL(Mf,c) = µL(M ′f,c) and M ′f,c is either empty, or an hyperplane of L, or L. In the last

two cases, µL(Mf,c) ≥ 1/p, which gives us the desired lower bound. We need to determine

for which forms f we have Mf,c empty. This is done in section 8, relying on the explicit

description of L given in section 6 which leads us to the notion of the essential subgroup

Aess of A, studied in §8 and to the definition of special modular forms (cf. §10.4), the forms

f which are orthogonal to Aess, and which happen to be the same as those for which Mf,c

is empty. This proves that forms f which are non-special, the quantity δ(f) is bounded

below by a positive constant independent of f .

To prove that the special forms are rare (cf. §10.5), we need to show that Aess is big,

and a crucial ingredient, that we borrow from recent previous works of the author, Khare,

Deo, Medvedovsky, inspired by Nicolas and Serre, is that each local component of A is

noetherian and of Krull dimension at least 2 (except when p = 2, 3, where we only know

that some components have dimension at least 2).

The author is grateful to G. Chenevier, A. Conti, S. Deo, J. Lang, A. Medvedovsky, P.

Monsky, J.-L. Nicolas, J.-P. Serre, J. Tilouine for many useful and interesting discussions.

He is also grateful to J. Lang, A. Medvedovsky and A. Conti for their careful reading of a

previous version of this manuscript.

2. Pseudo-representations and GMA

2.1. Reminder and complements on pseudo-representations of dimension 2.

2.1.1. Pseudo-representations of a group. For the general definition of a pseudo-representation

of a group Π with values in a commutative ring A, we refer the reader to [6]. In dimension
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2, which is the only case we shall need, it is not long to recall the equivalent definition

proposed in loc. cit., Lemma 1.9: a (two-dimensional) pseudo-representation of Π with

values in A is a pair of maps t : Π→ A, d : Π→ A, such that

(2.1.1) d is a group homomorphism from Π to A∗.

(2.1.2) t is a central function from Π to A.

(2.1.3) t(1) = 2.

(2.1.4) t(xy) + d(y)t(xy−1) = t(x)t(y) for all x, y ∈ Π.

If Π is a topological group, A a topological ring, one says that the pseudo-representation

(t, d) is continuous if t and d are. If 2 is invertible in A, d can be recovered from t by the

formula d(x) = t(x)2−t(x2)
2 . If ρ is any representation Π→ GL2(A), then it is easy to check

that (tr ρ, det ρ) is a pseudo-representation of dimension 2.

The kernel of (t, d) is defined by

Ker (t, d) := {y ∈ Π, d(y) = 1 and ∀x ∈ Π, t(xy) = t(x)}.

By (2.1.1) and (2.1.2), this is a normal subgroup of Π, closed if (t, d) is continuous. We

observe that if 2 is invertible in A, we can omit the condition on d in the definition of

Ker (t, d) as it follows from the condition on t. Both the maps t and d factor through

the quotient group Π/Ker (t, d), and they define a pseudo-representation of dimension 2 of

Π/Ker (t, d) with values in A whose kernel is trivial.

2.1.2. Pseudo-representations of an algebra. Let R be an A-algebra (non-necessarily com-

mutative), and let (T,D) be a pair of maps R → A. We say that (T,D) is a pseudo-

representation of dimension 2 of R with values in A, if

(2.1.5) D(1) = 1, D is multiplicative (i.e. D(xy) = D(x)D(y) for x, y ∈ R) and

homogeneous of degree 2 (i.e. D(ax) = a2D(x) for a ∈ A, x ∈ R).

(2.1.6) T is A-linear and T (xy) = T (yx) for all x, y ∈ R.

(2.1.7) T (1) = 2.

(2.1.8) D(x+ y) = D(x) +D(y) + T (x)T (y)− T (xy) for all x, y ∈ R.

Lemma 2.1.1. If R = A[Π], the map (T,D) 7→ (T|Π, D|Π) is a bijection between the set of

all pseudo-representations of dimension 2 of R and the sets of all pseudo-representations

of dimension 2 of Π.

Proof — The proof below is closely inspired by [6].

If (T,D) satisfies (2.1.5) to (2.1.8), it is clear that (T|Π, D|Π) satisfies (2.1.1) to (2.1.3).

Set f(x, y) := T (x)T (y)− T (xy) for x, y ∈ R, so that (2.1.8) becomes

(2.1.9) D(x+ y) = D(x) +D(y) + f(x, y) for all x, y ∈ R.

For x, y, z ∈ R one has D((x + y)z) = D(xz) + D(yz) + f(xz, yz) but also, since D is

multiplicative D((x+ y)z) = D(x+ y)D(z) = D(xz) +D(yz) + f(x, y)D(z), hence
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(2.1.10) f(xz, yz) = f(x, y)D(z) for all x, y, z ∈ R.

If y is invertible in R, of inverse z = y−1, applying (2.1.10) gives f(x, y)D(y−1) =

f(xy−1, 1). Since for every x, T (x) = f(x, 1) by (2.1.7), one obtains T (xy−1) = f(x, y)D(y−1) =

T (x)T (y)D(y)−1 − T (xy)D(y)−1, that is

(2.1.11) T (xy) +D(y)T (xy−1) = T (x)T (y) for all x ∈ R, y ∈ R∗.

In particular, the restrictions of T and D to Π satisfy (2.1.4), hence (T|Π, D|Π) is a

pseudo-representation of Π of dimension 2.

Conversely, if (t, d) is a pseudo-representation of dimension 2 of Π with values in A, let

us denote by T the unique A-linear map A[Π]→ A which coincides with t on Π and by f

the symmetric bilinear form on A[Π] defined by

f(x, y) := T (x)T (y)− T (xy).

For x ∈ Π, one has f(x, x) = T (x)2 − T (x2) = 2d(x) by (2.1.4) and (2.1.3). Therefore,

there exists a unique quadratic form D : A[Π]→ A such that

(2.1.12) D(x+ y)−D(x)−D(y) = f(x, y) for all x, y ∈ R,3 and

(2.1.13) D(g) = d(g) for all g ∈ Π.

Thus we have defined functions T,D from A[Π] to A that extends t and d, and that

satisfies (2.1.6) to (2.1.8), as well as D(1) = 1 and D homogeneous of degree 2. We now

proceed to show that D is multiplicative.

From (2.1.4) one gets f(x, y) = t(xy−1)d(y) for x, y ∈ Π hence

(2.1.14) f(zx, zy) = f(xz, yz) = f(x, y)d(z) for x, y, z ∈ Π.

This relation holds more generally for x, y, z ∈ A[Π] by linearity. For z ∈ Π, the quadratic

forms on A[Π] given by x 7→ D(xz) and x 7→ D(x)D(z) have the same polarization (namely

f(x, y)d(z), using (2.1.14)), and agrees on the basis Π on A[Π]. They are therefore equal:

(2.1.15) D(xz) = D(x)D(z) for x ∈ A[Π], z ∈ Π.

Again, the quadratic forms z 7→ D(xz) and z 7→ D(x)D(z) have the same polarization

by (2.1.14), and they agree on Π by (2.1.15), hence they are equal. Therefore (T,D) is a

pseudo-representation of R with values in A, and the map (t, d) 7→ (T,D) is an inverse of

the restriction map considered in the statement. �

There is a notion of kernel for a pseudo-representation (T,D) of an algebra R:

Ker (T,D) = {y ∈ R, D(y) = 0 and T (yx) = 0 ∀x ∈ R}.

We say that (T,D) is faithful if Ker (T,D) = 0. It is easy to see that Ker (T,D) is a

two-sided ideal of R, and that (T,D) factors through R/Ker (T,D) and defines a faithful

pseudorepresentation of that algebra with values in A.

If (T,D) is a pseudo-representation of A[Π], and (t, d) is the pseudo-representation of π

obtained by restriction, then the relation between the Ker (t, d) and Ker (T,D) is as follows:

3This condition (2.1.12) is expressed by saying that f(x, y) is the polarization of the quadratic form D.



IMAGES OF PSEUDOREPRESENTATIONS 11

Lemma 2.1.2. For g ∈ Π, one has g ∈ Ker (t, d) if and only if g − 1 ∈ Ker (T,D).

Proof — If g ∈ Π, by linearity of trace t(gh) = t(h) for all h ∈ Π if and only if T (gy) = T (y)

for all y in R = A[Π]. If the latter condition holds, then in particular t(g) = 2, and under

this condition d(g) = 1 and D(g−1) = 0 are equivalent since D(g−1) = d(g)− t(g) + 1. �

However, in general Ker (T,D) is strictly larger than the two-sided ideal generated by

the elements g−1, g ∈ Ker (t, d). If (T,D) is faithful then Ker (t, d) = {1}, but the converse

is false in general.

We say that a pseudo-representation (T,D) of R is Cayley-Hamilton if for every x ∈ R,

one has x2 − T (x)x+D(x) = 0. A faithful pseudo-representation is Cayley-Hamilton, but

the converse is false in general.

2.2. Generalized Matrix Algebras. The notion of Generalized Matrix Algebra (GMA)

is defined and studied in detail in [3, §1.3]. Here we will content ourselves with an ad hoc

definition which is equivalent to the notion called GMA of type (1, 1) in the terminology

of loc. cit.

Let A be a commutative ring. Suppose given two A-modules B and C, and a morphism

of A-modules m : B ⊗A C → A such that

(2.2.1) for all b, b′ ∈ B and c, c′ ∈ C, m(b, c)b′ = m(b′, c)b and m(b, c′)c = m(b, c)c′.

With this data we define a not necessarily commutative A-algebra R, R = A⊕B⊕C⊕A
as an A-module, endowed with the multiplication

(a, b, c, d)× (a′, b′, c′, d′) = (aa′ +m(b, c′), ab′ + d′b, a′c+ dc′, dd′ +m(b′, c)),

for a, a′, d, d′ ∈ A, b, b′ ∈ B, c, c′ ∈ C: the distributivity of multiplication over addition

is obvious, the unity for multiplication is (1, 0, 0, 1), and the associativity of multiplica-

tion is easily checked using (2.2.1). We call (A,B,C,m,R), or by abuse R, a generalized

matrix algebra. A morphism of GMAs from (A,B,C,m,R) to (A′, B′, C ′,m′, R′) is the

data (fA, fB , fC) of a morphism of rings fA : A → A′ and two morphisms of A′-modules

fB : B ⊗A A′ → B′ and fC : C ⊗A A′ → C ′ such that fA(m(b, c)) = m′(fB(b), fC(c))

for every b ∈ B, c ∈ C. A morphism of GMAs induces a morphism of A′-algebras

fR : R ⊗A A′ → R′. When A = A′ and fA = IdA, we say that this morphism is over

A, or an A-morphism. A sub-GMA of (A,B,C,m,R) is a GMA (A′, B′, C ′,m′, R′) where

A′ ⊂ A, B′ ⊂ B, C ′ ⊂ C such that the these three inclusions maps define a morphism of

GMAs. An A-sub-GMA is a sub-GMA where A′ = A.

This meaning of these definitions becomes clearer if we decide to represent (a, b, c, d) as

a matrix
(
a b
c d

)
, and to simply write bc or cb for m(b, c), for then multiplication in R is

computed as multiplication of ordinary matrices.

Lemma 2.2.1. If in a GMA R, BC = A, then there are isomorphisms of A-modules form

B and C onto A so that m corresponds to the multiplication A× A→ A. In other words,

there is an isomorphism over A of GMAs R 'M2(A).
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Proof — Let b ∈ B and c ∈ C such that m(b, c) = 1; by (2.2.1) one gets for b′ ∈ B that

b′ = m(b, c)b′ = m(b′, c)b which shows that B is generated by b; moreover if for a ∈ A,

ab = 0, then m(ab, c) = am(b, c) = a = 0. which shows that (b) is a basis of B. Similarly

(c) is a basis of C and if we identify B and C with A using those basis, then m becomes

the multiplication of A because m(ab, a′c) = aa′m(b, c) = aa′. �

We define the trace map tr : R → A as tr
(
a b
c d

)
= a + d and the determinant map

det : R→ A by det
(
a b
c d

)
= ad− bc. It is clear that as in the case of usual matrix algebras,

one has tr (rr′) = tr (r′r), det(rr′) = det(r) det(r′) and, if p > 2, det(r) = tr (r)2−tr (r2)
2 .

It is easily checked that the pair of maps (tr ,det) : R → A is a pseudo-representation

of dimension 2 of R with values in A. We say that the GMA R is faithful (resp. Cayley-

Hamilton) if (tr ,det) is. It is easily seen that T is faithful if and only if the map m :

B ⊗A C → A being non-degenerate, meaning that the only b ∈ B such that m(b, c) = 0 for

all c ∈ C is b = 0, and the only c ∈ C such that m(b, c) = 0 for all b ∈ B is c = 0.

Lemma 2.2.2. Assume that A is a domain, with fraction field K, and that R =

(
A B
C A

)
is a faithful GMA over A. Then there exists embedding of A-modules of B and C onto K,

such that if B and C are identified with their image in K, m : B × C → A is given by the

multiplication of K.

Proof — Since m : B ⊗ C → A is non-degenerate, B and C have no torsion.

Fix b0 ∈ B − {0}, c0 ∈ C − {0} such that m(b0, c0) 6= 0. Define a morphism of A-

modules i : B → K by setting i(b) = m(b, c0)/m(b0, c0). If i(b) = 0, then m(b, c0) = 0 so

m(b, c0)b0 = m(b0, c0)b = 0, and b = 0 since B has no torsion; thus i is injective. Define

j : C → K by setting j(c) = m(b0, c), which embeds C into K, and one easily checks that

m(b, c) = i(b)j(c). �

Lemma 2.2.3. Assume that A is a domain, with fraction field K, and that R =

(
A B
C A

)
is a faithful GMA over A, and that BC 6= 0. Then R⊗AK is isomorphic, as a GMA over

K, to M2(K).

This follows from the preceding lemma.

2.3. Topological GMAs. If A is a topological ring, a topological GMA is a GMA R over

A provided with a topology that makes it a topological A-algebra. More concretely, if

R =

(
A B
C A

)
is a GMA, making R a topological GMA amounts to giving a topology on B

and C that makes them topological A-modules, and make the multiplication m : B×C → A

continuous.

For instance, if A is a noetherian local ring which is complete for the topology defined

by its maximal ideal, and if R is finite as an A-module, then R provided with its finite

A-module topology is a topological GMA.

We observe that for any topological ring A, R = M2(A) has a unique structure of

topological GMA, namely the one given by the product topology on M2(A) = A4.
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2.4. Pseudo-representations and GMA-valued representations. Let A be a com-

plete local ring with maximal ideal m and residue field F. Let Π be a group, (t, d) : Π→ A

a pseudo-representation.

The reduction t̄, d̄ modulo m of t, d form a pseudo-representation of dimension 2 of G

with values in F. We make the following definition:

Definition 2.4.1. We say that (t, d) is residually multiplicity-free if there exists a (nec-

essarily unique up to isomorphism) semi-simple representation ρ̄ : Π → GL2(F) such that

tr ρ̄ = t̄, det ρ̄ = d̄, and a g0 ∈ Π such that ρ̄(g0) is conjugate in GL2(F) with a diagonal

matrix with distinct diagonal terms.

By a theorem of Rouquier, Nyssen and Chenevier, there always exists a finite extension

F′ of F and a ρ̄ : Π → GL2(F′) such that tr ρ̄ = t̄, det ρ = d̄. If (t, d) is residually

multiplicity-free we can take F′ = F. Moreover, since the F-algebra EndG(ρ̄) is contained

in the commutant of ρ̄(g0), which is isomorphic to F × F, the representation ρ̄ is either

absolutely irreducible, or the direct sum of two distinct characters. Conversely, if there is a

ρ̄ : Π→ GL2(F) such that tr ρ̄ = t̄, det ρ̄ = d̄, then (t, d) is multiplicity free if ρ̄ is the sum

of two distinct characters, or at least becomes so after changing F by a quadratic extension

if ρ̄ is absolutely irreducible (or even just reducible when F is not of characteristic 2).

Proposition 2.4.2. Assume that (t, d) is residually multiplicity-free.

(i) There exists a faithful GMA (A,B,C,m,R) over A, and a morphism of groups

ρ : Π→ R∗ such that

(2.4.1) on Π, tr ρ = t and det ρ = d,

(2.4.2) Aρ(Π) = R.

(ii) If (ρ,R) and (ρ′, R′) are as in (i), then there exists a unique isomorphism of A-

algebras Ψ : R→ R′ such that Ψ ◦ ρ = ρ′.

(iii) Given an element g0 ∈ Π such that ρ̄(g0) has two distinct eigenvalues λ0, µ0 in

F, there exists a faithful GMA (A,B,C,m,R) over A, and a morphism of groups

ρ : Π→ R∗ satisfying (2.4.1) and (2.4.2), and such that

(2.4.3) ρ(g0) is diagonal and ρ(g0) ≡
(
λ0 0
0 µ0

)
(mod m).

(iv) If g0 ∈ Π, (ρ,R) and (ρ′, R′) are as in (iii), the unique isomorphism of A-algebras,

Ψ : R→ R′ such that Ψ ◦ ρ = ρ′ (cf. (ii)) is an A-isomorphism of GMAs.

(v) If ρ̄ is irreducible, then R is isomorphic to M2(A) as a GMA over A. If ρ̄ is

reducible, then one has BC ⊂ m.

(vi) If (ρ,R) is as in (i), then Ker ρ = Ker (t, d), and denoting by ρ̃ : A[Π] → R the

morphism of A-algebras extending ρ, one has Ker ρ̃ = Ker (T,D).
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(vii) If A is noetherian, if Π is a profinite group satisfying the p-finiteness condition4,

and if (t, d) is continuous then for (ρ,R) as in (i), R is of finite type as an A-module

and if R is given its unique topology of A-algebra, the morphism ρ : Π → R∗ is

continuous.

Proof — Let (T,D) be the pseudo-representation of A[Π] with values in A extending

(t, d), as in Lemma 2.1.1. Let R be the quotient of A[Π] by Ker (T,D), let ρ̃ be the natural

projection ρ̃ : A[Π] → R and let ρ be the restriction of ρ̃ to Π. Let g0 be an element

of Π as in (iii), let Π0 be the subgroup generated by g0 in Π and let R0 ⊂ R be the A-

subalgebra Aρ(Π0). As proved in [3, §1.4], the algebras R and R0 are integral over A. By

[3, §1.4] and the hypothesis made on g0, if J0 denotes the Jacobson radical of R0, then

there is an isomorphism of F-algebra R0/J0 ' Fρ̄(Π0). The algebra Fρ̄(Π0) is isomorphic

to F×F and we can fix such an isomorphism that sends ρ̄(g0) to
(
λ0 0
0 µ0

)
. The two obvious

idempotents (1, 0) and (0, 1) of F × F can be lifted to idempotents e1 and e2 of R0 such

that e1e2 = 0, e1 + e2 = 1. This makes R0 and R GMAs with the properties stated in (i)

and (iii). The uniqueness statement (ii) is clear, since if (ρ,R) is as in (i), R has to be a

quotient of A[Π] through which (T,D) factors, hence of the form A[Π]/I with I a two-sided

ideal contained in Ker (T,D), but since R is faithful we must have I = Ker (T,D). The

uniqueness statement (iv) is equally easy, since a morphism Ψ as in (iv), which exists and

is unique by (ii), preserves the diagonal matrix ρ(g0) which has diagonal terms that are

distinct modulo m, hence preserves the idempotents e1 and e2 and is a morphism of GMA.

Finally (v) in the irreducible case is a well-known result of Rouquier and Nyssen extended

by Chenevier ([6, Theorem 2.22]) to the case of general pseudo-representation, and (v) in

the reducible case follows from [3, Theorem 1.4.4].

Let us prove (vi). Since ρ̃ : A[Π]→ R is surjective, one has Ker (T,D) = ρ̃−1Ker (trR,detR).

Since R is faithful, it follows that Ker (T,D) = Ker ρ̃. Using Lemma 2.1.2, thus implies

that Ker (t, d) = Ker ρ.

For (vii), let A[[Π]] be the completed group algebra of the pro-finite group Π. Chenevier

proves in [7, §4] that t and d can be extended into a continuous pseudo-representation

(T̃ , D̃) of A[[Π]] of dimension 2 with values in A. The restriction of (T̃ , D̃) to the sub-

algebra A[Π] is therefore the pseudo-representation (T,D) of A[Π] corresponding to (t, d).

From the definition of the linear kernel, one has Ker (T,D) = Ker (T̃ , D̃) ∩ A[Π]. Hence

R = A[Π]/Ker (T,D) is isomorphic to an A-sub-algebra of A[[Π]]/Ker (T̃ , D̃). The latter is

a finite type A-module by [7, Lemma 4.5]. Since A is noetherian, R is of finite type as an

A-module.

Let us prove now that ρ is continuous. Choose a finite family of elements g1, . . . , gm of

Π such that the ρ(gi) generate R. Consider the map R → An, x 7→ tr (xρ(gi)). Since R is

faithful, this map is an injection, and by the elementary properties of the natural topology

4Following Mazur [19, page 246], we say that a pro-finite group Π satisfies the p-finiteness condition if
for every open subgroup H of Π, the largest pro-p quotient Hp of H is topologically of finite type. This
condition is always satisfied for a profinite group Π which is topologically of finite type, and it is also known
to hold for a Galois group Π = GQ,S where S is a finite set of places (loc. cit.).
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of finite A-modules, it induces an homeomorphism of R onto its image. It therefore suffices

to prove that the map g 7→ tr (ρ(g)ρ(gi)) is continuous for i = 1, . . . ,m, but this is clear

since that map is just t(ggi). �

Definition 2.4.3. Any representation ρ : Π→ R∗ satisfying the property (i) of the above

proposition will be called a (t, d)-representation. If in addition ρ satisfies condition (iii), we

shall say that ρ is adapted to (g0, λ0, µ0).

Remark 2.4.4. Without the assumption of p-finiteness on Π, the assertion (vii) of the

preceding theorem is false. For a counter-example, let A = Fp[ε] with ε2 = 0, V an

infinite-dimensional Fp-vector space seen as an A-module through the map A→ Fp, ε 7→ 0,

b : V × V → F a non-degenerate F-bilinear form, and m : V × V → A defined as εb.

Then m satisfies condition (2.2.1), hence there is a GMA (A, V, V,m,R) which moreover

is faithful. Define Π = R∗, and consider the restriction (t, d) of (tr ,det) to Π. This is a

pseudo-representation of dimension 2, and A[Π]/Ker (T,D) = R but R is not finite as an

A-module.

Lemma 2.4.5. Let R be a GMA over A and ρ : Π → R∗ a representation of a group

Π. Assume that there exists an element g0 ∈ Π such that ρ(g0) is diagonal, with diagonal

terms distinct modulo m. Then Aρ(Π) is a sub-A-GMA of R.

Furthermore, if R = M2(A) and ρ mod m is absolutely irreducible, then Aρ(Π) = R.

Proof — If ρ(g0) =
(
λ0 0
0 µ0

)
, then the matrix e1 := ( 1 0

0 0 ) = ρ(g0)−µ0ρ(1)
λ0−µ0

belongs to Aρ(Π),

and similarly the matrix e2 := 1 − e1 = ( 0 0
0 1 ). Then e1Aρ(G)e1 is an A-submodule of A

that contains 1, so is A, and similarly for e2Aρ(Π)e2. Define B′ := e1Aρ(Π)e2, a submodule

of B, and C ′ := e1Aρ(Π)e2, a submodule of C. Then Aρ(G) =

(
A B′

C ′ A

)
an A-sub-GMA

of R.

For the furthermore, suppose by contradiction that either B′ or C ′ is a proper sub-

module of B = C = A. Then B′C ′ is a proper ideal of A, so is contained in m, which shows

that tr ρ (mod m) is the sum of two characters (Π 7→ F∗, g 7→ e1ρ(g)e1 (mod m) for the

first, the same with e2 for the second), contradicting the hypothesis. �

3. Reminder of representation theory

3.1. The classification of representations ρ̄. Let Π be a group, F a finite field, ρ̄ : Π→
GL2(F) a representation which is either absolutely irreducible or the sum of two distinct

characters. Let us set G = ρ̄(Π) ⊂ GL2(F) and G the projective image of ρ̄, that is the

image of G in PGL2(F). The well-known classification of such representations according to

their projective image is as follows.
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Name G is isomorphic to Subcase Description of ρ̄ Description of ad0ρ̄

Cyclic
Z/nZ n = 2 χ̄⊕ χ̄′, with χ̄2 = χ̄′2 (χ̄/χ̄′)2 ⊕ 1

n > 2 χ̄⊕ χ̄′, with χ̄2 6= χ̄′2 χ̄/χ̄′ ⊕ 1⊕ χ̄′/χ̄

Dihedral Dn
n > 2 irreducible, isomorphic to

IndΠ
Π1
ψ1 for a unique index 2

subgroup Π1 of Π

ε1 ⊕ IndΠ
Π1
τ , with

IndΠ
Π1
τ irreducible

n = 2 irreducible, isomorphic to

IndΠ
Π1
ψi for three index two

subgroups Π1, Π2 and Π3

ε1 ⊕ ε2 ⊕ ε3

Large image PGL2(Fq) or PSL2(Fq) irreducible irreducible
Exceptional A4, S4 or A5

In the table above, χ and χ′ are two distinct characters of Π, ψi is a non-trivial character

of Πi for i = 1, 2, 3, and εi is the character of Π of kernel Πi for i = 1, 2, 3, and τ is a non-

trivial character of Π1. The group Dn is the dihedral group of order 2n.

3.2. A group cohomology computation.

Proposition 3.2.1. In the large image and exceptional case, if V is adjoint representation

of the natural representation of Ḡ, one has H1(Ḡ, V ) = 0.

Proof — The representation V of G factors through G. Let Z be the kernel of G 7→ G.

The inflation-restriction exact sequence is

0→ H1(G,V )→ H1(G,V )→ H1(Z, V )

and since Z is of order prime to p, and V is of order a power of p, the last term is 0. It

therefore suffices to prove that H1(G,V ) = 0.

For G = PGL2(Fq) or G = PSL2(Fq), this follows from Matthias Wendt’s answer to

question 178025 of mathoverflow.

If G is isomorphic to A4 or S4, then the result is clear if p ≥ 5. If p = 3, we

argue as follows: Let K4 be the Klein subgroup of A4. One has an exact sequence

0 → H1(A4/K4, V
K4) → H1(A4, V ) → H1(K4, V ). Since V is still irreducible as a rep-

resentation of K4, V K4 = 0. Since K4 has order prime to 3, H1(K4, V ) = 0. Hence

H1(A4, V ) = 0. For S4 we use the sequence H1(S4/A4, V
A4) → H1(S4, V ) → H1(A4, V )

where the first and last term are 0.

If G is isomorphic to A5, the result is clear if p ≥ 7. For p = 5, G is conjugate to

PSL2(F5), a case which has already been dealt with. For p = 3, let us consider A4 as the

subgroup of A5 fixing one letter, and note that since A4 has index 5 which is prime to

|V | = 27, it suffices to prove that H1(A4, V ) = 0, which has already being done. �

4. Pink’s Lie theory for GMAs

4.1. Assumptions concerning the base ring A. In all this section, p is a prime. We

suppose given

(4.1.1) a topological ring A which is compact and semi-local and whose residue fields

have characteristic p.
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By definition, A semi-local means that A is a finite product
∏r
i=1Ai, where the Ai are

local rings. We provide each of the ring Ai with its quotient topology from the topology

of A. The Ai are compact rings, and are local. We shall call mi the maximal ideal of Ai

and Fi = Ai/mi its residue field. By an abuse of language which hopefully will not induce

confusion, we shall also call mi the corresponding maximal ideal in A, namely
∏
j 6=iAj×mi,

so that we can write A/mi = Fi, and (mi), i = 1, . . . , r are the complete list of maximal

ideals of A.

In general, the compact topology on Ai is not the mi-adic topology. However:

Lemma 4.1.1. (i) The topological ring A (and its factors Ai) is pro-finite (i.e. the

open co-finite ideals J form a basis of neighborhood of 0)

(ii) The fields Fi are finite and the ideals mi are open in Ai.

(iii) Each ring Ai is mi-adically separated and complete, and its mi-adic topology is finer

that its given topology.

(iv) One has Ai noetherian if and only if m2
i is open in Ai. In this case, the mi-adic

topology on Ai coincide with its given topology.

Proof — Assertion (i) is [26, Prop. 5.1.2]. If we write Ai = proj limAi/J with J running

among open cofinite ideals of Ai, then each Ai/J is local with maximal ideal mi/J and

residue field Fi. In particular Fi is finite. Moreover mi = proj limmi/J : the inclusion

mi ⊂ proj limmi/J is obvious, while if x ∈ Ai is not in mi, x is invertible, so its image in

any Ai/J is not in mi/J . Therefore we see that mi is closed in Ai, and since it is cofinite,

it is also open. This proves (ii). For J any open co-finite ideal of Ai, Ai/J is finite local,

hence Artinian, and there is an n such that (mi/J)n = 0 in Ai/J , that is mni ⊂ J in Ai.

Hence the family mni is cofinal to the family of co-finite open ideals, and Ai is mi-adically

complete. Therefore, every open set for the given topology contains an ideal mni hence is

also open for the mi-adic topology. This proves (iii). Finally, note that m2
i is open if and

only if mi/m
2
i is finite, i.e. by Nakayama if and only if mi is of finite type, i.e. if and only if

Ai is noetherian. In this case, all the mni are cofinite, hence Ai is compact for the mi-adic

topology. The identity map Ai → Ai where the source is given the mi-adic topology, and

the target its original topology, which is continuous by (iii), is therefore closed, hence an

homeomorphism. This proves (iv). �

The Jacobson radical radA of A will be denoted by m. We have m =
∏r
i=1 mi = ∩ri=1mi.

It follows from the lemma that A is m-complete and profinite for the m-adic topology.

From now on and throughout this section, we make the following assumption:

(4.1.2) The prime p is odd.

Since p > 2, if x is an element of 1+m, there exists by Hensel’s lemma a unique y ∈ 1+m

such that y2 = x. We shall henceforth denote that element by
√
x. We observe that the

map x 7→
√
x is continuous.
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4.2. A slightly generalized setting for Pink’s theory. Pink’s theory is concerned with

certain closed subgroups of GL2(A), the multiplicative group of invertible elements in the

matrix algebra M2(A). To allow for more generality, we shall consider closed subgroups of

the multiplicative group of units of a generalized matrix algebra.

To fix notation for the rest of this section,

(4.2.1) Let R =

(
A B
C A

)
be a topological GMA over A, which is compact and

Cayley-Hamilton (cf. §2.2).

We denote by R∗ the multiplicative group of invertible elements in R. Clearly, it is also

the set of elements r of R such that det r ∈ A∗. It follows that R∗ is both open and closed

in R, and, provided with the subspace topology, is a compact topological group. We denote

by SR∗ the set of elements in R∗ with determinant 1. Obviously this is a closed normal

subgroup of R∗.

We shall denote by radR the Jacobson radical of the algebra R. It is a closed hence

compact additive subgroup of R. We shall denote by R1 the subgroup 1 + radR. It is a

closed normal subgroup of R∗.

We call SR1 the intersection of SR and R1 in R. Obviously SR1 is a closed normal

subgroup of R∗.

Remark 4.2.1. To fix ideas, we shall now give an explicit description of the various rings

and groups introduced above, in the case where A is local. In this case there are two

possibilities regarding the ideal BC = m(B,C) of the ring A. Either BC = A, or BC ⊂ m.

When BC = A, then by Lemma 2.2.1, R is isomorphic as GMA to M2(A), so we can as

well assume that R = M2(A) as a topological GMA. Its radical radR is M2(m) = mM2(A)

and the quotient R/radR is the simple algebra M2(F). The group R1 is the multiplicative

group of matrices in M2(A) which are congruent to Id modulo mM2(A). The group SR1

is the subgroup of those whose determinant is 1. Note that in the literature, those groups

R1 and SR1 are often denoted GL1
2(A) and SL1

2(A) respectively. In this case we are in the

situation considered by Pink.

When BC ⊂ m, the radical radR is

(
m B
C m

)
and the quotient R/radR is the semi-

simple algebra of diagonal matrices

(
F 0
0 F

)
. The group SR1 is the group of matrices(

a b
c d

)
in R such that a ≡ d ≡ 1 (mod m) and ad− bc = 1.

In the general case, if A is a finite product of local rings Ai, then R naturally decomposes

as a product of GMA Ri and the radical radR as a product of radRi, for each of which one

of the two description above holds.

Lemma 4.2.2. If m ∈ radR, trm, trm2,detm ∈ m.

Proof — We may assume that A is local, in which case we use the description of R and

radR given in the preceding remark. If R = M2(A), m ∈ M2(m) and the result is clear.
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If BC ⊂ m, then m ∈
(
m B
C m

)
so tr (m) ∈ m and tr (m2) ∈ m2 + BC ⊂ m, and finally

det(m) = (tr (m)2 − tr (m2))/2 ∈ m. �

Lemma 4.2.3. One has ∩n(radR)n = 0.

Proof — In the caseR = M2(A), (radR)n = M2(mn) and since ∩mn = 0 by Lemma 4.1.1(iii),

the results follows. In the case BC ⊂ m, an element of (radR)n is a product of n matrices(
ai bi
ci di

)
with ai, di ∈ m, bi ∈ B, ci ∈ C. The upper left coefficient of this product is the

product of k ai’s, l bj ’s and l ck’s with k+2l = n, hence is in mk+l. Therefore the upper left

coefficient of a matrix in ∩n(radR)n is 0. Similar computations for the other coefficients

allow to conclude. �

Notation: In the rest of this paper, we shall use freely the following notation: if S is a

set of matrices, S0 is the set of matrices of trace zero in S. If X,Y are two closed additive

subgroups of R, we shall denote by [X,Y ] (resp. X ·Y or XY ) the closure of the subgroup

generated by all commutators [x, y] (resp. xy) for x ∈ X, y ∈ Y .

Remark 4.2.4. We observe that (radR)0, provided with the Lie bracket [r, r′] = rr′− r′r,

is a Lie algebra over A. Concretely, (radR)0 =

(
m m
m m

)0
when R = M2(A) and (radR)0 =(

m B
C m

)0
when BC ⊂ m.

4.3. Pink’s Theta map. Following Pink, define a continuous A-linear map

Θ : R→ R, r 7→ r − tr r

2
Id.

Pink states eleven formulas involving Θ and tr . We state the analog in our more general

situation of the formulas we need:

(4.3.1) If x, y ∈ R, [Θ(x),Θ(y)] = Θ(xy)−Θ(yx).

(4.3.2) If x ∈ SR, y ∈ R, one has tr (x)Θ(y) = Θ(xy) + Θ(x−1y).

(4.3.3) If x, y ∈ R, one has 2Θ(xy) = [Θ(x),Θ(y)] + tr (x)Θ(y) + tr (y)Θ(x).

(4.3.4) If x, y ∈ R, tr (Θ(x)Θ(y)) = tr (xy)− tr (x)tr (y)/2.

(4.3.5) If x ∈ SR, one has Θ(x−1) = −Θ(x).

(4.3.6) If x, y, u, v ∈ (radR)0, one has 4tr (xy)[u, v] = [y, [x, [u, v]]] + [x, [y, [u, v]]] +

[[x, v], [y, u]] + [[y, v], [x, u]].

(4.3.7) If x, y, u, v ∈ (radR)0, one has 4tr ([u, v]x)y = [y, [x, [u, v]]] − [x, [y, [u, v]]] +

[[x, v], [y, u]] + [[y, v], [x, u]].

These formulas are proved by easy computations left to the reader, using the facts that

in R, tr (xy) = tr (yx) and that for any x ∈ R, the Cayley-Hamilton identity holds, namely

x2 − tr (x)x + det(x) = 0, with det(x) = (tr (x)2 − tr (x2))/2. (Also useful is the formula

xy + yx − tr (x)y − tr (y)x + tr (x)tr (y) − tr (xy) = 0 for x, y ∈ R, which is obtained by

bi-linearizing the Cayley-Hamilton identity).
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Alternatively, we can use Proposition 1.3.13 of [3] which implies that every Cayley-

Hamilton GMA R can be embedded in a trace-preserving way into M2(A′) for A′ some

commutative ring containing A. This reduces the formulas to prove to the case of M2(A′).

In this case these formulas are stated in [25], though their proofs are also left to the reader.

Lemma 4.3.1. The map Θ induces a homeomorphism from SR1 onto (radR)0. Its inverse

is given by

(4.3.8) Θ−1
(
a b
c −a

)
=
(
a+
√

1+bc+a2 b

c −a+
√

1+bc+a2

)
or equivalently

(4.3.9) Θ−1m = m+
√

1 + tr (m2)/2Id.

Moreover one has

(4.3.10) tr (Θ−1m) = 2 +
∑
n≥1 21−n(1/2

n

)
tr (m2)n.

Proof — It is clear that Θ sends SR1 into (radR)0. If m in (radR)0, x ∈ SR1 and

Θ(x) = m then one has x = m + λId for some λ ∈ 1 + m and using that detx = 1, one

gets λ2 = 1 + tr (m2)/2. Since trm2 ∈ m by Lemma 4.2.2, this equation defines a unique λ,

which shows that for every m ∈ (radR)0, there exists a unique x such that Θ(x) = m, and

proves the formula for Θ−1. Formula (4.3.10) follows using Newton’s Taylor expansion for
√

1 + t.

�

4.4. The Lie algebra L attached to a subgroup of SR1. The object of Pink’s theory is

to understand the structure of the closed subgroups of SL1
2(A), using Lie-theoretic methods.

Our objective here is to expand Pink’s constructions and results to the case of subgroups

of SR1, where R is a GMA over A as above. We shall offer from this sub-section §4.4 to

§4.7 a self-contained presentation, where arguments, whose details follow closely those of

[25] are re-organized and somewhat simplified.

Let Γ be a closed subgroup of SR1. Following Pink we define a closed subgroup L of

(radR)0 as the closure of the additive subgroup of (radR)0 generated by Θ(Γ).

Obviously, Γ ⊂ Θ−1(L) but we may not have equality. Observe that the subgroup L is

not in general an A-submodule of (radR)0.

Theorem 4.4.1 (Pink). One has [L,L] ⊂ L, that is L is a Lie subring of (radR)0.

Proof — It suffices to show that if x, y ∈ Γ, [Θ(x),Θ(y)] ∈ L, that is Θ(xy)−Θ(yx) ∈ L
by (4.3.1). Since xy and yx are in Γ, this is clear. �

Definition 4.4.2. We call L = L(Γ) the Pink’s Lie algebra of Γ.

Lemma 4.4.3 (Pink). For γ ∈ Γ, one has tr (γ)L ⊂ L.

Proof — This follows immediately from (4.3.2). �
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4.5. The pseudo-ring P attached to a closed subgroup Γ of SR1. For Γ and L as

in the preceding section, we define

P = P (Γ) = tr (L2).

This is a closed additive subgroup of A. (Note that our P is denoted by C in [25]).

Theorem 4.5.1 (Pink). One has PL ⊂ L.

Proof — By definition, P is the closure of the additive subgroup generated by the

tr (Θ(x)Θ(y)) for x, y ∈ Γ. By (4.3.4), one has tr (Θ(x)Θ(y)) = tr (xy) − tr (x)tr (y)/2 ∈
tr (Γ) + tr (Γ)2. Thus P ⊂ tr (Γ) + tr (Γ)2, and the theorem follows from the preceding

lemma. �

Corollary 4.5.2. The subgroup P of A is stable by multiplication; in other words, it is a

pseudo-subring5 of A. Moreover P is the smallest closed pseudo-subring of A containing

tr (γ)− 2 for all γ ∈ Γ.

Proof — Since PL ⊂ L, one has P 2 = P tr (L · L) = tr (PL · L) ⊂ tr (L · L) = P , hence P

is a pseudo-subring. Let us call by Q the subgroup of A generated by tr (γ)− 2, γ ∈ Γ. Let

us first show that Q ⊂ P . If γ ∈ Γ, m = Θ(γ), one has tr (γ) = 2+
∑
n≥1 21−n(1/2

n

)
tr (m2)n

by (4.3.10). Since tr (m2) ∈ P and P is stable by multiplication, tr (m2)n ∈ P for all n and

since P is closed, Q ⊂ P . On the other hand, as seen in the proof of the preceding theorem,

P is the closed subgroup of A generated by the elements tr (xy)− tr (x)tr (y)/2 for x, y ∈ Γ,

that is by the elements tr (xy)−2−(tr (x)−2)(tr (y)−2)/2−(tr (x)−2)−(tr (y)−2) ∈ Q+Q2

Thus Q ⊂ P ⊂ Q + Q2, and since P is a closed pseudo-ring, it follows that the closed

pseudo-subring of A generated by Q is P . �

4.6. Pink’s converse theorem.

Theorem 4.6.1 (Pink). Let L be a Lie subring of (radR)0. Set P = tr (L ·L). If PL ⊂ L,

then H := Θ−1(L) is a closed subgroup of SR1, and Θ is a homeomorphism of H onto L.

In particular L = L(H), and P = P (H).

Proof — If PL ⊂ L, then one sees as in the proof of Cor. 4.5 that P is a pseudo-subring

and tr (h)− 2 ⊂ P for every h ∈ H. Thus tr (H)L ⊂ L
If x, y ∈ H, 2Θ(xy) = [Θ(x),Θ(y)] + tr (x)Θ(y) + tr (y)Θ(y) by (4.3.3). The first term

is in L because L is a Lie subring, the last two are also in L since tr (H)L ⊂ L. Therefore,

xy ∈ H. Also by (4.3.5), Θ(x−1) = −Θ(x) so x−1 ∈ H. This shows that H is a subgroup

of SR1, obviously closed. �

5A pseudo-subring of a ring A is a subset P which is an additive subgroup of A and is closed under

multiplication.
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4.7. Descending the central sequence. Let Γ be a closed subgroup of SR1, L = L(Γ)

its Pink’s Lie algebra, P = P (Γ) = tr (L · L) the attached pseudo-ring. We define:

• for n ≥ 1, closed Lie subrings Ln of (radR)0, defined by recurrence as follows:

L1 = L, Ln+1 = [Ln, L];

• for n ≥ 1, closed subsets Hn = Θ−1Ln of SR1.

• for n ≥ 1, closed subgroups Γn of SR1 defined by recurrence as follows: Γ1 = Γ,

Γn+1 = (Γn,Γ) (closed commutators subgroup) for n ≥ 1

Proposition 4.7.1 (Pink). Let n,m ≥ 1.

(i) If n ≥ 1, Ln+1 ⊂ Ln.

(ii) If n,m ≥ 1, [Ln, Lm] ⊂ Ln+m.

(iii) If n ≥ 1, for h ∈ Hn, tr (h)− 2 ∈ P .

(iv) If n ≥ 1, Hn is a closed subgroup of SR1 and Θ : Hn → Ln is an homeomorphism.

(v) If n ≥ 2, PLn ⊂ Ln+2.

(vi) If n ≥ 2, Θ induces a bicontinuous isomorphism of groups Hn/Hn+1 ' Ln/Ln+1.

Proof — Assertions (i) and (ii) follows easily by induction from Theorem 4.4.1. For (iii),

write m = Θ(h) ∈ Ln ⊂ L. Then by (4.3.10), tr (h)− 2 =
∑
n≥1 21−n(1/2

n

)
tr (m2)n ∈ P .

For (iv), from PL ⊂ L one proves by induction that PLn ⊂ Ln. One therefore has

tr (Ln · Ln)Ln ⊂ tr (L · L)Ln = PLn ⊂ Ln. It then follows from Theorem 4.6.1 applied

to the Lie subring Ln that Hn = Θ−1(Ln) is a closed subgroup of Ln, and that Θ is a

homeomorphism of Hn onto Ln.

Formula (v) follows from (4.3.6) for n = 2 and then by induction for all n ≥ 2.

For (vi), if x, y ∈ Hn, then by (4.3.3),

Θ(xy)−Θ(x)−Θ(y) =
1

2
([Θ(x),Θ(y)]− (tr (x)− 2)Θ(y)− (tr (y)− 2)Θ(x)).

Hence Θ(xy) − Θ(x) − Θ(y) ∈ L2n + Ln+2 ⊂ Ln+1 by (i), (ii), (iii) and (v) (applicable

since n ≥ 2). This shows that Θ induces a group morphism from Hn to Ln/Ln+1. This

morphism is surjective by (iv), and the kernel of this morphism is clearly Hn+1, hence (vi).

�

The most important theorem of Pink’s theory is Theorem 4.7.3 below, which shows that

for n ≥ 2, the terms Γn of the descending central sequence of Γ are determined by their

Lie algebra Ln, hence by L.

First, we need a lemma:

Lemma 4.7.2 (Pink). Let n ≥ 2. For x ∈ H1, y ∈ Hn−1 one has

Θ(xyx−1y−1) ≡ [Θ(x),Θ(y)] (mod Ln+1).

In particular, xyx−1y−1 ∈ Hn.

Proof — One writes

2Θ(xyx−1y−1) = 2Θ([x, y]x−1y−1) = [Θ([x, y]),Θ(x−1y−1)] + tr (x−1y−1)Θ([x, y])
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by (4.3.3). Since obviously [Θ(x),Θ(y)] = [x, y] = Θ([x, y]), this can be written

2Θ(xyx−1y−1) = [[Θ(x),Θ(y)],Θ(x−1y−1)] + tr (x−1y−1)[Θ(x),Θ(y)]

Now Θ(x) ∈ L1, Θ(y) ∈ Ln−1, so [Θ(x),Θ(y)] ∈ Ln and Θ(x−1y−1) ∈ L1. Thus, the

first term of the RHS is in Ln+1. As for the second term, tr (x−1y−1) − 2 ∈ P , and since

PLn ⊂ Ln+2, one gets that the second term is 2[Θ(x),Θ(y)] (mod Ln+1) and the lemma

follows. �

Theorem 4.7.3 (Pink). For n ≥ 2, one has Γn = Hn = Θ−1(Ln). Hence Θ realizes an

homeomorphism of Γn on Ln for n ≥ 2.

Proof — We follow approximately Pink’s method.

By definition Γ1 = Γ ⊂ H1. We prove by induction that Γn ⊂ Hn for all n. Assuming

Γn−1 ⊂ Hn−1, we get for x ∈ Γ, y ∈ Γn−1, Θ(x) ∈ L1, Θ(y) ∈ Ln−1, hence by the

commutator relation Θ(xyx−1y−1) ∈ [L,Ln−1] + Ln+1 ⊂ Ln, and xyx−1y−1 ∈ Hn. Since

Hn is a closed subgroup of SR1, and Γn is the closed subgroup generates by the xyx−1y−1

as above, one gets Γn ⊂ Hn.

Let ∆n be the closed subgroup of (radR)0 generated by Θ(Γn). We claim by induction

that ∆n + Ln+1 = Ln for all n ≥ 1. This is true for n = 1 because by definition ∆1 = L1.

For n ≥ 2, since Γn is the subgroup generated by xyx−1y−1 for x ∈ Γ, y ∈ Γn−1, and Θ is

a morphism from Γn to Ln/Ln+1, ∆n + Ln+1 is the closed subgroup of (radR)0 generated

by Ln+1 and the elements Θ(xyx−1y−1), that is, by the lemma, the elements [Θ(x),Θ(y)].

Since the closed subgroups generated by those elements is [L1, Ln−1] = Ln, we get that

∆n + Ln+1 = Ln.

For n ≥ 2, since Θ is a morphism from Hn onto Ln/Ln+1, Θ(Γn) + Ln+1 is already a

closed subgroup of Ln, hence it is ∆n + Ln+1 = Ln. We thus have shown, for all n ≥ 2

Θ(Γn) + Ln+1 = Ln.

Applying this formula for n replaced by n + 1 gives a description of Ln+1 that we can

plug in the LHS of the formula, getting Θ(Γn) + Ln+2 = Ln, and by induction on m,

Θ(Γn) + Ln+m = Ln for all m ≥ 1. Since ∩mLn+m = 0 (by Lemma 4.2.3) and Θ(Γn) is

closed, one gets Θ(Γn) = Ln, hence Γn = Hn and the theorem. �

Thus, the knowledge of the Lie algebra L of Γ determines the derived subgroup Γ2 of Γ.

There is an other result of Pink, limiting the possibilities for the quotient Γ/Γ2:

Theorem 4.7.4 (Pink). The composition law ∗ on L/L2 defined by

x ∗ y = x(
√

1 + tr (y2)/2) + y(
√

1 + tr (x2)/2)

makes L/L2 a commutative group. The map Θ induces a bicontinuous morphism of groups

H1/H2 → (L/L2, ∗). The image ∆ of Γ/H2 = Γ/Γ2 in L/L2, which is obviously a subgroup

of L/L2 for the law ∗, topologically generates L/L2 for the law +.
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Since we shall only use this theorem in the case where R = M2(A) (see Prop. 4.8.2), we

just refer to [25, Prop. 2.6] for the proof.

4.8. Complements to Pink’s theory.

4.8.1. Functoriality w.r.t. surjective morphism of rings. Let J be a closed ideal of A. The

ring A/J is still a compact semi-local topological ring, of radical m/(m ∩ J), with residue

fields a subset of the set of residue fields of A, hence all finite of characteristic p > 2. In

other words, A/J satisfies (4.1.1) and (4.1.2).

The A/J-algebra RJ = R/JR =

(
A/J B/JB
C/JC A/J

)
is a GMA which is obviously of

finite type as an A/J-module, and also Cayley-Hamilton. We denote by πJ the surjective

morphism of algebras R → R/JR. This morphism induces a morphism of multiplicative

groups πJ : R∗ → R∗J which is still surjective because an element of a GMA is invertible if

and only if its determinant is. It also induces a surjection R1 → R1
J and a morphism SR1 →

SR1
J , which we again denote by πJ . Also πJ induces a map πJ : (radR)0 → (radRJ)0.

If Γ is a closed subgroup of SR1, let us denote by ΓJ the closed subgroup πJ(Γ). Then

we can apply Pink’s theory to ΓJ and define sub-Lie-algebras Ln(ΓJ) of (radRJ)0. The

functoriality mentioned in the title is the fact that

(4.8.1) for all n ≥ 1, πJ(Ln(Γ)) = Ln(ΓJ).

This is easy to see for n = 1 from the definition for L1, and then by induction on n for any

n.

4.8.2. Multiplication by tr (Γ).

Lemma 4.8.1. For every γ ∈ Γ, and every n ≥ 1, one has tr (γ)Ln = Ln.

Proof — It suffices to prove the first assertion for n = 1, because then, one has Ln+1 =

[L1, Ln] = [tr (γ)L1, Ln] = tr (γ)[L1, Ln] = tr (γ)Ln+1. For n = 1 we already know that

tr (γ)L ⊂ L, so we just need to show that tr (γ)−1L ⊂ L.

Note that tr (γ) ≡ 2 (mod m). Let m = Θ(γ). Then γ = Θ−1(m) so that by (4.3.10),

tr γ = 2 +
∑
n≥1 21−n(1/2

n

)
tr (m2)n and tr (γ)−1 = 2−1 +

∑
n≥1 bntr (m2)n for some coef-

ficients bn ∈ Zp that we need not compute. Since tr (m2) ∈ P (Γ), tr (m2)nL ⊂ L hence

tr (γ)−1L ⊂ L which completes the proof of the first assertion. �

4.8.3. A simple class of examples. Let I be a closed pseudo-subring of A contained in m,

that is a closed additive subgroup of m, stable by multiplication. Let R = M2(A) be the

standard GMA. Then L =

(
I I
I I

)0
is a Zp-Lie sub-algebra of

(
m m
m m

)0
= (radR)0. We

will determine the closed subgroups Γ of SL1
2(R) that have L as Pink’s Lie algebra; actually

there is only one such subgroup:
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Proposition 4.8.2. Let Γ be a closed subgroup of SL1
2(R) such that L(Γ) = L =

(
I I
I I

)0
.

Then Γ = Θ−1(L) and Θ realizes an homeomorphism from Γ onto L. More generally

Γn = Θ−1

((
In In

In In

)0)
for every n ≥ 1.

Proof — If we set X = ( 0 1
0 0 ), Y =

(
0 0
−1 0

)
, J =

(
1 0
0 −1

)
, then the usual commutation

relations are [qX, q′Y ] = qq′J , [qJ, q′X] = 2qq′X and [qJ, q′Y ] = −2qq′Y , for any q, q′ ∈

I. The additive subgroup generated by these elements, L2 = [L,L], is thus

(
I2 I2

I2 I2

)0
.

Similarly one proves by induction that Ln =

(
In In

In In

)0
for any n.

For x ∈ L, the power series defining
√

1 + trx2/2−1 has all its terms in I2, hence is in I

since I is closed under multiplication and topologically. Thus for x, y ∈ L, y
√

1 + trx2−y ∈
IL ⊂ L2 and it follows that x∗y ≡ x+y (mod L2) (using the notation of Theorem 4.7.4.).

The subgroup Θ(Γ) (mod L2) of (L/L2, ∗) is thus also a subgroup for the additive law +,

and therefore, by Theorem 4.7.4, is such that its topological closure is L/L2. Since it is

already closed, one has Θ(Γ) ≡ L (mod L2). Since Θ(Γ) contains L2, we obtain Θ(Γ) = L.

The proposition easily follows. �

4.8.4. Haar measures. For any compact group ∆, we denote by µ∆ the Haar measure on

∆ normalized so as to have a total mass 1.

Lemma 4.8.3. Let H and H ′ be two compact groups, (Hn)n≥n0
(resp. (H ′n)n≥n0

) a

decreasing sequence of closed normal subgroups in H (resp. in H ′) such that Hn0 = H and

∩nHn = {1} (resp. H ′n0
= H ′ and ∩nH ′n = {1}). Let f be an homeomorphism from H

to H ′ (not necessarily a group homomorphism) such that f(1) = 1 and for every h in H,

f(hHn) = f(h)H ′n. We assume that

(i) either the induced map f̄n : Hn/Hn+1 → H ′n/H
′
n+1 is a morphism of groups,

(ii) or the Hn are open in H.

Then f sends the Haar measure µH to the Haar measure µH′ .

Proof — By assumption, f̄n : Hn/Hn+1 → H ′n/H
′
n+1 is either an isomorphism of groups,

or a bijection between finite groups, hence in both cases sends the normalized Haar measure

of Hn/Hn+1 on the normalized Haar measure of H ′n/H
′
n+1. Using this, and an induction

over n and Fubini, one sees that the map f̄ : H/Hn → H ′/H ′n preserves Haar measures.

To prove the lemma, it suffices to prove that µH(U) = µH′(f(U)) for any open set U

in H. Since H is compact, U contains Hn for some n, and f induces a bijection f̄ from

the finite group H/Hn to the finite group H ′/H ′n. If Ū is the image of U in H/Hn, we are

reduced to prove that µH/Hn(Ū) = µH′/H′n(f̄(Ū)), which we have already done. �

Proposition 4.8.4. In the situation of Theorem 4.7.3, the homeomorphism Θ : Γ2 → L2

sends the Haar measure µΓ2 to the Haar measure µL2 .
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Proof — We apply the preceding lemma to f = Θ, H = Γ2, H ′ = L2, n0 = 2, Hn = Γn,

H ′n = Ln. �

Let us note for later use another application of Lemma 4.8.3.

Lemma 4.8.5. Let V be a closed additive subgroup of R, σ : V → V a map satisfying

σ(0) = 0 and the following property:

∀v, v′ ∈ V, n ∈ N, v − v′ ∈ mnR =⇒ σ(v)− σ(v′) ∈ mn+1R

Let Ψ : V → V be the map Ψ(v) = v + σ(v). Then Ψ is an homeomorphism of V onto V

and sends the Haar measure µV to itself.

Proof — If v 6= v′ ∈ V , let n be an integer such that v − v′ ∈ mnR but v − v′ 6∈ mn+1R.

Then Ψ(v)−Ψ(v′) = (v−v′)+(σ(v)−σ(v′)) and since σ(v)−σ(v′) ∈ mn+1R, Ψ(v)−Ψ(v′) is

not in mn+1R and in particular Ψ(v) 6= Ψ(v′). Hence Ψ is injective. If v′ ∈ V , consider the

map h : V → V, y 7→ v′−σ(y). The hypothesis made on σ implies that this map has a fixed

point in V , so there exists v such that v′ − σ(v) = v, or Ψ(v) = v′. Hence Ψ is surjective.

As Ψ is obviously continuous, and closed since V is compact, it is a homeomorphism. To

show that Ψ preserves the Haar measure, we apply Lemma 4.8.3 with H = H ′ = V ,

Hn = H ′n = V ∩ (mnR): for any n, the group Hn is open in V since mnR is open in R and

the hypothesis implies that Ψ(v +Hn) = Ψ(v) +Hn. �

4.9. Decomposition of Lie algebras. In this subsection, R is a GMA over A satisfying

the conditions of §4.2.

4.9.1. Decomposable Lie algebras. Let L be a closed subspace of (radR)0.

(4.9.1) We shall say that L is decomposable if, for any

(
a b
c −a

)
∈ L, one has(

a 0
0 −a

)
∈ L and

(
0 b
c 0

)
∈ L.

We shall denote by ∆ and ∇ the additive groups of diagonal matrices and anti-diagonal

matrices in L. Thus, L is decomposable if and only if

(4.9.2) L = ∆⊕∇.

Since by definition matrices in L have trace 0 and diagonal terms are in the radical m of

A, we see that ∆ has the form

(4.9.3) ∆ = I1J , with I1 a unique additive closed subgroup of m,

where J denotes as usual the matrix
(

1 0
0 −1

)
. We take (4.9.3) as the definition of I1. We

thus have, if L is decomposable

L = I1J ⊕∇.

Let us set P = tr (L2).

Lemma 4.9.1. If L is decomposable, one has P = tr (∆2) + tr (∇2) = I2
1 + tr (∇2).
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Proof — If m,m′ ∈ L, we can write m = δ + ε, m′ = δ′ + ε′ with δ, δ′ ∈ ∆ and ε, ε′ ∈ ∇.

Then tr (mm′) = tr (δδ′) + tr (εε′) since the matrices δε′ and εδ′ are anti-diagonal. Thus,

P ⊂ tr (∆2) + tr (∇2), and since the other inclusion is clear, this implies the result. �

Proposition 4.9.2. Let L = I1J ⊕∇ ⊂ (radR)0 be a decomposable space. The following

are equivalent:

(4.9.4) There exists a closed subgroup Γ of SR1 such that L is the Lie algebra of Γ.

(4.9.5) One has:

(4.9.5.1) [∇,∇] ⊂ I1J ,

(4.9.5.2) I1[J,∇] ⊂ ∇,

(4.9.5.3) tr (∇2)I1 ⊂ I1,

(4.9.5.4) tr (∇2)∇ ⊂ ∇,

(4.9.5.5) I3
1 ⊂ I1,

Proof — The two first conditions (4.9.5.1) and (4.9.5.2) are equivalent to L being

stable by Lie bracket. Since P = I2
1 + tr (∇)2, the condition PL ⊂ L is equivalent to the

conjunction of (4.9.5.3), (4.9.5.4), (4.9.5.5) and I2
1∇ ⊂ ∇. But this condition follows from

(4.9.5.2): applied twice, this property gives I2
1 [J, [J,∇]] ⊂ ∇, that is I2

1∇ ⊂ ∇. Therefore

the five conditions (4.9.5) together are equivalent to L being a Lie subring of (radR)0 and

PL ⊂ L. The proposition thus follows from Theorems 4.5.1 and 4.6.1. �

When L is decomposable, we set:

(4.9.6) B1 := {b ∈ B, ∃c ∈ C,
(

0 b
c 0

)
∈ ∇},

(4.9.7) C1 := {c ∈ C, ∃b ∈ B,
(

0 b
c 0

)
∈ ∇}.

We have obviously ∇ ⊂
(

0 B1

C1 0

)
but the inclusion may be strict.

4.9.2. Strongly decomposable Lie algebra. Let L be a closed subspace of (radR)0.

(4.9.8) We shall say that L is strongly decomposable if, for any

(
a b
c −a

)
∈ L, one

has

(
a 0
0 −a

)
∈ L,

(
0 b
0 0

)
∈ L and

(
0 0
c 0

)
∈ L.

If we define B1, C1 and I1 as above (4.9.6), one can reformulate (4.9.8) as

(4.9.9) L =

(
I1 B1

C1 I1

)0
.

If P = tr (L2), then we see that

(4.9.10) P = I2
1 +B1C1

Proposition 4.9.3. Let L =

(
I1 B1

C1 I1

)0
⊂ (radR)0 be a strongly decomposable closed

subgroup. The following are equivalent:
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(4.9.11) There exists a closed subgroup Γ of SR1 such that L is the Lie algebra of Γ.

(4.9.12) One has:

(4.9.12.1) B1C1 ⊂ I1,

(4.9.12.2) I1B1 ⊂ B1 and I1C1 ⊂ C1 ,

(4.9.12.3) I3
1 ⊂ I1,

Proof — If L is strongly decomposable, it is in particular decomposable, and we use the

notation of §4.9.1: L = I1J ⊕ ∇ with ∇ =

(
0 B1

C1 0

)
. One thus has [∇,∇] = B1C1J

and I1[J,∇] =

(
0 I1B1

I1C1 0

)
, so (4.9.12.1) is equivalent to (4.9.5.1) and (4.9.12.2) is

equivalent to (4.9.5.2).

Since tr (∇2) = B1C1, (4.9.5.3) reads B1C1I1 ⊂ I1, which is a consequence of the above.

Similarly, (4.9.5.4) read B1C1B1 ⊂ B1 and B1C1C1 ⊂ C1, both of which follow from the

above. Thus we see that (4.9.12) is equivalent to (4.9.5) and the proposition follows. �

5. Admissible pseudo-representations

5.1. Hypotheses on the base ring A. In all this section, we let F be a finite field of

characteristic p, and we denote by W (F) the ring of Witt vectors of F. We suppose we are

given

(5.1.1) A topological W (F)-algebra A which is compact and semi-local, and such that

the maps W (F)→ A/mi, where mi, i = 1, . . . , r are the maximal ideals of A, are surjective.

Thus A satisfies the condition (4.1.1) with the small additional requirements that A is a

topological W (F)-algebra and that the maps W (F) → A/mi are surjective, which implies

that the residue fields Fi, i = 1, . . . , r, are all equal at F. We use the same notations as in

the preceding section: A =
∏r
i=1Ai with the Ai’s local, and we write (by abuse) mi for the

maximal ideal of Ai.

We shall denote by s : F→ A the map obtained by taking the Teichmuller lift in W (F)

of an element of F and seeing it as an element of A through the structural map W (F)→ A.

The map s is a set-theoretical section of the residue map A → A/m = F, and preserve

multiplication but not addition. The elements of A that belong to s(F) will be called

constants.

5.2. Admissible pseudo-deformations. We now proceed to define an admissible pseudo-

deformation over A. It is a 4-tuple (Π, ρ̄, t, d) where

(5.2.1) Π is a profinite group.

(5.2.2) ρ̄ = (ρ̄i)
r
i=1 is a family of isomorphism classes of continuous representations

ρ̄i : Π→ GL2(F), each of them being either absolutely irreducible or the sum of two distinct

characters.
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(5.2.3) (t, d) is a continuous pseudo-representation of Π over A such that for i =

1, . . . , r we have tr ρ̄i ≡ t (mod mi) and det ρ̄i ≡ d (mod mi).

(5.2.4) We have d(g) ∈ s(F) for all g ∈ Π

(5.2.5) As a topological W (F)-algebra, A is generated by t(Π).

The condition (5.2.4) expresses the fact that this pseudo-representation has constant

determinant. Even if we do not assume it, there is always a twist of (t, d) which has

constant determinant, namely the twist by the character g 7→
√
d(g)−1s(d̄(g)).

If we denote by (ti, di) the composition of (t, d) with A→ Ai, the condition (5.2.3) says

that (ti, di) is a deformation over Ai of the pseudo-representation (tr ρ̄i,det ρ̄i) attached to

ρ̄i, or as it is customary to say, a pseudo-deformation of ρ̄i over Ai.

If A → A′ is a surjective map, then A′ with its quotient topology satisfies (5.1.1), and

we can write A′ =
∏
j∈J A

′
j , where J is a subset of {1, . . . , r} and the map A → A′ is the

product of surjective maps Aj → A′j for j ∈ J . If we denote by (t′, d′) the composition

of (t, d) with the map A → A′, then it is clear that (Π, (ρ̄j)j∈J , t
′, d′) is an admissible

pseudo-deformation over the ring A′. In particular, for every i = 1, . . . , r, (Π, ρ̄i, ti, di) is

an admissible pseudo-deformation over the local ring Ai.

5.3. Equivalent formulations for (5.2.5). Following [16], let C be the category of topo-

logical W (F)-algebras B that are compact and local, and such that the map W (F)→ B/mB

is surjective, where mB is the maximal ideal of B. Given a topological group Π and a con-

tinuous representation ρ̄ : Π→ GL2(F), we consider the functor Fρ̄ from C to the categories

of sets, such that Fρ̄(B) is the set of continuous pseudo-representation (t, d) : Π→ B such

that t ≡ tr ρ̄ (mod mB), d ≡ det ρ̄ (mod mB), and d(g) ∈ s(F) for all g ∈ Π. By [16], this

functor is representable by a ring Aρ̄,univ.

Let (Π, ρ̄, t, d) be a pseudo-representation over A =
∏
iAi satisfying (5.2.2), (5.2.3) and

(5.2.4), and let i ∈ {1, . . . , r}. Thus (Π, ti, di) defines an element of Fρ̄i(Ai) hence a map

Aρ̄i,univ → Ai.

Proposition 5.3.1. (Π, ρ̄, t, d) satisfies (5.2.5) (i.e. is admissible) if and only if for i =

1, . . . , r, the morphisms Aρ̄i,univ → A are surjective.

This is clear.

Corollary 5.3.2. If (Π, ρ̄, t, d) is an admissible pseudo-deformation over A, and if Π satis-

fies Mazur’s finiteness p-condition (i.e. the maximal pro-p-quotient of every open subgroup

of Π is topologically finitely generated), then A is noetherian.

Proof — Since Π satisfies Mazur’s p-finiteness condition, we know that Aρ̄i,univ is noe-

therian by [16] in the case ρ̄i absolutely irreducible, by [1] in the case ρ̄i reducible and p > 2

and by [6] in the case p = 2. Thus Ai is noetherian for all i, and A is noetherian. �

Proposition 5.3.3. Assume p > 2. In the definition of an admissible pseudo-representation,

condition (5.2.5) can be replaced by the apparently weaker condition
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(5.3.1) As a topological W (F)-module, A is generated by t(Π).

Indeed, the W (F)-module generated by t(Π) is already a W (F)-algebra, for it contains

t(1) = 2, hence 1 since p > 2, and it is stable by multiplication: if x, y ∈ Π, t(x)t(y) =

t(xy) + d(y)t(xy−1), and d(y) ∈W (F) by (5.2.4).

5.4. (t, d)-representations attached to an admissible pseudo-deformation and

their image. If (Π, ρ̄, t, d) is an admissible pseudo-deformation, then for every i ∈ {1, . . . , r},
there exists, by Theorem 2.4.2, a unique up to unique isomorphism Ai-GMA Ri and a

(ti, di)-representation ρi : Π→ R∗i . Let us remind that that means that there exist a faithful

GMA Ri =

(
Ai Bi
Ci Ai

)
and a representation ρi : Π→ GL2(Ai) of trace ti and determinant

di, and that given another GMA R′i and representation ρ′i satisfying the same conditions,

there exists a unique isomorphism of A-algebras f : Ri → R′i such that f ◦ ρi = ρ′i. We

note that by Corollary 5.3.2 and Theorem 2.4.2, the ring Ai is noetherian, the algebra

Ri is finite-type as an Ai-module, and when Ri is provided with its natural topology, the

representation ρi is continuous.

Setting R =
∏r
i=1Ri and seeing this ring as an A =

∏r
i=1Ai-algebra (component-wise),

we get a continuous representation ρ : Π→ R∗ of trace t and determinant d which is unique

up to unique isomorphism. We call this representation a (t, d)-representation.

Given such a representation ρ, we set

(5.4.1) G = ρ(Π)

(5.4.2) Γ = G ∩ SR1,

where SR1 is defined as in §4.2. Note that G is a closed subgroup of R∗ and Γ a closed

subgroup of SR1.

We denote by G the image of G by the map R∗ → (R/radR)∗

Lemma 5.4.1. The sequence

(5.4.3) 1→ Γ→ G→ G→ 1

is exact. In particular, Γ is a finite index normal subgroup in G.

Proof — Though Γ is defined as G ∩ SR1, we claim that Γ = G ∩ R1. Indeed, let

g ∈ G∩R1 and write g = ρ(x) for x ∈ Π. Then det g = s(det(g)) by (5.2.4). Since g ∈ R1,

det g ∈ 1 + m ⊂ A∗ and det(g) = 1. Thus det(g) = s(1) = 1 and g ∈ Γ.

Since the kernel of G→ G is G ∩R1, the result follows. �

We also define

(5.4.4) Gi = ρi(Π)

The group Gi is the image of G by the map R∗ → R∗i . The surjective maps G → Gi

for i = 1, . . . , r define a map G →
∏r
i=1Gi which is always injective, but not necessarily

surjective.
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We observe that the choice of a representation ρi specifies a single representation ρ̃i :

Π → GL2(F) in the isomorphism class ρ̄i, as follows: consider the composition ρ̃i : Π
ρ→

R∗i → (Ri/radRi)
∗. We know that Ri/radRi is M2(F) if ρ̄i is absolutely irreducible and(

F 0
0 F

)
otherwise, so ρ̃i can be considered in both cases as a semi-simple representation of

G. The trace and determinant of ρ̃i are reduction mod mi of those of ρi, hence are identical

to those of ρ̄i. Therefore, ρ̃i is a representation in the equivalence class ρ̄i. By a slight

abuse of notations, when a representation ρi is fixed, we shall denote by ρ̄i its reduction ρ̃i.

6. Lie-theoretic study of admissible pseudo-deformations

6.1. Hypothesis on the base ring A. In this section, we let F be a finite field of char-

acteristic p > 2, and we consider

(6.1.1) A topological ring A which is compact and local, with residue field F.

Such a ring A is automatically a topological W (F)-algebra, and the map W (F)→ A→
A/m = F is the residue map of W (F), hence surjective. Hence our hypothesis implies

(5.1.1), and actually is equivalent to it combined with the supplementary assertion that A

is local (and p > 2).

Our aim is to study the image G of ρ, with a special attention to its subgroup Γ. The

group G depends on the chosen (t, d)-representation ρ : Π → R∗, but only up to unique

isomorphism. We can choose to work with any (t, d)-representation ρ : Π → R∗ that

simplifies our analysis. According to (5.2.2), there is an element g0 ∈ Π such that ρ̄(g0)

has two distinct eigenvalues in F, λ0 and µ0. Actually, there are in general many of them.

Given such an element g0 as well as an ordering (λ0, µ0) of the eigenvalues of ρ̄(g0), there

exists a (t, d)-representation ρ : Π → R∗ adapted to (g0, λ0, µ0). Let us remind that that

means that ρ(g0) is a diagonal matrix which reduces modulo m to

(
λ0 0
0 µ0

)
. We shall see

that working with (t, d)-representations ρ which are adapted to a well-chosen element g0 is

often the right choice.

In order to study the group G, and its subgroup Γ, we shall make use of the generalization

of Pink’s theory exposed in the preceding section. Note that the GMA R is Cayley-

Hamilton, since it is faithful, and that Γ is a closed subgroup of SR1, so this theory

applies and attaches to Γ a Lie subring L = L(Γ) of (radR)0. To L is attached a pseuso-

ring P = tr (L2) such that PL ⊂ L, and the full descending central sequence L1 = L,

L2 = [L,L], etc.

6.2. Finding constant elements in G. Given a faithful GMA R over A, the multiplica-

tive section s : F → A induces a set-theoretic section of the map R → R/radR. This

section, still denoted by s : R/radR → R, sends a matrix
(
a b
c d

)
to
(
s(a) s(b)
s(c) s(d)

)
in the case

R = M2(A) and ( a 0
0 d ) to

(
s(a) 0

0 s(d)

)
in the case R =

(
A B
C D

)
with BC ⊂ m. We shall

call a matrix of R which lies in s(R/radR) constant.
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Note that the section s is multiplicative in the second case, but is not in the first, because

multiplications of matrices involve addition of the coefficients in general, and s does not

preserve addition. However, when m,m′ are two matrices in R/radR which are either

diagonal or anti-diagonal, then s(mm′) = s(m)s(m′) because in this case the multiplication

of matrices only involve multiplication of the coefficients.

We consider again in this subsection an admissible pseudo-deformation (Π, ρ̄, t, d) over

A. Given a (t, d)-representation ρ : Π → R∗, we recall that by definition G = ρ(Π), and

Γ = G ∩ SR1.

Our aim is to find elements of the image G that are constant. It is important to ob-

serve that the notion of constant element of G depends on the chosen (t, d)-

representation ρ. Therefore, our aim is, more precisely stated, for a given admissible

pseudo-deformation (Π, ρ̄, t, d) to find a suitable (t, d)-representation ρ : Π→ R∗ such that

the associated group G has enough constant elements.

Theorem 6.2.1. Let g0 be such that ρ̄(g0) has distinct eigenvalues λ0, µ0 in F, and let

ρ : Π→ R∗ be any (t, d)-representation adapted to (g0, λ0, µ0). Let D be the subgroup of G

generated by ρ̄(g0) and by the scalar matrices in G. Then s(D) ⊂ G.

Furthermore, let n ∈ N(D) − Z(D), where N(D) is the normalizer and Z(D) is the

centralizer of D in Ḡ. Then, up to changing ρ into another (t, d)-representation adapted to

(g0, λ0, µ0), one has s(n) ∈ G. As a consequence, if D = Z(D) then s(N(D)) ⊂ G.

Proof — By assumption ρ(g0) is diagonal and reduces modulo radR to ρ̄(g0) =

(
λ0 0
0 µ0

)
.

Let us write ρ(g0) = s(ρ̄(g0)) +m with m ∈ radR a diagonal matrix.

Since s(ρ̄(g0)) and m commute, being two diagonal matrices, we get for every integer

n ≥ 1 (denoting by q the cardinality of F):

ρ(gq
n

0 ) = s(ρ̄(g0)q
n

) +

qn∑
k=1

(
qn

k

)
s(ρ̄(g0)q

n−k)mk.

Denoting by vp the p-valuation of an integer, one has vp

((
qn

k

))
= nvp(q)− vp(k) if k ≥ 1,

as is well-known. The matrix mk is diagonal with coefficients in mk, and s(ρ̄(g0)q
n−k) is

diagonal with coefficients in A. Therefore, since p ∈ m, the term
(
qn

k

)
s(ρ̄(g0)q

n−k)mk for

k ≥ 1 is a diagonal matrix whose coefficients belong to mnvp(q)−vp(k)+k, hence to mnvp(q)+1.

On the other hand, since ρ̄(g0) is a diagonal matrix in GL2(F), its order divides q − 1,

hence ρ̄(g0)q = ρ̄(g0) and ρ̄(g0)q
n

= ρ̄(g0).

Therefore

ρ(gq
n

0 ) ≡ s(ρ̄(g0)) (mod mnvp(q)+1)

Since ρ(gq
n

0 ) belongs to G by definition, and nvp(q) + 1 tends to +∞, we see that s(ρ̄(g0))

is the limit of a sequence of elements of G. Since G is closed,

s(ρ̄(g0)) ∈ G.

Let h ∈ Π such that ρ̄(h) is a scalar matrix. Then we can write ρ(h) = s(ρ̄(h)) +m with

m ∈ radR a matrix commuting with s(ρ̄(h)) (since s(ρ̄(h)) is a scalar matrix in R). The
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same argument as above then shows that s(ρ̄(h)) ∈ G. Since D is generated by ρ̄(g0) and

the scalar matrices in D, and s|D is a morphism of groups, we have s(D) ⊂ G. This proves

the first assertion of the theorem.

Now let N be the normalizer of D in Ḡ, and Z its centralizer. If N = Z there is nothing

else to prove. If N 6= Z, then there is an anti-diagonal element in N , which shows that

ρ̄ is irreducible and we are in the case R = M2(A). It is easy to see that |N | = 2|Z|.
Since Z consists of diagonal matrices, |Z| divides (q− 1)2, and the order |N | is prime to p.

Considering the exact sequence 1→ Γ→ G→ G→ 1, and the fact that Γ is a pro-p-group,

we see by Zassenhaus’ theorem that there is a map s′ : N → G which is a section of G→ G

over N ⊂ G. The restriction of s′ to D is a section over D of G→ G. Since |D| is prime to

p, such a section is unique up to conjugation (again by Zassenhaus’ theorem) by an element

g of G. Replacing s′ by gs′g−1 we may assume that the section s′ on N restricts to the

section s on D.

Let us choose n ∈ N − Z. The element n normalizes D and therefore s′(n) normalizes

s′(D) = s(D), which is a non-scalar diagonal subgroup of R∗. Therefore s′(n) is either

diagonal or anti-diagonal. If it was diagonal, then it would commute with s(D), hence

n would commute with D and be in Z, a contradiction. Therefore s′(n) is anti-diagonal,

say s′(n) = ( 0 b
c 0 ). Since n2 ∈ D, s′(n2) =

(
bc 0
0 bc

)
is in s(D) and therefore bc ∈ s(F).

By conjugating ρ by the matrix ( b 0
0 1 ), we may assume that b = 1 (with ρ still a (t, d)-

representation adapted to g0.) Thus c ∈ s(F), and therefore s′(n) = s(n). It follows that

s(n) ∈ G, as claimed. �

Let us note two important consequences:

Corollary 6.2.2. Let g0 be such that ρ̄(g0) has distinct eigenvalues λ0, µ0 in F and let ρ

be adapted to (g0, λ0, µ0), and let G, Γ, L be defined using this ρ. Then L is decomposable.

Proof — Let us denote by u : R → R the conjugation by s(ρ̄(g0)), that is the map

m → s(ρ̄(g0))ms(ρ̄(g0))−1. The map u is a W (F)-linear endomorphism of R. By the

theorem s(ρ̄(g0)) =
(
s(λ0) 0

0 s(µ0)

)
is in G, and therefore normalizes Γ, hence L. In other

words, u stabilizes the additive subgroup L of R.

In order to simplify notation, let us set r := s(λ0/µ0) ∈ W (F). Clearly, u fixes diag-

onal matrices in R, and acts by multiplication by r (resp. r−1) on matrices of the form

( 0 b
0 0 ) (resp. ( 0 0

c 0 )). It follows that u is killed by the polynomial X(X − r)(X − r−1). If

Σ = Gal(F/Fp) = Aut ZpW (F), then the polynomial XQ(X) also kills u, with Q(X) =∏
σ∈Σ(X − σ(r))(X − σ(r)−1) ∈ Zp[X]. Since by assumption, r 6= 1, the value Q(1) is

invertible in Zp and the operator Q(u)/Q(1) of R is the projection onto diagonal matrices

relatively to antidiagonal matrices. This operator, being in Zp[u], stabilizes L, which shows

that if a matrix is in L, its diagonal part is also in L. �

Corollary 6.2.3. Let ρ be adapted to an element (g0, λ0, µ0) as above, and let G, Γ, L de-

fined using this ρ. Let Fq be a subfield of F, and assume that there exists an integer n such
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that λn0/µ
n
0 ∈ F∗q−{1,−1}. Then W (Fq)L is strongly decomposable. More precisely, L is de-

composable, and with I1, B1, C1 as in §4.9.1, one has W (Fq)L =

(
W (Fq)I1 W (Fq)B1

W (Fq)C1 W (Fq)I1

)0
Proof — We already know that L, hence W (Fq)L, is decomposable. Using the notation

of the previous proof, the hypothesis becomes rn ∈ s(F∗q − {1,−1}) and it follows that

rn − r−n is invertible in W (Fq). The operator (un − rn)/(r−n − rn) acts on anti-diagonal

matrices of R as the map ( 0 b
c 0 ) 7→ ( 0 0

c 0 ), and this operator stabilizes W (Fq)∇. The result

follows. �

6.3. Consequences of Theorem 6.2.1 in the cases of cyclic or dihedral projective

image of ρ̄.

6.3.1. Well-adapted (t, d)-representations and splitting of the exact sequence (5.4.3). We

still consider an admissible pseudo-deformation (Π, ρ̄, t, d). In the cases ρ̄ of abelian or

dihedral projective image, we shall use the following terminology:

Definition 6.3.1. A (t, d)-representation ρ is said to be well adapted if

(i) The representation ρ is adapted to an element g0 ∈ Π such that ρ̄(g0) together with

the scalar matrices in G generate G in the cyclic case, and a subgroup of index 2

in G in the dihedral case.

(ii) s(G) ⊂ G.

(iii) If G is non-abelian, then it contains a matrix of the form ( 0 b
c 0 ) with bc−1 ∈ F∗p.

Note that in the abelian case, (ii) follows from (i) by Theorem 6.2.1 and (iii) is empty.

Proposition 6.3.2. Assume that the projective image of ρ̄ is either cyclic or dihedral.

Then there exists a (t, d)-representation ρ that is well adapted. Moreover, for such a ρ the

restriction of s to G is a group-theoretic section of that exact sequence, and G is therefore

the semi-direct product of Γ by G, acting on Γ by g · γ = s(g)γs(g)−1.

Proof — Let D be the group G if ρ̄ is reducible, and D be a subgroup of index 2 in G

containing all scalar matrices if ρ̄ is dihedral. In both cases, one has D = Z(D) and D is

diagonal in a certain basis, which implies that D modulo its subgroup of scalar matrices

is cyclic, say generated by ρ̄(g0). By (5.2.2), ρ̄(g0) is not scalar, and thus has two distinct

eigenvalues (λ0, µ0). Let us choose for ρ a (t, d)-representation adapted to (g0, λ0, µ0) and,

in the case ρ̄ dihedral, chosen as to satisfy the second paragraph of Prop. 6.2.1. Then by

Prop. 6.2.1, one has s(N(D)) ⊂ G and since N(D) = G, we see that s is a section of

1 → Γ → G → G → 1. Moreover ρ satisfies (i) and (ii) of the definition of a well adapted

representation. Since G normalizes D but is not abelian, it must contain a matrix of the

form ( 0 b
c 0 ). Up to conjugating G by ( 1 0

0 x ), it contains the matrix
(

0 bx
cx−1 0

)
. One can choose

x ∈ F∗ such that (bx)(cx−1)−1 = bc−1x2 be in F∗p. Thus, conjugating ρ by s (( 1 0
0 x )) doesn’t

affect properties (i) and (ii) and ensure property (iii). �
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Corollary 6.3.3. Assume that the projective image of ρ̄ is either cyclic or dihedral. Then

the exact sequence 1→ Γ→ G→ G→ 1 is split.

Note that a for well adapted ρ, the corresponding Lie Algebra L is decomposable

(Cor. 6.2.2) and can be written L = I1J ⊕∇.

6.3.2. Consequences in the cyclic case.

Corollary 6.3.4. Assume that the projective image of ρ̄ is cyclic. Let ρ be a well adapted

(t, d)-representation. Then one has (with the notation of §4.9.1)

(6.3.1) W (F)1 +W (F)I1 +W (F)I2
1 +W (F)tr (∇2) = A.

(6.3.2) The A-module generated by B1 is B.

(6.3.3) The A-module generated by C1 is C.

Proof — By (5.3.1), W (F)tr (G) = A. By Prop. 6.3.2, every element g in G can be written

g = γ
(
λ1 0
0 λ2

)
with λ1, λ2 ∈ s(F∗) ⊂ W (F) and γ ∈ Γ. We can write γ = θ−1

((
a b
c −a

))
,

with
(
a b
c −a

)
∈ L. We have tr g = (λ1− λ2)a+ (λ1 + λ2)

√
1 + a2 + bc; the first term on the

RHS is in W (F)I1, and the second in W (F)1 +W (F)P = W (F)1 +W (F)I2
1 +W (F)tr (∇2)

by Lemma 4.9.1. The first result follows.

For the second and third, if g ∈ G is written g = γ
(
λ1 0
0 λ2

)
as above, then the anti-

diagonal part of g is
(

0 λ2b
λ1c 0

)
which belongs to

(
0 W (F)B1

W (F)C1 0

)
. Recalling that G gen-

erates R as an A-module, we get AB1 = B and AC1 = C. �

6.3.3. Consequences in the dihedral case. We now make some general observations con-

cerning the case where the projective image of ρ̄ is dihedral. In this case, choosing a well

adapted (t, d)-representation ρ defines an abelian subgroup of index 2 in G, namely the

subgroup D generated by ρ̄(g0) and the scalar matrices in G. When the projective im-

age of ρ̄ has order > 4, then this group D is the unique abelian subgroup of index 2 in

G, hence is independent of the choice of ρ, but when G = Z/2Z × Z/2Z, there are three

possible index 2 subgroups D in G, and each of them is associated with a well-adapted

(t, d)-representation ρ.

In any case, we fix a well-adapted ρ, which fixes a cyclic subgroup D of index 2 in G,

and we define Π′ as the inverse image of D by the map Π→ G. Hence Π′ is a subgroup of

index 2 of Π. The image G′ = ρ(Π′) lies in an exact sequence 1→ Γ→ G′ → D → 1, and

is exact sequence is split, a splitting being the restriction of s to D.

By Lemma 2.4.5, the sub-A-module R′ = AG′ of R is a sub-A-GMA of R = M2(A),

that is of the form

(
A B
C A

)
with B,C ideals of A. Since G contains anti-diagonal

matrices with coefficients in s(F∗) ⊂ A∗, and normalizes AG′, one has B = C, and

R′ =

(
A B
B A

)
. It is not hard to see that the ideal B depends only of the admissible

pseudo-representation (Π, ρ̄, t, d) and the subgroup D of G′, not on the choice of the well-

adapted (t, d)-representation ρ: see e.g. Prop. 11.3.2 below.
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We write as usual L = I1J ⊕∇, and B1, C1 for the subgroups of upper-right and lower-

left coefficients of ∇; since elements in Γ have upper-right and lower-left coefficients in B,

and Θ does not affect non-diagonal coefficients, we have B1 ⊂ B, C1 ⊂ B.

Corollary 6.3.5. If ρ̄ is dihedral, and ρ is a well adapted (t, d)-representation, then:

(6.3.4) There exists λ ∈ s(F∗p) such that the subgroup ∇ of

(
0 B
B 0

)
is stable by the

map ( 0 b
c 0 ) 7→

(
0 λc

λ−1b 0

)
. In particular B1 = C1.

(6.3.5) One has W (F)1 +W (F)I1 +W (F)I2
1 +W (F)tr (∇2) +W (F)B1 = A.

(6.3.6) The A-module generated by B1 is B.

Proof — By definition of a well adapted representation, the group G contains a matrix(
0 s(β)

s(γ) 0

)
with s(βγ−1) ∈ F∗p. The conjugation by that matrix stabilizes Γ, L, and ∇,

and is given by ( 0 b
c 0 ) 7→

(
0 λc

λ−1b 0

)
with λ = s(βγ−1). The first part of (6.3.4) follows and

we have C1 = λ2B1. Since B1 is a Zp-module, and λ ∈ Z∗p, one gets C1 = B1.

By (5.2.5), W (F)tr (G) = A. Every element g in G can be written either g = γ
(
λ1 0
0 λ2

)
or

g = γ
(

0 λ1

λ2 0

)
with λ1, λ2 ∈ s(F∗) ⊂W (F). We can write γ = θ−1

(
a b
c −a

)
, with

(
a b
c −a

)
∈ L.

In the first case, we have tr g = (λ1 − λ2)a + (λ1 + λ2)
√

1 + a2 + bc; the first term on the

RHS is in W (F)I1, and the second in W (F)1 +W (F)P = W (F)1 +W (F)I2
1 +W (F)tr (∇2).

In the second case, we have tr (g) = λ2b+ λ1c ∈W (F)B1. Formula (6.3.5) follows.

Finally, any g ∈ G′ can be written g = γ
(
λ1 0
0 λ2

)
as above, and the anti-diagonal part of

g is
(

0 λ1b
λ2c 0

)
which belongs to

(
0 AB1

AB1 0

)
. Recalling that by definition G′ generates(

A B
B A

)
as an A-module, we get AB1 = B. �

6.4. The structure of L when the projective image of ρ̄ has order 2. That is, we

consider the case where ρ̄ = χ1⊕χ2 is reducible, with χ2
1 = χ2

2 (but still χ1 6= χ2 by (5.2.2)).

In this case, there is nothing more to say than what we have already said:

Theorem 6.4.1. Let (Π, ρ̄, d, t) be an admissible pseudo-deformation such that the pro-

jective image of ρ̄ has order 2 and let ρ : Π → R∗, R =

(
A B
C A

)
a well adapted (t, d)-

representation. Then there exists a closed subgroup I1 of m, and a closed subgroup ∇ of(
0 B
C 0

)
such that

L = I1J ⊕∇

and

(6.4.1) [∇,∇] ⊂ I1J ,

(6.4.2) I1[J,∇] ⊂ ∇,

(6.4.3) tr (∇2)I1 ⊂ I1,

(6.4.4) tr (∇2)∇ ⊂ ∇,

(6.4.5) I3
1 ⊂ I1,
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(6.4.6) W (F)1 +W (F)I1 +W (F)I2
1 +W (F)tr (∇2) = A

(6.4.7) AB1 = B.

(6.4.8) AC1 = C.

Conversely, if R =

(
A B
C A

)
is a faithful GMA over A, I1 is any closed subgroup of

m, and ∇ any closed subgroup of

(
0 B
C 0

)
satisfying the eight conditions above, then there

exists an admissible pseudo-deformation (Π, ρ̄, t, d) with ρ̄ of projective image of order 2, and

a (t, d)-representation ρ : Π→ R∗ such that the Lie algebra attached to ρ is L = I1J ⊕∇.

Proof — For the direct sense, if ρ is well adapted, and G, Γ, L attached to ρ, then L is

decomposable by Corollary 6.2.2, so L = I1J ⊕ ∇ and since L is the Lie algebra of Γ, it

satisfies the first five given conditions by Prop. 4.9.2. Moreover L satisfies the last three

conditions by Corollary 6.3.4.

Conversely, if L = I1J ⊕ ∇ with I1 and ∇ satisfying the eight conditions above, then

by (6.4.1) to (6.4.5) and Prop. 4.9.2, L is a Lie subring of (radR)0 and Γ := Θ−1(L) is a

closed subgroup of SR1 whose Lie algebra is L. Let G be the diagonal subgroup {1, J} of

GL2(F). It is clear that the conjugation by the subgroup s(G) of R∗ normalizes L, hence Γ.

We can thus form the closed subgroup G := Γs(G) of R∗, a semi-direct product of s(G) by

Γ. The composition G→ s(G) ' G ⊂ GL2(F) is a representation ρ̄ : G→ GL2(F) which is

the sum of two distinct characters and whose projective image has order 2.

The restriction (t, d) to G of the maps (tr ,det) on R is a pseudo-representation over G.

We claim that (G, ρ̄, t, d) is an admissible pseudo-deformation. The only condition that is

not trivial to check is that the closed W (F)-algebra generated by tr (G) is A. Let us call this

W (F)-subalgebra by Ã. Since tr (1) = 2, Ã contains W (F)1. Since tr (Θ−1(JI1)J) = I1,

Ã contains W (F)I1. Also Ã contains tr (Γ), hence it contains the closed sub-pseudoring

generated by the elements tr (γ)− 2, γ ∈ Γ, that is, it contains P by Cor. 4.5.2. Therefore

Ã contains W (F)1+W (F)I1 +W (F)P = W (F)1+W (F)I1 +W (F)I2
1 +W (F)tr (∇2), which

is A by (6.4.6). This concludes the proof of the claim that (G, ρ̄, t, d) is an admissible

pseudo-deformation.

Let us define ρ as the inclusion map G ↪→ R∗. Then tr ρ = t, det ρ = d. We claim

that Aρ(G) = AG is the full algebra R. By Lemma 2.4.5, we know that Aρ(G) = AG is

a sub-A-GMA

(
A B′

C ′ A

)
of R, where B′ is a sub-A-module of B and C ′ a sub-A-module

of C. By definition, B′ contains B1 and C ′ contains C1, so (6.4.7) and (6.4.8) imply that

B′ = B and C ′ = C, so AG = R. It follows that ρ : G → R∗ is a (t, d)-representation.

It is clear that the Lie algebra attached to ρ is L, which proves the converse part of the

theorem. �

6.5. The structure of L when the projective image of ρ̄ is cyclic of order > 2.

That is, ρ̄ = χ1 ⊕ χ2 with χ2
1 6= χ2

2. In this case, we shall only determine the structure of

the Lie algebra W (Fq)L where Fq is a large enough subfield of F.
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Theorem 6.5.1. Let (Π, ρ̄, d, t) be an admissible pseudo-deformation such that the projec-

tive image of ρ̄ is cyclic of order m > 2 and let ρ : Π→ R∗, R =

(
A B
C A

)
a well adapted

(t, d)-representation. Let Fq be any subfield of F such that gcd(m, q − 1) > 2 (a condition

always satisfied when Fq = F).

Then there exists a closed W (Fq)-submodule Ĩ1 of m, and closed W (Fq)-submodules B̃1

of B and C̃1 of C such that W (Fq)L =

(
Ĩ1 B̃1

C̃1 Ĩ1

)0
and

(6.5.1) B̃1C̃1 ⊂ Ĩ1

(6.5.2) Ĩ3
1 ⊂ Ĩ1,

(6.5.3) W (F)1 +W (F)Ĩ1 +W (F)Ĩ2
1 = A

(6.5.4) W (F)B̃1 = B and W (F)C̃1 = C.

Conversely, if Ĩ1, B̃1, C̃1 are W (F)-submodules of m satisfying those three conditions,

and L =

(
Ĩ1 B̃1

C̃1 Ĩ1

)0
, then there exists an admissible pseudo-deformation (Π, ρ̄, t, d) such

that the projective image of ρ̄ is cyclic of order > 2 and a (t, d)-representation ρ : Π→ R∗

such that the Lie algebra attached to ρ is W (F)L.

Proof — Let g0 ∈ Π be such that ρ̄(g0) generates the group G modulo scalar matrices, and

let λ0, µ0 be the eigenvalues of ρ̄(g0). Since the group G modulo scalar matrices has order

> 2, one has λ0/µ0 6= ±1. By Cor. 6.2.2, L is decomposable, so we can write L = I1J ⊕∇
as usual, and by Cor. 6.2.3 (applied with n = 1), W (Fq)L is even strongly decomposable,

and we can write W (Fq)L =

(
W (Fq)I1 W (Fq)B1

W (Fq)C1 W (Fq)I1

)0
. Let us set Ĩ1 := W (Fq)I1, B̃1 =

W (Fq)B1, C̃1 = W (Fq)C1. By Prop. 4.9.2, one has [∇,∇] ⊂ I1J , which gives after taking

the W (Fq)-modules generated by the two terms of that inclusion, B̃1C̃1 ⊂ Ĩ1; one has

I1[J,∇] ⊂ ∇ which gives similarly Ĩ1B̃1 ⊂ B̃1, Ĩ1C̃1 ⊂ C̃1; and I3
1 ⊂ I1, which gives Ĩ3

1 ⊂ Ĩ1.

By Prop. 6.3.4, W (F)1 ⊕W (F)I1 ⊕W (F)I2
1 ⊕W (F)B̃1C̃1 = A, and since B̃1C̃1 ⊂ Ĩ1, one

has simply W (F)1⊕W (F)Ĩ1⊕W (F)Ĩ2
1 = A. Since W (F)B1 is stable by W (F)Ĩ1, it is stable

by A, i.e. an A-module. But by Prop. 6.3.4, the A-module generated by B1, or by W (F)B1

is B. Therefore W (F)B1 = B and similarly W (F)C1 = C. This completes the proof of the

direct sense of the theorem.

Conversely, suppose L =

(
Ĩ1 B̃1

C̃1 Ĩ1

)0
satisfying the four given conditions. Then by

Prop. 4.9.3, Γ := Θ−1(L) is a closed subgroup of SR1 of Lie algebra L (note that the

condition (4.9.12.2), i.e. Ĩ1B ⊂ B and Ĩ1C ⊂ C, is automatically satisfied since B and

C are A-modules). Let G be any group of diagonal matrices in GL2(F) whose quotient

modulo scalar matrices is of order > 2. It is clear that s(G) normalizes L, hence Γ, and we

can form a subgroup G := Γs(G) of R∗. Then the construction of ρ̄, t, d, ρ and the end of

the proof of the converse is exactly as in the preceding theorem, so we leave details to the

reader. �
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6.6. The structure of L when the projective image of ρ̄ is Z/2Z× Z/2Z.

Theorem 6.6.1. Let (Π, ρ̄, d, t) be an admissible pseudo-deformation such that the projec-

tive image of ρ̄ is Z/2Z×Z/2Z and let ρ : Π→ GL2(A) a well adapted (t, d)-representation.

There exists a closed subgroup I1 of m, and a closed subgroup ∇ of

(
0 m
m 0

)
such that

L = I1J ⊕∇

and

(6.6.1) [∇,∇] ⊂ I1J ,

(6.6.2) I1[J,∇] ⊂ ∇,

(6.6.3) tr (∇2)I1 ⊂ I1,

(6.6.4) tr (∇2)∇ ⊂ ∇,

(6.6.5) I3
1 ⊂ I1,

(6.6.6) There exists λ ∈ s(F∗p) such that ∇ is invariant by

(
0 b
c 0

)
7→
(

0 λc
λ−1b 0

)
(6.6.7) W (F)1 +W (F)I1 +W (F)I2

1 +W (F)tr (∇2) +W (F)B1 = A

Conversely, if I1 is any closed subgroup of m, and ∇ any closed subgroup of

(
0 m
m 0

)
satisfying the seven conditions above, then there exists an admissible pseudo-deformation

(Π, ρ̄, t, d) with ρ̄ of projective image Z/2Z × Z/2Z, and a (t, d)-representation ρ : Π →
GL2(A) such that the Lie algebra attached to ρ is L = I1J ⊕∇.

Proof — For the direct sense, if ρ is well adapted, and G, Γ, L attached to ρ, then L is

decomposable by Corollary 6.2.2, so L = I1J ⊕ ∇ and since L is the Lie algebra of Γ, it

satisfies conditions (6.6.1) to (6.6.5) by Prop. 4.9.2. Moreover L satisfies conditions (6.6.6)

and (6.6.7) by Corollary 6.3.5.

Conversely, if L = I1J ⊕ ∇ with I1 and ∇ satisfying the seven conditions above, then

by Prop. 4.9.2 L is a Lie subring of M2(m) and Γ := Θ−1(L) is a closed subgroup of SR1

whose Lie algebra is L. Let G be the subgroup of GL2(F) containing all matrices of the

form ( x 0
0 x ),

(
x 0
0 −x

)
, ( 0 λx

x 0 ),
(

0 −λx
x 0

)
. This is a subgroup of order 4|F∗| which contains the

subgroup of scalar matrices F∗ of GL2(F), and the quotient Ḡ/F∗ is Z/2Z × Z/2Z. The

Lie algebra L is stable by conjugation by s(G) by (6.6.6). Therefore, so is Γ, and we can

define a closed subgroup G := Γs(G) of GL2(A). We thus have a split exact sequence

1 → Γ → G → G → 1. We define a representation ρ̄ : G → GL2(F) by composing the

natural map G→ G with the inclusion G→ GL2(F). It is clear that ρ̄ has projective image

isomorphic to Z/2Z×Z/2Z. We define a pseudo-repreresentation (t, d) on G by restricting

the trace and determinant map on GL2(A) to G.

We claim that (G, ρ̄, t, d) is an admissible pseudo-deformation. We just need to check that

the closed W (F)-algebra Ã generated by t(G) is A. Since Ã contains t(Γ) and t(JΓ), we see

as in the proof of Theorem 6.5.1 that Ã contains W (F)1+W (F)I1 +W (F)I2
1 +W (F)tr (∇2).

Moreover Ã contains tr (( 0 λ
1 0 ) Γ) and tr (

(
0 −λ
1 0

)
Γ). When γ =

(
a b
c d

)
runs in Γ = Θ−1(L),
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( 0 b
c 0 ) runs in ∇. Thus for any ( 0 b

c 0 ) ∈ ∇, tr (( 0 λ
1 0 ) γ) = λc+ b and tr

((
0 −λ
1 0

)
γ
)

= −λc+ b

are in Ã, and therefore b ∈ Ã. Thus Ã contains W (F)B1 as well. By condition (6.6.7),

Ã = A, and this proves the claim.

Let ρ : G → GL2(A) be the inclusion map. The representation ρ is of trace t and

determinant d, and Aρ(G) = M2(A) by Lemma 2.4.5. So ρ is a (t, d)-representation. The

image of ρ is G, its intersection with SR1 is Γ, and the Lie algebra of Γ is L. This proves

the converse part of the theorem. �

6.7. The structure of L when the projective image of ρ̄ is a non-abelian dihedral

group.

Theorem 6.7.1. Let (Π, ρ̄, d, t) be an admissible pseudo-deformation such that the projec-

tive image of ρ̄ is a non-abelian dihedral group of order 2m > 4, ρ : Π → GL2(A) a well

adapted (t, d)-representation. Let Fq be any subfield of F such that gcd(m, q − 1) > 2 (a

condition always satisfied when Fq = F).

Then there exist closed W (Fq)-submodules Ĩ1 and B̃1 of m such that W (Fq)L =

(
Ĩ1 B̃1

B̃1 Ĩ1

)0
and

(6.7.1) B̃2
1 ⊂ Ĩ1

(6.7.2) Ĩ1B̃1 ⊂ B̃1.

(6.7.3) Ĩ3
1 ⊂ Ĩ1,

(6.7.4) W (F)1 +W (F)Ĩ1 +W (F)Ĩ2
1 +W (F)B̃1 = A

Conversely, if Ĩ1 and B̃1 are W (F)-submodules of m satisfying those four conditions, and

L =

(
Ĩ1 B̃1

B̃1 Ĩ1

)0
, then there exists an admissible pseudo-deformation (Π, t, d, ρ) such that

the projective image of ρ̄ is dihedral of order > 4 and a (t, d)-representation ρ : Π → R∗

such that the Lie algebra attached to ρ is L = W (F)L.

Proof — We show as in the proof of Theorem 6.5.1 than W (Fq)L is strongly de-

composable, and we can thus write with the usual notations W (Fq)L = W (Fq)I1 ⊕(
0 W (Fq)B1

W (Fq)C1 0

)
. By Prop. 6.3.5, B1 = C1. Thus, setting Ĩ1 = W (Fq)I1, B̃1 =

W (Fq)B1, one has W (Fq)L =

(
Ĩ1 B̃1

B̃1 Ĩ1

)0
. By Prop. 4.9.2, one has [∇,∇] ⊂ I1J , which

gives after taking the W (Fq)-modules generated by the two terms of that inclusion, B̃2
1 ⊂ Ĩ1;

one has I1[J,∇] ⊂ ∇ which gives similarly Ĩ1B̃1 ⊂ B̃1, and I3
1 ⊂ I1, which gives Ĩ3

1 ⊂ Ĩ1.

By Prop. 6.3.4, W (F)1 +W (F)Ĩ1 +W (F)Ĩ2
1 +W (F)B̃2

1B̃1 = A, and since B̃2
1 ⊂ Ĩ1, one has

more simply W (F)1 +W (F)Ĩ1 +W (F)Ĩ2
1 +W (F)B̃1 = A. This completes the proof of the

direct sense of the theorem.

Conversely, suppose L =

(
Ĩ1 B̃1

B̃1 Ĩ1

)0
satisfying the four given conditions, then by

Prop. 4.9.3, Γ := Θ−1(L) is a closed subgroup of SR1 of Lie algebra L. Let G be for

instance the group of all diagonal and anti-diagonal matrices in GL2(F). It is clear that
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s(G) normalizes L, hence Γ, and we can form a subgroup G := Γs(G) of R∗. Then the

construction of ρ̄, t, d, ρ and the end of the proof of the converse is exactly as in the

preceding theorem, so we leave details to the reader. �

6.8. Structure of L in the large and exceptional image case.

6.8.1. Results. This is the simplest case insofar as the description of L is concerned, but

the case where the proofs are the hardest.

Theorem 6.8.1. Let (Π, ρ̄, t, d) be an admissible pseudo-deformation. We assume that ρ̄

is either of the large image type or of the exceptional type.

Let Fq be a subfield of F. If ρ̄ is octahedral (resp. tetrahedral, resp. icosahedral), we

assume that Fq contains cubic roots of unity (resp. either cubic or quartic roots of unity,

resp. quintic roots of unity). We put no condition on Fq when ρ̄ has large image.

Then there exists a (t, d)-representation ρ, and a closed W (Fq)-submodule Ĩ1 of m such

that

W (Fq)L =

(
Ĩ1 Ĩ1
Ĩ1 Ĩ1

)0
,

and

(6.8.1) Ĩ2
1 ⊂ Ĩ1.

(6.8.2) W (F)Ĩ1 = m.

Remark 6.8.2. Note that if we take Fq = F, and F large enough as we always do, the

hypothesis of the theorem are obviously satisfied. Thus, the theorem describes the structure

of W (F)L for F large enough.

Corollary 6.8.3. With the same notation as in the above theorem, one has Γ = Θ−1(L).

In the case where Fq = Fp, Γ is precisely the group of matrices

(
a b
c d

)
in SL2(A) such

that a ∈ 1 + Ĩ1, b ∈ Ĩ1, c ∈ Ĩ1, d ∈ 1 + Ĩ1.

Proof — This follows from the preceding theorem and Prop. 4.8.2. �

Remark 6.8.4. In the appendix of [20], Boston proves that if G is a closed subgroup of

SL2(A) such that the image of G in SL2(A/m2) is SL2(A/m2), then G = SL2(A). This

results follows easily from our classification result Theorem 6.8.1 (indeed, we are in the large

image case so we can take Fq = Fp, and the hypothesis implies that Ĩ1 maps surjectively

to m/m2, thus is m, which implies Γ = SL1
2(A) by the corollary and G = SL2(A)). It does

not seem that Boston’s method generalizes to the other cases covered by Theorem 6.8.1.
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6.8.2. Proof of Theorem 6.8.1. We fix (Π, ρ̄, t, d) an admissible pseudo-deformation, and

we assume that ρ̄ is either of the large image type or of the exceptional type. We call Z

the subgroup of scalar matrices in GL2(F), isomorphic to F∗.

Lemma 6.8.5. There exists a (t, d)-representation ρ such that:

• if ρ̄ is octahedral, then G ⊂ ZGL2(Fq) and there exists an element g0 ∈ Π such

that ρ(g0) =
(
s(λ0) 0

0 s(µ0)

)
with λ0, µ0 ∈ F∗, (λ0/µ0)3 = 1, λ0 6= µ0;

• if ρ̄ is tetrahedral, then G ⊂ ZGL2(Fq) and there exists an element g0 ∈ Π such

that ρ(g0) =
(
s(λ0) 0

0 s(µ0)

)
with λ0, µ0 ∈ F∗, (λ0/µ0)3 = 1 or (λ0/µ0)4 = 1, and

λ2
0 6= µ2

0;

• if ρ̄ is icosahedral, then G ⊂ ZGL2(Fq) and there exists an element g0 ∈ Π such

that ρ(g0) =
(
s(λ0) 0

0 s(µ0)

)
with λ0, µ0 ∈ F∗, (λ0/µ0)5 = 1, λ0 6= µ0;

• if ρ̄ has large image but the projective image of ρ̄ is not isomorphic to PSL2(F3)

or PGL2(F3), then SL2(Fp) ⊂ G and there exists an element g0 ∈ Π such that

ρ(g0) =
(
s(λ0) 0

0 s(µ0)

)
, λ2

0 6= µ2
0

Proof — The image of G on PGL2(F) contains an element of order 3 in the octahedral

case (a 3-cycle in A4), an element of order 3 and of order 4 in the tetrahedral case (a 3-cycle

and a 4-cycle in S4), an element of order 5 in the icosahedral case (a 5-cycle in A5), and

an element of order > 2 in the large image case. Choosing an element g0 such that ρ̄(g0)

maps to that element, we can diagonalize ρ̄(g0) and write ρ̄(g0) =

(
λ0 0
0 µ0

)
. Choosing

a ρ adapted to (g0, λ0, µ0) ensures that, in each case, the condition regarding ρ(g0). For

such a ρ, ρ̄(g0) =

(
λ0 0
0 µ0

)
. On the other hand, we know that in the conjugacy class

of ρ̄ there is a representation ρ̄′ satisfying ρ̄′(Π) ⊂ ZGL2(Fq) in the exceptional cases and

SL2(Fp) ⊂ G in the large image case, and ρ̄′(g0) =

(
λ0 0
0 µ0

)
. (This is because, in the

exceptional case, there is a conjugate of ρ̄ whose projective image is defined over Fq, and

after a base change over Fq, we may suppose that ρ̄′(g0) is diagonal). The agreement of

ρ̄ and ρ̄′ on g0 implies that they are conjugate through a diagonal matrix. Conjugating ρ

by a diagonal lift of that diagonal matrix doesn’t affect the condition on ρ(g0) but ensures

that G = ρ′(Π) satisfies the required condition. �

Since in any case the eigenvalues λ0 and µ0 of ρ̄(g0) have distinct squares, Prop. 6.2.3

applies and ensures that W (Fq)L is strongly decomposable. That is, there exists three

W (Fq)-submodules of A, Ĩ1, B̃1 and C̃1 such that

W (Fq)L = Ĩ1J ⊕
(

0 B̃1

C̃1 0

)
.

Lemma 6.8.6. Let ḡ =
(
ᾱ β̄
γ̄ δ̄

)
∈ GL2(Fq) ∩ (GZ). Then there exists a lift g =

(
α β
γ δ

)
∈

GL2(A) of ḡ such that

(6.8.3) α2B̃1 ⊂ B̃1, γ2B̃1 ⊂ C̃1, αγB̃1 ⊂ Ĩ1.

(6.8.4) β2C̃1 ⊂ B̃1, βδC̃1 ⊂ Ĩ1, δ2C̃ ⊂ B̃1.
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(6.8.5) αβĨ1 ⊂ B̃1, γδĨ1 ⊂ C̃1.

Proof — By hypothesis ḡ = ḡ1z̄ with ḡ1 ∈ G and z̄ a scalar matrix in F∗. Let g1 be any lift

of ḡ1 in G, z = s(z̄) which is a scalar matrix lifting z̄, and set g = g1z ∈ GL2(A) which is a

lift of ḡ. Then gLg−1 = g1Lg
−1
1 = L since z is scalar and g1 ∈ G. Moreover, if g =

(
α β
γ δ

)
,

set g′ =
(

δ −β
−γ α

)
= g−1 det(g). Note that det(g) = det(g1) det(z) = s(det(ḡ1))s(det(z̄))

by (5.2.4), so det(g) = s(det ḡ) ∈ W (Fq)∗. Then gW (Fq)Lg′ = gW (Fq)Lg−1 = W (Fq)L
since multiplication by det(g)−1 stabilizes W (Fq)L.

The first line of the lemma then follows from the computation g ( 0 1
0 0 ) g′ =

(
−αγ α2

−γ2 αγ

)
,

the second line from g ( 0 0
1 0 ) g′ =

(
βδ −β2

δ2 −βδ

)
, and the last line from gJg−1 =

(
∗ −2αβ
−2γδ ∗

)
.

�

Lemma 6.8.7. There exists an element ḡ =
(
ᾱ β̄
γ̄ δ̄

)
∈ GL2(Fq) ∩ (GZ) such that ᾱβ̄ 6= 0

(resp. ᾱγ̄ 6= 0, resp. β̄δ̄ 6= 0, resp. γ̄δ̄ 6= 0.)

Proof — In the large image case, we can take for instance ḡ = ( 1 1
1 2 ) ∈ G ∩GL2(Fp).

We assume that we are in some of the exceptional cases. It suffices to find one matrix g1

in G satisfying ᾱβ̄ 6= 0 for then since G ⊂ GL2(Fq)Z, a suitable product of g1 by a scalar

matrix will belong to GL2(Fq) and obviously will still satisfies the required condition.

If all matrices in G had β̄ = 0, then the representation ρ̄ would be reducible. Among the

matrices such that β̄ 6= 0, if there is one with ᾱ 6= 0, we are done. Otherwise, all matrices

with β̄ 6= 0 are of the form
(

0 β̄
γ̄ δ̄

)
and their square is

(
β̄γ̄ β̄δ̄
∗ ∗

)
. Now γ̄ is not 0 because

the matrix is invertible, and if δ̄ 6= 0 either, we are done. Otherwise, this means that all

matrices with β̄ 6= 0 have both ᾱ and δ̄ equal zero, that is are antidiagonal. But then it

is easy to see that G is contained in the normalizer of the diagonal torus, a contradiction

with the hypothesis that G is exceptional.

�

Lemma 6.8.8. Let X be a closed W (Fq)-submodule of A. Let x ∈ A∗ whose image in

A/m = F lies in Fq.

• If xX ⊂ X, then xX = X.

• If x2X = X, then xX = X.

Proof — Replacing x by x−1, the hypothesis becomes X ⊂ xX, and the contention

is still that X = xX. Then by induction X ⊂ xX ⊂ · · · ⊂ xnX for all n > 0. Writing

x = s(x̄)+m with x̄ ∈ Fq the reduction of x and m ∈ m, we get xq
n ≡ s(x̄) (mod mnvp(q)+1)

and so X ⊂ xX ⊂ X + mnvp(q)+1X. Since X is a closed subgroup, the intersection of all

X + mnvp(q)+1X when n ≥ 1 is X, and we get X ⊂ xX ⊂ X, as desired. This proves the

first point.

For the second point, note that if x2X = X, then x2nX = X. Choosing a sequence of

positive integers n which converges to 1/2 p-adically gives the result. �
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Lemma 6.8.9. There exists x, y ∈ A∗ such that the images of x and y in A/m = F are in

Fq, B̃1 = xĨ1, and C̃1 = yĨ1.

Proof — Pick a matrix ḡ as in Lemma 6.8.7 such that ᾱγ̄ 6= 0. By Lemma 6.8.6, there

is a lift u ∈ A∗ of ᾱγ̄ such that uB̃1 ⊂ Ĩ1. Also pick a matrix ḡ′ as in Lemma 6.8.7 such

that ᾱ′β̄′ 6= 0. By Lemma 6.8.6, there is a lift v ∈ A∗ of ᾱβ̄ such that vĨ1 ⊂ B̃1. Thus

uvĨ1 ⊂ uB̃1 ⊂ Ĩ1. The inclusion uvĨ1 ⊂ Ĩ1 is an equality by Lemma 6.8.8 (note that the

image of uv in A/m is ᾱγ̄ᾱ′β̄′ ∈ F∗q). Therefore, uB̃1 = Ĩ1 and the first result follows with

x = u−1. The second is similar. �

Now let t =
√
xy−1/s(xy−1) ∈ A∗. We check easily that x

t = yt s(xy−1). We conjugate

ρ by the diagonal matrix ( 1 0
0 t ). This doesn’t affect any of the properties of ρ̄ already

stated, and doesn’t change Ĩ1 but changes B̃1 into 1
t B̃1 = x

t Ĩ1 and C̃1 into tC̃1 = ytĨ1 =

yt s(xy−1)Ĩ1. Replacing x by x
t , we get:

(6.8.6) There exists x ∈ A∗ such that the image of x in A/m = F is in Fq, such that

B̃1 = C̃1 = xĨ1.

Now we again pick a matrix ḡ as in Lemma 6.8.7 such that ᾱγ̄ 6= 0. By Lemma 6.8.6,

for some lift α, γ of ᾱ, γ̄, one has α2B̃1 ⊂ B̃1 and γ2B̃1 ⊂ C̃1 = B̃1. By the first point of

Lemma 6.8.8, this means α2B̃1 = B̃1 and γ2B̃1 = B̃1, and by the second point αB̃1 = B̃1

and γB̃1 = B̃1. Therefore αγB̃1 = B̃1. On the other hand, by Lemma 6.8.6, αγB̃1 ⊂ Ĩ1,

and thus B̃1 ⊂ Ĩ1. The converse inclusion Ĩ1 ⊂ B̃1 is proved similarly using a matrix with

ᾱβ̄ 6= 0. We have therefore proved:

(6.8.7) B̃1 = C̃1 = Ĩ1, L =

(
Ĩ1 Ĩ1
Ĩ1 Ĩ1

)0
.

From (4.9.12.2), one has Ĩ1B̃1 ⊂ B̃1, that is

(6.8.8) Ĩ2
1 ⊂ Ĩ1.

Proposition 6.8.10. One has W (F)Ĩ1 = m.

Proof — By [11, Theorem 7.16(b)], it is enough to prove that the natural composed map

f : W (F)Ĩ1 ↪→ m → m/m2 is surjective. To prove this, it is enough to prove that for each

non-zero linear form l : m/m2 → F, the composition l ◦ f : W (F)Ĩ1 → F is surjective, which

is the same as being non-zero. Such a linear form l (geometrically, a tangent vector to the

unique closed point of SpecA) induces a surjective morphism of rings A → A/m2 → F[ε]

where the second map sends m ∈ m/m2 to l(m)ε. We need to prove that the image of Ĩ1

in that map is non zero. By functoriality (see §4.8.1), the image of Ĩ1 in F[ε] is the same

as the Ĩ1 obtained for the admissible pseudo-deformation (Π, ρ̄, t′, d′) over F[ε], where t′, d′

are t, d composed with the map A→ F[ε].

In other words, we have reduced the proof of the proposition to the case A = F[ε], and in

this case we just have to prove that Ĩ1 6= 0. We proceed by contradiction. Assume Ĩ1 = 0.

Then by (6.8.7), L = 0, so Γ ⊂ Θ−1(L) is the trivial group and the reduction map G→ Ḡ



IMAGES OF PSEUDOREPRESENTATIONS 45

is an isomorphism. The morphism r : Ḡ ' G ⊂ GL2(A) is thus a deformation to A = F[ε]

of the tautological representation Ḡ ⊂ GL2(F). Such deformations are parametrized by

H1(Ḡ, V ), where V is the trace-zero adjoint representation of the tautological represen-

tation of Ḡ, and this cohomology group is trivial by Prop. 3.2.1. Therefore, the trace of

r is constant, that is tr (G) ⊂ F, in contradiction with the hypothesis (5.2.5) that tr (G)

generates A = F[ε] as an F-algebra. �

Together, this proposition, (6.8.7) and (6.8.8) complete the proof of Theorem 6.8.1.

7. Congruence-large image

This section is not used in the rest of the paper. Its aim is to establish a connection

between our results on the structure of the image of pseudo-deformation and a series of

recent results by Hida [12], Lang [15] and Conti-Iovita-Tilouine [8] concerning the image

of the Galois representation carried by certain p-adic families of modular forms, ordinary

in the work of first two named authors, of positive slope for the last group. Our setting

is more general as we work with families of 2-dimensional representations of arbitrary pro-

finite groups, over arbitrary noetherian compact local domain. The aim of this section is to

show that we can obtain, in this general setting, results that are quite close (and sometimes

stronger) to those proved for families of modular forms.

In all this section, A is a compact noetherian local ring with maximal ideal m and residue

field F finite of characteristic p > 2. We also assume that A is a domain, of fraction field

K.

7.1. The notion of congruence-large image.

Definition 7.1.1. Let R be a GMA over A. If I is an ideal of A, the principal congruence

subgroup ΓR(I) of I is the subgroup of R∗ defined as the kernel of the map SR→ (R/IR)∗.

A closed subgroup of R∗ is called a congruence subgroup if it contains ΓR(I) for some

non-zero ideal I of A.

By definition, ΓR(I) is the set of matrices
(
a b
c d

)
in R such that a, d ≡ 1 (mod I), b ∈ IB,

c ∈ IC and ad − bc = 1. When R = M2(A), we retrieve the usual notion of the group of

matrices congruent to the identity modulo I.

Lemma 7.1.2. Let R be a topological GMA over A, Γ a closed subgroup of SR1. Then Γ

is a congruence subgroup if and only if L(Γ) contains

(
I I
I I

)0
for some non-zero ideal I

of A.

Proof — First, a trivial computation gives Θ(ΓR(I)) = ( I II I )
0
, hence L(ΓR(I)) = ( I II I )

0
.

By Prop 4.8.2, Θ−1
(

( I II I )
0
)

is the unique closed subgroup of SR1 whose Lie algebra is

( I II I )
0
, hence Θ−1

(
( I II I )

0
)

= ΓR(I) (this can also be obtained by a direct computation).

Let Γ be a closed subgroup of SR1. If Γ contains ΓR(I), then L = L(Γ) contains

Θ(ΓR(I)) = ( I II I )
0
. Conversely, assume that L(Γ) contains ( I II I )

0
. Then L2 contains(

I2 I2

I2 I2

)0
and Γ = Θ−1(L2) by Theorem 4.7.3, so Γ contains ΓR(I2). �
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Lemma 7.1.3. Let Π be a group, (t, d) a 2-dimensional pseudo-representation of Π over

A which is not the sum of two characters. Let R1 and R2 be two faithful GMA over A,

finite-type as A-modules, and let ρ1 : Π→ R∗1, ρ2 : Π→ R∗2 be two representations both of

trace t and determinant d. Then ρ1(Π) is a congruence subgroup of R1 if and only if ρ2(Π)

is a congruence subgroup of R2.

Proof — By Lemma 2.2.2, we can assume that both R1 and R2 are sub-algebras of M2(K).

Seen as representations over K, ρ1 and ρ2 have the same trace and determinant, hence are

conjugate. Let g ∈ GL2(K) such that ρ2 = gρ1g
−1. Since R1 and R2 are of finite type,

there exists z ∈ A− {0} such that zgR1g
−1 ⊂ R2.

If γ− 1 ∈ IzR1, we have g(γ− 1)g−1 ∈ IzgR1g
−1 ⊂ IR2, and hence gγg−1 ∈ 1 + IR2 ⊂

R2, so g(γ − 1)g−1 ∈ ΓR2
(I). Therefore, ΓR1

(Iz) ⊂ g−1ΓR2
(I)g, and it follows that if

ρ2(Π) contains a congruence subgroup of R∗2, ρ1(Π) = g−1ρ2(Π)g contains a congruence

subgroup of R∗1. �

Definition 7.1.4. We say that an two-dimensional pseudo-representation (t, d) of a group

Π over A has congruence-large image if for one (equivalently for any) representation ρ :

Π→ R∗, with R a faithful finite-type GMA over A, such that tr ρ = t and det ρ = d, ρ(Π)

is a congruence subgroup of R∗.

7.2. Sufficient conditions for a congruence-large image.

Definition 7.2.1. We say that a representation ρ̄ : Π → GL2(F) is regular if there exists

an element g0 in Π such that ρ̄(g0) is diagonalizable of eigenvalues λ and µ in F∗p, with

λ2 6= µ2.

Remark 7.2.2. If ρ̄ is regular, it has an element of order > 2 in its projective image,

which therefore cannot be cyclic of order 2, or dihedral of order 4. In the other cases

(cyclic of order > 2, dihedral of order > 4, large or exceptional), there exist many regular

representations, for instance all that have Fp as field of definition.

The notion of regularity is related to the notion of an H-regular representation of Lang

([15]) and of an (H,Zp)-regular representation of Conti-Iovita-Tilouine of [8]. Let us recall

that H-regular means that H is a subgroup such that there is an element g0 ∈ H such

that ρ̄(g0) is diagonalizable with distinct eigenvalues λ, µ, while (H,Zp)-regular requires in

addition that λ2 6= µ2 and λ, µ ∈ Fp. It is obvious that (H,Zp)-regular (for any H) implies

regular in our sense, while regular implies Π-regular, but not in general H-regular for a

proper subgroup H of Π.

Theorem 7.2.3. Assume that A is a domain, and that Π satisfies Mazur’s p-finiteness

condition. Let (Π, ρ̄, t, d) be an admissible pseudo-deformation such that ρ̄ is regular. More-

over, we assume that

• If ρ̄ is reducible, t is not the sum of two continuous characters Π→ A∗.
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• If ρ̄ is dihedral, then if Π′ is the unique subgroup of index 2 of Π such that ρ̄(Π′) is

abelian, t|Π′ is not the sum of two characters.

Then there exists a subring A0 of A, which is a compact noetherian local ring of maximal

ideal m ∩A0, and an open subgroup Π0 of Π, containing Ker ρ̄, such that

• t(Π0) ⊂ A0, d(Π0) ⊂ A∗0.

• (Π0, ρ̄|Π0
, t|Π0

, d|Π0
) is an admissible pseudo-deformation over A0, and has congruence-

large image.

Proof — We choose a g0 ∈ Π as in the definition 7.2.1 and a (t, d)-representation ρ :

Π → R∗ with R =

(
A B
C A

)
adapted to g0. In particular, if D0 denotes the subgroup

of ρ̄(Π) generated by ρ̄(g0), then D0 is a group of diagonal matrices and s(D0) ⊂ G by

Theorem 6.2.1. We write ρ̄(g0) =
(
λ 0
0 µ

)
.

By Cor. 6.2.3, L is strongly decomposable. We write L =

(
I1 B1

C1 I1

)0
with I1, B1 and

C1 closed subgroups of A, B and C respectively.

We define

A0 := Zp + I1 + I2
1 .

By (4.9.12.3), A0 is a subring of A, and it is clearly a compact local ring of maximal ideal

m0 = pZp + I1 + I2
1 = m ∩A0. By (4.9.12.2), both B1 and C1 are A0-modules.

We define

Π0 = ρ̄−1(D0).

This is obviously a subgroup of finite index in Π, containing Ker ρ̄. The restriction of ρ̄ to

Π0 is a reducible representation, sum of two distinct characters.

We claim that the closed Zp-subalgebra of A generated by t(Π0) is A0. Indeed, let us call

A′0 that subring. Any element of Π0 can be written s(d)γ, with d ∈ D0 and γ ∈ Γ ⊂ Θ−1(L),

and thus has trace in Zp + I1 + P = Zp + I1 + I2
1 (by (4.9.10) and (4.9.12.1)). Thus we

see that t(Π0) ⊂ A0, hence A′0 ⊂ A0. On the other hand, A′0 contains Zp by definition.

It therefore contains tr (γ) − 2 for every γ ∈ Γ, hence it contains P by Cor. 4.5.2. And it

contains tr (s(g0)nΓ) for any n, hence I1. Thus A0 = A′0.

It follows easily that (Π0, ρ̄|Π0
, t|Π0

, d|Π0
) is an admissible pseudo-deformation over A0.

By Cor. 5.3.2, and since Π0 satisfies the p-finiteness condition (because Π does), A0 is a

noetherian ring.

We define R0 as the A0-sub-GMA

(
A0 B1

C1 A0

)
of R. Since this is a sub-GMA of M2(K),

R0 is faithfull provided that B1 6= 0 and C1 6= 0, and this follows from the hypothesis made

on (t, d). One has clearly ρ(Π0) ⊂ R∗0. Moreover ρ(Π0) generates R0 as an A0-module,

since clearly the s(g0)n generates the subring of diagonal matrices

(
A0 0
0 A0

)
of R0, and

ρ(Π0) contains Γ, whose projection on anti-diagonal matrices topologically generates as an

additive group, hence as an A0-module, ∇ =

(
0 B1

C1 0

)
. Thus, the restriction ρ|Π0

of ρ to

Π0 is a (t|Π0
, d|Π0

)-representation.
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Its image ρ(Π0) contains Γ, hence also Γ2 = Θ−1(L2). From the description of L,

it follows that L2 =

(
B1C1 I1B1

I1C1 B1C1

)
. Since I1 contains B1C1, L2 contains B1C1J ⊕(

0 B2
1C1

B1C
2
1 0

)
⊃ B1C1R

0
0, and it follows that the image of ρ|Π0

contains the congruence

subgroup ΓR0
(B1C1). �

Remark 7.2.4. With the notation of the preceding theorem and its proof, let K be the

fraction field of A, and K0 be the fraction field of A0. The representation ρ : Π → R∗

induces a representation ρK : Π → GL2(K) since R ⊗A K = M2(K). Similarly, ρΠ0
:

Π0 → R∗0 induces a representation ρK0
: Π0 → GL2(K0). The representations ρK0

and ρK

have the same trace and determinant on Π0. Therefore there exists g ∈ GL2(K) such that

gρKg
−1 = ρK0 on Π0. The conclusion of our theorem implies that ρK(Π0) contains 1+JR0

for some non-zero ideal J . It follows from Lemma 7.1.3 that ρK(Π0) contains 1+J ′M2(A0)

for some ideal J ′. Hence gρ(Π0)g−1 contains the congruence subgroup ΓM2(A0)(J
′).

This is the way the conclusion of the main theorem of Lang [15, Theorem 2.4] is stated,

as well as the main theorem of [8].

On the other hand, the hypotheses of Lang are that Π = GQ, A a local domain finite

over the Iwasawa algebra Zp[[T ]], (t, d) the pseudo-representation carried by a Hida’s family

which is residually absolutely irreducible – a very special case of the situation we are

studying. She assumes in addition that the family is not CM, an hypothesis which is

equivalent (under other running assumptions) to our assumption that t|Π′ is not the sum

of two characters. Finally she is assuming that (t, d) is Π0-regular, an hypothesis which

does not imply our regularity assumption (it allows, it seems, for some ρ̄ with projective

image dihedral of order 4), nor is implied by ours.

To summarize Theorem 7.2.3 implies the congruence-large image result of [15, Theorem

2.4] in many cases though not in all cases, and it implies the congruence-large image result

of [8] in all cases.

In the references [15] and [8], the congruence-large image result are made more precise

by an explicit description of the subring A0 of A and the subgroup Π0 of Π, in terms of

the conjugate self-twist of (t, d) (see [15, definition 2.1]). Our method also gives an explicit

description of Π0 and A0, though a different one. It would be interesting to compare these

descriptions.

8. The essential submodule attached to an admissible pseudo-deformation

In this section, we assume that A satisfies the condition (5.1.1). We also assume through-

out that p > 2.

8.1. Definition of the essential submodule.

Definition 8.1.1. Let (Π, ρ̄, t, d) be an admissible pseudo-deformation over A. Let ρ :

Π→ R∗ be a (t, d)-representation, and define G, Γ, L accordingly, with L2 the derived Lie
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algebra of L. We call S the set of elements g ∈ G such that tr (g) = 0 and − det(g) is a

square in A∗. We shall say that (Π, ρ̄, t, d) is weakly odd if the set S is non empty.

In all this section we shall assume that (Π, ρ̄, t, d) is weakly odd.

Definition 8.1.2. With the same notation as in the preceding definition, define

Aess =
∑
g∈S

W (F)tr (gL2) ⊂ A.

We call this W (F)-submodule Aess of A the essential submodule of A attached to (Π, ρ̄, t, d).

Note that the condition of being weakly odd, and the W (F)-submodule Aess of A depend

only on (Π, t, d), and not on the (t, d)-representation ρ : Π → R∗, for if ρ′ : Π → R′∗ is

another (t, d)-representation, then there exists an isomorphism f : R → R′ preserving

trace and determinant such that ρ′ = f ◦ ρ; the group G′ = ρ′(Π) is the image f(G), and

Γ′ = f(Γ), L′ = f(L), L′2 = f(L2). It is clear that f realizes a bijection between S and S′

and for every g ∈ S a bijection between the subgroups
∑
g∈S gL2 of R and

∑
g′∈S′ g

′L′2 of

R′. Since f preserves traces, it follows that

Aess =
∑
g∈S

W (F)tr (gL2) =
∑
g′∈S′

W (F)tr (g′L′2).

The real motivation for introducing the submodule Aess is its essential rôle in analyzing

the density of modular forms modulo p, see section 10 below. Meanwhile, Aess can be

considered as a very rough measure of how big the image G of the pseudo-deformation is:

the bigger G, the bigger Γ, L and L2, and the more numerous the g ∈ G such that g2 = 1,

hence the bigger Aess. In this sense, most of the results below can be seen as big image

theorems, though of a different type than the big image theorem of the previous section.

Lemma 8.1.3. Let (Π, ρ̄, t, d) be an admissible pseudo-deformation and ρ : Π→ R∗ a (t, d)-

representation such that J =
(

1 0
0 −1

)
∈ G (and therefore L = I1J ⊕ ∇ is decomposable).

Let ∆2 and ∇2 be the subgroups of diagonal and anti-diagonal matrices in L2.

(8.1.1) One has L2 = ∆2 ⊕∇2, ∆2 = [∇,∇] and ∇2 = [∆,∇].

One can write ∆2 = I2J for some closed subgroup I2 of I1, and one has a decomposition:

(8.1.2) L2 = I2J ⊕∇2.

(8.1.3) One has I2 ⊂ I1, ∆2 ⊂ ∆, ∇2 ⊂ ∇.

(8.1.4) For every γ ∈ Γ, one has tr (JγL1) = I1 and tr (JγL2) = I2.

Proof — One has L2 = [L,L] = [∆ ⊕ ∇,∆ ⊕ ∇] = [∇,∇] + [∆,∇] since [∆,∆] = 0

(two diagonal matrices commute). But [∇,∇] consists of diagonal matrices, and [∆,∇] of

antidiagonal ones. This proves (8.1.1) and (8.1.2). Since L2 ⊂ L, (8.1.3) is clear

Let us prove (8.1.4). By decomposition (8.1.2), one has tr (JγL1) = tr (γ)I1 + tr (Jγ∇),

and by Lemma 4.8.1, tr (γ)I1 = I1. It therefore suffices to prove that tr (Jγ∇) ⊂ I1. For

this, let us denote by ε ∈ ∇ the anti-diagonal part of γ or of Θ(γ), and by η any matrix in

∇. One needs to show that tr (Jγη) = tr (Jεη) ∈ I1. Since ε and η are anti-diagonal, one
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has tr (Jεη) = −tr (Jηε), and thus tr (Jεη) = tr (J [ε, η])/2. Since [∇,∇] = ∆2 = I2J , one

has [ε, η] ∈ I2J and one gets tr (Jεη) ∈ tr (JJI2) = I2 ⊂ I1, which completes the proof of

(8.1.4) for L1. The proof for L2 is exactly the same. �

Lemma 8.1.4. If (Π, ρ̄, t, d) is an admissible pseudo-deformation over A, and f : A→ A′ a

surjective morphism of rings, then A′ is a again a compact semi-local ring (for the quotient

topology), and setting t′ = f ◦ t, d′ = f ◦d, (Π, ρ̄, t′, d′) is an admissible pseudo-deformation

over A′. Moreover, if Aess (resp. A′ess) is the essential submodule of (Π, ρ̄, t, d) (resp. of

(Π, ρ̄, t′, d′)), then f(Aess) = A′ess.

This is clear.

In particular, if Ai,ess is the essential sub-module of (Π, ρ̄i, ti, di), then the projection

A → Ai sends Aess onto Ai,ess. Note however that the map Aess →
∏r
i=1Ai,ess is not in

general surjective.

Fix an admissible pseudo-deformation (Π, ρ̄, t, d) and ρ : Π→ R∗ a (t, d)-representation.

Definition 8.1.5. Let S̄ be the set of elements ḡ ∈ G such that tr (ḡ) = 0 and − det(g) is

a square in (A/m)∗.

Note that the reduction map G→ G obviously induces a map S → S̄.

Proposition 8.1.6. The natural reduction map S → S̄ is surjective. For g ∈ S, the

subgroup tr (gL2) of A only depends on the image ḡ of g in S̄. Moreover, for every g ∈ S,

there exists a GMA R′, an isomorphism of A-algebras f : R → R′ preserving traces and

determinants, such that f(g) = s(λ)J for some λ ∈ F∗, and such that if ρ′ denotes the

R′-valued (t, d)-representation ρ′ = f ◦ ρ, and L′2, I ′2 are defined using ρ′, then one has

W (F)tr (gL2) = W (F)tr (JL′2) = W (F)I ′2.

Proof — Let ḡ ∈ S̄. By (5.2.4), there exists λ ∈ F∗ such that det(ḡ) = −λ2 with λ ∈ F∗.
Denotes by ḡi the image of the element ḡ of (R/radR)∗ in (Ri/radRi)

∗. By definition of

S̄, there exists an element g0 ∈ Π such that ρ̄i(g0) = ḡi for i = 1, . . . , r.

Since tr (ρ̄i(g0)) = 0, the eigenvalues of ρ̄i(g0) in Ri/(radRi) are ±λ, two distinct el-

ements of F∗. Let us choose a (t, d)-representation ρ′i : Π → R′i
∗

adapted to (g0, λ,−λ)

(Prop. 2.4.2(iii)); let us set R′ =
∏r
i=1R

′
i and ρ′ =

∏r
i=1 ρ

′
i, and let us denote by G′, Γ′,

L′, etc the group-theoretic and Lie theoretic data attached to ρ′. Then ρ̄′(g0) = λJ and by

Theorem 6.2.1, ρ′(g0) = s(λ)J ∈ G′.
Moreover, any lift g′ ∈ G′ of ρ̄′(g0) = λJ is of the form s(λ)Jγ with γ ∈ Γ′, so by (8.1.4),

W (F)tr (g′L2) = W (F)tr (JγL2) = W (F)I ′2, which is independent of g′. There exists

(Prop. 2.4.2(ii)) an isomorphism of A-algebras f : R→ R′ such that f ◦ ρ = ρ′, preserving

trace and determinant. By definition, if g is a lift of ḡ = ρ̄(g0) in S, then g′ := f(g) is a

lift of ρ̄′(g0) in S′, and f(L2) = L′2, so that tr (gL2) = tr (g′L′2) = I ′2, which is independent

of g. �
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Corollary 8.1.7. One has Aess =
∑
ḡ∈S̄W (F)tr (gL2) where in the summand tr (gL2), g

is an arbitrarily chosen lift of ḡ in S. In particular, Aess is a closed submodule of A.

Proof — The first assertion follows from the definition of Aess and the proposition. Since

the Zp-module tr (gL2) is compact, so is W (F)tr (gL2). Since the set S̄ is finite, it follows

that Aess is compact, hence closed in A. �

8.2. The key measure computation. In this subsection, we assume in addition to the

preceding hypotheses that A is an F-algebra (equivalently, that pA = 0). Therefore, in the

results stated above, each time there is a W (F)X where X is an additive subgroup of A or

of R, it can just be replaced by FX.

For any compact group X, we denote by µX the Haar measure on X of total mass 1.

We fix an admissible weakly odd pseudo-deformation (Π, ρ̄, t, d).

Theorem 8.2.1. Let l : A→ F be a linear form that is not identically 0 on Aess. Then

(8.2.1) µΠ((l ◦ t)−1(F∗)) ≥ p−1
pn ,

where n = |G|.

Since l does not vanish on Aess, then by Prop. 8.1.6, for some (t, d)-representation ρ, l

does not vanish on I2. For the rest of this proof, we fix such a representation ρ and the

attached groups G, Γ, L, L2, I2.

Since ρ is a surjective morphism of groups, the Haar measure µG is the direct image of

the measure µΠ by ρ. Since t = trG ◦ ρ, (8.2.1) is equivalent to:

(8.2.2) µG
(
(l ◦ trG)−1(F∗)

)
≥ p−1

pn ,

which is the same thing as

(8.2.3) µG
(
(l ◦ trG)−1(0)

)
≤ 1

pn + n−1
n .

To prove this, it is clearly enough to prove that

(8.2.4) µG
(
(l ◦ trG)−1(0) ∩ JΓ

)
≤ 1

pn ,

since µG(G− JΓ) = n−1
n , G− JΓ being the union of n− 1 Γ-cosets each of measure 1/n.

Let mJ be the injective map Γ→ G, γ 7→ Jγ, whose image is the coset JΓ, and let µΓ be

the Haar measure of total measure 1 on Γ. Clearly, (8.2.4) is equivalent to

(8.2.5) µΓ

(
(l ◦ trG ◦mJ)−1(0)

)
≤ 1

p

Now consider the exact sequence 1 → Γ2 → Γ → Γ/Γ2 → 1. By Fubini’s theorem, to

prove (8.2.5) it is enough to prove that for all γ ∈ Γ/Γ2,

(8.2.6) µΓ2

(
(l ◦ trG ◦mJγ)−1(0)

)
≤ 1

p

where mJγ is the map Γ2 → G, γ2 7→ Jγγ2 and µΓ2
the Haar measure on Γ2 of total

measure 1. Since Θ−1 : L2 → Γ2 is a measure-preserving homeomorphism (Prop. 4.8.4), it

suffices to prove

(8.2.7) µL2

(
(l ◦ trG ◦mJγ ◦Θ−1)−1(0)

)
≤ 1

p
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To simplify notation let us define the map

hγ = trG ◦mJγ ◦Θ−1 : L2
Θ−1

−→ Γ2
mJγ−→ R∗

tr−→ A,

so that (8.2.7) becomes

(8.2.8) µL2

(
(l ◦ hγ)−1(0)

)
≤ 1

p

To prove (8.2.8), we shall use the following result:

Proposition 8.2.2. Fix γ ∈ Γ.

(i) There exists a measure preserving homeomorphism Ψ = Ψγ : L2 → L2 such that

hγ ◦Ψ−1 : L2 → A is Fp-affine.

(ii) The image of hγ is the Fp-affine subspace tr (Jγ) + I2 of A.

Proof —

Let us define a map Ψ : L2 → L2 by setting

Ψ(m) = m+ σ(m) with σ(m) = (
√

1 + tr (m2)/2− 1)
tr (Jγ)

tr (γ)
J.

Let us check that Ψ is well-defined. Write γ =
(
a b
c d

)
. First, one has tr (γ) = a + d ≡

2 (mod m), hence tr (γ) is invertible in A, and the formula defining Ψ(m) makes sense

as an element of R. We need to check that it is indeed in L2. By definition, Θ(γ) =(
(a−d)/2 b

c (d−a)/2

)
is in L, and since L is decomposable,

(
(a−d)/2 0

0 (d−a)/2

)
is in L; on the

other hand and one computes tr (Jγ)J =
(
a−d 0

0 d−a
)
, so tr (Jγ)J ∈ L. One has tr (γ)−1L =

L by Lemma 4.8.1, hence tr (Jγ)
tr (γ) J is in L. On the other hand

√
1 + tr (m2)/2 − 1 =∑∞

n=1

(
n

1/2

) tr(m2)n

2n , and tr (m2) ∈ tr (L2
2) and thus sends L into L5 ⊂ L2 as we see easily

using (4.3.7). Hence (
√

1 + tr (m2)/2 − 1) tr (Jγ)
tr (γ) J is in L2, so σ(m) is in L2 and Ψ is

well-defined.

If m,m′ are in L2 ⊂ m2R, and m−m′ ∈ mnR then one sees that√
1 + tr (m2)/2−

√
1 + tr (m′2)/2 =

∞∑
n=1

(
n

1/2

)
tr (m2)n − tr (m′2)n

2n
∈ mn+2,

hence σ(m) − σ(m′) ∈ mn+2L ⊂ mn+3R. Therefore, by Lemma 4.8.5, Ψ : L2 → L2 is a

measure-preserving homeomorphism.

For m ∈ L2, one has

hγ(m) = tr (JγΘ−1(m))

= tr (Jγm) + tr (Jγ)
√

1 + tr (m2)/2

= tr (Jγ) + tr (JγΨ(m)).

Therefore hγ(Ψ−1(m)) = tr (Jγ)+tr (Jγm), which shows that hγ ◦Ψ−1 is an affine map as

stated in (i), whose image is the affine space tr (Jγ) + tr (JγL2) = tr (Jγ) + I2 by (8.1.4).

�

Using the proposition and the map Ψ it introduces, we see that to prove (8.2.8), it is

enough to prove that

(8.2.9) µL2

(
(l ◦ hγ ◦Ψ−1)−1(0)

)
≤ 1

p
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But hγ ◦Ψ−1 is a Fp-affine map. So l ◦ hγ ◦Ψ−1 is an Fp-affine map on L2 with values

in F and with image the Fp-affine subspace l(tr (Jγ)) + l(I2). Since l(I2) 6= 0, the image S

of our map l ◦ hγ ◦ Ψ−1 is an affine Fp-subspace of positive dimension of F. The measure

µL2

(
(l ◦ hγ ◦Ψ−1)−1(0)

)
is 0 if S does not contain 0, and 1/|S| otherwise. In any case, it

is less than 1
p which proves (8.2.9) and the theorem.

Remark 8.2.3. If we assume that Θ(Γ) = L, then we can prove that the inequality

µΠ((l ◦ t)−1(F∗)) ≥ p−1
pn , holds not only when l(I2) 6= 0, but more generally when l(I1) 6= 0.

Indeed, to prove (8.2.5) for such an l, that is that µΓ

(
(l ◦ trG ◦mJ)−1(0)

)
≤ 1

p , it is enough

to prove that µL
(
(l ◦ trG ◦mJ ◦Θ−1)−1(0)

)
≤ 1

p . But the map trG ◦ mJ ◦ Θ−1 is very

simple: it sends a matrix m =
(
a b
c −a

)
to tr (JΘ−1m) = 2a. In particular, this map is linear,

and its image is the group I1. Thus if l is non-zero on I1, the map (l ◦ trG ◦mJ ◦Θ−1)−1(0)

is a Fp-affine map from L to F whose image has positive dimension, and we conclude easily.

8.3. A sufficient condition for the largeness of Aess. In this subsection (and for the

rest of this section) we assume that A is local.

Definition 8.3.1. An admissible pseudo-deformation (Π, ρ̄, t, d) is said to be virtually

abelian if there exists an open subgroup Π0 of Π such that the restriction (t|Π0
, d|Π0

) factors

trough an abelian quotient of Π0.

Lemma 8.3.2. Let (Π, ρ̄, t, d) be a weakly odd admissible pseudo-deformation. Assume

that A is a domain. If Aess = 0, then (Π, ρ̄, t, d) is virtually abelian.

Proof — Let us pick g0 ∈ S and choose ρ : Π→ R∗ a (t, d)-representation adapted to g0.

Thus L is decomposable and W (F)tr (gL2) = W (F)I2 ⊂ Aess so by hypothesis I2 = 0.

If ε = ( 0 b
c 0 ) and ε′ =

(
0 b′

c′ 0

)
are in ∇, then [ε, ε′] ∈ I2J = 0, so bc′ − b′c = 0. If a ∈ I1,

then [aJ, ε] =
(

0 2ab
−2ac 0

)
∈ ∇, so we also have 2abc′ + 2ab′c = 0. Adding 2a times the

first equation to the second gives abc′ = 0, for every a, ε, ε′ as above. Remember ([3, §1.3])

that since A is a domain, we may assume that if R =

(
A B
C A

)
, for b ∈ B and c ∈ C,

bc = 0 ⇒ b = 0 or c = 0. It follows that we are in one of the three possibilities: either

I1 = 0 or C1 = 0 (i.e. ∇ is upper triangular) or B1 = 0.

If I1 = 0, then L = ∇, and L2 = [∇,∇] = ∆2 ⊂ I1J = 0. Thus L is commutative.

It follows that Θ−1(L) is commutative and Γ is commutative. Let Π0 = Ker ρ̄. Then

ρ(Π0) = Γ is commutative, which proves that (t|Π0
, d|Π0

) factors trough an abelian quotient

of Π0.

If C = 0, all matrices in ∇ are upper-triangular and it follows that L itself, and Γ ⊂
Θ−1(L) as well, are contained in the set of triangular matrices. If again we set Π0 = Ker ρ̄,

we see that t|Π0
= tr ρ|Π0

is the sum of two characters, hence factors through an abelian

quotient.

The case B = 0 is dealt with the same way. �
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Proposition 8.3.3. Let (Π, ρ̄, t, d) be a weakly odd admissible pseudo-deformation, which

is not virtually abelian. Assume that A is a domain. Let g0 ∈ S̄, and ρ : Π → R∗ a

(t, d)-representation adapted to g0. Assume that for this representation, either W (F)B1 or

W (F)C1 is not a finite-type W (F)-module. Then Aess is not a finite type W (F)-module

either.

Proof — Assume by contradiction that Aess is a finite type W (F)-module. Since W (F)I2 ⊂
Aess, so is W (F)I2. By the preceding lemma, I2 6= 0, and since PI2 ⊂ I2 and A is a domain,

it follows that W (F)P is a finite type W (F)-module. Therefore W (F)P +W (F)I2 is a finite

type W (F)-module. But if ( 0 b
c 0 ) and

(
0 b′

c′ 0

)
are any elements in ∇, then bc′ − b′c ∈ I2 and

bc′ + b′c ∈ P , so bc′ is in I2 + P , and I2 + P contains B1C1, so W (F)I2 +W (F)P contains

W (F)B1C1. But W (F)B1 and W (F)C1 are non-zero (otherwise the deformation would be

virtually abelian) and by assumption one of them is not a finite W (F)-module, so it follows

that W (F)B1C1 is not a finite W (F)-module, a contradiction. �

8.4. The essential subgroup in the reducible case. In this subsection we keep assum-

ing that A is local and we fix an admissible weakly odd pseudo-deformation (Π, ρ̄, t, d), and

we assume throughout that ρ̄ is reducible.

(8.4.1) There exists two continuous characters χ1, χ2 : Π → F∗, such that ρ̄ '
χ1 ⊕ χ2.

Let us chose a (t, d)-representation which is well-adapted in the sense of Definition 6.3.1.

Thus the group Ḡ is a diagonal subgroup of GL2(F), and s(Ḡ) ⊂ G. Since ρ̄ is weakly odd

there exists in Ḡ an element of order 2 other than ±1, and since this element is diagonal, it is

either J or −J . There is no loss of generality in supposing that J ∈ Ḡ, hence J = s(J) ∈ G.

Proposition 8.4.1. One has Aess = W (F)I2.

Proof — Indeed, Aess =
∑
ḡ∈S̄W (F)tr (ḡL2). But the only such ḡ in the diagonal subgroup

G are of the form λJ and possibly −J , so W (F)tr (ḡL2) = W (F)tr (s(λ)JIL2) = W (F)I2.

�

Proposition 8.4.2. Assume that A is a domain and is not a finite W (F)-module. Then

if (Π, ρ̄, t, d) is not virtually abelian, Aess is not a finite W (F)-module.

Proof — Since A = W (F) ⊕W (F)I1 + W (F)P (Prop. 6.3.4), either W (F)I1 or W (F)P

is not finite as a W (F)-module. If W (F)I1 is not finite, then neither is W (F)I2
1 since A is

a domain, and since I2
1 ⊂ P , neither is W (F)P . So in any case W (F)P is not finite as a

W (F)-module.

Under our hypotheses Aess = W (F)I2 is not zero by Prop. 8.3.2. Since PI2 ⊂ I2, and A

is a domain, W (F)I2 is not finite as a W (F)-module. �
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Theorem 8.4.3. Assume that the character χ1/χ2 is not of order 2, or in other words

that the projective image of ρ̄ is not Z/2Z. Then Aess is an ideal of A, and more precisely

it is the reducibility ideal of the pseudo-representation (t, d) (see [3, §1.5]).

Proof — By Theorem 6.5.1, one has W (F)L =

(
Ĩ1 B

C Ĩ1

)0
for some W (F)-module Ĩ1. It

follows that W (F)I2 = BC. �

8.5. The essential subgroup in the dihedral case. In this subsection we still assume

that A is local and we fix an admissible weakly odd pseudo-deformation (Π, ρ̄, t, d), and we

assume throughout that

(8.5.1) The projective image of ρ̄ is dihedral.

As in §6.3.3, we choose a well-adapted (t, d)-representation ρ : Π → GL2(A) which

encompasses the choice of a subgroup D of index 2 in Ḡ consisting of diagonal matrices.

We recall that the inverse image of D by the map G 7→ Ḡ is an index 2 subgroup G′ of G,

and that R′ = AG′ is a sub-GMA of R = M2(A) which has the from R′ = ( A B
B A ) for B an

ideal of A.

8.5.1. Largeness of Aess.

Proposition 8.5.1. Assume that A is a domain and is not a finite W (F)-module, that

(Π, ρ̄, t, d) is not virtually abelian, and (8.5.1). Then Aess is not a finite W (F)-module.

Proof — We first claim that W (F)B1 is not a finite W (F)-module. Indeed, it is non-zero

otherwise (Π, ρ̄, t, d) would be virtually abelian. Moreover, W (F)I1 +W (F)P +W (F)B1 is

not a finite W (F)-module. Therefore at least one of the three terms is not a finite W (F)-

module. If it is the third, then we are done, and if it is one of the two first, we are also

done since I1B1 ⊂ B1 and PB1 ⊂ B1.

The proposition then follows from Prop. 8.3.3 �

8.5.2. Description of Aess in the case 4 | n, n > 4. Let n be the order of the projective

image of ρ̄. Since ρ̄ is dihedral, n ≥ 4 and n is even.

(8.5.2) We assume that n > 4, and that 4 | n.

Under this assumption, the image of the diagonal group D in PGL2(F) has even order,

and thus contains an element of order 2. Fix a lift ḡ of that element in D. This element ḡ

has trace zero, hence is of the form λJ for some λ ∈ F∗, and is an element of S̄. An element

of G−D also has trace 0. We shall make the following supplementary assumption:

(8.5.3) There exists an element ḡ′ of G−D such that −det ḡ′ is a square in F∗, or

in other words, such that ḡ′ ∈ S̄.

This assumption will be harmless in the applications (see §10 below), since if not true,

we can always choose an element ḡ′ in G−D and extend the scalars from F to the quadratic

extension F′ of F generated by
√
−det ḡ′.
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Theorem 8.5.2. Assume (8.5.1), (8.5.2) and (8.5.3). Then Aess = mB. In particular Aess

is an ideal of A.

Proof — Since n > 4, W (F)L =

(
W (F)I1 W (F)B1

W (F)B1 W (F)I1

)0
by Theorem 6.7.1. It follows that

W (F)L2 =

(
W (F)B2

1 W (F)I1B1

W (F)I1B1 W (F)B2
1

)0
.

We claim that

Aess = W (F)B2
1 +W (F)I1B1.

Indeed, W (F)tr (s(ḡ)L2) = W (F)I2 = W (F)B2
1 ⊂ Aess, andW (F)tr (s(ḡ′)L2) = W (F)I1B1 ⊂

Aess, and if there are other elements ḡ′′ in S̄, they are either diagonal or anti-diagonal, con-

tributing the same summand W (F)B2
1 or W (F)I1B1.

To prove that Aess is an ideal, we recall that A = W (F) +W (F)I1 +W (F)I2
1 +W (F)B1,

so we only need to check that Aess is stable by multiplication by I1 and B1. We have

I1Aess = W (F)I1B
2
1 + W (F)I2

1B1, and since I1B1 ⊂ B1, we see that I1Aess ⊂ Aess. We

have B1Aess = W (F)B3
1 + W (F)I1B

2
1 , and since W (F)B2

1 ⊂ W (F)I1 and I1B1 ⊂ B1, we

see that B1Aess ⊂ Aess.

Since B1 ⊂ B and B is an A-ideal, it is clear that Aess ⊂ B. We claim that the ideal (of

A) generated by B1 is B.

Since Aess is an ideal, we get Aess = B2 + I1B. Since m = W (F)I1 + W (F)I2
1 + B,

we have mB = I1B + I2
1B + B2 = Aess + I2

1B. But since B is an ideal, I1B ⊂ B and

I2
1B ⊂ I1B ⊂ Aess, so mB = Aess. �

8.6. The essential subgroup in the large image or exceptional case. We assume

that A is local, and we assume that ρ̄ has large or exceptional projective image. In this

case, things are pretty simple:

Theorem 8.6.1. If ρ̄ has large or exceptional projective image, then Aess = m2.

Proof — By Theorem 6.8.1, one has for a suitable (t, d)-representation ρ, W (F)L =(
m m
m m

)0
. Since

(
m m
m m

)0
is invariant by any trace-preserving automorphism of R, it

follows that W (F)L =

(
m m
m m

)0
for any (t, d)-representation ρ. For any g ∈ S we therefore

have W (F)tr (gL2) = W (F)I2 = m2, and Aess = m2. �

9. An example

The aim of this section is to provide an example of an admissible pseudo-representation

whose image is ‘complicated’, and which violates the conclusions (and of course, the hy-

potheses) of certain theorems we have proved earlier. It can be safely skipped.

Let F be a finite field of characteristic p > 2. Let A = F[[X]], with maximal ideal

m = XF[[X]].
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9.1. A two-generator closed subgroup Γ of SL1
2(A) and its Lie algebra. Define

g =
(
X+
√

1+X2 0

0 −X+
√

1+X2

)
and h =

(√
1−X2 X

−X
√

1−X2

)
.

Note that those two matrices belongs to SL1
2(A). Let Γ be the topological closure of the

subgroup of SL1
2(A) generated by g and h.

Lemma 9.1.1. With J =
(

1 0
0 −1

)
, one has JgJ = g and JhJ = h−1. One has JΓJ = Γ.

With J ′ = ( 0 1
1 0 ), one has J ′gJ ′ = g−1 and J ′hJ ′ = h−1. One has J ′ΓJ ′ = Γ.

Proof — The first and third sentences consist of two trivial computations each and the

second and fourth sentences follow. �

Lemma 9.1.2. Suppose that γ =
(
a(X) b(X)
c(X) d(X)

)
is in Γ. Then a(X) = d(−X) and b(X) =

c(−X).

Proof — The equalities a(X) = d(−X) and b(X) = c(−X) are clearly true for the

matrices g and h, and also g−1 and h−1. If these equalities are true for γ =
(
a(X) b(X)
c(X) d(X)

)
and γ′ =

(
a′(X) b′(X)

c′(X) d′(X)

)
, then γγ′ =

(
aa′+bc′ ab′+bd′

a′c+c′d dd′+b′c

)
and one sees that (aa′ + bc′)(X) =

a(X)a′(X) + b(X)c′(X) = d(−X)d′(−X) + c(−X)b′(−X) = (dd′ + b′c)(−X), and (ab′ +

bd′)(X) = a(X)b′(X) + b(X)d′(X) = d(−X)c′(−X) + c(−X)a′(−X) = (a′c + c′d)(−X).

Therefore they are true for any element of the subgroup generated by g and h, and of its

closure, hence the lemma. �

Define a subspace L of R as follows:

L = {
(
a b
c −a

)
, a, b, c ∈ m = XF[[X]], a(X) = −a(−X), b(X) = c(−X)}.

In other words, L = XF[[X2]]J⊕∇, with ∇ = {( 0 b
c 0 ) , b, c ∈ m = XF[[X]], b(X) = c(−X)}.

In particular, L is decomposable, but not strongly decomposable.

Lemma 9.1.3. The Pink’s Lie algebra L(Γ) of Γ is L.

Proof — First we prove that L(Γ) ⊂ L. It suffices to prove that Θ(γ) ∈ L for every

γ ∈ Γ. If γ =
(
a b
c d

)
, then by Lemma 9.1.2, a(X) = d(−X) and b(X) = c(−X), and

Θ(γ) =
(

(a(X)−a(−X))/2 b(X)
c(X) (a(X)−a(−X))/2

)
, which is clearly in L.

Next, observe that by Lemma 9.1.1, L(Γ) is decomposable. We write L(Γ) = I1J ⊕
∇1, with ∇1 anti-diagonal. Also, Θ(g) =

(
X/2 0

0 −X/2

)
belongs to L(Γ), so X ∈ I1

and 4tr (Θ(g)2) = X2 belongs to the closed sub-pseudoring P (Γ) of A. It follows that

X2F[[X2]] ⊂ P (Γ). Since I1 is stable by P (Γ), we get I1 = XF[[X2]]. From Θ(h) ∈ L(Γ)

and L(Γ) decomposable, we get
(

0 X
−X 0

)
∈ ∇1. Since ∇1 is stable by taking the Lie

bracket with XJ ∈ L(Γ), we see that
(

0 X2

X2 0

)
,
(

0 X3

−X3 0

)
, etc. belong to ∇1, and finally

∇1 = {( 0 b
c 0 ) , b, c ∈ m = XF[[X]], b(X) = c(−X)}. Hence L(Γ) = L. �
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9.2. Construction of two admissible pseudo-deformations. We define

G = Γ
∐

JΓ.

It follows from the first part of Lemma 9.1.1 that G is a closed subgroup of GL2(A),

containing Γ as a subgroup of order 2, and that G is the semi-direct product of {1, J} by

Γ.

Let Π be any pro-finite group with a continuous surjective morphism onto G (for example

Π = G with the identity). Let ρ be the composition Π → G → GL2(A). Let t = tr ρ,

d = det ρ. Let ρ̄ : Π → GL2(F) be the reduction modulo m of ρ. Then ρ̄ is a continuous

semi-simple representation of Π with image (and projective image) isomorphic to Z/2Z.

Lemma 9.2.1. (Π, ρ̄, t, d) is an admissible pseudo-deformation. The projective image of ρ̄

is cyclic of order 2.

Proof — The representation ρ̄ is the sum of the trivial character and a character of

order 2 of Π, so ρ̄ satisfies (5.2.2). The property (5.2.3) is obvious. One has d(Γ) = 1,

d(G − Γ) = d(JΓ) = −1, which makes clear that (5.2.4) holds. For (5.2.5), one has

tr (Jg) = 2X, hence the smallest closed subring of A containing tr (G) contains F[X],

hence is A. �

Let H be the subgroup of order 8 of GL2(A) generated by J and J ′. By Lemma 9.1.1,

H normalizes Γ. We define G′ = ΓH, a semi-direct product of H by Γ. Let Π′ be any

pro-finite group with a continuous surjective morphism onto G′ (for example Π′ = G′ with

the identity). Let ρ′ be the composition Π′ → G′ → GL2(A). Let t′ = tr ρ′, d′ = det ρ′.

Let ρ̄′ : Π′ → GL2(F) be the reduction modulo m of ρ′. Then ρ̄′ is a continuous semi-simple

representation of Π′ with image isomorphic to H.

Lemma 9.2.2. (Π′, ρ̄′, t′, d′) is an admissible pseudo-deformation. The projective image

of ρ̄′ is dihedral of order 4.

Proof — The proof if the same as above, except for the projective image, which is the

image of H in PGL2(F). This image is generated by the image of J and J ′, elements of

order 2 that commute in PGL2(F) since in GL2(F) one has J ′JJ ′ = −J . �

9.3. Counter-examples to over-optimistic statements. We now use the admissible

pseudo-deformations (Π, ρ̄, t, d) and (Π′, ρ̄′, t′, d′) to construct counter-examples.

First, we show that Theorem 7.2.3 is false if we do not assume that ρ̄ is regular. More

precisely, we show that it does not hold true, first in a case where ρ̄ has projective image

cyclic of order 2, and second in a case where it has projective image dihedral of order 4.

Proposition 9.3.1. Let (Π, ρ̄, t, d) be the admissible pseudo-deformation constructed in

the above subsection. There is no subgroup Π0 of Π containing Ker ρ̄, and subring A0

of A such that the pseudo-representation (t, d) of Π0 takes value in A0, is admissible,
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and (t|Π0
, dΠ0

) has congruence-large image. The same holds with (Π, ρ̄, t, d) replaced by

(Π′, ρ̄′, t′, d′) constructed in the above subsection.

Proof — If Π0 is a subgroup as in the statement, then either Π0 = Π or Π0 = Ker ρ̄

has index 2 in Π. The second case is excluded since ρ̄|Ker ρ̄ is the trivial representation of

dimension 2, which is not multiplicity free. Thus Π0 = Π and A0 = A. We just have to

show that for the unique (t, d)-representation ρ, ρ(Π0) = G does not contain any congruence

subgroup. But if it did, Γ would contain a congruence subgroup and L would contain a

sub-module of the form

(
I I
I I

)0

for some non-zero ideal I of A. Since up-left coefficients

of L are odd elements of F[[X]], I would contain only odd functions, but this is absurd

since I is stable by multiplication by X.

The same result for (Π′, ρ̄′, t′, d′) is proved similarly. �

Second, we show that it may be false that Aess is an ideal of A.

Proposition 9.3.2. The Zp-submodule Aess of A attached to the admissible pseudo-deformation

(Π0, ρ̄, t, d) is not an ideal of A.

Proof — By Prop. 8.4.1 we have Aess = I2 ⊂ I1. Since I1 consists of odd elements of

A = Fp[[X]], so does I2, but no non-zero ideal of A consists only of odd elements. �

9.4. The group G as a Galois group. Lest the reader think that the pathological exam-

ple (Π, ρ̄, t, d) is allowed only by our too lenient definition of an admissible representation,

and does not happen in the concrete applications to number theory, we show that when

p = 3 (to fix ideas) one can take in the above example for Π the absolute Galois group

GQ,3 and for (t, d) the quotient by a prime ideal of height one of the canonical pseudo-

representation of GQ,3 over the Hecke algebra of modular forms modulo 3.

Let GQ(µ3),3 be the Galois group of the maximal algebraic extension of Q(µ3) = Q(
√
−3)

unramified outside the unique place above 3. This is a subgroup of order 2 of GQ,3, and

GQ,3 is a semi-direct product of {1, c}, where c is any complex conjugation, by GQ(µ3),3.

Let G3
Q(µ3),3 be the largest quotient of GQ(µ3),3 which is a pro-3-group. The structure of

that group is known. Let c be a complex conjugation in GQ,3.

Lemma 9.4.1. There exists an element x ∈ G3
Q(µ3),3 such that G3

Q(µ3),3 is a free pro-3-

group with x and cxc as pro-generators.

The freeness of G3
Q,3 is due to Shafarevich, see [30, page 82, example after theorem 5].

The rest of the lemma is proven in [22].

Consider the unique continuous morphism of groups f : G3
Q(µ3),3 → Γ sending x to

(gh)1/2 and cxc to (gh−1)1/2 (the square root z1/2 for z an element of the pro 3-group Γ

is defined as usual as the limit zan where an is a sequence of natural integers converging

3-adically to 1/2). Since the group generated by (gh)1/2 and (gh−1)1/2 contains g and h,

f is surjective. Using the structural surjective map GQ(µ3),3 → G3
Q(µ3),3, we see f as a
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surjective morphism GQ(µ3),3 → Γ. Since f(cxc) = Jf(x)J−1 in G by Lemma 9.1.1, and

J2 = c2 = 1, we can extend f into a surjective morphism f : GQ,3 → G sending c onto

J . We thus get a pseudo-character (t = tr ◦ f, d = det ◦f) on the Galois group Π = GQ,3

which is an admissible pseudo-deformation of ρ̄ = 1 ⊕ ω3 and whose image is G. As seen

above, this Galois pseudo-deformation is a counter-example to the assertion that Aess is an

ideal and that (t, d) has congruence-large image.

Finally, note that if Rρ̄ denotes the universal deformation of ρ̄ as a pseudo-representation

in characteristic p and with constant determinant, and Aρ̄ denotes the Hecke algebra of

modular forms modulo 3 and level 1, the natural map Rρ̄ → Aρ̄ is an isomorphism by [22],

and both rings are isomorphic to F3[[Y,Z]]. Thus, the pseudo-deformation (t, d) induces a

surjective map Rρ̄ = Aρ̄ → A = F3[[X]], such that (t, d) is the composition of the natural

pseudo-character (tρ̄, dρ̄) with this map.

10. Density of modular forms

In this section we prove the main results of our work, the ones regarding the density of

modular forms, namely Theorems I, II and III.

We revert to the notation of the introduction: p is prime, N ≥ 1 an integer, k ∈
Z/(p− 1)Z and F a (large enough) finite extension of Fp. The space of modular forms on

F of weight k, level N , and coefficients null at indices not prime to Np is denoted by F .

We note that to prove Theorems I, II and III, we can without loss of generality replace F
by a finite extension. We shall always assume that the finite field F is large enough below.

10.1. The Hecke algebra of mod p modular forms. The space F is endowed with an

action of the Hecke operators T` for ` - Np. Let A = Ak(N,F) be the topological closure6

of the F-subalgebra of EndF(F) generated by the Hecke operators T` for ` not dividing Np.

For every k ∈ Z/(p − 1)Z, the F-algebra A = Ak(N,F) is semi-local. More precisely, if

F is large enough, its maximal ideals are in bijection with a certain set R = R(k,N,F) of

semi-simple continuous Galois representations ρ̄ : GQ,Np → GL2(F) up to F-isomorphism:

the correspondence is given by λ` = tr ρ̄(Frob `). This set R(k,N,F) can be described as

the set of all semi-simple representations ρ̄ : GQ,Np → GL2(F) of determinant ωk−1
p and

Serre’s level N . This is the content of Serre’s conjecture, now a theorem of Khare and

Wintenberger.

Still assuming that F is large enough, and ρ̄ ∈ R(k,N,F), we shall denote by Aρ̄ the

corresponding local component of A = Ak(N,F), that is the localization of Ak(N,F) at the

maximal ideal corresponding to ρ̄. The generalized eigenspace Fρ̄ = Fρ̄(N,F) for the T`,

` - Np, with generalized eigenvalues λ` (already considered defined in the introduction) is

equivalently the localization of the A = Ak(N,F)-module F = Fk(N,F) at that maximal

ideal mρ̄ corresponding to ρ̄.

Then, Aρ̄(F) is a compact local F-algebra with residue field F. The image of the elements

T` of A in that localization Aρ̄ shall also by denoted by T`. The image of T` ∈ Aρ̄ in the

6The topology on F is the discrete topology and the topology on EndF(F) is the compact-open topology
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residue field F is tr (ρ̄(Frob `)) = λ`. Equivalently, the Aρ̄-module Fρ̄ can be described as

the generalized eigenspace in Fk(F) for the T`, ` - Np, with generalized eigenvalues λ`. To

summarize, we have decompositions

A =
∏
ρ̄∈R

Aρ̄, F =
⊕
ρ̄∈R
Fρ̄.(2)

Recall that we have a perfect pairing F × A → F, (f, t) 7→ a1(tf), which induces a

perfect pairing Fρ̄ ×Aρ̄ → F.

We note that the ring A thus satisfies all hypotheses made in Section 8. Moreover we

have the following results on the structure of A:

Proposition 10.1.1. The rings Aρ̄ are always infinite, and have Krull dimension ≥ 1. If

p > 3, or if p = 3 and ρ̄ is a twist of 1⊕ ω3 (ω3 the cyclotomic character), or if p = 2 and

ρ̄ is a twist of 1⊕ 1, the Krull dimension of Aρ̄ is at least 2.

Proof — See [13] for the first assertion, [4] and [10] for the case p > 3 and [21] in the case

p = 3, [24] in the case p = 2. �

It is expected that Aρ̄ always has dimension exactly 2, and this is known in many cases,

see the references above.

10.2. The canonical Galois pseudo-representation over A.

Proposition 10.2.1. There exists a unique continuous pseudo-representation (t, d) of di-

mension 2 of GQ,Np with values in A such that t(Frob `) = T` for all ` - Np. One has

d = ωk−1
p and t(c) = 0.

For a proof of the proposition, which is well-known to specialists, see [2] where the

case p = 2 is dealt with – the case p > 2 is exactly the same. We denote by (tρ̄, dρ̄)

the composition of (t, d) with the map A → Aρ̄, and observe that by definition, tρ̄ = tr ρ̄

(mod mρ̄) and dρ̄ = det ρ̄ (mod mρ̄).

Corollary 10.2.2. The pseudo-deformation (GQ,Np, (ρ̄i)i=1,...,r, t, d) is admissible.

Proof — Condition (5.2.1) is trivial. The hypothesis (5.2.2) is satisfied because the

representations ρ̄i are odd, hypotheses (5.2.3) and (5.2.4) are clear, and (5.2.5) follows from

the fact that t(GQ,Np) contains T` for all prime ` not dividing Np and those operators, by

construction, generates A as an F-algebra. �

Corollary 10.2.3. The ring A is noetherian.

Proof — Since GQ,Np satisfies the p-finiteness condition ([18]), this follows from the

preceding corollary and Cor. 5.3.2. �
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We observe that if p = 2, the ideal generated by all the T`, ` - Np, in A is the maximal

ideal. It is also the orthogonal of the eigenform ∆, which is up to a scalar the only form

in Fk(F) killed by all Hecke operators. We shall denote that ideal by m1 since it is the

maximal ideal of A corresponding to the trivial representation ρ̄ = 1⊕ 1.

Lemma 10.2.4. The closed F-subspace generated by t(GQ,Np) is A when p > 2 and m1

when p = 2.

Proof — When p > 2, the lemma is just (5.3.1). When p = 2, the same argument

gives that the closed F-subspace generated by t(GQ,Np) is an ideal, and contains all the T`,

` - Np. Thus it is m1 or A. But t(GQNp) ⊂ m1 because t (mod m1) = tr (1 + 1) = 0. �

10.3. Proof of Theorem I. We now give the proof of Theorem I. Let f ∈ Fk(F), f 6= 0.

If p = 2 we assume in addition that f 6∈ F∆′. We want to show that δ(f) > 0.

Let lf be the F-linear form on Ak(F) defined by lf (T ) = a1(Tf). In other words,

lf is the linear form on Ak(F) corresponding to f ∈ Fk(F) through the perfect duality

Ak(F) × Fk(F) → F, (T, f) 7→ a1(Tf), and in particular, lf is non-zero. Let Hf be the

closed hyperplane Ker lf of Af (F). If p = 2, our supplementary assumption means that Hf

is not the maximal ideal m1.

If µ denotes the Haar measure of total mass 1 on the compact group GQ,Np, we claim

that

(10.3.1) δ(f) = 1− µ(t−1(Hf )).

To prove the claim, note that for ` a prime not dividing Np, one has a`(f) = 0 ⇔
a1(T`f) = 0 ⇔ a1(t(Frob `)f) = 0 ⇔ t(Frob `) ∈ Hf ⇔ Frob ` ∈ t−1(Hf ). Observe that

Hf , being closed and of finite index, is open in Af , and therefore t−1(Hf ) is open in GQ,Np.

Thus Chebotarev’s density theorem implies that the density of primes ` such that Frob ` is

not in t−1(Hf ) is 1− µ(t−1(Hf )), and the claim follows.

To finish the proof, we therefore just have to prove that t−1(Hf ) is a proper subset

of GQ,Np. We do not have t−1(Hf ) = GQ,Np, because that would mean t(GQ,Np) ⊂ Hf ,

contradicting Lemma 10.2.4. This completes the proof of Theorem I.

10.4. Definition of special modular forms. From now on, we assume p > 2. The

admissible pseudo-deformation (GQ,Np, (ρ̄i), t, d) over A defines a closed F-subspace Aess of

A (cf. §8). We say that a modular form f ∈ F is special if a1(tf) = 0 for all t ∈ Aess.

Thus, special modular forms in F form a F-sub-vector space Fspe, which is the orthogonal

of Aess for the perfect pairing A×F → F.

For ρ̄ ∈ R, we set as in the introduction Fρ̄,spe = Fρ̄ ∩ Fspe. The admissible pseudo-

deformation (GQ,Np, ρ̄, tρ̄, dρ̄) over Aρ̄ defines a closed F-subspace Aρ̄,spe of Aρ̄, which is the

image of Aspe by the projection map A→ Aρ̄. Thus, Fρ̄,spe is the orthogonal complement

of Aρ̄,ess for the perfect pairing Aρ̄ ×Fρ̄ → F.
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10.5. Proof of Theorem III. Given a representation ρ̄ ∈ R (which in the case p = 3 is a

twist of 1⊕ω3), we need to show that Fρ̄,spe is of infinite codimension in Fρ̄, or equivalently,

that Aρ̄,ess is infinite-dimensional.

Proposition 10.5.1. If (GQ,Np, ρ̄, t, d) is a virtually abelian admissible pseudo-deformation

over a noetherian local compact domain A such that pA = 0 for some odd prime p, then

the Krull dimension of A is at most 1.

Proof — Let K the fraction field of A. Let ρ : GQ,Np → R∗ be a (t, d)-representation. By

Lemma 2.2.3, ρ can be seen as a representation GQ,Np → GL2(K).

Let M be a finite Galois extension of Q such that (t, d) factors through an abelian

quotient of GM,Np. The representation ρ : GM,Np → GL2(K) becomes reducible over a

quadratic extension K ′ of K, so there are two characters χ1, χ2 : GM,Np → (K ′)∗ such

that ρ = χ1 ⊕ χ2 as a representation over K ′. Since χi(g) for i = 1, 2 are the roots of the

polynomials X2 − t(g)X + d(g) ∈ A[X], χi(g) belongs to the integral closure A′ of A in

K ′. Since A is a complete noetherian local ring, then by a theorem of Nagata, A′ is a finite

type module over A and is a complete noetherian local ring as well.

We claim that the characters χi : GM,Np → (A′)∗ for i = 1, 2 are continuous. Indeed, if

they are equal they are continuous since 2χ1 = t. If not, there is a g0 such that χ1(g0) 6=
χ2(g0). By the continuity of the roots of polynomial, there exists a neighborhood U of 1 and

two continuous functions ψ1, ψ2 on g0U (with values in (A′)∗) such that X2−t(g)X+d(g) =

(X−ψ1(g))(X−ψ2(g)) on g0U ψi(g0) = χi(g0) for i = 1, 2. Shrinking U if necessary, we may

assume that U is an open subgroup of GM,Np and that g 7→ ψi(gg0)χi(g0)−1 is a character

on U . By uniqueness of the decomposition of a representation into sum of characters over a

field (K ′), it follows that for i = 1, 2, there exists j = 1, 2 such that ψi(gg0)χi(g0)−1 = χj(g)

on U . It follows that the χi are continuous on U , hence everywhere.

Let Γ = Gal(M/Q). Since the functions t and d = χ1χ2 = det ρ̄ on GM,Np are invariant

by conjugation of the argument by any element of Gal(M/Q), there exists a subgroup Γ′

of Γ of index 1 or 2 such that

(10.5.1) for every γ ∈ Γ′, χγi = χi and for every γ ∈ Γ− Γ′, χγi = det ρ̄χ−1
i .

Let Runiv be the universal deformation ring in characteristic p of the character χ̄1 :

GM,Np → F∗ satisfying condition (10.5.1). The character χ1 : GM,Np → (A′)∗ de-

fines a morphism of F-algebras Runiv → A′ whose image A0 is the closed F-subalgebra

of A′ generated by χ1(GM,Np). For g ∈ GM,Np, we can write χ1(g) = χ̄1(g) + x with

χ̄1(g) ∈ F∗ and x in the maximal ideal of A′, and χ2(g) = det ρ̄(g)(χ̄1(g) + x)−1 =

χ̄1(g)(1 − χ̄1(g)−1x + χ̄2(g)−2x2 − . . . ). Thus χ2(g) is in A0, and so is t(g). Since A

is the closed W (F)-subalgebra generated by the image of t, we see that A ⊂ A0 ⊂ A′. Since

A′ is finite as an A-module, Cohen-Seidenberg’s theorem ensures that A, A′ and A0 have

the same Krull dimension. Thus to prove the proposition it suffices to prove that A0 has

dimension at most 1, and for this it is enough to prove that Runiv has dimension at most

1. This follows easily from Class Field Theory. �
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By Prop. 10.1.1, the ring Aρ̄ has Krull dimension at least 2 under the hypothesis on

ρ̄ of Theorem III. Let B be the reduced ring of the ring of a 2-dimensional irreducible

component of SpecAρ̄. Then B is a quotient of Aρ̄, which is domain of dimension 2. To

prove that Aρ̄,ess is infinite (as a set or F-vector space), it is enough to prove that the

image Bess of Aρ̄,ess in B is infinite. The subspace Bess is the essential subspace of the

admissible pseudo-deformation (GQ,Np, ρ̄, t, d) over B, which is not virtually abelian by

the above proposition. Therefore, Bess is infinite by Propositions 8.4.2, 8.5.1, 8.6.1, and

Theorem III is proved.

10.6. Proof of Theorem II. Let f ∈ F be a modular form which is not in Fspe. This

means that the linear form l : A → F, t 7→ a1(tf) is not zero on the subspace Aess of A.

By Theorem 8.2.1

µGQ,Np((l ◦ t)−1(F∗)) ≥ p− 1

pn
,

that is by (10.3.1)

δ(f) ≥ p− 1

pn
,

where n = |G|. This proves the main part of Theorem II. This theorem also states that Fspe

is of infinite codimension in F . To prove this, it is sufficient to prove that for one ρ̄ ∈ R,

Fspe,ρ̄ = Fspe ∩ Fρ̄ is of infinite codimension in Fρ̄. The results follow from Theorem III

for any ρ̄ ∈ R if p > 3, and also for p = 3 if we choose for ρ̄ the representation 1 ⊕ ω3,

which always belong to R(N, 3,F) since it is the representation attached to the eigenform

∆ (mod 3).

11. Cyclotomic and K-abelian modular forms

We keep the notation of the preceding section. We do not assume p > 2 unless explicitly

mentioned. We fix a representation ρ̄ ∈ R.

For f ∈ Fρ̄, we denote by If the annihilator ideal of f in Aρ̄, and by Af the quotient

Aρ̄/If . The perfect duality Aρ̄ × Fρ̄ → F induces a perfect duality Af × Aρ̄f → F. The

space Aρ̄f is finite, because the action of the Hecke operators is locally finite; it follows

that the ring Af is finite, and it is therefore a local artinian F-algebra. We obtain an

admissible pseudo-deformation (GQ,Np, ρ̄, tf , df ) on Af by post-composing tρ̄ and dρ̄ with

the surjective map Aρ̄ → Af .

11.1. Fields of determination of a modular form f ∈ Fρ̄. For S a finite set of primes,

let us denote by QS the maximal algebraic extension of Q unramified outside S and ∞,

and by GQ,S the group Gal(QS/Q). If S is the set of primes dividing an integer N , we also

use N instead of S in these notations.

Let us denote by Lf the subfield of QNp fixed by Ker (tf , df ). Note that Lf is a Galois

extension of Q, unramified outside Np and∞, such that Gal(Lf/Q) = GQ,Np/Ker (tf , df ).

Lemma 11.1.1. The field Lf is finite over Q.
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Proof — Let ρf : GQ,Np → R∗f be a (tf , df )-representation. By assertion (vii) of

Proposition 2.4.2, Rf is of finite type as a module over Af , hence is finite as a set,

and by assertion (vi) of the same, the kernel of Ker (ρf )|GQ,Np is Ker (tf , df ). Therefore,

Gal(Lf/Q) = ρf (GQ,N,p) and since the later is a subset of the finite set Rf , it is finite. �

Theorem 11.1.2. Let L be a Galois extension of Q contained in Q̄, unramified outside a

finite set S of primes dividing Np and ∞. The following properties are equivalent:

(i) For every prime ` 6∈ S, the form T`f depends on ` only through the conjugacy class

Frob `,L/Q ∈ Gal(L/Q).

(i’) For almost every prime `, the form T`f depends on ` only through the conjugacy

class Frob `,L/Q ∈ Gal(L/Q).

(ii) For every prime ` 6∈ S, the coefficient a`(f) depends on ` only through the conjugacy

class Frob `,L/Q ∈ Gal(L/Q).

(ii’) For almost every prime `, the coefficient a`(f) depends on ` only through the con-

jugacy class Frob `,L/Q ∈ Gal(L/Q).

(iii) One has Lf ⊂ L.

Definition 11.1.3. If L satisfies the conditions of the above theorem, we shall say that L

is a determination field of f .

Obviously, there is always a smallest determination field, namely Lf , and it is finite over

Q and unramified outside Np. However, it is sometimes convenient to consider also other

determination fields.

Proof. We see the pseudo-representation (tf , df ) of Gal(QNp/Q) as a pseudo-representation

of Gal(QS/Q) by inflation. Let us call π the surjective map Gal(QS/Q)→ Gal(L/Q). To

ease notations, let us denote by Frob ` the element Frob `,Qs/Q. Thus π(Frob `) = Frob `,L/Q.

Since tf (Frob `f) = T`f , the assertion (i) (resp. (i’)), is equivalent to

(11.1.1) tf (Frob `) depends only on π(Frob `) = Frob `,L/Q for all ` not in L (resp.

for almost all `)

By Chebotarev’s density theorem, both these assertions are equivalent to:

(11.1.2) The map tf factors through π,

which amounts to Kerπ ⊂ Ker tf , that is Lf ⊂ L. We thus have proved the equivalence

between (i), (i’) and (iii).

Since the coefficient a` of f is the coefficient a1 of T`(f), it is obvious that (i) implies

(ii). Since (ii) obviously implies (ii’), it just remains to prove that (ii’) implies (i’). For

every prime ` not in S, one has

a1(Tf (Frob `)f) = a1(T`f) = a`(f),

so (ii’) means that for almost all `, a1(tf (Frob `)f) depends only on Frob `,L/Q = π(Frob `).

Using Chebotarev, this means that there exists a continuous map β : Gal(L/Q)→ F such

that
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(11.1.3) for all γ ∈ Gal(QS/Q), a1(tf (γ)f) = β(π(γ)).

Let q be a prime number not in S.

aq(T`f) = a1(T`Tqf)

= a1(tf (Frob `,QS/Q)tf (Frob q,QS/Q)f)

= a1(tf (Frob `,QS/QFrob q,QS/Qf) + qk−1a1(tf (Frob `,QS/QFrob−1
q,QS/Q)f)

= β(Frob `,L/QFrob q,L/Q) + qk−1β(Frob `,L/QFrob−1
q,L/Q)

Thus the coefficient aq (for q any prime not in S), as well as the coefficient a1 of the form

T`f depends on ` only through Frob `,L/Q. Since by the corollary of Theorem I a modular

form is determined by its coefficient at primes (excluding a finite set) and at 1 , it follows

that the form T`f itself depends on ` only through Frob `,L/Q. In other words, we have

proved (i’). �

11.2. Cyclotomic modular forms.

Proposition 11.2.1. Let f =
∑
n anq

n ∈ Fρ̄(F). The following are equivalent:

(i) f has a determination field which is abelian over Q.

(ii) There exists an integer M ≥ 1 such that for all prime ` not dividing Np, a` depends

on ` only trough ` (mod M).

(iii) There exists an integer M ≥ 1 such that for all prime ` not dividing Np T`f ,

depends on ` only trough ` (mod M).

If they hold, we can take M in (ii) and (iii) such that all prime factors of M divide Np.

Proof — This is a special case of Theorem 11.1.2, taking into account the Kronecker-

Weber theorem that every number field abelian over Q is a subfield of a cyclotomic field

Q(ζM ). �

Definition 11.2.2. We say that f is cyclotomic if it satisfies the conditions of the above

proposition.

Definition 11.2.3. Let us denote by Icycl the ideal generated by the elements tρ̄(xyx
−1y−1s)−

tρ̄(s) for x, y, s ∈ GQ,Np.

Since Aρ̄(F) is noetherian the ideal Icycl is finitely generated and closed. Clearly, Icycl is

the smallest ideal I of Aρ̄ such that G/Ker (tI , dI) is abelian, where tI is the composition

t : G→ A→ A/I and similarly for d.

Example 11.2.4. In the case p = 2, ρ̄ = 1⊕ 1, the ideal Icycl is principal, and generated

by the square of the element T5 + T3 + T 3
3 + T 5

3 + T 9
3 + T 11

3 + T 129
3 + . . . : see [2].

Proposition 11.2.5. A form f is cyclotomic if and only if it is annihilated by Icycl.

Proof — A form f is killed by Icycl if and only if Icycl ⊂ If which is visibly equivalent to

GQ,Np/Ker tf being abelian, or Lf being an abelian extension of Q. �
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Proposition 11.2.6. If ρ̄ is irreducible, the only cyclotomic form in Fρ̄(F) is 0.

Proof — Recall that if ρ̄ is irreducible, it is absolutely irreducible, hence its image

ρ̄(GQ,Np) is not abelian. If there is a non-zero cyclotomic form f in Fρ̄(F), then the

pseudo-representation (tf , df ) : GQ,Np → Af reduces modulo the maximal ideal of Af to the

pseudo-representation (tr ρ̄, det ρ̄) : GQ,Np → F, and it follows that the group GQ,Np/Ker tρ̄

is a quotient of GQ,Np/Ker tf , hence is abelian. Since ρ̄ is semi-simple, Ker ρ̄ = Ker tr ρ̄,

hence GQ,Np/Ker tρ̄ ' ρ̄(GQ,Np) is abelian, a contradiction. �

For the rest of this subsection we assume that p > 2 (for similar but more complicated

results in the case p = 2, N = 1, see [2]), and that the projective image of ρ̄ is cyclic,

in other words that ρ̄ is reducible. Let ρ : GQ,Np → R∗ be a (t, d)-representation with

R =

(
A B
C A

)
.

Proposition 11.2.7. One has Icycl = BC. In other terms, Icycl is just the reducibility

ideal of the pseudo-representation tρ̄ (see [3, §1.5]).

Proof — Let I be any ideal of Aρ̄, and let (GQ,Np, ρ̄, tI , dI) be the admissible pseudo-

deformation obtained by reducing the pseudo-deformation over Aρ̄ modulo I. Let ρI :

GQ,Np → R∗I be a (tI , dI)-representation attached to the admissible pseudo-deformation

(GQ,Np, ρ̄, tI , dI) adapted to an element of GQ,Np for which ρ is also adapted. Then RI =(
A/I BI
CI A/I

)
and there is a natural surjective morphism of algebras R⊗AA/I = R/IR→

RI inducing identity maps A/I → A/I on the diagonal components, and maps B/IB → BI ,

C/IB → CI on the non-diagonal components. Note that the map R/IR→ RI , as well as

the maps B/IB → BI and C/IC → CI need not be injective (this is because R/IR may

not be faithful.) The ideal BICI of A/I is nevertheless the image in A/I of the ideal BC

of A, because the map R 7→ RI preserves multiplication of matrices (see [3, §1.5] for more

detailed proofs of the assertion of this paragraph).

By construction Icycl is the smallest ideal I of A such that GQ,Np/Ker (tI , dI) is abelian.

One has Ker (ρI)|G = Ker tI because RI is faithful. Hence GQ,Np/Ker tI ' ρI(GQ,Np),

and Icycl is the smallest ideal I of A such that ρI(GQ,Np) is abelian, or again, since RI

is generated by ρI(GQ,Np) as an A/I-module, the smallest ideal I such that RI is com-

mutative. It is easy to see that the GMA RI =

(
A/I BI
CI A/I

)
is commutative if and only

if BI = CI = 0. Since the product BI × CI → A/I is a non-degenerate pairing, this is

equivalent to BICI = 0, that is by the above paragraph, to BC ⊂ I. Thus BC = Icycl. �

Corollary 11.2.8. Assume as above that the projective image of ρ̄ is cyclic, but also that

it is not of order 2. Then Icycl = Aρ̄,ess. In other words, a form f ∈ Fρ̄ is cyclotomic if

and only if it is special.

Proof — This follows from the preceding proposition and Theorem 8.4.3. �



68 J. BELLAÏCHE

11.3. K-abelian forms. In this subsection, we assume p > 2. For K-abelian forms in

the case p = 2, see [24] and an article in preparation by J. Belläıche, J.-L. Nicolas, and

Jean-Pierre Serre. Let K be a quadratic extension of Q.

Definition 11.3.1. A form f ∈ Fρ is K-abelian if it has a field of determination L which

is an abelian extension of K.

Note that the composition of two Galois extensions of Q which contain K and are abelian

over K is also a Galois extension of Q which contains K and is abelian over K. It follows

that if f and f ′ are K-abelian, f + f ′ is K-abelian as well: if L and L′ are fields of

determination of f and f ′, then LL′ is a field of determination of f + f ′. Thus the set of

K-abelian forms is a vector space. It is also obviously stable by the Hecke operators T`.

Hence its orthogonal complement for the duality Aρ̄ × Fρ̄ → F is an ideal IKab.

From now on, we assume that the projective image of ρ̄ is dihedral of order

> 4. Thus the projective image of ρ̄ has a unique quotient of order 2, which corresponds

to a quadratic extension K of Q. Thus GK,Np is a subgroup of index 2 in GQ,Np and the

projective image of ρ̄(GK,Np) is cyclic. We choose a well-adapted (tρ̄, dρ̄)-representation

ρ : GQ,Np → GL2(Aρ̄). By §6.3.3, the Aρ̄ algebra generated by ρ(GK,Np) is a sub-GMA of

M2(Aρ̄), of the form R =

(
Aρ̄ B
B Aρ̄

)
for some proper ideal B of Aρ̄.

Proposition 11.3.2. One has B = IKab.

Proof — By definition, IKab is the smallest ideal I of Aρ̄ such that the image of GK,Np

in the quotient GQ,Np/Ker (tI , dI) is abelian. Since the representation ρI : GQ,Np →
GL2(Aρ̄/I) obtained by reducing ρ modulo I has trace tI and determinant dI , and since the

GMA M2(A/I) is faithful, ρI realizes an isomorphism GQ,Np/Ker (tI , dI) → ρI(GQ,Np) ⊂
GL2(Aρ̄/I), and the image of GK,Np into GQ,Np/Ker (tI , dI) is ρI(GK,Np). Thus, IKab ⊂ I
if and only if the group ρ(GK,Np) is abelian, if and only if the Aρ̄/I-subalgebra of M2(Aρ̄/I)

generated by ρI(GK,Np) is commutative, if and only if the image of R =

(
Aρ̄ B
B Aρ̄

)
in

M2(Aρ̄/I) is commutative. Clearly, the latter condition is equivalent to B ⊂ I. Thus

B = IKab. �

Corollary 11.3.3. Assume that the projective image of ρ̄ is dihedral of order > 4, and

divisible by 4. The one has Aρ̄,ess = mρ̄IKab.

Proof — By Theorem 8.5.2, one has Aρ̄,ess = mρ̄B. The corollary follows. �

Corollary 11.3.4. Assume that the the projective image of ρ̄ is dihedral of order > 4, and

divisible by 4. A form f ∈ Fρ̄ is special if and only if (T`−λ`)f = 0 is K-abelian for every

prime ` not dividing Np (here λ` = tr (ρ̄(Frob `))). In particular, the space Fρ̄,spe contains

the space of K-abelian forms as a finite dimensional subspace.

Proof — This is just a translation of the preceding corollary, using that mρ̄ is finitely

generated since Aρ̄ is noetherian. �
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11.4. The case of a large or exceptional ρ̄. In this case it is easy to see that there are

no cyclotomic forms in Fρ̄, nor K-abelian forms for any K. The space Aρ̄,ess is the ideal

m2
ρ̄, hence Fρ̄,spe is the space of forms which are killed by (T` − λ`)2 for all ` not dividing

Np. This space is finite-dimensional since Aρ̄/m
2
ρ̄ is finite-dimensional.
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l’IHES, 18 (1963), 71–95.

E-mail address: jbellaic@brandeis.edu

Mathematics Department, Brandeis University, 415 South Street, Waltham, MA 02454-9110,

U.S.A


