IMAGE OF PSEUDOREPRESENTATIONS AND COEFFICIENTS OF
MODULAR FORMS MODULO p

JOEL BELLAICHE

ABSTRACT. We describe the image of general families of two-dimensional representa-
tions over compact semi-local rings. Applying this description to the family carried by
the universal Hecke algebra acting on the space of modular forms of level N modulo
a prime p, we prove new results about the coefficients of modular forms mod p. If
f =372 anq" is such a form, for which we can assume without loss of generality that
an = 0 if (n, Np) > 1, calling 6(f) the density of the set of primes ¢ such that ap # 0,
we prove that §(f) > 0 provided that f is not zero (and if p = 2, not a multiple of
A). More importantly, we prove, when p > 2, a uniform version of this result, namely
that there exists a constant ¢ > 0 depending only on N and p such that §(f) > ¢ for
all forms f except for those in an explicit subspace of infinite codimension of the space
of all modular forms mod p of level N. Forms in this subspace, called special modular
forms mod p, are proved to be closely related to certain classes of modular forms mod p
previously studied by the author, Nicolas and Serre, called cyclotomic and CM modular
forms mod p.
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This article has two parts. In the first, we describe the image of general families of two-

dimensional representations of a pro-finite group. In the second, we use these descriptions

to study the behavior of the coefficients at primes of modular forms modulo an odd prime

p, focussing especially on results which are uniform in the modular form.
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2 J. BELLAICHE

1.1. Image of family of representations. Let II be a profinite group, A a compact local
ring of maximal ideal m. The residue field F = A/m is thus a finite field, and we assume
throughout §1.1 that its characteristic p is different from 2.

The families we are interested in are families of two-dimensional representations of II
carried by A. As past work using family of Galois representations has made clear, it is
important for many applications to consider not only families of representations that can
be described as a representation of II on a rank-two free A-module, but more generally
two-dimensional pseudo-representations of II over A. Hence we consider a family defined
as a continuous two-dimensional pseudo-representation® (¢,d) of IT over A.

We put certain restrictions to the family we consider. First, the residual representation
of the family may be irreducible or the sum of two characters. In the latter case, we assume
that those two characters are distinct, and also that II satisfies the p-finiteness condition
of Mazur. Second, we assume that as a topological W (F)-algebra, A is generated by ¢(II).
Third, we assume that d is constant, that is for every g € II, d(g) is the Teichmiiller lift of
d(g). The last two are not serious restrictions: the second assertion can always be made
true by replacing A by its sub-algebra generated by t(IT), the third by twisting (¢,d) by a
suitable character.

Though it is not always true that (¢,d) comes from a representation p : II — GLy(A),
there always exists a Generalized Matrix Algebra (or GMA, see [3, §1] or below, §2.2) R over
A and a representation p : II — R* with trace t and determinant d. We may assume that
R is faithful (see below 2.2), and generated as an A-module by p(II), and if we do, R and
p are unique up to unique isomorphism, R has a natural topology and the representation
p is continuous.

We set G := p(II) and call this closed subgroup of R* the image of our family (¢,d). The
aim is to describe as precisely as possible the group GG. We shall handle this group using
a slight generalization (from the case R = M3(A) to the case of arbitrary GMAs) of the
remarkable theory of Lie Algebras of Pink (see §4). This theory attaches to every closed
subgroup I' of SR! := {z € R*, detx = 1, z = Id (mod radR)} a closed Lie subring
L = L(T') of (radR)? = {x € radR,trz = 0}. Contrarily to the classical theory of Lie
algebras, the subgroup I' is not uniquely determined by L = L(I'). However, its closed
derived subgroup I's is, as well as all the further terms of its descending central series, so
that the knowledge of L gives us a good, if partial, grasp on what " is. We apply this
theory to the subgroup I' = G N SR', which has finite index in G.

We obtain a complete description of the Lie ring L after extending the scalars from Z,
to W(F), the ring of Witt vectors of the finite field F. Note that W (IF)/Z, is only a small
extension, finite and unramified, which is harmless in the applications to modular forms (we
do not extend the scalars to A, which would be much more destructive). The description

of W(F)L we obtain depends, unsurprisingly, of the nature of the projective image of

We use Chenevier’s notion [6] of pseudo-representations, which is the most general and the most elegant,
though since we assume p > 2 for most of this paper, Chenevier’s notion is equivalent to Rouquier’s one.
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the representation p. There are five cases to consider, according to the projective image
being exceptional (that is, either isomorphic to A4, Sy, As) or large (that is isomorphic to
PGLy(F,) or PSLy(Fy) for some subfield Fy of F), dihedral of order > 4, dihedral of order
4, cyclic of order > 2, cyclic of order 2.

Rather than giving all the results, which the reader will find in Theorems 6.4.1, 6.5.1,
6.6.1. 6.7.1 and 6.8.1, let us just illustrate them by giving two examples:

e in the large or exceptional projective image case, we prove that there exists a

0
closed W (F)-submodule I; of A such that I? C I; and W(F)L = (? ?) is the
1 h
set of matrices of trace 0 with coefficients in Iy;
e in the cyclic of order > 2 projective image case, we can write the GMA R =

<é i) with B, C two A-modules with a bilinear map B x C — A denoted

as multiplication, and we prove that there exists a W(F)-module I; such that

C L
Moreover, we prove in each case that the description of W (FF)L we obtain is optimal, in

0
BC C I, C A satisfying I} ¢ I and W(F)L = <I1 B> '

the sense that any W (F)-Lie algebra satisfying the given description can be obtained from
a family of representations of the type considered. In other words, nothing more can be
said on W (FF)L.

In many cases (for instance when F = F,, or when the projective image of 5 is large, or
when this image is cyclic of order n such that ged(n,p — 1) > 2, etc.) we obtain, better
than a description of W (IF)L, a description of L which we again prove to be optimal. We

refer the reader to the Theorems cited above for the precise statements.

Recently there has been a surge in activity concerning the study of the image of families
of Galois representations, represented by papers by Hida [12], Lang [15], and Conti-Iovita-
Tilouine [8]. In these articles, the authors study the image of families of Galois representa-
tions attached to Hida or Coleman families of modular forms. Among the five possibilities
concerning the projective image of p enumerated above, these authors only consider two,
namely the cases when the projective image of p is large/exceptional or dihedral of order
> 4. Their main result is that except if all forms in the family is CM, and under various
supplementary assumptions, the image G of the family is large, in the following sense:
there is an explicit subring Ay of A such that the family of representations is virtually
defined over Ag (i.e. is defined over Ag after restricting it to an open subgroup Il of the
Galois group, which is explicit in their work), and the image Gy of I1y contains a non-trivial
congruence subgroup of SLa(Ap). (Actually, the result of Conti-Iovita-Tilouine is slightly
weaker, as it only proves this for G replaced by its Zariski closure).

In Section 7 (which is not used in the rest of the paper), we prove a similar result
in the case where p is large or exceptional, dihedral of order > 4 and cyclic of order
> 2. In the two remaining cases (cyclic of order 2, and dihedral of order 4), we show in
section 9 that no result of this type is to be expected. Our result is more general than the

ones mentioned above in that it works for almost arbitrary families of representations of
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an arbitrary profinite group II, instead of only specific families of representations of the
absolute Galois group of Q (though it fails to deal with a few representations that Lang’s
result is able to deal with). Dually, our methods are much more elementary, in that we use
only basic group theory and Pink’s theory of Lie algebras, rather than the theory of classical
and p-adic modular forms, the structure of the Galois group, and advanced Hodge-Tate

theory as in the afore-mentioned articles.
1.2. Coefficients of modular forms.

1.2.1. Individual density result. Let N > 1 be an integer, p any prime, k € Z/(p—1)Z. For
F a finite extension of IF,,, we shall denote by M} (N, F) the algebra of modular forms of level
[o(N), weight k, with coefficients in F, in the sense of Swinnerton-Dyer. If f = > j a,q"
is an element of My (N,TF), then the set {£ prime ,a; # 0} is Frobenian, as was known
already to Serre in the seventies (cf. [29]), and therefore has a density, which is a rational
number between 0 and 1. We shall denote this number by §(f), and refer to it as the
density of f.

Let F(N,F) be the subspace of My(N,F) of forms f = > a,q™ such that a, # 0 =
(n, Np) = 1. Equivalently, F; (N, T) is the intersection of the kernels of the operators U, for
¢ prime, ¢ | Np, defined by Us(>" ang™) = >  aneq™ (those operators leave My (N, F) stable,
see [13].) When studying 6(f), there is no loss of generality in supposing f € Fi(N,TF),
because for any f =" a,q" € My(N,F), the g-series

oo

f/ = Z anq"

n=0,(n,Np)=1
belongs to Fj(N?2,F) and obviously satisfies (') = §(f). We shall henceforth restrict our
attention to the subspace Fi,(N,F) of My (N,TF).

Example. We let A € F,[[q]] be the product ¢[[,,(1 —¢")?*. It is the reduction mod
p of the g-expansion of the unique normalized Cuspid_al eigenform of weight 12 and level 1,
and A = )" ., 7(n)q™ where 7 is the reduction mod p of the usual Ramanujan 7-function.
One has A E_ My2(N,F,). Let us denote by A’ (depending implicitly of p and N) the
g-series Y2, o1 (u.np)=1 T(7)q", Which belongs to Fi2(N,F). For p = 2, N = 1 one has
A=A=3% ¢

Theorem I. Let F be a finite extension of Fp, k € Z/(p—1)Z and f € Fi(N,F). Assume
that f #0 (resp. f € FA" if p=2). Then 6(f) > 0.

2

The theorem will be proved in §10.3.

Corollary. Let f =5 ang™, g = > bnq"™ € Fr(N,F). Assume that a; = by for all primes
¢ except for a set of density 0 (and that a1 = by if p=2). Then f =g.

Proof — Since §(f — g) = 0, Theorem I implies f —g =01if p > 2, and f — g € FA’ if
p = 2. In this case, since a1(f —¢g) =0, f — g =0 as well. |



IMAGES OF PSEUDOREPRESENTATIONS 5

1.2.2. Uniformity? We now turn to the main subject of this paper, the question of wuni-
formity in the lower bound of Theorem I: when f varies in the infinite-dimensional space
Fi(N,TF), we know that §(f) > 0, but is it possible that §(f) goes to 0, or will §(f) stay
bounded away from 0, at least when f is supposed to stay in some large subset of Fj (N, F)?
This question of uniformity is not only natural, but of crucial importance if we hope to
obtain new results for coefficients of weakly holomorphic modular forms of half-integral
weight, such as the inverse Dedekind n-function, n~!, whose coefficients are the value of
the partition function p(n). Indeed, those weakly holomorphic modular forms are in an ap-
propriate sense limits of classical modular forms. We plan to go back to these applications

in a subsequent paper.

Example 1.2.1. In the case N = 1, p = 2, the vector space F = Fy(1,F,) has (A"),=1357,...
as a basis. It was proved by the author (letter to Nicolas and Serre, July 2012) that for
p =2, and any integer r > 1,

(1.2.1) §(AT+Y) = 2=L= =2 AT +1/3) — g1

Hence those forms (except perhaps a finite number of them) must be excluded if we want a
positive lower bound for §(f). For other odd powers of A, experimental computations done
with SAGE and certain partial results strongly suggest a different and striking pattern: it

seems that 5(An) = 1/8 for all n > 1 not of the form 2" + 1 or Q(ZL;)‘H

Though in this paper we are forced to exclude the case p = 2 (both because Pink’s
theory requires p > 2 and because our GMA methods require a multiplicity free hypothesis
which is not satisfied if p = 2), the example above, together with analogous computations
done by Medvedovsky in the case p = 3, showed that to obtain a uniform lower bound
0(f) > ¢ > 0, it is necessary to exclude some exceptional forms f, and at the same time

suggested that such a lower bound was otherwise possible. Indeed we prove:

Theorem II. (¢f. §10.6.) Let us assume that p > 2. There exists a canonical subspace
Fi,spe(N,F) of Fi(N,F), of infinite codimension, and a constant ¢ > 0 (depending only on
N,F) such that for every modular form f € Fi(N,F) — Fi spe(N,F), one has §(f) > c.

The constant c is effective (we can take ¢ = % where n is the product of the orders of
the image of all representations p € R(k, N,TF), see below).

The definition of the subspace Fype(V,F), which we call the subspace of special forms
of F, is given in 10.4. This definition uses the image of the natural Galois pseudo-
representation over the semi-local Hecke algebra A acting of F, as well as the Pink’s Lie
algebra of that image. To analyze this subspace in more detail, we need to introduce some

notations and recall some elementary facts.

1.2.3. Decomposition of Fi,(N,T). For simplicity we shall often drop the level N, the weight
k (which are fixed during all the discussion) and the finite field F from the notation and
write F for Fi(N,F), Fype for Fi spe(IN,F).
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The space F is endowed with an action of the Hecke operators Ty for ¢ { Np. After
replacing F by a large enough finite extension, we may assume (cf. [13]) that all eigenvalues
of these operators are in F. Let Ay (F) for k € Z/(p — 1)Z be the closed F-subalgebra of
Endp(F%(F)) generated by the Hecke operators T; for £ not dividing Np. The sequences
(Ae)ernp With Ap € F which are systems of eigenvalues for the operators Ty of a common
eigenvector in F are in bijection, by a theorem of Deligne, with a certain set R = R(k, N, F)
of semi-simple continuous Galois representations p : Gg,np — GLa(F): the correspondence
is given by Ay = tr p(Frob ) for all £4 Np. This set R(k, N,F) can be described as the set of
all semi-simple representations p : Gg,np — GL2(F) of determinant w}’,f_l and Serre’s level
N. This is the content of Serre’s conjecture, now a theorem of Khare and Wintenberger.

If p corresponds to a system of eigenvalues (A¢), we shall denote by F; = F5(N,F) the
generalized eigenspace in F for the Ty (£ 1 Np) with eigenvalues A;, that is the set of forms
f € F such that V¢t Np, Ine N, (T, — \)"f =0.

We thus have a decomposition
(1) F=F

PER
of F into generalized eigenspaces.
1.2.4. Special modular forms in F5. We define Fj 4pe as the space of modular forms in F5
that are special, that is 75 spe = F5 M Fspe- The following result refines the statement that

Fispe is of infinite codimension given in Theorem II.

Theorem IIL. (c¢f. §10.5) Let p be any representation in R. Assume that p > 2, and if
p = 3, assume also that p is a twist of 1 ® ws, where ws is the cyclotomic character. The

space Fp ope has infinite codimension in Fj.

1.2.5. Special modular forms, K-abelian forms, cyclotomic forms. For many representa-

tions p, we are able to give a much more precise description of Fj spe.

Definition. Let f =) a,q™ € F. Let K be a quadratic extension of Q. We shall say that
f is cyclotomic (resp. K-abelian) if there exists a finite cyclotomic extension L/Q (resp.
an abelian extension L/K, Galois over Q) such that such that for £ prime not dividing Np,
the coefficient a; of f depends only on ¢ through Frob, 1 /q.

Thus, a form f is cyclotomic if there exists M > 1 such that a, depends only on £
(mod M).

Example 1.2.2. In the case p =2, N = 1, it was proved by Nicolas and Serre ([24]) that
the forms A" for n = 2" +1 and n = (227! 4 1) /3 appearing in (1.2.1) are K-abelian, and
it was proved by the author (letter to Serre and Nicolas, October 2013) that only for those
odd values of n were A™ K-abelian (for K = Q(i) or K = Q(i\/2)) but not cyclotomic.
The forms A™ are known to be cyclotomic for n = 1,3,5,7,19,21 and conjectured not to
be so for other values of n. There also exists forms which are K-abelian or cyclotomic not
of the form A™: they have been classified and their density é has been computed, and often

goes to zero along infinite sequences of such forms.
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Once again, though we exclude the case p = 2, this example suggested a close relation
between the K-abelian and cyclotomic forms on the one hand, and the so-called special
modular forms which we need to exclude in Theorem II, in the other hand. Indeed, we

prove

Theorem IV. (¢f. Cor. 11.2.8, Cor. 11.3.4 and §11.4). We assume p > 2.

o If p has large projective image, the space of special modular forms Fp spe 15 finite-
dimensional.

e If p has a dihedral projective image which is of order n with n > 4, 4 | n, then
the space of special modular forms Fp spe contains as a finite codimension subspace
the space of K-abelian forms, where K is the quadratic extension of Q fized by the
unique quotient of order 2 of the projective image of p.

e If p has cyclic projective image which is not of order 2, then the space of special

modular forms Fp spe 15 exactly the space of cyclotomic modular forms.

Moreover, in all the cases considered above, the space Fp ope 15 stable by all Hecke operators.

By contrast, in the remaining two degenerate cases where the projective image of p is
Z/27 or /27 x Z./2Z, the space of special modular forms F «pe is not in general stable
by all the Hecke-operators, and while it may be proved to contain all® cyclotomic and

K-abelian forms in F5, I do not know at this point how much larger Fj spe is.

1.2.6. A rough outline of the proofs. To prove Theorems I, II, III and IV, we consider the
Hecke algebra A acting on the space of modular forms F mod p. This is by construction
a compact semi-local Hecke algebra, which carries a natural pseudo-representation (t,d)
of the Galois group Gg np. A crucial ingredient is the description of the image G of this
pseudo-representation, or at least, of its Pink’s Lie algebra, a special case of the general
results described in 1.1 and proved in section 6.

A form f in F defines an open and closed subset N; of the compact group G (namely
Ny = {9 € G,ai(tr(g)f) # 0}) such that pug(Ny) = 6(f) (as is shown by a simple
application of Chebotarev, see §10.3), where ug is the probability Haar measure on G.
Theorem I is thus reduced to checking that N is not empty (except when f = 0, or in the
case p = 2, when f is proportional to A’), which is not hard (see §10.3).

To prove the other theorems we need to understand how pg(Ny) varies with f. Since
we have more control on the finite index subgroup I' of G that on G itself, we cut N into
parts related to I'-cosets. To be precise, if X is a set of representatives in G of G /T, so that
G =Il,ex 2T, we cut Ny into pieces Ny, := &~ 'NyNT, so that ua(Ny) = > c v e (Ny,z)
and our problem is to understand for a given z, how pug(Ny, ;) varies with f.

Since N¢ , is a subset of I', we can transport the question to the Lie Algebra L of I, that
is study instead pr(Mjy ) where My, = O(Ns,) C L, O being the ‘logarithm’ in Pink’s

21 the case of projective image 7/27 x 727, there exists non-zero K-abelian forms, but no cyclotomic
forms, in Fj, for exactly three quadratic fields K. In the case when the projective image is of order 2, there

exists non-zero K-abelian forms for exactly one quadratic field, plus non-zero cyclotomic modular forms.
For more about cyclotomic forms and K-abelian forms, see §11.
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Lie theory. (Here I ignore, for simplicity, the fact that © is not always a measure-preserving
bijection between I' and L. This is remedied by replacing I' and L by I'y and Lo, their
derived subgroup and derived Lie algebra respectively. However, this changes is the source
of important, and essential, complications. See Remark 8.2.3 for a more detailed discussion
of this fine point).

The Lie algebra L is an infinite-dimensional vector space over F,, and it turns out
that My, is the complement in L of an algebraic hypersurface of L (here I am assuming
F =T, for simplicity), that is the zero subset of a polynomial on L involving finitely many
variables. Thus, pr,(Mjy ;) is the proportion of points that does not lie on an hypersurface
in a finite-dimensional space over IF,. Unfortunately the dimension of the ambient space
as well as the degree of that hypersurface depend on f, and the estimates given by the
Weil’s conjectures proved by Deligne are not sufficient to get the desired lower bound for
pr(My ;) in general.

However, when we choose for = the image ¢ of a complex conjugation in G, we can show
that the equation defining My . is, after a measure-preserving change of variables, affine.
This is the main point of the proof of Theorem II, and is dealt with in a more general
settings in §8.2. If we denote by M ]'c . the transform of M . by this change of variable,
pwr(My.c) = ML(M},C) and MJ’C’C is either empty, or an hyperplane of L, or L. In the last
two cases, pr,(My,c) > 1/p, which gives us the desired lower bound. We need to determine
for which forms f we have My . empty. This is done in section 8, relying on the explicit
description of L given in section 6 which leads us to the notion of the essential subgroup
Aess of A, studied in §8 and to the definition of special modular forms (cf. §10.4), the forms
f which are orthogonal to Aess, and which happen to be the same as those for which My .
is empty. This proves that forms f which are non-special, the quantity J(f) is bounded
below by a positive constant independent of f.

To prove that the special forms are rare (cf. §10.5), we need to show that A is big,
and a crucial ingredient, that we borrow from recent previous works of the author, Khare,
Deo, Medvedovsky, inspired by Nicolas and Serre, is that each local component of A is
noetherian and of Krull dimension at least 2 (except when p = 2,3, where we only know

that some components have dimension at least 2).

The author is grateful to G. Chenevier, A. Conti, S. Deo, J. Lang, A. Medvedovsky, P.
Monsky, J.-L. Nicolas, J.-P. Serre, J. Tilouine for many useful and interesting discussions.
He is also grateful to J. Lang, A. Medvedovsky and A. Conti for their careful reading of a

previous version of this manuscript.
2. PSEUDO-REPRESENTATIONS AND GMA
2.1. Reminder and complements on pseudo-representations of dimension 2.

2.1.1. Pseudo-representations of a group. For the general definition of a pseudo-representation

of a group IT with values in a commutative ring A, we refer the reader to [6]. In dimension



IMAGES OF PSEUDOREPRESENTATIONS 9

2, which is the only case we shall need, it is not long to recall the equivalent definition
proposed in loc. cit., Lemma 1.9: a (two-dimensional) pseudo-representation of II with

values in A is a pair of maps ¢t : I = A, d: II — A, such that

2.1.1) d is a group homomorphism from II to A*.

N
)_|
o
~

(2.L.1)
(2.1.2) t is a central function from II to A.
(2.1.3) (1) =
(2.1.4) t(xy) + d(y)t(zy~t) = t(z)t(y) for all x,y € IL.

If IT is a topological group, A a topological ring, one says that the pseudo-representation
(t,d) is continuous if t and d are. If 2 is invertible in A, d can be recovered from ¢ by the
formula d(z) = M If p is any representation IT — GLg(A), then it is easy to check

that (tr p, det p) is a pseudo-representation of dimension 2.
The kernel of (t,d) is defined by

Ker (t,d) := {y € I,d(y) = 1 and Vz € II, t(zy) = t(x)}.

By (2.1.1) and (2.1.2), this is a normal subgroup of II, closed if (t,d) is continuous. We
observe that if 2 is invertible in A, we can omit the condition on d in the definition of
Ker (t,d) as it follows from the condition on ¢. Both the maps ¢ and d factor through
the quotient group II/Ker (¢, d), and they define a pseudo-representation of dimension 2 of
IT/Ker (t,d) with values in A whose kernel is trivial.

2.1.2. Pseudo-representations of an algebra. Let R be an A-algebra (non-necessarily com-
mutative), and let (T, D) be a pair of maps R — A. We say that (T, D) is a pseudo-
representation of dimension 2 of R with values in A, if

(2.1.5) D(1) = 1, D is multiplicative (i.e. D(xy) = D(x)D(y) for x,y € R) and
homogeneous of degree 2 (i.e. D(ax) = a?>D(x) fora € A, v € R).

(2.1.6) T is A-linear and T(xy) = T(yz) for all z,y € R.

(2.1.7) T(1) = 2.

(2.1.8) D(x +y) = D(z) + D(y) + T(x)T(y) — T(xy) for all z,y € R.

Lemma 2.1.1. If R = A[Il], the map (T, D) — (T, D) is a bijection between the set of
all pseudo-representations of dimension 2 of R and the sets of all pseudo-representations
of dimension 2 of II.

Proof — The proof below is closely inspired by [6].
If (T, D) satisfies (2.1.5) to (2.1.8), it is clear that (7|, D)) satisfies (2.1.1) to (2.1.3).
Set f(z,y) :=T(x)T(y) — T(xy) for z,y € R, so that (2.1.8) becomes
(2.1.9) D(x +y) = D(z) + D(y) + f(z,y) for all z,y € R.

For z,y,z € R one has D((z + y)z) = D(xz) + D(yz) + f(zz,yz) but also, since D is
multiplicative D((x + y)z) = D(z + y)D(z) = D(zz) + D(yz) + f(x,y)D(z), hence
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(2.1.10) f(zz,yz) = f(x,y)D(z) for all z,y,z € R.
If y is invertible in R, of inverse z = y~!, applying (2.1.10) gives f(x,y)D(y~!) =
f(xy=1,1). Since for every o, T(x) = f(z,1) by (2.1.7), one obtains T(zy~*) = f(z,y)D(y~ 1) =
T(@)T(y)D(y)~" — T(xy)D(y) ™", that is
(2.1.11) T(xy) + D(y)T(xy~t) = T(x)T(y) for allx € R, y € R*.
In particular, the restrictions of T' and D to II satisfy (2.1.4), hence (T, D) is a

pseudo-representation of II of dimension 2.

Conversely, if (¢,d) is a pseudo-representation of dimension 2 of II with values in A4, let
us denote by T' the unique A-linear map A[II] — A which coincides with ¢ on IT and by f
the symmetric bilinear form on A[II] defined by

f@,y) =T ()T (y) = T(xy).
For x € II, one has f(z,z) = T(z)? — T(x?) = 2d(z) by (2.1.4) and (2.1.3). Therefore,
there exists a unique quadratic form D : A[IlI] — A such that
(2.1.12) D(z +y) — D(x) — D(y) = f(z,y) for all z,y € R,® and
(2.1.13) D(g) = d(g) for all g € II.

Thus we have defined functions 7, D from A[Il] to A that extends ¢ and d, and that
satisfies (2.1.6) to (2.1.8), as well as D(1) = 1 and D homogeneous of degree 2. We now
proceed to show that D is multiplicative.

From (2.1.4) one gets f(z,y) = t(zy~')d(y) for z,y € II hence

(21.14) f(2,29) = f(22,y2) = F(@,p)d(2) for z,y,2 € L.

This relation holds more generally for x, y, 2 € A[II] by linearity. For z € II, the quadratic
forms on A[II] given by « — D(xz) and x — D(z)D(z) have the same polarization (namely
f(z,y)d(2), using (2.1.14)), and agrees on the basis IT on A[II]. They are therefore equal:

(2.1.15) D(xz) = D(x)D(z) for x € A[ll], z € II.

Again, the quadratic forms z — D(zz) and z — D(x)D(z) have the same polarization
by (2.1.14), and they agree on II by (2.1.15), hence they are equal. Therefore (T, D) is a
pseudo-representation of R with values in A, and the map (¢,d) — (T, D) is an inverse of

the restriction map considered in the statement. (Il

There is a notion of kernel for a pseudo-representation (7, D) of an algebra R:
Ker(T,D) ={y € R, D(y) =0 and T(yz) =0 Vx € R}.

We say that (T, D) is faithful if Ker (T, D) = 0. It is easy to see that Ker (T, D) is a
two-sided ideal of R, and that (T, D) factors through R/Ker (T, D) and defines a faithful
pseudorepresentation of that algebra with values in A.

If (T, D) is a pseudo-representation of A[Il], and (¢, d) is the pseudo-representation of 7
obtained by restriction, then the relation between the Ker (¢, d) and Ker (T, D) is as follows:

3This condition (2.1.12) is expressed by saying that f(z,y) is the polarization of the quadratic form D.
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Lemma 2.1.2. For g € II, one has g € Ker (t,d) if and only if g — 1 € Ker (T, D).

Proof — 1f g € 11, by linearity of trace t(gh) = t(h) for all h € ITif and only if T'(gy) = T (y)
for all y in R = A[II]. If the latter condition holds, then in particular ¢(g) = 2, and under
this condition d(g) = 1 and D(g —1) = 0 are equivalent since D(g—1) = d(g) —t(g9)+1. O

However, in general Ker (T, D) is strictly larger than the two-sided ideal generated by
the elements g—1, g € Ker (¢,d). If (T, D) is faithful then Ker (¢,d) = {1}, but the converse
is false in general.

We say that a pseudo-representation (7', D) of R is Cayley-Hamilton if for every x € R,
one has 22 — T'(z)z + D(z) = 0. A faithful pseudo-representation is Cayley-Hamilton, but

the converse is false in general.

2.2. Generalized Matrix Algebras. The notion of Generalized Matrix Algebra (GMA)
is defined and studied in detail in [3, §1.3]. Here we will content ourselves with an ad hoc
definition which is equivalent to the notion called GMA of type (1,1) in the terminology
of loc. cit.

Let A be a commutative ring. Suppose given two A-modules B and C, and a morphism
of A-modules m : B® 4 C — A such that

(2.2.1) for allb,b’ € B and ¢,c’ € C, m(b,c)b’ = m(¥, )b and m(b,c')e = m(b,c)c’.

With this data we define a not necessarily commutative A-algebra R, R= A B®dCH A

as an A-module, endowed with the multiplication
(a,b,c,d) x (a',b',c,d') = (ad’ +m(b,c'),ab + d'b,a’c+dc',dd +m(¥,c)),

for a,a’,d,d € A, b,b € B, ¢,¢ € C: the distributivity of multiplication over addition
is obvious, the unity for multiplication is (1,0,0,1), and the associativity of multiplica-
tion is easily checked using (2.2.1). We call (A, B,C,m, R), or by abuse R, a generalized
matriz algebra. A morphism of GMAs from (A, B,C,m,R) to (A’,B',C',m',R’) is the
data (fa, fB, fc) of a morphism of rings f4 : A — A’ and two morphisms of A’-modules
fB: B®ag A — B and fo : C®4 A — C' such that fa(m(b,c)) = m/(f5(b), fc(c))
for every b € B, ¢ € C. A morphism of GMAs induces a morphism of A’-algebras
fR: R®a A’ - R'. When A = A" and fa = Ida, we say that this morphism is over
A, or an A-morphism. A sub-GMA of (A, B,C,m,R) is a GMA (A, B’,C',m/, R') where
A’ c A, B € B, C' C C such that the these three inclusions maps define a morphism of
GMAs. An A-sub-GMA is a sub-GMA where A" = A.

This meaning of these definitions becomes clearer if we decide to represent (a, b, ¢, d) as
a matrix (g g), and to simply write bc or ¢b for m(b, c), for then multiplication in R is

computed as multiplication of ordinary matrices.

Lemma 2.2.1. If in a GMA R, BC = A, then there are isomorphisms of A-modules form
B and C onto A so that m corresponds to the multiplication A x A — A. In other words,
there is an isomorphism over A of GMAs R ~ My (A).
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Proof — Let b € B and ¢ € C such that m(b,c) = 1; by (2.2.1) one gets for ¥’ € B that
b = m(b,c)t) = m(b,c)b which shows that B is generated by b; moreover if for a € A,
ab = 0, then m(ab, c) = am(b,c) = a = 0. which shows that (b) is a basis of B. Similarly
(¢) is a basis of C' and if we identify B and C with A using those basis, then m becomes

the multiplication of A because m(ab,a’c) = aa’m(b,c) = ad’. O

We define the trace map tr : R — A as tr (ﬁ 2) = a + d and the determinant map
det : R — A by det (‘j g) = ad — be. 1t is clear that as in the case of usual matrix algebras,
one has tr (rr’') = tr (r'r), det(rr’) = det(r) det(r') and, if p > 2, det(r) = M

It is easily checked that the pair of maps (tr,det) : R — A is a pseudo-representation
of dimension 2 of R with values in A. We say that the GM A R is faithful (resp. Cayley-
Hamilton) if (tr,det) is. It is easily seen that T is faithful if and only if the map m :
B ®4 C — A being non-degenerate, meaning that the only b € B such that m(b,c) = 0 for

all ¢c € Cis b =0, and the only ¢ € C such that m(b,c) =0 for all b € Bis ¢ = 0.

Lemma 2.2.2. Assume that A is a domain, with fraction field K, and that R = g i

is a faithful GMA over A. Then there exists embedding of A-modules of B and C onto K,
such that if B and C are identified with their image in K, m: B x C — A is given by the
multiplication of K.

Proof — Since m: B® C' — A is non-degenerate, B and C have no torsion.

Fix by € B — {0},co € C — {0} such that m(bg,co) # 0. Define a morphism of A-
modules i : B — K by setting i(b) = m(b, co)/m(bo, co). If i(b) = 0, then m(b,co) = 0 so
m(b, co)by = m(bg, co)b = 0, and b = 0 since B has no torsion; thus 4 is injective. Define
j: C — K by setting j(c) = m(bg, c), which embeds C into K, and one easily checks that
m(b,c) =i(b)j(c). O
Lemma 2.2.3. Assume that A is a domain, with fraction field K, and that R = é i

is a faithful GMA over A, and that BC' # 0. Then R® 4 K is isomorphic, as a GMA over
K, to MQ (K)

This follows from the preceding lemma.

2.3. Topological GMAs. If A is a topological ring, a topological GMA is a GMA R over
A provided with a topology that makes it a topological A-algebra. More concretely, if

c A
and C that makes them topological A-modules, and make the multiplication m : BxC — A

R= <A B) is a GMA, making R a topological GMA amounts to giving a topology on B

continuous.

For instance, if A is a noetherian local ring which is complete for the topology defined
by its maximal ideal, and if R is finite as an A-module, then R provided with its finite
A-module topology is a topological GMA.

We observe that for any topological ring A, R = M5(A) has a unique structure of
topological GMA, namely the one given by the product topology on My(A) = A*.
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2.4. Pseudo-representations and GMA-valued representations. Let A be a com-
plete local ring with maximal ideal m and residue field F. Let II be a group, (¢,d) : 11 — A
a pseudo-representation.

The reduction £, d modulo m of ¢, d form a pseudo-representation of dimension 2 of G

with values in F. We make the following definition:

Definition 2.4.1. We say that (¢,d) is residually multiplicity-free if there exists a (nec-
essarily unique up to isomorphism) semi-simple representation p : II — GLo(FF) such that
trp =1, detp =d, and a gy € IT such that p(go) is conjugate in GLo(F) with a diagonal

matrix with distinct diagonal terms.

By a theorem of Rouquier, Nyssen and Chenevier, there always exists a finite extension
F' of F and a p : I — GLy(F') such that trp = ¢, detp = d. If (t,d) is residually
multiplicity-free we can take F’ = F. Moreover, since the F-algebra Endg(p) is contained
in the commutant of p(go), which is isomorphic to F x F, the representation p is either
absolutely irreducible, or the direct sum of two distinct characters. Conversely, if there is a
p: II = GLy(F) such that tr p = #, det p = d, then (¢, d) is multiplicity free if p is the sum
of two distinct characters, or at least becomes so after changing F by a quadratic extension

if p is absolutely irreducible (or even just reducible when F is not of characteristic 2).

Proposition 2.4.2. Assume that (t,d) is residually multiplicity-free.

(i) There exists a faithful GMA (A, B,C,m,R) over A, and a morphism of groups
p: Il — R* such that

(2.4.1) onII, trp =1t and det p = d,
(2.4.2) Ap(Il) = R.

(ii) If (p,R) and (p',R’) are as in (i), then there exists a unique isomorphism of A-
algebras ¥ : R — R’ such that Yo p=p'.

(iii) Given an element go € II such that p(go) has two distinct eigenvalues Ao, o in
F, there exists a faithful GMA (A, B,C,m, R) over A, and a morphism of groups
p: II — R* satisfying (2.4.1) and (2.4.2), and such that

(2.4.3) p(go) is diagonal and p(go) = (/t)o ;) (mod m).
0

(iv) If go € 11, (p, R) and (p', R') are as in (iii), the unique isomorphism of A-algebras,
U : R — R such that Wop=p' (c¢f. (ii)) is an A-isomorphism of GMAs.

(v) If p is irreducible, then R is isomorphic to Ms(A) as a GMA over A. If p is
reducible, then one has BC C m.

(vi) If (p, R) is as in (i), then Ker p = Ker (t,d), and denoting by p : A[ll] — R the
morphism of A-algebras extending p, one has Ker p = Ker (T, D).
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(vii) If A is noetherian, if II is a profinite group satisfying the p-finiteness condition?,
and if (t,d) is continuous then for (p, R) as in (i), R is of finite type as an A-module
and if R is given its unique topology of A-algebra, the morphism p : II — R* is

continuous.

Proof — Let (T, D) be the pseudo-representation of A[Il] with values in A extending
(t,d), as in Lemma 2.1.1. Let R be the quotient of A[IT] by Ker (T, D), let p be the natural
projection p : A[ll] — R and let p be the restriction of p to II. Let gy be an element
of IT as in (iii), let IIp be the subgroup generated by go in II and let Ry C R be the A-
subalgebra Ap(Ilp). As proved in [3, §1.4], the algebras R and Ry are integral over A. By
[3, §1.4] and the hypothesis made on g, if Jy denotes the Jacobson radical of Ry, then

there is an isomorphism of F-algebra Ry/Jy ~ Fp(Ily). The algebra Fp(Ilp) is isomorphic

0
Ho

idempotents (1,0) and (0,1) of F x F can be lifted to idempotents e; and ey of Ry such
that ejea = 0, e; + ea = 1. This makes Ry and R GMAs with the properties stated in (i)

to F x IF and we can fix such an isomorphism that sends p(go) to (%0 ) The two obvious

and (iii). The uniqueness statement (ii) is clear, since if (p, R) is as in (i), R has to be a
quotient of A[II] through which (T, D) factors, hence of the form A[II}/I with I a two-sided
ideal contained in Ker (T, D), but since R is faithful we must have I = Ker (T, D). The
uniqueness statement (iv) is equally easy, since a morphism ¥ as in (iv), which exists and
is unique by (ii), preserves the diagonal matrix p(gg) which has diagonal terms that are
distinct modulo m, hence preserves the idempotents e; and es and is a morphism of GMA.
Finally (v) in the irreducible case is a well-known result of Rouquier and Nyssen extended
by Chenevier ([6, Theorem 2.22]) to the case of general pseudo-representation, and (v) in
the reducible case follows from [3, Theorem 1.4.4].

Let us prove (vi). Since p : A[Il] — R is surjective, one has Ker (T, D) = p~'Ker (trg, detg).
Since R is faithful, it follows that Ker (T, D) = Kerp. Using Lemma 2.1.2; thus implies
that Ker (¢, d) = Ker p.

For (vii), let A[[II]] be the completed group algebra of the pro-finite group II. Chenevier
proves in [7, §4] that ¢ and d can be extended into a continuous pseudo-representation
(T, D) of A[[T]] of dimension 2 with values in A. The restriction of (7, D) to the sub-
algebra A[Il] is therefore the pseudo-representation (T', D) of A[II] corresponding to (¢, d).
From the definition of the linear kernel, one has Ker (T, D) = Ker (T, D) N A[II]. Hence
R = A[II]/Ker (T, D) is isomorphic to an A-sub-algebra of A[[II]]/Ker (T, D). The latter is
a finite type A-module by [7, Lemma 4.5]. Since A is noetherian, R is of finite type as an
A-module.

Let us prove now that p is continuous. Choose a finite family of elements g1, ..., g, of
IT such that the p(g;) generate R. Consider the map R — A™, x +— tr (zp(g;)). Since R is
faithful, this map is an injection, and by the elementary properties of the natural topology

4Following Mazur [19, page 246], we say that a pro-finite group II satisfies the p-finiteness condition if
for every open subgroup H of II, the largest pro-p quotient H, of H is topologically of finite type. This

condition is always satisfied for a profinite group IT which is topologically of finite type, and it is also known
to hold for a Galois group II = Gg,g where S is a finite set of places (loc. cit.).



IMAGES OF PSEUDOREPRESENTATIONS 15

of finite A-modules, it induces an homeomorphism of R onto its image. It therefore suffices
to prove that the map g — tr(p(g)p(g;)) is continuous for ¢ = 1,...,m, but this is clear
since that map is just ¢(gg;). O

Definition 2.4.3. Any representation p : II — R* satisfying the property (i) of the above
proposition will be called a (¢, d)-representation. If in addition p satisfies condition (iii), we

shall say that p is adapted to (go, Mo, 10)-

Remark 2.4.4. Without the assumption of p-finiteness on II, the assertion (vii) of the
preceding theorem is false. For a counter-example, let A = F,le] with €2 = 0, V an
infinite-dimensional Fy-vector space seen as an A-module through the map A — [Fp, e — 0,
b:V xV — F a non-degenerate F-bilinear form, and m : V x V — A defined as eb.
Then m satisfies condition (2.2.1), hence there is a GMA (A4, V,V,m, R) which moreover
is faithful. Define IT = R*, and consider the restriction (¢,d) of (tr,det) to II. This is a
pseudo-representation of dimension 2, and A[II]/Ker (T, D) = R but R is not finite as an

A-module.

Lemma 2.4.5. Let R be a GMA over A and p : I — R* a representation of a group
II. Assume that there exists an element go € II such that p(go) is diagonal, with diagonal
terms distinct modulo m. Then Ap(Il) is a sub-A-GMA of R.

Furthermore, if R = Ms(A) and p mod m is absolutely irreducible, then Ap(IT) = R.

Proof — 1f p(go) = ( fo ), then the matrix ey == (§ §) = %‘Z’U”(l) belongs to Ap(1),
and similarly the matrix e; ;=1 —e; = (7). Then e;Ap(G)e; is an A-submodule of A

that contains 1, so is A, and similarly for e; Ap(IT)es. Define B’ := ey Ap(Il)es, a submodule

of B, and C" := e; Ap(Il)eq, a submodule of C. Then Ap(G) = é, il> an A-sub-GMA
of R.

For the furthermore, suppose by contradiction that either B’ or C’ is a proper sub-
module of B =C = A. Then B’C’ is a proper ideal of A, so is contained in m, which shows
that trp (mod m) is the sum of two characters (IT — F*, g — e1p(g)er (mod m) for the
first, the same with e for the second), contradicting the hypothesis. O

3. REMINDER OF REPRESENTATION THEORY

3.1. The classification of representations p. Let II be a group, F a finite field, p : [T —
GL2(F) a representation which is either absolutely irreducible or the sum of two distinct
characters. Let us set G = p(II) C GLy(F) and G the projective image of p, that is the
image of G in PGLy(FF). The well-known classification of such representations according to

their projective image is as follows.
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Name ‘ G is isomorphic to ‘ Subcase‘ Description of p ‘ Description of ad®p ‘
Cvelic Z/nZ n=2 [ x®x,with y* = ¥ /X)) el
Y n>2 | X®x, with X7 #x"” X/X ©1exX/x
- . s . I T
Dihedral D, n > 2 irreducible, isomorphic to | €1 @ Indanv with

Indjj, ¢1 for a unique index 2 | [nd 7 irreducible
1 I,

subgroup II; of IT

n=2 irreducible, isomorphic to | €1 @ ea D €3

Indglzpi for three index two

subgroups II;, IT2 and II3

Large image PGL2(Fq) or PSLa(Fy)

Fxceptional .. S5 or Az irreducible irreducible

In the table above, x and X’ are two distinct characters of II, 1; is a non-trivial character
of IT; for i = 1,2, 3, and ¢; is the character of II of kernel II; for i = 1,2,3, and 7 is a non-

trivial character of IIy. The group D, is the dihedral group of order 2n.
3.2. A group cohomology computation.

Proposition 3.2.1. In the large image and exceptional case, if V is adjoint representation

of the natural representation of G, one has H*(G,V) = 0.

Proof — The representation V of G factors through G. Let Z be the kernel of G + G.

The inflation-restriction exact sequence is
0— HYG,V) = HYG,V) — HY(Z,V)

and since Z is of order prime to p, and V is of order a power of p, the last term is 0. It
therefore suffices to prove that Hl(é7 V)=0.

For G = PGLy(F,) or G = PSLy(F,), this follows from Matthias Wendt’s answer to
question 178025 of mathoverflow.

If G is isomorphic to A4 or S4, then the result is clear if p > 5. If p = 3, we
argue as follows: Let K, be the Klein subgroup of A,. One has an exact sequence
0 — HY(Ay/K4,VEY) — HY (A4, V) — HY(Ky4, V). Since V is still irreducible as a rep-
resentation of Ky, V&4 = 0. Since K, has order prime to 3, H'(K4,V) = 0. Hence
H'(A4,V) = 0. For Sy we use the sequence H'(Sy/As, VA1) — HY(Sy,V) — H'(A4,V)
where the first and last term are 0.

If G is isomorphic to As, the result is clear if p > 7. For p = 5, G is conjugate to
PSLy(F5), a case which has already been dealt with. For p = 3, let us consider A4 as the
subgroup of As fixing one letter, and note that since A4 has index 5 which is prime to
|V'| = 27, it suffices to prove that H'(A4, V) = 0, which has already being done. a

4. PINK’s LIE THEORY FOR GMAS

4.1. Assumptions concerning the base ring A. In all this section, p is a prime. We

suppose given

(4.1.1) a topological ring A which is compact and semi-local and whose residue fields

have characteristic p.
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By definition, A semi-local means that A is a finite product [[;_, A;, where the A; are
local rings. We provide each of the ring A; with its quotient topology from the topology
of A. The A; are compact rings, and are local. We shall call m; the maximal ideal of A;
and F; = A;/m; its residue field. By an abuse of language which hopefully will not induce
confusion, we shall also call m; the corresponding maximal ideal in A, namely [ ki Ajxmy,
so that we can write A/m; = F;, and (m;), i = 1,...,r are the complete list of maximal
ideals of A.

In general, the compact topology on A; is not the m;-adic topology. However:

Lemma 4.1.1. (i) The topological ring A (and its factors A;) is pro-finite (i.e. the
open co-finite ideals J form a basis of neighborhood of 0)
(ii) The fields F; are finite and the ideals m; are open in A;.
(iii) Fach ring A; is m;-adically separated and complete, and its m;-adic topology is finer
that its given topology.
(iv) One has A; noetherian if and only if m? is open in A;. In this case, the m;-adic

topology on A; coincide with its given topology.

Proof — Assertion (i) is [26, Prop. 5.1.2]. If we write A; = projlim A4;/J with J running
among open cofinite ideals of A;, then each A;/J is local with maximal ideal m;/J and
residue field F;. In particular F; is finite. Moreover m; = projlimm;/J: the inclusion
m; C projlimm;/J is obvious, while if z € A; is not in m;, x is invertible, so its image in
any A;/J is not in m;/J. Therefore we see that m; is closed in A4;, and since it is cofinite,
it is also open. This proves (ii). For J any open co-finite ideal of A;, A;/J is finite local,
hence Artinian, and there is an n such that (m;/J)™ = 0 in A;/J, that is m C J in A,.
Hence the family m is cofinal to the family of co-finite open ideals, and A; is m;-adically
complete. Therefore, every open set for the given topology contains an ideal m} hence is
also open for the m;-adic topology. This proves (iii). Finally, note that m? is open if and
only if m;/m? is finite, i.e. by Nakayama if and only if m; is of finite type, i.e. if and only if
A; is noetherian. In this case, all the m* are cofinite, hence A; is compact for the m;-adic
topology. The identity map A; — A; where the source is given the m;-adic topology, and
the target its original topology, which is continuous by (iii), is therefore closed, hence an

homeomorphism. This proves (iv). O

The Jacobson radical radA of A will be denoted by m. We have m = [[/_, m; = N/_;m,.
It follows from the lemma that A is m-complete and profinite for the m-adic topology.

From now on and throughout this section, we make the following assumption:
(4.1.2) The prime p is odd.

Since p > 2, if = is an element of 14m, there exists by Hensel’s lemma a unique y € 1+m
such that y?> = x. We shall henceforth denote that element by \/z. We observe that the

map x — +/z is continuous.
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4.2. A slightly generalized setting for Pink’s theory. Pink’s theory is concerned with
certain closed subgroups of GLy(A), the multiplicative group of invertible elements in the
matrix algebra Ma(A). To allow for more generality, we shall consider closed subgroups of
the multiplicative group of units of a generalized matriz algebra.

To fix notation for the rest of this section,

(4.2.1) Let R = é i) be a topological GMA over A, which is compact and

Cayley-Hamilton (cf. §2.2).

We denote by R* the multiplicative group of invertible elements in R. Clearly, it is also
the set of elements r of R such that detr € A*. It follows that R* is both open and closed
in R, and, provided with the subspace topology, is a compact topological group. We denote
by SR* the set of elements in R* with determinant 1. Obviously this is a closed normal
subgroup of R*.

We shall denote by radR the Jacobson radical of the algebra R. It is a closed hence
compact additive subgroup of R. We shall denote by R! the subgroup 1+ radR. It is a
closed normal subgroup of R*.

We call SR! the intersection of SR and R' in R. Obviously SR! is a closed normal
subgroup of R*.

Remark 4.2.1. To fix ideas, we shall now give an explicit description of the various rings
and groups introduced above, in the case where A is local. In this case there are two
possibilities regarding the ideal BC = m(B, C) of the ring A. Either BC = A, or BC C m.

When BC = A, then by Lemma 2.2.1, R is isomorphic as GMA to M(A), so we can as
well assume that R = Ms(A) as a topological GMA. Its radical radR is Ma(m) = mM;(A)
and the quotient R/radR is the simple algebra My (F). The group R! is the multiplicative
group of matrices in My(A) which are congruent to Id modulo mMs(A). The group SR*
is the subgroup of those whose determinant is 1. Note that in the literature, those groups
R' and SR are often denoted GLj(A) and SL3(A) respectively. In this case we are in the
situation considered by Pink.

When BC C m, the radical radR is and the quotient R/radR is the semi-

m
C
. . . F 0 1 .
simple algebra of diagonal matrices 0 F) The group SR" is the group of matrices

(CCL Z) in R such that a =d =1 (mod m) and ad — be = 1.
In the general case, if A is a finite product of local rings A;, then R naturally decomposes
as a product of GMA R; and the radical radR as a product of radR;, for each of which one

of the two description above holds.

Lemma 4.2.2. If m € radR, trm,trm?,detm € m.

Proof — We may assume that A is local, in which case we use the description of R and

radR given in the preceding remark. If R = My(A), m € Msy(m) and the result is clear.
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If BC C m, then m € <2 B so tr(m) € m and tr (m?) € m? + BC C m, and finally
(m?))

m
det(m) = (tr (m)? — tr /2 €m. O

Lemma 4.2.3. One has N, (radR)™ = 0.

Proof — Inthe case R = M3(A), (radR)™ = My(m™) and since "m™ = 0 by Lemma 4.1.1(iii),
the results follows. In the case BC' C m, an element of (radR)™ is a product of n matrices
(2 ZL) with a;,d; € m, b; € B, ¢; € C. The upper left coefficient of this product is the
product of k a;’s, I b;’s and [ ¢;’s with k+21 = n, hence is in m**!. Therefore the upper left
coefficient of a matrix in N, (radR)™ is 0. Similar computations for the other coefficients

allow to conclude. O

Notation: In the rest of this paper, we shall use freely the following notation: if S is a
set of matrices, SO is the set of matrices of trace zero in S. If X, Y are two closed additive
subgroups of R, we shall denote by [X,Y] (resp. X Y or XY) the closure of the subgroup
generated by all commutators [x,y] (resp. zy) for z € X, y €Y.

Remark 4.2.4. We observe that (radR)°, provided with the Lie bracket [r, 7] = r’ —1'r,

0
is a Lie algebra over A. Concretely, (radR)? = (2 3) when R = My(A) and (radR)® =

m B0
(C m) when BC' C m.

4.3. Pink’s Theta map. Following Pink, define a continuous A-linear map
©: R— R, THT—UTTId.
Pink states eleven formulas involving © and tr. We state the analog in our more general
situation of the formulas we need:
4.3.1) If v,y € R, [6(x),0(y)] = O(xy) — O(yx).
4.3.2) If z € SR, y € R, one has tr (z)O(y) = O(zy) + O(z1y).

4.3.4) If x,y € R, tr (0(z)O(y)) = tr (zy) — tr (z)tr (y)/2.

(
(
(4.3.3) If z,y € R, one has 20(xy) = [0(z),O(y)] + tr (z)O(y) + tr (y)O(x).
(
(4.3.5) If x € SR, one has O(z~") = —O(x).

(

)
)
)
)
)
)

4.3.6) If x,y,u,v € (radR)°, one has 4tr (zy)[u,v] = [y, [z, [u, v]] + [, [y, [u, v]]] +
[z, 0], [y, ul] + [ly, v], [z, u]].

(4.3.7) If z,y,u,v € (radR)?, one has 4tr ([u,v]x)y = [y, [z, [u,v]]] — [z, [y, [u,v]]] +
([, 0], [y, ul] + [ly, v], [z, u]].

These formulas are proved by easy computations left to the reader, using the facts that
in R, tr (xy) = tr (yz) and that for any « € R, the Cayley-Hamilton identity holds, namely
22 — tr (x)x + det(x) = 0, with det(x) = (tr (x)? — tr (2?))/2. (Also useful is the formula
xy + yr — tr (x)y — tr (y)z + tr (z)tr (y) — tr (zy) = 0 for z,y € R, which is obtained by
bi-linearizing the Cayley-Hamilton identity).
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Alternatively, we can use Proposition 1.3.13 of [3] which implies that every Cayley-
Hamilton GMA R can be embedded in a trace-preserving way into Ms(A’) for A’ some
commutative ring containing A. This reduces the formulas to prove to the case of My(A').

In this case these formulas are stated in [25], though their proofs are also left to the reader.

Lemma 4.3.1. The map © induces a homeomorphism from SR! onto (radR)°. Its inverse

s given by
1 b\ — [ at+VI+bcta? b
(4.3.8) O (¢ 2,) = (wrViEIEe b )

or equivalently

(4.3.9) ©7'm =m + /1 + tr (m?)/21d.

Moreover one has

(4.3.10) tr(©7Im) =2+ 37, o4 217 (/) tr (m?)".

Proof — Tt is clear that © sends SR! into (radR)’. If m in (radR)?, x € SR! and
©(z) = m then one has x = m + AId for some A € 1 4+ m and using that detx = 1, one
gets A2 = 1+tr (m?)/2. Since trm? € m by Lemma 4.2.2, this equation defines a unique )\,
which shows that for every m € (radR)", there exists a unique x such that ©(z) = m, and
proves the formula for ©~1. Formula (4.3.10) follows using Newton’s Taylor expansion for
VI+t.

O

4.4. The Lie algebra L attached to a subgroup of SR!. The object of Pink’s theory is
to understand the structure of the closed subgroups of SL}(A), using Lie-theoretic methods.
Our objective here is to expand Pink’s constructions and results to the case of subgroups
of SR', where R is a GMA over A as above. We shall offer from this sub-section §4.4 to
84.7 a self-contained presentation, where arguments, whose details follow closely those of
[25] are re-organized and somewhat simplified.

Let T be a closed subgroup of SR'. Following Pink we define a closed subgroup L of
(radR)? as the closure of the additive subgroup of (radR)° generated by O(T).

Obviously, I' € ©~!(L) but we may not have equality. Observe that the subgroup L is

not in general an A-submodule of (radR)°.

Theorem 4.4.1 (Pink). One has [L,L] C L, that is L is a Lie subring of (radR)°.

Proof — It suffices to show that if x,y € T, [O(z),O(y)] € L, that is O(zy) — O(yx) € L
by (4.3.1). Since xy and yx are in T', this is clear. O

Definition 4.4.2. We call L = L(T") the Pink’s Lie algebra of T'.

Lemma 4.4.3 (Pink). Fory €T, one has tr (y)L C L.

Proof — This follows immediately from (4.3.2). O
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4.5. The pseudo-ring P attached to a closed subgroup I' of SR!. For I' and L as

in the preceding section, we define
P=PT) =tr(L?.
This is a closed additive subgroup of A. (Note that our P is denoted by C in [25]).

Theorem 4.5.1 (Pink). One has PL C L.

Proof — By definition, P is the closure of the additive subgroup generated by the
tr (©(x)O(y)) for z,y € T'. By (4.3.4), one has tr (0(z)O(y)) = tr (xy) — tr (x)tr (y)/2 €
tr (T') + tr (T')2. Thus P C tr(T') + tr ()2, and the theorem follows from the preceding

lemma. |

Corollary 4.5.2. The subgroup P of A is stable by multiplication; in other words, it is a
pseudo-subring® of A. Moreover P is the smallest closed pseudo-subring of A containing

tr(y) — 2 for ally €T.

Proof — Since PL C L, one has P? = Ptr(L-L) =tr(PL-L) C tr(L-L) = P, hence P
is a pseudo-subring. Let us call by @ the subgroup of A generated by tr (y) —2, v € T'. Let
us first show that Q C P. If y € T', m = O(y), one has tr (y) = 2+>, ., 2! (17/12)tr (m?)"
by (4.3.10). Since tr (m?) € P and P is stable by multiplication, tr (mQ_)" € P for all n and
since P is closed, @ C P. On the other hand, as seen in the proof of the preceding theorem,
P is the closed subgroup of A generated by the elements tr (zy) —tr (x)tr (y)/2 for z,y € T,
that is by the elements tr (zy) —2— (tr (z)—2)(tr (y)—2)/2— (tr (x)—2)— (tr (y) —2) € Q+Q?
Thus Q C P C Q + @2, and since P is a closed pseudo-ring, it follows that the closed
pseudo-subring of A generated by @ is P. O

4.6. Pink’s converse theorem.

Theorem 4.6.1 (Pink). Let L be a Lie subring of (radR)°. Set P =tr(L-L). If PL C L,
then H := ©7Y(L) is a closed subgroup of SR, and © is a homeomorphism of H onto L.
In particular L = L(H), and P = P(H).

Proof — 1If PL C L, then one sees as in the proof of Cor. 4.5 that P is a pseudo-subring
and tr (h) —2 C P for every h € H. Thus tr (H)L C L

If z,y € H, 20(zy) = [O(x),0(y)] + tr ()O(y) + tr (y)O(y) by (4.3.3). The first term
isin L because L is a Lie subring, the last two are also in L since tr (H)L C L. Therefore,
xy € H. Also by (4.3.5), O(z~!) = —O(z) so = € H. This shows that H is a subgroup
of SR!, obviously closed. O

5A pseudo-subring of a ring A is a subset P which is an additive subgroup of A and is closed under
multiplication.
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4.7. Descending the central sequence. Let I' be a closed subgroup of SR, L = L(T)
its Pink’s Lie algebra, P = P(T") = tr (L - L) the attached pseudo-ring. We define:
e for n > 1, closed Lie subrings L, of (radR)®, defined by recurrence as follows:
Ly =1L, Lpy1=[Ln, L];
e for n > 1, closed subsets H,, = ©~ 'L, of SR!.
e for n > 1, closed subgroups I',, of SR! defined by recurrence as follows: I'y = T,

i1 = (T, ) (closed commutators subgroup) for n > 1

Proposition 4.7.1 (Pink). Let n,m > 1.
(1) Ifn>1, Lys1 C Ly,
) If nym >1, [Ln, L] C Loy
) Ifn>1, forhe€ Hy,, tr(h) —2 € P.
(iv) Ifn > 1, H,, is a closed subgroup of SR' and © : H,, — L,, is an homeomorphism.
) If n>2, PL, C Ly2.
)

If n > 2, © induces a bicontinuous isomorphism of groups Hy/Hpi1 =~ Ly/Lyiq.

Proof — Assertions (i) and (ii) follows easily by induction from Theorem 4.4.1. For (iii),
write m = ©(h) € L, C L. Then by (4.3.10), tr (h) —2 =Y, 217" ("/*)tr (m?)" € P.

For (iv), from PL C L one proves by induction that PL,, C L,. One therefore has
tr (L, - Lp)L,, C tr(L- L)L, = PL, C L,. It then follows from Theorem 4.6.1 applied
to the Lie subring L,, that H, = ©71(L,) is a closed subgroup of L,,, and that © is a
homeomorphism of H,, onto L,,.

Formula (v) follows from (4.3.6) for n = 2 and then by induction for all n > 2.

For (vi), if x,y € H,, then by (4.3.3),

O(zy) — O(z) —O(y) = %([@(96% O(y)] — (tr (z) — 2)O(y) — (tr (y) — 2)O(x)).
Hence ©(xy) — O(x) — O(y) € Lap + Lyny2 C Lptq by (i), (ii), (iii) and (v) (applicable
since n > 2). This shows that © induces a group morphism from H,, to L, /Ly+1. This
morphism is surjective by (iv), and the kernel of this morphism is clearly H, 1, hence (vi).

O

The most important theorem of Pink’s theory is Theorem 4.7.3 below, which shows that
for n > 2, the terms I',, of the descending central sequence of I' are determined by their
Lie algebra L,, hence by L.

First, we need a lemma:

Lemma 4.7.2 (Pink). Letn > 2. For x € Hy,y € H,_1 one has
O(zyxy™) =[0(2),0(y)] (mod Ly41).

In particular, xyz~'y=! € H,.

Proof — One writes

20(aya~'y™") = 20([z, yla ™'y ™) = [O([z,y]), O(a ™y )] + tr (7 y ™) O([2, )



IMAGES OF PSEUDOREPRESENTATIONS 23
by (4.3.3). Since obviously [O(z), O(y)] = [z,y] = O([z, y]), this can be written
20(zyz 'y ™) = [[0(2), O(y)], (=Y~ )] + tr (27 'y~ [O(2), O(y)]

Now ©O(x) € Ly, O(y) € L,_1, so [©(x),0(y)] € L, and ©(x~'y~t) € L;. Thus, the
first term of the RHS is in L,1. As for the second term, tr (z='y~!) — 2 € P, and since
PL, C Lyia, one gets that the second term is 2[©(x), O(y)] (mod Ly4+1) and the lemma
follows. O

Theorem 4.7.3 (Pink). For n > 2, one has I',, = H,, = ©~(L,). Hence © realizes an

homeomorphism of Iy, on Ly, for n > 2.

Proof — We follow approximately Pink’s method.

By definition I'y = T" € H;. We prove by induction that I';, C H,, for all n. Assuming
Tn_1 C Hp—1, we get for x € T, y € Ty, O(x) € Ly, O(y) € L,—1, hence by the
commutator relation ©(xyx~ty~!) € [L,L,_1] + Lny1 C Ly, and xyz~ty~* € H,,. Since
H,, is a closed subgroup of SR, and T',, is the closed subgroup generates by the zyz 'y~
as above, one gets I', C H,,.

Let A, be the closed subgroup of (radR)® generated by ©(I',,). We claim by induction
that Ay, + Lp+1 = Ly, for all n > 1. This is true for n = 1 because by definition A; = L.
For n > 2, since I',, is the subgroup generated by zyz~'y~! forx € I, y € I',_1, and O is
a morphism from T',, to Ly, /Ly41, Ay, + L1 is the closed subgroup of (radR)® generated
by L1 and the elements ©(zyz 1y~ 1), that is, by the lemma, the elements [O(z), O(y)].
Since the closed subgroups generated by those elements is [L1, L,—1] = L,, we get that
Ap+ Lyt = L.

For n > 2, since O is a morphism from H,, onto L, /L1, O(T},) + L,41 is already a
closed subgroup of L,, hence it is A,, + L, 11 = L,,. We thus have shown, for all n > 2

O(Ty) + Lyi1 = L.

Applying this formula for n replaced by n + 1 gives a description of L,4; that we can
plug in the LHS of the formula, getting ©(I',,) + Ly42 = L,, and by induction on m,
O(T,) + Lyym = Ly, for all m > 1. Since Ny Lypym = 0 (by Lemma 4.2.3) and ©(T,) is
closed, one gets O(T',,) = Ly, hence T';, = H,, and the theorem. (Il

Thus, the knowledge of the Lie algebra L of I' determines the derived subgroup I's of T'.
There is an other result of Pink, limiting the possibilities for the quotient T'/T'5:

Theorem 4.7.4 (Pink). The composition law * on L/Lg defined by
zry=z(V1+1tr(y?)/2) +y(V1+tr(2?)/2)

makes L/ Ly a commutative group. The map © induces a bicontinuous morphism of groups
Hy/Hy — (L/Lo,%). The image A of T'/Hy =T'/T'y in L/Ls, which is obviously a subgroup
of L/ Ly for the law *, topologically generates L/Lo for the law +.
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Since we shall only use this theorem in the case where R = M3(A) (see Prop. 4.8.2), we
just refer to [25, Prop. 2.6] for the proof.

4.8. Complements to Pink’s theory.

4.8.1. Functoriality w.r.t. surjective morphism of rings. Let J be a closed ideal of A. The
ring A/J is still a compact semi-local topological ring, of radical m/(m N J), with residue
fields a subset of the set of residue fields of A, hence all finite of characteristic p > 2. In
other words, A/J satisfies (4.1.1) and (4.1.2).

B ([ A)J BJJB
The A/J-algebra Ry = R/JR = (C/JC’ AL

finite type as an A/J-module, and also Cayley-Hamilton. We denote by 7; the surjective

) is a GMA which is obviously of

morphism of algebras R — R/JR. This morphism induces a morphism of multiplicative
groups m; : R* — R% which is still surjective because an element of a GMA is invertible if
and only if its determinant is. It also induces a surjection R! — RY and a morphism SR' —
SRY, which we again denote by 7. Also 7, induces a map 7 : (radR)® — (radR;)°.

If T is a closed subgroup of SR!, let us denote by I'; the closed subgroup 7;(I'). Then
we can apply Pink’s theory to I'y and define sub-Lie-algebras L, (I';) of (radR;)°. The

functoriality mentioned in the title is the fact that
(4.8.1) for alln > 1, m;(L,(T)) = L,(Ty).

This is easy to see for n = 1 from the definition for L, and then by induction on n for any

n.

4.8.2. Multiplication by tr (T").

Lemma 4.8.1. For every v € T, and every n > 1, one has tr (y)L,, = L,.

Proof — It suffices to prove the first assertion for n = 1, because then, one has L, 1 =
[L1, L] = [tr(v)L1, Ly] = tr (v)[L1, L] = tr (y)Lpy1. For n = 1 we already know that
tr (y)L C L, so we just need to show that tr (y)~'L C L.

Note that tr (y) = 2 (mod m). Let m = O(y). Then v = ©~!(m) so that by (4.3.10),
try =2+ 3,0, 2 (At (m?)" and tr ()7t = 271 + 30, o, batr (m?)™ for some coef-
ficients b,, € Z; that we need not compute. Since tr (m?) € ED(I‘), tr (m?)"L C L hence
tr (y)~'L C L which completes the proof of the first assertion. O

4.8.3. A simple class of examples. Let I be a closed pseudo-subring of A contained in m,
that is a closed additive subgroup of m, stable by multiplication. Let R = Ms(A) be the

0 0
I Iy . . m m\ 0
I I) is a Z,-Lie sub-algebra of (m m) = (radR)". We

will determine the closed subgroups I" of SL% (R) that have L as Pink’s Lie algebra; actually

standard GMA. Then L = (

there is only one such subgroup:
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0
Proposition 4.8.2. Let T' be a closed subgroup of SLy(R) such that L(T') = L = (§ §> .

Then T' = ©7Y(L) and © realizes an homeomorphism from T onto L. More generally
0
I Im
= -1 >
r,=0 ((I" I">> for every n > 1.

Proof — Ifweset X = (83),Y = (%79), J=(§2), then the usual commutation

relations are [¢X,¢'Y] = q¢'J, [¢J,¢'X] = 2¢¢'X and [¢J,¢'Y] = —2¢¢'Y, for any ¢,q¢’ €
2 2\0
I. The additive subgroup generated by these elements, Lo = [L, L], is thus (; ;) .

n n 0
Similarly one proves by induction that L, = <§n ﬁn) for any n.

For x € L, the power series defining \/m— 1 has all its terms in 12, hence is in I
since I is closed under multiplication and topologically. Thus for z,y € L, y/1 +tra?2—y €
IL C Ly and it follows that x xy = x +y (mod L) (using the notation of Theorem 4.7.4.).
The subgroup ©(T") (mod Ls) of (L/Ls, ) is thus also a subgroup for the additive law +,
and therefore, by Theorem 4.7.4, is such that its topological closure is L/Ls. Since it is
already closed, one has O(T') = L (mod Ls). Since O(T') contains Lo, we obtain ©(T") = L.
The proposition easily follows. O

4.8.4. Haar measures. For any compact group A, we denote by ua the Haar measure on

A normalized so as to have a total mass 1.

Lemma 4.8.3. Let H and H' be two compact groups, (Hp)n>n, (resp. (H))n>n,) a
decreasing sequence of closed normal subgroups in H (resp. in H') such that H,, = H and
NnHy, = {1} (resp. H,, = H' and N, H; = {1}). Let f be an homeomorphism from H
to H' (not necessarily a group homomorphism) such that f(1) = 1 and for every h in H,
f(hHy,) = f(h)H],. We assume that

(i) either the induced map f,, : Hy/Hy1 — H),/H], | is a morphism of groups,

(ii) or the H,, are open in H.

Then f sends the Haar measure g to the Haar measure piy .

Proof — By assumption, f, : H,/H, 1 — H) /H, ., is either an isomorphism of groups,
or a bijection between finite groups, hence in both cases sends the normalized Haar measure
of H,,/Hy+1 on the normalized Haar measure of H},/H) ;. Using this, and an induction
over n and Fubini, one sees that the map f : H/H,, — H'/H], preserves Haar measures.
To prove the lemma, it suffices to prove that ug(U) = pg (f(U)) for any open set U
in H. Since H is compact, U contains H,, for some n, and f induces a bijection f from
the finite group H/H,, to the finite group H'/H!. If U is the image of U in H/H,,, we are

reduced to prove that i p, (U) = gy (f(U)), which we have already done. O

Proposition 4.8.4. In the situation of Theorem 4.7.3, the homeomorphism © : I'y — Lo

sends the Haar measure ur, to the Haar measure pi,,.
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Proof — We apply the preceding lemma to f =0, H =T, H = Ly, ng =2, H, =T,
H =L, |

Let us note for later use another application of Lemma 4.8.3.

Lemma 4.8.5. Let V' be a closed additive subgroup of R, o : V. — V' a map satisfying
0(0) = 0 and the following property:

Yo, ' €VineN, v—v €m"R= o(v) —o(v') em" TR

Let ¥ : V — V be the map ¥(v) = v+ o(v). Then ¥ is an homeomorphism of V onto V

and sends the Haar measure py to itself.

Proof — Ifv#v' €V, let n be an integer such that v — v’ € m"R but v — v’ € m"T!R.
Then ¥(v)—¥(v') = (v—v")+(o(v)—0o(v')) and since o(v) —a(v') € m" IR, U(v)—W(v') is
not in m"*1 R and in particular ¥(v) # ¥(v'). Hence W is injective. If v/ € V, consider the
map h: V — V,y — v'—o(y). The hypothesis made on ¢ implies that this map has a fixed
point in V, so there exists v such that v’ — o(v) = v, or ¥(v) =v'. Hence ¥ is surjective.
As ¥ is obviously continuous, and closed since V' is compact, it is a homeomorphism. To
show that U preserves the Haar measure, we apply Lemma 4.8.3 with H = H' =V,
H, = H!, =V N(m"R): for any n, the group H, is open in V since m™R is open in R and
the hypothesis implies that ¥(v + H,) = ¥(v) + H,,. O

4.9. Decomposition of Lie algebras. In this subsection, R is a GMA over A satisfying
the conditions of §4.2.

4.9.1. Decomposable Lie algebras. Let L be a closed subspace of (radR)°.

(4.9.1) We shall say that L is decomposable if, for any (Z _ba) € L, one has

a 0 0 b
(0 a) € L and (c 0) e L.
We shall denote by A and V the additive groups of diagonal matrices and anti-diagonal

matrices in L. Thus, L is decomposable if and only if
(492) L=A@V.

Since by definition matrices in L have trace 0 and diagonal terms are in the radical m of

A, we see that A has the form
(4.9.3) A =1J, with I a unique additive closed subgroup of m,

where J denotes as usual the matrix ((1) _01). We take (4.9.3) as the definition of I;. We

thus have, if L is decomposable
L=LJ®V.

Let us set P = tr (L?).

Lemma 4.9.1. If L is decomposable, one has P = tr (A?) + tr (V?) = I + tr (V?).
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Proof — If m,m’ € L, we can write m =06 +¢€, m’ = + € with §,8' € A and €, € V.
Then tr (mm') = tr (§6") + tr (e€’) since the matrices de’ and ed’ are anti-diagonal. Thus,

P C tr (A?) + tr (V?), and since the other inclusion is clear, this implies the result. O

Proposition 4.9.2. Let L = I,J &V C (radR)® be a decomposable space. The following

are equivalent:
(4.9.4) There exists a closed subgroup T' of SR' such that L is the Lie algebra of T.
(4.9.5) One has:
49.5.1) [V,V] C I J,
4.95.2) L[J,V] C V,

( )
( )
(4.9.5.3) tr (V2)I, C I,
(4.9.5.4) tr (VA)V C V,
( )

4.9.5.5) I} C I,

Proof —  The two first conditions (4.9.5.1) and (4.9.5.2) are equivalent to L being
stable by Lie bracket. Since P = I} + tr (V)?, the condition PL C L is equivalent to the
conjunction of (4.9.5.3), (4.9.5.4), (4.9.5.5) and I?V C V. But this condition follows from
(4.9.5.2): applied twice, this property gives IZ[J,[J, V]] C V, that is I?V C V. Therefore
the five conditions (4.9.5) together are equivalent to L being a Lie subring of (radR)° and
PL C L. The proposition thus follows from Theorems 4.5.1 and 4.6.1. O

When L is decomposable, we set:

o

(4.9.6) By == {be B,3c € C, (c 8) e vy,

(4.9.7) C; :={ce C,3b e B, (2 8) eV}

0 B

We have obviously V C < c, 0

> but the inclusion may be strict.

4.9.2. Strongly decomposable Lie algebra. Let L be a closed subspace of (radR)°.
(4.9.8) We shall say that L is strongly decomposable if, for any(ccl _ba> € L, one
a 0 0 b 0 0
has (O —a) elL, (O O> € L and (c 0) € L.
If we define By,Cy and I as above (4.9.6), one can reformulate (4.9.8) as

0
_(5Li B
i (h 5

If P = tr(L?), then we see that
(4.9.10) P = 1% + B4

L B
Ci I
subgroup. The following are equivalent:

0
Proposition 4.9.3. Let L = ( ) C (radR)® be a strongly decomposable closed
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(4.9.11) There exists a closed subgroup T' of SR such that L is the Lie algebra of T.
(4.9.12) One has:

(4.9.12.1) B;C; C I,

(4.9.12.2) 1By C By and ,C; C C1

(4.9.12.3) I} C I,

Proof — 1If L is strongly decomposable, it is in particular decomposable, and we use the

notation of §4.9.1: L = I1J ® V with V = (C(') %1) One thus has [V,V] = B1C1J
1

0 IlBl), so (4.9.12.1) is equivalent to (4.9.5.1) and (4.9.12.2) is

and I,[J, V] = (1101 0
equivalent to (4.9.5.2).

Since tr (V?) = B1C1, (4.9.5.3) reads B1C1I; C I, which is a consequence of the above.
Similarly, (4.9.5.4) read B1C1 By C B; and B1C1Cy C Cy, both of which follow from the
above. Thus we see that (4.9.12) is equivalent to (4.9.5) and the proposition follows. [

5. ADMISSIBLE PSEUDO-REPRESENTATIONS

5.1. Hypotheses on the base ring A. In all this section, we let F be a finite field of
characteristic p, and we denote by W (IF) the ring of Witt vectors of F. We suppose we are

given

(5.1.1) A topological W (F)-algebra A which is compact and semi-local, and such that

the maps W (F) — A/m;, where m;, i = 1,...,r are the mazimal ideals of A, are surjective.

Thus A satisfies the condition (4.1.1) with the small additional requirements that A is a
topological W (FF)-algebra and that the maps W (F) — A/m; are surjective, which implies
that the residue fields F;, ¢ = 1,..., 7, are all equal at F. We use the same notations as in
the preceding section: A = []'_; A; with the A4;’s local, and we write (by abuse) m; for the
maximal ideal of A;.

We shall denote by s : F — A the map obtained by taking the Teichmuller lift in W (TF)
of an element of F and seeing it as an element of A through the structural map W (F) — A.
The map s is a set-theoretical section of the residue map A — A/m = F, and preserve
multiplication but not addition. The elements of A that belong to s(F) will be called

constants.

5.2. Admissible pseudo-deformations. We now proceed to define an admissible pseudo-
deformation over A. It is a 4-tuple (II, p, ¢, d) where
(5.2.1) II is a profinite group.

(5.2.2) p=(pi)i_q is a family of isomorphism classes of continuous representations
pi : 11 = GLy(F), each of them being either absolutely irreducible or the sum of two distinct

characters.
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(5.2.3) (t,d) is a continuous pseudo-representation of Il over A such that for i =

1,...,r we have tr p; =t (mod m;) and det p; = d (mod m;).
(5.2.4) We have d(g) € s(F) for all g € 11
(5.2.5) As a topological W (IF)-algebra, A is generated by t(II).

The condition (5.2.4) expresses the fact that this pseudo-representation has constant
determinant. Even if we do not assume it, there is always a twist of (¢,d) which has
constant determinant, namely the twist by the character g — \/m .

If we denote by (t;,d;) the composition of (¢,d) with A — A;, the condition (5.2.3) says
that (¢;,d;) is a deformation over A; of the pseudo-representation (tr p;, det p;) attached to
Di, OT as it is customary to say, a pseudo-deformation of p; over A;.

If A — A’is a surjective map, then A’ with its quotient topology satisfies (5.1.1), and
we can write A’ = HjEJ A, where J is a subset of {1,...,r} and the map A — A’ is the
product of surjective maps A; — A’ for j € J. If we denote by (#,d’) the composition
of (¢t,d) with the map A — A’, then it is clear that (IL, (p;);jes,t’,d’) is an admissible
pseudo-deformation over the ring A’. In particular, for every ¢ = 1,...,r, (IL, p;, t;, d;) is

an admissible pseudo-deformation over the local ring A;.

5.3. Equivalent formulations for (5.2.5). Following [16], let C be the category of topo-
logical W (IF)-algebras B that are compact and local, and such that the map W(F) — B/mp
is surjective, where mp is the maximal ideal of B. Given a topological group II and a con-
tinuous representation p : II — GLy(F), we consider the functor F; from C to the categories
of sets, such that F;(B) is the set of continuous pseudo-representation (t,d) : II = B such
that ¢t = trp (mod mp), d = detp (mod mp), and d(g) € s(F) for all g € II. By [16], this
functor is representable by a ring A univ-

Let (II, p, t,d) be a pseudo-representation over A = [, A; satisfying (5.2.2), (5.2.3) and
(5.2.4), and let i € {1,...,r}. Thus (I, ¢;,d;) defines an element of Fj,(A;) hence a map

Aﬁi,univ — A1
Proposition 5.3.1. (I, p,t,d) satisfies (5.2.5) (i.e. is admissible) if and only if for i =
1,...,r, the morphisms Ap, univ — A are surjective.

This is clear.

Corollary 5.3.2. If (I, p, t,d) is an admissible pseudo-deformation over A, and if 11 satis-
fies Mazur’s finiteness p-condition (i.e. the mazimal pro-p-quotient of every open subgroup

of I is topologically finitely generated), then A is noetherian.

Proof —  Since 1I satisfies Mazur’s p-finiteness condition, we know that Ap, univ is noe-
therian by [16] in the case p; absolutely irreducible, by [1] in the case p; reducible and p > 2
and by [6] in the case p = 2. Thus A, is noetherian for all ¢, and A is noetherian. O

Proposition 5.3.3. Assumep > 2. In the definition of an admissible pseudo-representation,

condition (5.2.5) can be replaced by the apparently weaker condition
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(5.3.1) As a topological W (F)-module, A is generated by t(II).

Indeed, the W (F)-module generated by t(II) is already a W (IF)-algebra, for it contains
t(1) = 2, hence 1 since p > 2, and it is stable by multiplication: if x,y € II, t(z)t(y) =
t(zy) + d(y)t(zy~'), and d(y) € W(F) by (5.2.4).

5.4. (t,d)-representations attached to an admissible pseudo-deformation and
their image. If (II, p, ¢, d) is an admissible pseudo-deformation, then for every i € {1,...,r},
there exists, by Theorem 2.4.2, a unique up to unique isomorphism A;,-GMA R; and a
(t;, d;)-representation p; : I — RY. Let us remind that that means that there exist a faithful

GMA R; = (Ai B and a representation p; : II — GLo(A;) of trace t; and determinant

C; A
d;, and that gi\;en ailother GMA R/ and representation p} satisfying the same conditions,
there exists a unique isomorphism of A-algebras f : R, — R} such that fop;, = p,. We
note that by Corollary 5.3.2 and Theorem 2.4.2, the ring A; is noetherian, the algebra
R; is finite-type as an A;-module, and when R; is provided with its natural topology, the
representation p; is continuous.

Setting R = [[;_, R; and seeing this ring as an A = [[/_, A;-algebra (component-wise),
we get a continuous representation p : II — R* of trace ¢t and determinant d which is unique
up to unique isomorphism. We call this representation a (¢, d)-representation.

Given such a representation p, we set
(5.4.1) G = p(1I)
(5.42) T = GN SR,
where SR! is defined as in §4.2. Note that G is a closed subgroup of R* and I' a closed

subgroup of SR!.
We denote by G the image of G by the map R* — (R/radR)*

Lemma 5.4.1. The sequence
(543)1 T —-G—-G—1

is exact. In particular, T is a finite index normal subgroup in G.

Proof — Though T is defined as G N SR!, we claim that I' = G N R!. Indeed, let
g € GN R and write g = p(z) for z € II. Then det g = s(det(g)) by (5.2.4). Since g € R!,

detg € 1 +m C A* and det(g) = 1. Thus det(g) = s(1) =1 and g € T".
Since the kernel of G — G is G N R", the result follows. O

We also define
(5.4.4) G; = pi(1I)

The group G, is the image of G by the map R* — R;. The surjective maps G — G,
for i = 1,...,r define a map G — H;l G; which is always injective, but not necessarily

surjective.
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We observe that the choice of a representation p; specifies a single representation p; :
IT — GLy(F) in the isomorphism class p;, as follows: consider the composition p; : II LN
Rf — (R;/radR;)*. We know that R;/radR; is My (IF) if p; is absolutely irreducible and
(Ig I(; otherwise, so p; can be considered in both cases as a semi-simple representation of
G. The trace and determinant of p; are reduction mod m; of those of p;, hence are identical
to those of p;. Therefore, p; is a representation in the equivalence class p;. By a slight

abuse of notations, when a representation p; is fixed, we shall denote by p; its reduction p;.

6. LIE-THEORETIC STUDY OF ADMISSIBLE PSEUDO-DEFORMATIONS

6.1. Hypothesis on the base ring A. In this section, we let F be a finite field of char-

acteristic p > 2, and we consider
(6.1.1) A topological ring A which is compact and local, with residue field F.

Such a ring A is automatically a topological W (FF)-algebra, and the map W(F) — A —
A/m = F is the residue map of W(F), hence surjective. Hence our hypothesis implies
(5.1.1), and actually is equivalent to it combined with the supplementary assertion that A
is local (and p > 2).

Our aim is to study the image G of p, with a special attention to its subgroup I'. The
group G depends on the chosen (t,d)-representation p : II — R*, but only up to unique
isomorphism. We can choose to work with any (t,d)-representation p : II — R* that
simplifies our analysis. According to (5.2.2), there is an element gg € II such that p(go)
has two distinct eigenvalues in F, Ag and po. Actually, there are in general many of them.
Given such an element gy as well as an ordering (A, po) of the eigenvalues of p(go), there

exists a (¢, d)-representation p : IT — R* adapted to (go, Ao, f20). Let us remind that that

Ao 0 ) ‘We shall see
0 po

that working with (¢, d)-representations p which are adapted to a well-chosen element g is

means that p(go) is a diagonal matrix which reduces modulo m to

often the right choice.

In order to study the group G, and its subgroup I', we shall make use of the generalization
of Pink’s theory exposed in the preceding section. Note that the GMA R is Cayley-
Hamilton, since it is faithful, and that I' is a closed subgroup of SR!, so this theory
applies and attaches to I' a Lie subring L = L(T') of (radR)?. To L is attached a pseuso-
ring P = tr(L?) such that PL C L, and the full descending central sequence L; = L,
Ly =[L, L}, etc.

6.2. Finding constant elements in G. Given a faithful GMA R over A, the multiplica-
tive section s : F — A induces a set-theoretic section of the map R — R/radR. This

section, still denoted by s : R/radR — R, sends a matrix (2}) to (ii'g §§Z;> in the case
A B

R = M5(A) and (29) to (S(a) 0)) in the case R = (C’ D> with BC' C m. We shall

0 s(d

call a matrix of R which lies in s(R/radR) constant.
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Note that the section s is multiplicative in the second case, but is not in the first, because
multiplications of matrices involve addition of the coefficients in general, and s does not
preserve addition. However, when m,m’ are two matrices in R/radR which are either
diagonal or anti-diagonal, then s(mm’) = s(m)s(m’) because in this case the multiplication
of matrices only involve multiplication of the coefficients.

We consider again in this subsection an admissible pseudo-deformation (II, g, ¢, d) over
A. Given a (t,d)-representation p : II — R*, we recall that by definition G = p(II), and
I =GNSR.

Our aim is to find elements of the image G that are constant. It is important to ob-
serve that the notion of constant element of G depends on the chosen (t,d)-
representation p. Therefore, our aim is, more precisely stated, for a given admissible
pseudo-deformation (11, p, ¢, d) to find a suitable (¢, d)-representation p : I — R* such that

the associated group G has enough constant elements.

Theorem 6.2.1. Let gy be such that p(go) has distinct eigenvalues Mg, o in F, and let
p: I — R* be any (t,d)-representation adapted to (go, \o, ft0). Let D be the subgroup of G
generated by p(go) and by the scalar matrices in G. Then s(D) C G.

Furthermore, let n € N(D) — Z(D), where N(D) is the normalizer and Z(D) is the
centralizer of D in G. Then, up to changing p into another (t,d)-representation adapted to
(90, Ao, o), one has s(n) € G. As a consequence, if D = Z(D) then s(N(D)) C G.

Proof — By assumption p(go) is diagonal and reduces modulo radR to p(gg) = <>E)O /? ) .
0
Let us write p(go) = s(p(go)) + m with m € radR a diagonal matrix.
Since s(p(go)) and m commute, being two diagonal matrices, we get for every integer

n > 1 (denoting by ¢ the cardinality of F):

n

g n
n _ n q _ n__
p(gg ) =s(p(go)" )+ (k )8(p(go)q Fym*.
k=1

Denoting by v, the p-valuation of an integer, one has v, ((%:)) =nvp(q) —vp(k) if k> 1,
as is well-known. The matrix m* is diagonal with coefficients in m*, and s(p(go)?" —*) is
diagonal with coefficients in A. Therefore, since p € m, the term (% )s(p(go)?" ~*)m* for
k > 11is a diagonal matrix whose coefficients belong to m™r(0=vr(k)+k hence to m™vr(@D+1,

On the other hand, since p(go) is a diagonal matrix in GLo(F), its order divides ¢ — 1,
hence p(g0)? = p(g0) and p(g0)*" = p(go)-

Therefore

plgg ) = s(p(g0))  (mod mm»(@*1)
Since p(ggn) belongs to G by definition, and nv,(q) + 1 tends to +o0, we see that s(p(go))
is the limit of a sequence of elements of G. Since G is closed,

s(p(g0)) € G-
Let h € II such that p(h) is a scalar matrix. Then we can write p(h) = s(p(h)) +m with

m € radR a matrix commuting with s(p(h)) (since s(p(h)) is a scalar matrix in R). The
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same argument as above then shows that s(p(h)) € G. Since D is generated by p(go) and
the scalar matrices in D, and s|p is a morphism of groups, we have s(D) C G. This proves
the first assertion of the theorem.

Now let N be the normalizer of D in G, and Z its centralizer. If N = Z there is nothing
else to prove. If N # Z, then there is an anti-diagonal element in N, which shows that
p is irreducible and we are in the case R = Ms(A). It is easy to see that |N| = 2|Z|.
Since Z consists of diagonal matrices, |Z| divides (¢ — 1)?, and the order |N| is prime to p.
Considering the exact sequence 1 — I' — G — G — 1, and the fact that I' is a pro-p-group,
we see by Zassenhaus’ theorem that there is a map s’ : N — G which is a section of G — G
over N C G. The restriction of s’ to D is a section over D of G — G. Since |D| is prime to
p, such a section is unique up to conjugation (again by Zassenhaus’ theorem) by an element

! we may assume that the section s’ on N restricts to the

g of G. Replacing s’ by gs'g™
section s on D.

Let us choose n € N — Z. The element n normalizes D and therefore s’(n) normalizes
s'(D) = s(D), which is a non-scalar diagonal subgroup of R*. Therefore s'(n) is either
diagonal or anti-diagonal. If it was diagonal, then it would commute with s(D), hence
n would commute with D and be in Z, a contradiction. Therefore s'(n) is anti-diagonal,
say s'(n) = (28). Since n? € D, §'(n?) = (4% 2) is in s(D) and therefore be € s(F).
By conjugating p by the matrix (9), we may assume that b = 1 (with p still a (¢,d)-
representation adapted to go.) Thus ¢ € s(F), and therefore s'(n) = s(n). It follows that

s(n) € G, as claimed. O
Let us note two important consequences:

Corollary 6.2.2. Let go be such that p(go) has distinct eigenvalues Ao, o in F and let p
be adapted to (go, o, o), and let G, T, L be defined using this p. Then L is decomposable.

Proof — Let us denote by u : R — R the conjugation by s(p(go)), that is the map
m — s(p(go))ms(p(go))~t. The map u is a W(F)-linear endomorphism of R. By the
theorem s(p(go)) = (S(SO) 5(20)> is in G, and therefore normalizes T', hence L. In other
words, u stabilizes the additive subgroup L of R.

In order to simplify notation, let us set r := s(Ag/po) € W(F). Clearly, u fixes diag-
onal matrices in R, and acts by multiplication by 7 (resp. r~!) on matrices of the form
(9%) (resp. (99)). It follows that w is killed by the polynomial X (X — r)(X —r~1). If
¥ = Gal(F/F,) = Autz,W(F), then the polynomial XQ(X) also kills u, with Q(X) =
[Tyes(X —o(m)(X — o(r)~!) € Z,[X]. Since by assumption, r # 1, the value Q(1) is
invertible in Z, and the operator Q(u)/Q(1) of R is the projection onto diagonal matrices
relatively to antidiagonal matrices. This operator, being in Z,[u], stabilizes L, which shows

that if a matrix is in L, its diagonal part is also in L. ]

Corollary 6.2.3. Let p be adapted to an element (go, Ao, po) as above, and let G, T', L de-

fined using this p. Let [Py be a subfield of F, and assume that there exists an integer n such
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that A\ /g € Fy—{1,—=1}. Then W(F,)L is strongly decomposable. More precisely, L is de-
W (F,) I, W(Fq)Bl)O

composable, and with I, B1, C1 as in §4.9.1, one has W(F,)L = (W(Fq)C’l W(F ),

Proof — We already know that L, hence W (F,)L, is decomposable. Using the notation
of the previous proof, the hypothesis becomes 7" € s(F; — {1,~1}) and it follows that
r™ — =" is invertible in W(F,). The operator (u™ —r™)/(r~™ — r™) acts on anti-diagonal
matrices of R as the map (9§) — (99), and this operator stabilizes W (F,)V. The result
follows. 0

6.3. Consequences of Theorem 6.2.1 in the cases of cyclic or dihedral projective

image of p.

6.3.1. Well-adapted (t,d)-representations and splitting of the exact sequence (5.4.3). We
still consider an admissible pseudo-deformation (II, p,¢,d). In the cases p of abelian or

dihedral projective image, we shall use the following terminology:

Definition 6.3.1. A (¢, d)-representation p is said to be well adapted if

(i) The representation p is adapted to an element go € II such that p(gg) together with
the scalar matrices in G generate G in the cyclic case, and a subgroup of index 2
in G in the dihedral case.

(i) s(G) C G.

(i) If G is non-abelian, then it contains a matrix of the form (9§) with be™' € ;.
Note that in the abelian case, (ii) follows from (i) by Theorem 6.2.1 and (iii) is empty.

Proposition 6.3.2. Assume that the projective image of p is either cyclic or dihedral.
Then there exists a (t,d)-representation p that is well adapted. Moreover, for such a p the
restriction of s to G is a group-theoretic section of that exact sequence, and G is therefore

the semi-direct product of T' by G, acting on T by g -~ = s(g)vs(g)~'.

Proof — Let D be the group G if p is reducible, and D be a subgroup of index 2 in G
containing all scalar matrices if p is dihedral. In both cases, one has D = Z(D) and D is
diagonal in a certain basis, which implies that D modulo its subgroup of scalar matrices
is cyclic, say generated by p(go). By (5.2.2), p(go) is not scalar, and thus has two distinct
eigenvalues (Ao, to). Let us choose for p a (¢, d)-representation adapted to (go, Ao, to) and,
in the case p dihedral, chosen as to satisfy the second paragraph of Prop. 6.2.1. Then by
Prop. 6.2.1, one has s(N(D)) C G and since N(D) = G, we see that s is a section of
1 —-T — G — G — 1. Moreover p satisfies (i) and (ii) of the definition of a well adapted

representation. Since G normalizes D but is not abelian, it must contain a matrix of the

0 bz
z~1 0

x € F* such that (bz)(cz™")~" = be™'2? be in F};. Thus, conjugating p by s ((§ 2)) doesn’t

form (9%). Up to conjugating G by (§ 9), it contains the matrix (c ). One can choose

affect properties (i) and (ii) and ensure property (iii). O
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Corollary 6.3.3. Assume that the projective image of p is either cyclic or dihedral. Then
the exact sequence 1 - T — G — G — 1 is split.

Note that a for well adapted p, the corresponding Lie Algebra L is decomposable
(Cor. 6.2.2) and can be written L = I, J & V.

6.3.2. Consequences in the cyclic case.

Corollary 6.3.4. Assume that the projective image of p is cyclic. Let p be a well adapted
(t,d)-representation. Then one has (with the notation of §4.9.1)

(6.3.1) W(F)1 4+ W(F)I, + W(F)I{ + W(F)tr (V?) = A.
(6.3.2) The A-module generated by By is B.

(6.3.3) The A-module generated by C1 is C.

Proof — By (5.3.1), W(F)tr (G) = A. By Prop. 6.3.2, every element g in G can be written
g = fy()bl /\02) with A1, Az € s(F*) C W(F) and v € I'. We can write v = 67 ((¢ %)),
with (2 %) € L. We have trg = (A1 — A2)a+ (A1 + A2)V/1 + a2 + be; the first term on the
RHS is in W (FF)I;, and the second in W (F)1+ W (F)P = W (F)1 + W (F)I? + W (F)tr (V?)
by Lemma 4.9.1. The first result follows.

For the second and third, if ¢ € G is written g = ~ ()61 /\02) as above, then the anti-
diagonal part of g is ()\?C )‘gb) which belongs to (W(]g)cl W(E)Bl). Recalling that G' gen-
erates R as an A-module, we get AB; = B and AC; = C. O

6.3.3. Consequences in the dihedral case. We now make some general observations con-
cerning the case where the projective image of p is dihedral. In this case, choosing a well
adapted (t,d)-representation p defines an abelian subgroup of index 2 in G, namely the
subgroup D generated by p(go) and the scalar matrices in G. When the projective im-
age of p has order > 4, then this group D is the unique abelian subgroup of index 2 in
G, hence is independent of the choice of p, but when G = Z/27Z x 7Z/27, there are three
possible index 2 subgroups D in G, and each of them is associated with a well-adapted
(t, d)-representation p.

In any case, we fix a well-adapted p, which fixes a cyclic subgroup D of index 2 in G,
and we define II’ as the inverse image of D by the map II — G. Hence II' is a subgroup of
index 2 of II. The image G’ = p(II') lies in an exact sequence 1 - I' - G’ — D — 1, and
is exact sequence is split, a splitting being the restriction of s to D.

By Lemma 2.4.5, the sub-A-module R' = AG’ of R is a sub-A-GMA of R = My(A),

that is of the form (é i) with B,C ideals of A. Since G contains anti-diagonal

matrices with coefficients in s(F*) C A*, and normalizes AG’, one has B = C, and
R = <g i) It is not hard to see that the ideal B depends only of the admissible

pseudo-representation (II, p, t,d) and the subgroup D of G’, not on the choice of the well-
adapted (t, d)-representation p: see e.g. Prop. 11.3.2 below.



36 J. BELLAICHE

We write as usual L = I1J &V, and By, C; for the subgroups of upper-right and lower-
left coefficients of V; since elements in I" have upper-right and lower-left coefficients in B,

and © does not affect non-diagonal coefficients, we have By C B, C; C B.

Corollary 6.3.5. If p is dihedral, and p is a well adapted (t,d)-representation, then:

(6.3.4) There exists \ € s(IF%) such that the subgroup V of (g g) is stable by the
0

map (¢§) = ()\—Olb AOC). In particular By = C;.

(6.3.5) One has W (F)1 + W (F)I, + W (F)IZ + W (F)tr (V2) + W(F)B; = A.
(6.3.6) The A-module generated by By is B.

Proof — By definition of a well adapted representation, the group G contains a matrix
(S&) s(()ﬁ)) with s(By~1) € [F7. The conjugation by that matrix stabilizes I', L, and V,
and is given by (28) — (,%, i‘f) with A = s(8y~1). The first part of (6.3.4) follows and
we have C; = A\2B;. Since B; is a Zp-module, and A € Z;, one gets C'1 = By.

By (5.2.5), W(F)tr (G) = A. Every element g in G can be written either g =~ ()61 /\02 ) or
g=" (;)2 %1) with Ay, A2 € s(F*) C W(F). We can write y =6~ (¢ %), with (¢ %) € L.
In the first case, we have trg = (A1 — A2)a + (A1 + X2)V/1 + a2 + be; the first term on the
RHS is in W(F)I;, and the second in W (F)1+ W (F)P = W(F)1+ W (F)I7 + W (F)tr (V?).
In the second case, we have tr (g) = A2b + Aic € W(F)B;. Formula (6.3.5) follows.

Finally, any g € G’ can be written g = ()E)l /\02) as above, and the anti-diagonal part of

g is ( /\gc Aéb) which belongs to < AOB AOBI>. Recalling that by definition G’ generates
1

(é ﬁ) as an A-module, we get AB; = B. |

6.4. The structure of L when the projective image of p has order 2. That is, we
consider the case where p = 1 @z is reducible, with x? = x2 (but still x; # x2 by (5.2.2)).

In this case, there is nothing more to say than what we have already said:

Theorem 6.4.1. Let (II, p,d,t) be an admissible pseudo-deformation such that the pro-
A
C

representation. Then there exists a closed subgroup Iy of m, and a closed subgroup V of

(g g) such that

and

jective image of p has order 2 and let p : Il — R*, R = ﬁ) a well adapted (t,d)-

L=5LJ&V
(6.4.1) [V,V]C L1 J,
(6.4.2) L[J,V]CV,
(6.4.3) tr (V2)I, C I,
(6.4.4) tr (V?)V C V,
(6.4.5) I} C I,
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(6.4.6) W(F)1 + W (F)I; + W (F)I? + W (F)tr (V?) = A
(6.4.7) AB, = B.
(6.4.8) AC, =C.

Conversely, if R = <A B) is a faithful GMA over A, I, is any closed subgroup of

c A
0 B L . "y
m, and V any closed subgroup of C 0 satisfying the eight conditions above, then there

exists an admissible pseudo-deformation (I1, p, t, d) with p of projective image of order 2, and

a (t,d)-representation p : I1 — R* such that the Lie algebra attached to p is L=1J ® V.

Proof — For the direct sense, if p is well adapted, and G, I', L attached to p, then L is
decomposable by Corollary 6.2.2, so L = I;J ® V and since L is the Lie algebra of T, it
satisfies the first five given conditions by Prop. 4.9.2. Moreover L satisfies the last three
conditions by Corollary 6.3.4.

Conversely, if L = I;J & V with I; and V satisfying the eight conditions above, then
by (6.4.1) to (6.4.5) and Prop. 4.9.2, L is a Lie subring of (radR)? and T' := ©71(L) is a
closed subgroup of SR! whose Lie algebra is L. Let G be the diagonal subgroup {1, J} of

GLy(F). It is clear that the conjugation by the subgroup s(G) of R* normalizes L, hence T'.

We can thus form the closed subgroup G := I's(G) of R*, a semi-direct product of s(G) by
I'. The composition G — s(G) ~ G C GLy(F) is a representation p : G — GLy(FF) which is
the sum of two distinct characters and whose projective image has order 2.

The restriction (¢,d) to G of the maps (tr,det) on R is a pseudo-representation over G.
We claim that (G, p,t,d) is an admissible pseudo-deformation. The only condition that is
not trivial to check is that the closed W (IF)-algebra generated by tr (G) is A. Let us call this
W (F)-subalgebra by A. Since tr (1) = 2, A contains W (F)1. Since tr (0~ (JI,)J) = I,
A contains W(F)I;. Also A contains tr ('), hence it contains the closed sub-pseudoring
generated by the elements tr (y) — 2, v € T', that is, it contains P by Cor. 4.5.2. Therefore
A contains W(F)1 4+ W (F)I, + W (F)P = W (F)1+ W (F)I, + W (F)I? + W (F)tr (V?), which
is A by (6.4.6). This concludes the proof of the claim that (G, p,t,d) is an admissible
pseudo-deformation.

Let us define p as the inclusion map G — R*. Then trp = t, detp = d. We claim
that Ap(G) = AG is the full algebra R. By Lemma 2.4.5, we know that Ap(G) = AG is

a sub-A-GMA é, Z of R, where B’ is a sub-A-module of B and C’ a sub-A-module
of C. By definition, B’ contains B; and C’ contains C1, so (6.4.7) and (6.4.8) imply that
B’ =B and C' = C, so AG = R. Tt follows that p : G — R* is a (t, d)-representation.
It is clear that the Lie algebra attached to p is L, which proves the converse part of the

theorem. 0

6.5. The structure of L when the projective image of p is cyclic of order > 2.
That is, p = x1 @ x2 with x? # x2. In this case, we shall only determine the structure of
the Lie algebra W (F,)L where F, is a large enough subfield of F.
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Theorem 6.5.1. Let (IL, p,d, t) be an admissible pseudo-deformation such that the projec-

tive image of p is cyclic of order m > 2 and let p: 1l - R*, R = é ﬁ) a well adapted

(t,d)-representation. Let F, be any subfield of F such that ged(m,q — 1) > 2 (a condition
always satisfied when Fq =T ).
Then there exists a closed W (F,)-submodule I) of m, and closed W (F,)-submodules By

N
of B and Cy of C such that W(F,)L = (é} ?1) and
1 I

3) WE)L+W(E)L +W(EI2=A
5.4) W(F)B; = B and W(F)C; = C.

Conversely, if I, By, Cy are W (F)-submodules of m satisfying those three conditions,
L B
C: L
that the projective image of p is cyclic of order > 2 and a (t,d)-representation p : I — R*

such that the Lie algebra attached to p is W (F)L.

0
and L = ( > , then there exists an admissible pseudo-deformation (IL, p,t,d) such

Proof — Let go € II be such that p(gg) generates the group G modulo scalar matrices, and
let Ao, 1o be the eigenvalues of p(go). Since the group G' modulo scalar matrices has order
> 2, one has \g/ug # 1. By Cor. 6.2.2, L is decomposable, so we can write L = I1J &V
as usual, and by Cor. 6.2.3 (applied with n = 1), W(F,)L is even strongly decomposable,
W(Fq)ll W(Fq)Bl
) W(F,)C:w W (Fg)I
W(F,)B:1, C1 = W(F,)C1. By Prop. 4.9.2, one has [V, V] C I J, which gives after taking
the W (F,)-modules generated by the two terms of that inclusion, Blé'l C fl; one has
I,[J, V] C V which gives similarly I,B, C By, I,C; c Cy; and I$ C I, which gives ff’ cl.
By Prop. 6.3.4, W (F)1 & W (F)I; ® W (F)I? ® W (F)B,C; = A, and since B,C; C I, one
has simply W (F)1@W (F)I, @W (F)I? = A. Since W (F)B; is stable by W (F)1, it is stable
by A, i.e. an A-module. But by Prop. 6.3.4, the A-module generated by By, or by W (F)B;
is B. Therefore W(IF)B; = B and similarly W (F)Cy = C. This completes the proof of the

direct sense of the theorem.

0
and we can write W(F,)L = ( ) . Let us set I := W(F)I;, B; =

= =0
él ?1) satisfying the four given conditions. Then by
1 1

Prop. 4.9.3, T' := ©71(L) is a closed subgroup of SR! of Lie algebra L (note that the
condition (4.9.12.2), i.e. ;B € B and I,C C C, is automatically satisfied since B and

Conversely, suppose L = <

C are A-modules). Let G be any group of diagonal matrices in GLy(FF) whose quotient
modulo scalar matrices is of order > 2. It is clear that s(G) normalizes L, hence I, and we

can form a subgroup G :=I's(G) of R*. Then the construction of p, t, d, p and the end of
the proof of the converse is exactly as in the preceding theorem, so we leave details to the

reader. O
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6.6. The structure of L when the projective image of p is Z/2Z x Z/27Z.

Theorem 6.6.1. Let (IL, p,d, t) be an admissible pseudo-deformation such that the projec-
tive image of p is Z)2Z X Z/27 and let p : I — GLy(A) a well adapted (t, d)-representation.

There exists a closed subgroup I, of m, and a closed subgroup V of <1?1 1(1)1) such that
L=5LJo®V
and
6.6.1) [V,V] C I1J,
6.6.2) 1[J,V]CV,

(6.6.1)
(6.6.2)
(6.6.3) tr (V2)I; C I,
(6.6.4) tr (V)V C V,
(6.6.5)

6.6.5) I3 C I,

. " o . 0 b 0 Ac
(6.6.6) There exists A € s(Fy) such that V is invariant by (c O> — <)\_1b O>

(6.6.7) W(F)1 + W (F)I; + W(F)I? + W(F)tr (V) + W(F)B; = A

m
0
satisfying the seven conditions above, then there exists an admissible pseudo-deformation

Conversely, if I is any closed subgroup of m, and V any closed subgroup of (31

(I, p, t,d) with p of projective image Z/27 x Z/2Z, and a (t,d)-representation p : II —
GLy(A) such that the Lie algebra attached to p is L=1J & V.

Proof — For the direct sense, if p is well adapted, and G, I', L attached to p, then L is
decomposable by Corollary 6.2.2, so L = I;J & V and since L is the Lie algebra of T, it
satisfies conditions (6.6.1) to (6.6.5) by Prop. 4.9.2. Moreover L satisfies conditions (6.6.6)
and (6.6.7) by Corollary 6.3.5.

Conversely, if L = I1J & V with I; and V satisfying the seven conditions above, then
by Prop. 4.9.2 L is a Lie subring of My(m) and I' := ©~!(L) is a closed subgroup of SR*
whose Lie algebra is L. Let G be the subgroup of GLy(FF) containing all matrices of the
form (£9), (§ %), (2%), (° =)*). This is a subgroup of order 4|F*| which contains the

z 0 0
subgroup of scalar matrices F* of GLy(F), and the quotient G/F* is Z/2Z x Z/27Z. The

Lie algebra L is stable by conjugation by s(G) by (6.6.6). Therefore, so is I', and we can
define a closed subgroup G := I's(G) of GLy(A). We thus have a split exact sequence
1T — G — G — 1. We define a representation p : G — GLg(F) by composing the
natural map G' — G with the inclusion G — GLy(FF). It is clear that p has projective image
isomorphic to Z/27Z x 7./27. We define a pseudo-repreresentation (t,d) on G by restricting
the trace and determinant map on GL2(A) to G.

We claim that (G, p, t, d) is an admissible pseudo-deformation. We just need to check that
the closed W (F)-algebra A generated by t(G) is A. Since A contains ¢(T') and (JT'), we see
as in the proof of Theorem 6.5.1 that A contains W (IF)1+W (F)I, + W (F) I3 + W (F)tr (V).

Moreover A contains tr ((93)T) and tr((9 *)T). When v = (¢4) runs in I' = ©7Y(L),
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(9%) runs in V. Thus for any (9§) € V, tr ((93)7) = Ae+band tr ((9 ) 7y) = —-Ac+b
are in A, and therefore b € A. Thus A contains W (F)B; as well. By condition (6.6.7),
A = A, and this proves the claim.

Let p : G — GL3(A) be the inclusion map. The representation p is of trace ¢ and
determinant d, and Ap(G) = M3(A) by Lemma 2.4.5. So p is a (¢, d)-representation. The
image of p is G, its intersection with SR! is T, and the Lie algebra of I is L. This proves

the converse part of the theorem. O

6.7. The structure of L when the projective image of p is a non-abelian dihedral

group.

Theorem 6.7.1. Let (I, p,d, t) be an admissible pseudo-deformation such that the projec-
tive image of p is a non-abelian dihedral group of order 2m > 4, p : Il — GL2(A) a well
adapted (t,d)-representation. Let F, be any subfield of F such that ged(m,q —1) > 2 (a
condition always satisfied when Fg =TF).

= =0
L ffl)

Then there exist closed W (F,)-submodules I) and By of m such that W (F,)L = (B 7
1 I

and

Conversely, if I and By are W (F)-submodules of m satisfying those four conditions, and

AN
L = (él ?1) , then there exists an admissible pseudo-deformation (IL,t,d, p) such that
1 N

the projective image of p is dihedral of order > 4 and a (t,d)-representation p : II — R*
such that the Lie algebra attached to p is L = W (F)L.

Proof —  We show as in the proof of Theorem 6.5.1 than W(F,)L is strongly de-
composable, and we can thus write with the usual notations W(F,)L = W(F,)I; ®

0 WE)B ) iR e
(W(Fq)cl 0 > By Prop. 6.3.5, By = Cy. Thus, setting I, = W(F,)I1, By =

L B
By I
gives after taking the W (F,)-modules generated by the two terms of that inclusion, B% cIi;
one has I[J, V] C V which gives similarly LB, C Bl, and I3 C Iy, which gives I:f c I.
By Prop. 6.3.4, W (F)1+ W (F)I, + W (F)I? + W (F)B3B, = A, and since B? C I, one has
more simply W (F)1 + W (F)I, + W (F)I? + W (F)B, = A. This completes the proof of the

direct sense of the theorem.

0
W (F4)Bi, one has W(F,)L = < ) . By Prop. 4.9.2, one has [V,V] C I J, which

= =0
él ?1) satisfying the four given conditions, then by
1 N

Prop. 4.9.3, T := ©71(L) is a closed subgroup of SR! of Lie algebra L. Let G be for

instance the group of all diagonal and anti-diagonal matrices in GLo(F). It is clear that

Conversely, suppose L = (
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5(G) normalizes L, hence I', and we can form a subgroup G := I's(G) of R*. Then the
construction of p, ¢, d, p and the end of the proof of the converse is exactly as in the

preceding theorem, so we leave details to the reader. O

6.8. Structure of L in the large and exceptional image case.

6.8.1. Results. This is the simplest case insofar as the description of L is concerned, but

the case where the proofs are the hardest.

Theorem 6.8.1. Let (II, p, t,d) be an admissible pseudo-deformation. We assume that p
is either of the large image type or of the exceptional type.

Let Fy be a subfield of F. If p is octahedral (resp. tetrahedral, resp. icosahedral), we
assume that Fy contains cubic roots of unity (resp. either cubic or quartic roots of unity,
resp. quintic roots of unity). We put no condition on Fy when p has large image.

Then there exists a (t,d)-representation p, and a closed W (F,)-submodule I, of m such
that

PN
wegr= (3 7).
and
(6.8.1) I2 C I.
(6.8.2) W(F)I, = m.

Remark 6.8.2. Note that if we take F, = I, and I large enough as we always do, the
hypothesis of the theorem are obviously satisfied. Thus, the theorem describes the structure
of W(FF)L for F large enough.

Corollary 6.8.3. With the same notation as in the above theorem, one has T' = ©~1(L).

b) in SLy(A) such

In the case where Fy = Fp,, T' is precisely the group of matrices (CCL d

thatCLEl—f—jl,bEfl,CEil,d€1—|—i1.

Proof — This follows from the preceding theorem and Prop. 4.8.2. g

Remark 6.8.4. In the appendix of [20], Boston proves that if G is a closed subgroup of
SLa(A) such that the image of G in SLa(A/m?) is SLa(A/m?), then G = SLy(A). This
results follows easily from our classification result Theorem 6.8.1 (indeed, we are in the large
image case so we can take F, = IF,, and the hypothesis implies that I maps surjectively
to m/m?, thus is m, which implies T' = SL3(A) by the corollary and G' = SLy(A)). Tt does

not seem that Boston’s method generalizes to the other cases covered by Theorem 6.8.1.
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6.8.2. Proof of Theorem 6.8.1. We fix (II, p,t,d) an admissible pseudo-deformation, and
we assume that p is either of the large image type or of the exceptional type. We call Z

the subgroup of scalar matrices in GLy(F), isomorphic to F*.

Lemma 6.8.5. There exists a (t,d)-representation p such that:

e if p is octahedral, then G C ZGL2(F,) and there exists an element gy € II such
that p(go) = (5(6\0) 0 )> with Ao, o € F*, (Xo/p0)® =1, Xo # pio;

s(po
e if p is tetrahedral, then G C ZGLy(F,) and there exists an element go € II such

that p(g0) = (*0°) L0y ) with Ao, € F*, (o/po)* =1 o7 (o/po)* = 1, and
N # 1w
e if p is icosahedral, then G C ZGLy(F,) and there exists an element go € I such

that p(go) = (8(6\0) 5(20)> with Ao, po € F*, (Mo/po)® =1, Ao # po;
e if p has large image but the projective image of p is not isomorphic to PSLy(Fs3)

or PGLy(F3), then SLy(F,) C G and there exists an element go € II such that
s(A 0
plg0) = ("0 sy )» X # 183

Proof — The image of G on PGLy(F) contains an element of order 3 in the octahedral
case (a 3-cycle in Ay4), an element of order 3 and of order 4 in the tetrahedral case (a 3-cycle
and a 4-cycle in Sy), an element of order 5 in the icosahedral case (a 5-cycle in As), and

an element of order > 2 in the large image case. Choosing an element gy such that p(go)

maps to that element, we can diagonalize p(go) and write p(go) = ()(\)O /?) Choosing
0

a p adapted to (go, Ao, po) ensures that, in each case, the condition regarding p(go). For

such a p, p(go) = ()(\)0 /?0)' On the other hand, we know that in the conjugacy class

of p there is a representation p’ satisfying p'(II) C ZGLy(F,) in the exceptional cases and
SLs(F,) C G in the large image case, and p'(go) = (/})0 /?0>' (This is because, in the
exceptional case, there is a conjugate of p whose projective image is defined over F,, and
after a base change over F,, we may suppose that p'(go) is diagonal). The agreement of
p and p’ on go implies that they are conjugate through a diagonal matrix. Conjugating p
by a diagonal lift of that diagonal matrix doesn’t affect the condition on p(gg) but ensures

that G = p/(II) satisfies the required condition. O

Since in any case the eigenvalues \g and pg of p(gop) have distinct squares, Prop. 6.2.3
applies and ensures that W (F,)L is strongly decomposable. That is, there exists three
W (F,)-submodules of A, fl, B; and C; such that

= 0 B
W(F,)L=1Jo (C‘l 0).

Sele]

v 6

21 QI

Lemma 6.8.6. Let g = (
GLy(A) of g such that

) € GLy(F,) N (GZ). Then there exists a lift g = (O‘ B) €

(683) a231 C Bl, ’yZBl C C’l, Oé’yél C I~1.
(684) 6261 - Bl, 6501 - I~1, (526 - Bl.
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(685) Oéﬂjl C Bl, "y(;fl C 01.

Proof — By hypothesis g = g1z with g1 € G and Z a scalar matrix in F*. Let g; be any lift
of g1 in G, z = s(Z) which is a scalar matrix lifting z, and set g = g1z € GL3(A) which is a
lift of §. Then gLg~ ' = gngf1 = L since z is scalar and g; € G. Moreover, if g = <3‘ g),
set ¢ = ( 0 _B) = g ldet(g). Note that det(g) = det(g;)det(z) = s(det(g))s(det(2))

- «

by (5.2.4), so det(g) = s(detg) € W(F,)*. Then gW (F,)Lg' = gW (F,)Lg~' = W(F,)L
since multiplication by det(g)~! stabilizes W (F,)L.

The first line of the lemma then follows from the computation g ()¢ = (:3} Z‘i),
the second line from ¢ (99) ¢ = (§§ :22), and the last line from gJg~! = (—2*%5 _2*a5)
(I
Lemma 6.8.7. There exists an element g = (;X ’g) € GLy(F,) N (GZ) such that a8 # 0

(resp. ay # 0, resp. Bd # 0, resp. 76 #0.)

Proof — 1In the large image case, we can take for instance g = (1 1) € G N GL, (Fp).

We assume that we are in some of the exceptional cases. It suffices to find one matrix ¢;
in G satisfying @ # 0 for then since G C GLs (Fy)Z, a suitable product of g1 by a scalar
matrix will belong to GLy(F,) and obviously will still satisfies the required condition.

If all matrices in G had 8 = 0, then the representation p would be reducible. Among the
matrices such that 3 # 0, if there is one with @ # 0, we are done. Otherwise, all matrices
with 3 # 0 are of the form (2 ?) and their square is (Bj 5*5). Now # is not 0 because
the matrix is invertible, and if § # 0 either, we are done. Otherwise, this means that all
matrices with 3 # 0 have both & and § equal zero, that is are antidiagonal. But then it
is easy to see that G is contained in the normalizer of the diagonal torus, a contradiction
with the hypothesis that G is exceptional.

|

Lemma 6.8.8. Let X be a closed W (F,)-submodule of A. Let x € A* whose image in
A/m =T lies in F,.

o [fzX C X, thenzX = X.

o If22X =X, then X = X.

Proof — Replacing = by 27!, the hypothesis becomes X C zX, and the contention
is still that X = zX. Then by induction X C zX C --- C "X for all n > 0. Writing
x = s(&)+m with & € F, the reduction of z and m € m, we get 27" = s(z) (mod m"vr(@)+1)
and so X C 2X C X +m™»@+1X_ Since X is a closed subgroup, the intersection of all
X +m™r @D+ X when n > 1is X, and we get X C X C X, as desired. This proves the
first point.

For the second point, note that if 22X = X, then "X = X. Choosing a sequence of

positive integers n which converges to 1/2 p-adically gives the result. (|
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Lemma 6.8.9. There exists x,y € A* such that the images of x and y in A/m =TF are in
Fy, By =z, and C, = yI~1.

Proof — Pick a matrix g as in Lemma 6.8.7 such that @y # 0. By Lemma 6.8.6, there
is a lift u € A* of &y such that uB; C I;. Also pick a matrix §' as in Lemma 6.8.7 such
that @8’ # 0. By Lemma 6.8.6, there is a lift v € A* of &f such that vI; C B;. Thus
wvl; € uBy C I;. The inclusion wvl; C I is an equality by Lemma 6.8.8 (note that the
image of uv in A/m is aya/’ € IFZ) Therefore, uB; = I; and the first result follows with

x = u~!. The second is similar. O

Now let t = \/zy=1/s(xy~!) € A*. We check easily that § = yt s(xy~1). We conjugate
p by the diagonal matrix (}¢). This doesn’t affect any of the properties of p already
stated, and doesn’t change fl but changes Bl into %Bl = %fl and C’l into tC’l = ytfl =

yt s(zy~')I;. Replacing x by £, we get:

(6.8.6) There exists © € A* such that the image of x in A/m =F is in F,, such that
By =Cy =al,.

Now we again pick a matrix g as in Lemma 6.8.7 such that @y # 0. By Lemma 6.8.6,
for some lift o, v of &, 7, one has o2B; C By and 42B; € Cy = By. By the first point of
Lemma 6.8.8, this means 01231 = Bl and 7231 = Bl, and by the second point aBl = Bl
and fyBl = Bj. Therefore avBl = B;. On the other hand, by Lemma 6.8.6, a’yBl c I,
and thus Bl cI 1. The converse inclusion I 1 C Bl is proved similarly using a matrix with
af # 0. We have therefore proved:

N
(687) Br=Cy =@y, L= (2 ﬁ) .
From (4.9.12.2), one has I, B, C By, that is

(6.8.8) I} C I;.

Proposition 6.8.10. One has W (F)I; = m.

Proof — By [11, Theorem 7.16(b)], it is enough to prove that the natural composed map
f:W(F)I, = m — m/m? is surjective. To prove this, it is enough to prove that for each
non-zero linear form [ : m/m? — F, the composition /o f : W(F)fl — [ is surjective, which
is the same as being non-zero. Such a linear form ! (geometrically, a tangent vector to the
unique closed point of Spec A) induces a surjective morphism of rings A — A/m? — F[e]
where the second map sends m € m/m? to I(mm)e. We need to prove that the image of I;
in that map is non zero. By functoriality (see §4.8.1), the image of I; in F[e] is the same
as the I; obtained for the admissible pseudo-deformation (II, 5, ¢, d') over F[e], where t', d’
are t,d composed with the map A — Fle].

In other words, we have reduced the proof of the proposition to the case A = F|e], and in
this case we just have to prove that I =# 0. We proceed by contradiction. Assume I, =0.

Then by (6.8.7), L =0, so I' C ©!(L) is the trivial group and the reduction map G — G
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is an isomorphism. The morphism r : G ~ G C GLa(A) is thus a deformation to A = F[e]
of the tautological representation G C GLa(FF). Such deformations are parametrized by
HY(G,V), where V is the trace-zero adjoint representation of the tautological represen-
tation of G, and this cohomology group is trivial by Prop. 3.2.1. Therefore, the trace of
r is constant, that is tr (G) C F, in contradiction with the hypothesis (5.2.5) that tr (G)
generates A = Fle] as an F-algebra. O

Together, this proposition, (6.8.7) and (6.8.8) complete the proof of Theorem 6.8.1.

7. CONGRUENCE-LARGE IMAGE

This section is not used in the rest of the paper. Its aim is to establish a connection
between our results on the structure of the image of pseudo-deformation and a series of
recent results by Hida [12], Lang [15] and Conti-Iovita-Tilouine [8] concerning the image
of the Galois representation carried by certain p-adic families of modular forms, ordinary
in the work of first two named authors, of positive slope for the last group. Our setting
is more general as we work with families of 2-dimensional representations of arbitrary pro-
finite groups, over arbitrary noetherian compact local domain. The aim of this section is to
show that we can obtain, in this general setting, results that are quite close (and sometimes
stronger) to those proved for families of modular forms.

In all this section, A is a compact noetherian local ring with maximal ideal m and residue
field F finite of characteristic p > 2. We also assume that A is a domain, of fraction field
K.

7.1. The notion of congruence-large image.

Definition 7.1.1. Let R be a GMA over A. If I is an ideal of A, the principal congruence
subgroup I'r(I) of I is the subgroup of R* defined as the kernel of the map SR — (R/IR)*.
A closed subgroup of R* is called a congruence subgroup if it contains T'r(I) for some

non-zero ideal I of A.

By definition, I'r(I) is the set of matrices (2 %) in R such that a,d =1 (mod I), b € IB,
c € IC and ad — bc = 1. When R = M3(A), we retrieve the usual notion of the group of

matrices congruent to the identity modulo I.
Lemma 7.1.2. Let R be a topological GMA over A, T a closed subgroup of SR'. Then T’

0
is a congruence subgroup if and only if L(T") contains (I I) for some non-zero ideal T

of A.

Proof —  First, a trivial computation gives ©(T'g(I)) = (] 5)0, hence L(I'g(I)) = (1 5)0.
By Prop 4.8.2, ©~! ((f f)o) is the unique closed subgroup of SR' whose Lie algebra is
(£ hence ©7! ((f f)o> = T'g(I) (this can also be obtained by a direct computation).
Let T be a closed subgroup of SR'. If T' contains I'g(I), then L = L(T') contains
O(Tr(I)) = (4 })0. Conversely, assume that L(I') contains (1 f)o. Then Lo contains

0
(ﬁ {j) and I' = ©!(Ly) by Theorem 4.7.3, so I' contains I'g(I?). O
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Lemma 7.1.3. Let II be a group, (t,d) a 2-dimensional pseudo-representation of I over
A which is not the sum of two characters. Let Ry and Ro be two faithful GMA over A,
finite-type as A-modules, and let p1 : Il — R}, p2 : Il — R3 be two representations both of
trace t and determinant d. Then p1(IT) is a congruence subgroup of Ry if and only if p2(IT)

is a congruence subgroup of Rs.

Proof — By Lemma 2.2.2, we can assume that both Ry and Ry are sub-algebras of Ms(K).
Seen as representations over K, p; and ps have the same trace and determinant, hence are
conjugate. Let g € GLo(K) such that py = gp1g~ .
there exists z € A — {0} such that zgR1g~! C Ra.
If y —1 € IzRy, we have g(y—1)g~! € IzgR1g~! C IRy, and hence gyg~* € 1+ IRy C
Ra, so g(y —1)g~! € Tg,(I). Therefore, T'r,(I2z) C g 'T'g,(I)g, and it follows that if

p2(IT) contains a congruence subgroup of Rj, p1(II) = g~ !p2(Il)g contains a congruence

Since Ry and R, are of finite type,

subgroup of R}. ]

Definition 7.1.4. We say that an two-dimensional pseudo-representation (¢, d) of a group
IT over A has congruence-large image if for one (equivalently for any) representation p :
IT — R*, with R a faithful finite-type GMA over A, such that tr p = ¢ and det p = d, p(II)

is a congruence subgroup of R*.
7.2. Sufficient conditions for a congruence-large image.

Definition 7.2.1. We say that a representation p : Il — GLo(FF) is regular if there exists

an element go in II such that p(go) is diagonalizable of eigenvalues A and p in Fj, with
A # 2.

Remark 7.2.2. If p is regular, it has an element of order > 2 in its projective image,
which therefore cannot be cyclic of order 2, or dihedral of order 4. In the other cases
(cyclic of order > 2, dihedral of order > 4, large or exceptional), there exist many regular
representations, for instance all that have I, as field of definition.

The notion of regularity is related to the notion of an H -reqular representation of Lang
([15]) and of an (H, Zy)-regular representation of Conti-Iovita-Tilouine of [8]. Let us recall
that H-regular means that H is a subgroup such that there is an element gy € H such
that p(go) is diagonalizable with distinct eigenvalues A, p, while (H,Z,)-regular requires in
addition that A\? # p? and A\, u € F,. It is obvious that (H, Z,)-regular (for any H) implies
regular in our sense, while regular implies II-regular, but not in general H-regular for a

proper subgroup H of II.

Theorem 7.2.3. Assume that A is a domain, and that I1 satisfies Mazur’s p-finiteness
condition. Let (IL, p, t, d) be an admissible pseudo-deformation such that p is regular. More-

over, we assume that

o If p is reducible, t is not the sum of two continuous characters I1 — A*.
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o If p is dihedral, then if II' is the unique subgroup of index 2 of II such that p(Il") is

abelian, t;ry is not the sum of two characters.

Then there exists a subring Ag of A, which is a compact noetherian local ring of maximal

ideal m N Ag, and an open subgroup Iy of I, containing Ker p, such that
[ t(Ho) C Ay, d(Ho) C Aa

o (Ilo, pji1y» tyry > dir1,) is an admissible pseudo-deformation over Ao, and has congruence-

large image.

Proof — We choose a gy € II as in the definition 7.2.1 and a (t, d)-representation p :

II - R* with R = é ﬁ) adapted to go. In particular, if Dy denotes the subgroup

of p(II) generated by p(go), then Dy is a group of diagonal matrices and s(Dg) C G by
Theorem 6.2.1. We write 5(g0) = (5 ).
L B

0
Cy Il> with I;, B; and

By Cor. 6.2.3, L is strongly decomposable. We write L = (
C1 closed subgroups of A, B and C respectively.

‘We define
Ay =27, + I + I}

By (4.9.12.3), Ay is a subring of A, and it is clearly a compact local ring of maximal ideal
my = pZy + 11 + I? =mn Ag. By (4.9.12.2), both B; and C; are Ag-modules.
We define

Iy = p~ ' (Dy).

This is obviously a subgroup of finite index in II, containing Ker p. The restriction of p to
IIj is a reducible representation, sum of two distinct characters.

We claim that the closed Z,-subalgebra of A generated by ¢(Ily) is Ag. Indeed, let us call
Aj, that subring. Any element of ITy can be written s(d)~y, withd € Dy andy € T C ©~1(L),
and thus has trace in Z, + I1 + P = Z, + I + I} (by (4.9.10) and (4.9.12.1)). Thus we
see that t(Ilp) C Ao, hence Ay C Ap. On the other hand, Aj contains Z, by definition.
It therefore contains tr (y) — 2 for every v € T', hence it contains P by Cor. 4.5.2. And it
contains tr (s(go)"T") for any n, hence I;. Thus Ay = Af.

It follows easily that (Ilo, pjm,, 11, dj1,) i an admissible pseudo-deformation over Ay.
By Cor. 5.3.2, and since Il satisfies the p-finiteness condition (because II does), Ay is a
noetherian ring.

We define Ry as the Ap-sub-GMA é,(l) ﬁ; of R. Since this is a sub-GMA of Ms(K),
Ry is faithfull provided that By # 0 and Cy # 0, and this follows from the hypothesis made
on (t,d). One has clearly p(Ilg) C Rj. Moreover p(Ily) generates Ry as an Ag-module,

. . . . A
since clearly the s(gg)™ generates the subring of diagonal matrices ( 00 f(l) ) of Ry, and
0
p(Ilp) contains T', whose projection on anti-diagonal matrices topologically generates as an

0 B

o, 0 ) Thus, the restriction pj, of p to

additive group, hence as an Ap-module, V = (

o is a (), , dji1, )-representation.
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Its image p(Ilp) contains I', hence also 'y = ©7!(Lsz). From the description of L,

it follows that L, = (Blcl LB

1Ly 3101)' Since I, contains B1Ci, Ly contains BiC1J ®

2
( B 002 31001 D B1C1 RY, and it follows that the image of p|11, contains the congruence
1%
subgroup I'g, (B1CY). O

Remark 7.2.4. With the notation of the preceding theorem and its proof, let K be the
fraction field of A, and K be the fraction field of Ag. The representation p : II — R*
induces a representation px : II — GLy(K) since R ®4 K = My(K). Similarly, pr, :
IIy — R§ induces a representation pg, : IIg — GL2(Kj). The representations pg, and px
have the same trace and determinant on IIy. Therefore there exists g € GLy(K) such that

1= pr, on Iy. The conclusion of our theorem implies that px (Ilp) contains 1+ J Ry

9Pk g
for some non-zero ideal J. It follows from Lemma 7.1.3 that px (IIp) contains 1+ J'M3(Ao)
for some ideal J'. Hence gp(Ily)g~" contains the congruence subgroup I'y,(4,)(J").

This is the way the conclusion of the main theorem of Lang [15, Theorem 2.4] is stated,
as well as the main theorem of [8].

On the other hand, the hypotheses of Lang are that II = Gg, A a local domain finite
over the Iwasawa algebra Z,[[T]], (¢, d) the pseudo-representation carried by a Hida’s family
which is residually absolutely irreducible — a very special case of the situation we are
studying. She assumes in addition that the family is not CM, an hypothesis which is
equivalent (under other running assumptions) to our assumption that ¢/ is not the sum
of two characters. Finally she is assuming that (¢,d) is Ip-regular, an hypothesis which
does not imply our regularity assumption (it allows, it seems, for some p with projective
image dihedral of order 4), nor is implied by ours.

To summarize Theorem 7.2.3 implies the congruence-large image result of [15, Theorem
2.4] in many cases though not in all cases, and it implies the congruence-large image result
of [8] in all cases.

In the references [15] and [8], the congruence-large image result are made more precise
by an explicit description of the subring Ag of A and the subgroup IIy of II, in terms of
the conjugate self-twist of (t,d) (see [15, definition 2.1]). Our method also gives an explicit
description of IIy and Ag, though a different one. It would be interesting to compare these

descriptions.

8. THE ESSENTIAL SUBMODULE ATTACHED TO AN ADMISSIBLE PSEUDO-DEFORMATION

In this section, we assume that A satisfies the condition (5.1.1). We also assume through-

out that p > 2.

8.1. Definition of the essential submodule.

Definition 8.1.1. Let (IL, p,¢,d) be an admissible pseudo-deformation over A. Let p :
IT — R* be a (t,d)-representation, and define G, ', L accordingly, with Ly the derived Lie
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algebra of L. We call S the set of elements g € G such that tr(g) = 0 and —det(g) is a
square in A*. We shall say that (II, p, ¢, d) is weakly odd if the set S is non empty.

In all this section we shall assume that (II, p, t, d) is weakly odd.

Definition 8.1.2. With the same notation as in the preceding definition, define

e»—ZW tI‘ ng CA
geSs

We call this W (F)-submodule Aegs of A the essential submodule of A attached to (I, p, t, d).

Note that the condition of being weakly odd, and the W (FF)-submodule Aegs of A depend
only on (IL,¢,d), and not on the (¢,d)-representation p : II — R*, for if p' : I — R is
another (¢,d)-representation, then there exists an isomorphism f : R — R’ preserving
trace and determinant such that p’ = f o p; the group G’ = p/(II) is the image f(G), and
"= f(T), L' = f(L), Ly = f(Ls). Tt is clear that f realizes a bijection between S and S’

rr/
g'L5 of

and for every g € S a bijection between the subgroups des gLs of R and Zg’ES’

R’. Since f preserves traces, it follows that
Acss ZW Ytr (gL2) = ZW Ytr (g'Ly).
geSs g’'es’

The real motivation for introducing the submodule Aqg is its essential role in analyzing
the density of modular forms modulo p, see section 10 below. Meanwhile, A can be
considered as a very rough measure of how big the image G of the pseudo-deformation is:
the bigger G, the bigger I', L and Ls, and the more numerous the g € G such that ¢ = 1,
hence the bigger Aess. In this sense, most of the results below can be seen as big image

theorems, though of a different type than the big image theorem of the previous section.

Lemma 8.1.3. Let (I, p, t, d) be an admissible pseudo-deformation and p : 11 — R* a (t,d)-
representation such that J = (§ %) € G (and therefore L = I J ® V is decomposable).

Let Ay and Vy be the subgroups of diagonal and anti-diagonal matrices in Lo.
(8.1.1) One has Ly = Aa & Va, Ay =[V,V] and V4 = [A, V].
One can write Ay = IsJ for some closed subgroup I> of I, and one has a decomposition:
(8.1.2) Ly = LJ & V.
(8.1.3) One has Iy C I, Ay CA, Vo C V.

(8.1.4) For every v € ', one has tr (JyLy) = I and tr (JyLs) = I5.

Proof — One has Ly = [L,L] = [A® V, A& V] = [V,V] + [A,V] since [A,A] =
(two diagonal matrices commute). But [V, V] consists of diagonal matrices, and [A, V] of
antidiagonal ones. This proves (8.1.1) and (8.1.2). Since Ly C L, (8.1.3) is clear

Let us prove (8.1.4). By decomposition (8.1.2), one has tr (JyLi) = tr (y)I; + tr (JyV),
and by Lemma 4.8.1, tr (y)I; = I;. Tt therefore suffices to prove that tr (JyV) C I;. For
this, let us denote by € € V the anti-diagonal part of v or of O(7), and by n any matrix in
V. One needs to show that tr (Jyn) = tr (Jen) € I;. Since € and n are anti-diagonal, one
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has tr (Jen) = —tr (Jne), and thus tr (Jen) = tr (J[e, n])/2. Since [V, V] = Ay = I5J, one
has [e,n] € IoJ and one gets tr (Jen) € tr (JJI3) = I C I, which completes the proof of
(8.1.4) for Ly. The proof for Ly is exactly the same. O

Lemma 8.1.4. If (I, p, t, d) is an admissible pseudo-deformation over A, and f : A — A’ a
surjective morphism of rings, then A’ is a again a compact semi-local ring (for the quotient
topology), and settingt’ = fot,d = fod, (I, p,t',d") is an admissible pseudo-deformation
over A'. Moreover, if Acss (resp. AL,,) is the essential submodule of (11, p,t,d) (resp. of
(L p,t',d")), then f(Aess) = AL

ess*

This is clear.

In particular, if A; e is the essential sub-module of (II, 5;,¢;,d;), then the projection
A — A; sends Aggs onto A; oss. Note however that the map Aess — H:Zl A; css is not in
general surjective.

Fix an admissible pseudo-deformation (II, g, t,d) and p : II — R* a (t, d)-representation.

Definition 8.1.5. Let S be the set of elements g € G such that tr (§) = 0 and — det(g) is

a square in (A/m)*.
Note that the reduction map G — G obviously induces a map S — S.

Proposition 8.1.6. The natural reduction map S — S is surjective. For g € S, the
subgroup tr (gLs) of A only depends on the image g of g in S. Moreover, for every g € S,
there exists a GMA R’, an isomorphism of A-algebras f : R — R’ preserving traces and
determinants, such that f(g) = s(A)J for some A € F*, and such that if p' denotes the
R’ -valued (t,d)-representation p' = f o p, and L}, I, are defined using p', then one has
W (F)tr (gLs) = W(F)tr (JL,) = W(F)I.

Proof — Let g € S. By (5.2.4), there exists A\ € F* such that det(g) = —\? with \ € F*.
Denotes by g; the image of the element g of (R/radR)* in (R;/radR;)*. By definition of
S, there exists an element go € II such that p;(go) = g; for i =1,...,7.

Since tr (p;(go)) = 0, the eigenvalues of p;(go) in R;/(radR;) are £\, two distinct el-
ements of F*. Let us choose a (t,d)-representation p} : Il — R;" adapted to (go, A, —\)
(Prop. 2.4.2(iii)); let us set R’ = [[_, R} and p' = [[;_, p}, and let us denote by G, I,
L', etc the group-theoretic and Lie theoretic data attached to p’. Then p'(gg) = AJ and by
Theorem 6.2.1, p'(go) = s(A\)J € G'.

Moreover, any lift g’ € G’ of p'(go) = AJ is of the form s(\)Jy with v € I, so by (8.1.4),
W(F)tr (¢'Ly) = W(F)tr (JyLe) = W(F)I,, which is independent of ¢’. There exists
(Prop. 2.4.2(ii)) an isomorphism of A-algebras f: R — R’ such that f o p = p/, preserving
trace and determinant. By definition, if g is a lift of § = p(go) in S, then ¢’ := f(g) is a
lift of p'(go) in S’, and f(L2) = L}, so that tr (gLa) = tr (¢’ L%) = I}, which is independent
of g. O
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Corollary 8.1.7. One has Acss = 505 W(F)tr (9L2) where in the summand tr (gL2), g

is an arbitrarily chosen lift of g in S. In particular, A is a closed submodule of A.

Proof — The first assertion follows from the definition of A and the proposition. Since
the Z,-module tr (gL2) is compact, so is W (F)tr (gL2). Since the set S is finite, it follows

that Aess is compact, hence closed in A. O

8.2. The key measure computation. In this subsection, we assume in addition to the
preceding hypotheses that A is an F-algebra (equivalently, that pA = 0). Therefore, in the
results stated above, each time there is a W (IF)X where X is an additive subgroup of A or
of R, it can just be replaced by FX.

For any compact group X, we denote by px the Haar measure on X of total mass 1.

We fix an admissible weakly odd pseudo-deformation (II, p, ¢, d).

Theorem 8.2.1. Letl: A — F be a linear form that is not identically 0 on A.ss. Then

(8:2.1) pn((lot)~ (F)) = E7L,

pn
where n = |G|.

Since ! does not vanish on A, then by Prop. 8.1.6, for some (¢, d)-representation p, [
does not vanish on Is. For the rest of this proof, we fix such a representation p and the
attached groups G, I', L, Lo, I5.

Since p is a surjective morphism of groups, the Haar measure ug is the direct image of

the measure pug by p. Since t = tr g o p, (8.2.1) is equivalent to:
(8:2.2) pe ((Lotrg) ™ (F)) > B2,

which is the same thing as
(8:2.3) pa ((lotrg)™'(0)) < o + 2.

To prove this, it is clearly enough to prove that

(8.24) pg ((lotrg)~1(0)NJT) < pin,
since pug(G — JT) = =1 G — JT being the union of n — 1 I'-cosets each of measure 1/n.
Let m; be the injective map I' — G, v — J~, whose image is the coset JI', and let up be

the Haar measure of total measure 1 on I". Clearly, (8.2.4) is equivalent to

(8.2.5) pur ((lotrgomy)~1(0)) < 1
Now consider the exact sequence 1 — I'y, - I' — I'/Ty — 1. By Fubini’s theorem, to
prove (8.2.5) it is enough to prove that for all v € T'/T'a,

(8.2.6) pur, ((lotrgomyy)1(0)) < 5

where mj, is the map I's — G, 72 — Jyy2 and pr, the Haar measure on I'y of total
measure 1. Since ©7!: Ly — T'y is a measure-preserving homeomorphism (Prop. 4.8.4), it

suffices to prove

(8.2.7) pur, ((lotrgomyy 0 ©71)710)) <

S =
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To simplify notation let us define the map

mJj~

h,»y:trGOmJ’YO@_ i Lo —>I‘2 — R* t—r>A,
so that (8.2.7) becomes

(8:2.8) pir, (Lo hy)~H(0)) < 2

To prove (8.2.8), we shall use the following result:

Proposition 8.2.2. Fiz v eT.
i) There exists a measure preserving homeomorphism ¥ = V. : Ly — Lo such that
g v
hyo U™t : Ly — A is Fy-affine.
(ii) The image of hy is the Fp-affine subspace tr (Jvy) + Iz of A.

Proof —

Let us define a map ¥ : Ly — Ly by setting
tr (J)
tr (7)
Let us check that U is well-defined. Write v = (a Z). First, one has tr(y) = a+d =

U(m) =m+ o(m) with o(m) = (/1 + tr (m?)/2 — 1) J.

2 (mod m), hence tr(y) is invertible in A, and the formula defining ¥(m) makes sense
as an element of R. We need to check that it is indeed in Ly. By definition, ©(y) =

((afg)ﬂ (d—l;)/2> is in L, and since L is decomposable, ((afg)/Q (d—?z)/Z) is in L; on the

other hand and one computes tr (Jy)J = (5% ,°,), so tr (Jv)J € L. One has tr (y) 1L =

L by Lemma 4.8.1, hence ttr(&]';)J is in L. On the other hand /1 +tr(m?)/2 — 1 =

> (1/2) tr(gfl )" and tr (m?) € tr (L3) and thus sends L into Ly C Lo as we see easily
using (4.3.7). Hence (/1 + tr(m?2)/2 — 1)ttrr(‘{7))(] is in Lo, so o(m) is in Ly and ¥ is
well-defined.

If m,m’ are in Lo C m?R, and m — m/ € m™ R then one sees that

>/ n )\ tr (m2)" — tr (m/2)"
\/1+tr(m2)/2\/1+tr(m’2)/22(1/2)t( )" = tr(m”) em"t?

27’L

n=1
hence o(m) — o(m’) € m" 2L C m"T3R. Therefore, by Lemma 4.8.5, ¥ : Ly — Lo is a
measure-preserving homeomorphism.
For m € Lo, one has
hym) = tr (740" (m))

=t (Jym) + tr (J) VT 0 (D)2

= () + b (B (m)).
Therefore h, (¥~ (m)) = tr (Jv) + tr (Jym), which shows that h, o U~ is an affine map as

stated in (i), whose image is the affine space tr (Jv) + tr (JyLa) = tr (Jv) + I2 by (8.1.4).
O

Using the proposition and the map ¥ it introduces, we see that to prove (8.2.8), it is

enough to prove that

(8.2.9) pr, ((lohyo¥=1)71(0)) <

S AL



IMAGES OF PSEUDOREPRESENTATIONS 53

But hy o U~lisa F,-affine map. So loh, o ¥~! is an F,-affine map on Ly with values
in F and with image the F,-affine subspace I(tr (J7)) + {(I2). Since I(I3) # 0, the image S
of our map [ o h, o U1 is an affine F,-subspace of positive dimension of F. The measure
pir, (Lo hyo®™1)71(0)) is 0 if S does not contain 0, and 1/]S| otherwise. In any case, it

is less than % which proves (8.2.9) and the theorem.

Remark 8.2.3. If we assume that O(I') = L, then we can prove that the inequality
pr((lot)~H(F*)) > pp;nl, holds not only when I(I2) # 0, but more generally when (1) # 0.
Indeed, to prove (8.2.5) for such an [, that is that pp (({ o tr ¢ o m;)~*(0)) < %, it is enough

to prove that py ((lotrgomyo©71)71(0)) < %. But the map trg o my o ©7! is very
a b

simple: it sends a matrix m = (¢ ;) to tr (JO~'m) = 2a. In particular, this map is linear,
and its image is the group I;. Thus if [ is non-zero on I1, the map (lotr g omyo©~1)~1(0)

is a IFp-affine map from L to F whose image has positive dimension, and we conclude easily.

8.3. A sufficient condition for the largeness of Aggs. In this subsection (and for the

rest of this section) we assume that A is local.

Definition 8.3.1. An admissible pseudo-deformation (II, p,¢,d) is said to be wvirtually
abelian if there exists an open subgroup Il of IT such that the restriction (1, d|m, ) factors

trough an abelian quotient of Il.

Lemma 8.3.2. Let (I1, p, t,d) be a weakly odd admissible pseudo-deformation. Assume
that A is a domain. If Aess = 0, then (I1, p, t, d) is virtually abelian.

Proof — Let us pick go € S and choose p : I — R* a (t, d)-representation adapted to go.
Thus L is decomposable and W (F)tr (gL2) = W(F)Iy C Aess so by hypothesis I = 0.

Ife=(%%)and ¢ = (3%) are in V, then [¢,€'] € IyJ = 0,50 bd’ —be=0. Ifa € I,

then [aJ,e] = (_9,.%") € V, so we also have 2abc’ + 2ab'c = 0. Adding 2a times the

—2ac

first equation to the second gives abc’ = 0, for every a, €, €’ as above. Remember ([3, §1.3])

A B
C oA ,for b € B and ¢ € C,

bc = 0= b=0o0rc=0. It follows that we are in one of the three possibilities: either

that since A is a domain, we may assume that if R = (

I =0 or C; =0 (i.e. V is upper triangular) or B; = 0.

If I; =0, then L =V, and Ly = [V,V] = Ay € I;J = 0. Thus L is commutative.
It follows that ©~!(L) is commutative and I' is commutative. Let Il = Kerp. Then
p(Ilp) = T' is commutative, which proves that (¢|r,, d|m,) factors trough an abelian quotient
of II.

If C = 0, all matrices in V are upper-triangular and it follows that L itself, and I' C
©~1(L) as well, are contained in the set of triangular matrices. If again we set IIy = Ker p,
we see that ¢|r;, = tr pjp, is the sum of two characters, hence factors through an abelian
quotient.

The case B = 0 is dealt with the same way. |



54 J. BELLAICHE

Proposition 8.3.3. Let (II, p,t,d) be a weakly odd admissible pseudo-deformation, which
is not virtually abelian. Assume that A is a domain. Let go € S, and p : I — R* a
(t, d)-representation adapted to go. Assume that for this representation, either W(F)By or
W(F)Cy is not a finite-type W (F)-module. Then A is not a finite type W (F)-module

etther.

Proof — Assume by contradiction that Aegs is a finite type W (IF)-module. Since W (F)I; C
Aess, 80 is W (F)I5. By the preceding lemma, Is # 0, and since PIy C I and A is a domain,
it follows that W (F)P is a finite type W (F)-module. Therefore W (F)P + W (F)I; is a finite
type W (F)-module. But if (94) and () are any elements in V, then b¢’ — b'c € I, and
b’ +b'c € P,so bc is in Iy + P, and Iy + P contains B1Cq, so W(F)Iy + W(F)P contains
W(F)B1C;. But W(F)B; and W(F)C; are non-zero (otherwise the deformation would be
virtually abelian) and by assumption one of them is not a finite W (FF)-module, so it follows

that W(F)B;C} is not a finite W (F)-module, a contradiction. O

8.4. The essential subgroup in the reducible case. In this subsection we keep assum-
ing that A is local and we fix an admissible weakly odd pseudo-deformation (II, p, ¢, d), and

we assume throughout that p is reducible.

(8.4.1) There exists two continuous characters x1,x2 : II — F*, such that p ~

X1 D xa-
Let us chose a (t, d)-representation which is well-adapted in the sense of Definition 6.3.1.
Thus the group G is a diagonal subgroup of GLy(F), and s(G) C G. Since p is weakly odd
there exists in G an element of order 2 other than +1, and since this element is diagonal, it is

either .J or —.J. There is no loss of generality in supposing that J € G, hence J = s(.J) € G.

Proposition 8.4.1. One has Aqss = W(F) 5.

Proof — Indeed, Aess = deg W (F)tr (gL2). But the only such g in the diagonal subgroup
G are of the form \J and possibly —J, so W (F)tr (gLs) = W (F)tr (s(\)JILs) = W (F) .
O

Proposition 8.4.2. Assume that A is a domain and is not a finite W (F)-module. Then
if (IL, p, t,d) is not virtually abelian, Aess is not a finite W (F)-module.

Proof — Since A = W(F) @ W(F)I; + W(F)P (Prop. 6.3.4), either W(F)I; or W(F)P
is not finite as a W (F)-module. If W (F)I; is not finite, then neither is W (F)I? since A is
a domain, and since I? C P, neither is W(FF)P. So in any case W (FF)P is not finite as a
W (F)-module.

Under our hypotheses Aess = W (F) I3 is not zero by Prop. 8.3.2. Since PI; C I, and A
is a domain, W (F)I; is not finite as a W (F)-module. O
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Theorem 8.4.3. Assume that the character x1/x2 is not of order 2, or in other words
that the projective image of p is not Z/2Z. Then A.ss is an ideal of A, and more precisely
it is the reducibility ideal of the pseudo-representation (t,d) (see [3, §1.5]).

L BY .
Proof — By Theorem 6.5.1, one has W (F)L = (C 1:1) for some W(F)-module ;. It

follows that W(IF)I, = BC. O

8.5. The essential subgroup in the dihedral case. In this subsection we still assume
that A is local and we fix an admissible weakly odd pseudo-deformation (II, p, ¢, d), and we

assume throughout that
(8.5.1) The projective image of p is dihedral.

As in §6.3.3, we choose a well-adapted (¢, d)-representation p : II — GL3(A) which
encompasses the choice of a subgroup D of index 2 in G consisting of diagonal matrices.
We recall that the inverse image of D by the map G — G is an index 2 subgroup G’ of G,
and that R’ = AG’ is a sub-GMA of R = M>(A) which has the from R’ = (4 &) for B an
ideal of A.

8.5.1. Largeness of Aess.

Proposition 8.5.1. Assume that A is a domain and is not a finite W(F)-module, that
(I1, p, t, d) is not virtually abelian, and (8.5.1). Then Acss is not a finite W (F)-module.

Proof — We first claim that W (F)B is not a finite W (F)-module. Indeed, it is non-zero
otherwise (II, p, t, d) would be virtually abelian. Moreover, W(F)I; + W (F)P + W (F)B is
not a finite W (IF)-module. Therefore at least one of the three terms is not a finite W (FF)-
module. If it is the third, then we are done, and if it is one of the two first, we are also
done since I1B; C By and PB; C B;s.

The proposition then follows from Prop. 8.3.3 O

8.5.2. Description of Aess in the case 4 | n, n > 4. Let n be the order of the projective

image of p. Since p is dihedral, n > 4 and n is even.
(8.5.2) We assume that n > 4, and that 4 | n.

Under this assumption, the image of the diagonal group D in PGLo(FF) has even order,
and thus contains an element of order 2. Fix a lift g of that element in D. This element g
has trace zero, hence is of the form A\J for some A € F*, and is an element of S. An element

of G — D also has trace 0. We shall make the following supplementary assumption:

(8.5.3) There exists an element §' of G — D such that —det g’ is a square in F*, or
in other words, such that g’ € S.

This assumption will be harmless in the applications (see §10 below), since if not true,
we can always choose an element §’ in G — D and extend the scalars from F to the quadratic
extension F’ of F generated by /— det g’
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Theorem 8.5.2. Assume (8.5.1), (8.5.2) and (8.5.3). Then Acss = mB. In particular Aegs
is an ideal of A.

0
Proof — Sincen >4, W(F)L = 113 1) by Theorem 6.7.1. It follows that
1

[ WE)B2 W(ELBY
W(F) Ly = (W(IE‘)1131 W(E)B}? |-
We claim that

Agss = W(F)BE + W (F)I, B;.
Indeed, W (F)tr (s(g)La) = W(F)Iy = W(F)B} C Acss, and W (F)tr (s(g')L2) = W (F)[1 By C

Aess, and if there are other elements g” in S, they are either diagonal or anti-diagonal, con-
tributing the same summand W (F)B? or W (F)I, B;.

To prove that Aeg is an ideal, we recall that A = W (F) + W (F)I; + W (F)I? + W (F) By,
so we only need to check that Aes is stable by multiplication by I; and B;. We have
I1Aess = W(F)I,B? + W(F)I?By, and since I; By C Bj, we see that [} Aess C Aess. We
have By Aess = W (F)B3 + W(F)I1B?, and since W(F)B} ¢ W(F)I; and I1B; C By, we
see that By Aess C Aess-

Since By C B and B is an A-ideal, it is clear that Aes C B. We claim that the ideal (of
A) generated by B; is B.

Since Aegs is an ideal, we get Aqss = B? + I1B. Since m = W(F)I; + W(F)I? + B,
we have mB = 1B + I?B + B? = A + I?B. But since B is an ideal, [[B C B and
I?B C I1 B C Agss, 50 MB = Aggs. O

8.6. The essential subgroup in the large image or exceptional case. We assume
that A is local, and we assume that p has large or exceptional projective image. In this

case, things are pretty simple:

Theorem 8.6.1. If p has large or exceptional projective image, then A = m2.

Proof — By Theorem 6.8.1, one has for a suitable (¢,d)-representation p, W(F)L =

0 0
m m . m o my\ . . . . . .
( ) . Since ( ) is invariant by any trace-preserving automorphism of R, it
m m m m

follows that W (F)L = m 2) for any (t, d)-representation p. For any g € S we therefore

have W (F)tr (L) = W(F)I; = m?, and Aegs = m?. O

9. AN EXAMPLE

The aim of this section is to provide an example of an admissible pseudo-representation
whose image is ‘complicated’, and which violates the conclusions (and of course, the hy-
potheses) of certain theorems we have proved earlier. It can be safely skipped.

Let F be a finite field of characteristic p > 2. Let A = F[[X]], with maximal ideal
m = XF[[X]].
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9.1. A two-generator closed subgroup I' of SL}(A) and its Lie algebra. Define

g= <X+\/1+X2 0 ) and h — <\/17X2 X )
0 ~X+VITX? -X Vi—xz )"

Note that those two matrices belongs to SLi(A). Let T' be the topological closure of the
subgroup of SLi(A) generated by g and h.

Lemma 9.1.1. With J = ((1) _01), one has JgJ = g and JhJ = h™'. One has JT'J =T.
With J' = (91), one has J'gJ' = g~' and J'hJ’ = h~'. One has JTJ =T.

Proof — The first and third sentences consist of two trivial computations each and the

second and fourth sentences follow. O

Lemma 9.1.2. Suppose that v = (‘;88 Zgg) isin I'. Then a(X) =d(—X) and b(X) =
ce(—X).

Proof —  The equalities a(X) = d(—X) and b(X) = ¢(—X) are clearly true for the

matrices g and h, and also g~' and h~!. If these equalities are true for v = (388 Zg%)

and 7/ = (i:((;; legg ), then vy = (Z?C,Ig/c(; Zzl,fl’;l;) and one sees that (aa’ + bd')(X) =
a(X)a' (X)) + b(X)d(X) =d(-X)d'(—X) + (- X))/ (—X) = (dd' + V¢)(—X), and (ab’ +
bd' ) (X) = a(X)V(X) + 0(X)d'(X) = d(—X)(-X) + ¢(—X)a (- X) = (a'c+ d)(—X).
Therefore they are true for any element of the subgroup generated by g and h, and of its

closure, hence the lemma. O

Define a subspace L of R as follows:

L={(22),a,bcem=XF[X]], a(X) = —a(—X), b(X) = (—X)}.

c —a

In other words, L = XF[[X?]]JV, with V = {(2}),b,c € m = XF[[X]], b(X) = ¢(—X)}.

In particular, L is decomposable, but not strongly decomposable.

Lemma 9.1.3. The Pink’s Lie algebra L(T) of T is L.

Proof —  First we prove that L(I') C L. It suffices to prove that ©(y) € L for every

vy eT. Ify = (2%), then by Lemma 9.1.2, a(X) = d(—X) and b(X) = ¢(—X), and

O(y) = <(“(X);F)((;X))/2 (a(X)E(a}((lX))/2)’ which is clearly in L.

Next, observe that by Lemma 9.1.1, L(T") is decomposable. We write L(T') = I;.J &
Vi1, with V; anti-diagonal. Also, ©(g) = (X0/2 7)(3/2) belongs to L(T'), so X € I
and 4tr (©(g)?) = X? belongs to the closed sub-pseudoring P(I') of A. It follows that
X?F[[X?]] c P(T). Since I; is stable by P(T), we get [; = XF[[X?]]. From ©(h) € L(I")
and L(I") decomposable, we get (—%{ )0() € Vi. Since V; is stable by taking the Lie
bracket with XJ € L(T"), we see that ()?2 )f)z ), (72(3 )gg ), etc. belong to V1, and finally
Vi={(2%),b,ce m = XF[[X]], b(X) =c(—X)}. Hence L(T") = L. O
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9.2. Construction of two admissible pseudo-deformations. We define
G=r][]Jr.

It follows from the first part of Lemma 9.1.1 that G is a closed subgroup of GLa(A),
containing ' as a subgroup of order 2, and that G is the semi-direct product of {1, J} by
T.

Let II be any pro-finite group with a continuous surjective morphism onto G (for example
IT = G with the identity). Let p be the composition IT — G — GL3(A4). Let t = trp,
d = detp. Let p: II — GL2(F) be the reduction modulo m of p. Then p is a continuous

semi-simple representation of IT with image (and projective image) isomorphic to Z/2Z.

Lemma 9.2.1. (I, p, ¢, d) is an admissible pseudo-deformation. The projective image of p

is cyclic of order 2.

Proof —  The representation p is the sum of the trivial character and a character of
order 2 of TI, so p satisfies (5.2.2). The property (5.2.3) is obvious. One has d(T') = 1,
d(G —T) = d(JT') = —1, which makes clear that (5.2.4) holds. For (5.2.5), one has
tr(Jg) = 2X, hence the smallest closed subring of A containing tr (G) contains F[X],
hence is A. |

Let H be the subgroup of order 8 of GLy(A) generated by J and J'. By Lemma 9.1.1,
H normalizes I'. We define G’ = I'H, a semi-direct product of H by I'. Let II' be any
pro-finite group with a continuous surjective morphism onto G’ (for example II' = G’ with
the identity). Let p’ be the composition II' — G’ — GLy(A). Let ¢ = trp/, d' = detp’.
Let p' : TI' — GL3(F) be the reduction modulo m of p’. Then p’ is a continuous semi-simple

representation of II' with image isomorphic to H.

Lemma 9.2.2. (IT',p',t',d’) is an admissible pseudo-deformation. The projective image
of p is dihedral of order 4.

Proof — The proof if the same as above, except for the projective image, which is the
image of H in PGLy(F). This image is generated by the image of J and J', elements of
order 2 that commute in PGLy(F) since in GLy(F) one has J'JJ' = —J. O

9.3. Counter-examples to over-optimistic statements. We now use the admissible
pseudo-deformations (II, p, t,d) and (IT', p’, ¢, d') to construct counter-examples.

First, we show that Theorem 7.2.3 is false if we do not assume that p is regular. More
precisely, we show that it does not hold true, first in a case where p has projective image

cyclic of order 2, and second in a case where it has projective image dihedral of order 4.

Proposition 9.3.1. Let (I, p,t,d) be the admissible pseudo-deformation constructed in
the above subsection. There is no subgroup Iy of I containing Ker p, and subring Ag

of A such that the pseudo-representation (t,d) of Iy takes value in Ag, is admissible,
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and (tym,,dn,) has congruence-large image. The same holds with (I, p,t,d) replaced by

(I, 7', t',d") constructed in the above subsection.

Proof — If Tl is a subgroup as in the statement, then either Il = II or Iy = Kerp
has index 2 in II. The second case is excluded since pjkep is the trivial representation of
dimension 2, which is not multiplicity free. Thus IIp = IT and Ay = A. We just have to
show that for the unique (¢, d)-representation p, p(Ilp) = G does not contain any congruence

subgroup. But if it did, I' would contain a congruence subgroup and L would contain a
0

sub-module of the form § 7 for some non-zero ideal I of A. Since up-left coefficients

of L are odd elements of F[[X]], I would contain only odd functions, but this is absurd
since [ is stable by multiplication by X.
The same result for (II', o/, ¢, d’) is proved similarly. |

Second, we show that it may be false that A.s is an ideal of A.

Proposition 9.3.2. The Zy-submodule A.ss of A attached to the admissible pseudo-deformation
(Tp, p, t,d) is not an ideal of A.

Proof — By Prop. 8.4.1 we have Aqs = Io C I;. Since I; consists of odd elements of

A =TF,[[X]], so does Iz, but no non-zero ideal of A consists only of odd elements. O

9.4. The group G as a Galois group. Lest the reader think that the pathological exam-
ple (I, p, t, d) is allowed only by our too lenient definition of an admissible representation,
and does not happen in the concrete applications to number theory, we show that when
p = 3 (to fix ideas) one can take in the above example for II the absolute Galois group
Gg,3 and for (¢,d) the quotient by a prime ideal of height one of the canonical pseudo-
representation of Gg 3 over the Hecke algebra of modular forms modulo 3.

Let Gg(uy),3 be the Galois group of the maximal algebraic extension of Q(us) = Q(v/—3)
unramified outside the unique place above 3. This is a subgroup of order 2 of Gg 3, and
Gq,3 is a semi-direct product of {1, c}, where ¢ is any complex conjugation, by Gg(,,),3-

Let G?

Q(u3),
that group is known. Let ¢ be a complex conjugation in Gg 3.

5 be the largest quotient of Gg,,),3 which is a pro-3-group. The structure of

Lemma 9.4.1. There exists an element x € G%ﬁ(ua)ﬁ such that G%Q(ua)ﬁ is a free pro-3-

group with x and cxc as pro-generators.

The freeness of G%,?, is due to Shafarevich, see [30, page 82, example after theorem 5].
The rest of the lemma is proven in [22].

Consider the unique continuous morphism of groups f : G%(us)ﬁ — I sending z to
(gh)'/? and czc to (gh~')'/? (the square root z'/2 for z an element of the pro 3-group I'
is defined as usual as the limit z%" where a,, is a sequence of natural integers converging
3-adically to 1/2). Since the group generated by (gh)'/? and (gh~')'/? contains g and h,

[ is surjective. Using the structural surjective map Ggu,),3 — G%(us)’?” we see f as a
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surjective morphism Gg,,) s — I'. Since f(cze) = Jf(x)J~! in G by Lemma 9.1.1, and
J? = ¢® = 1, we can extend f into a surjective morphism f : Gg3 — G sending ¢ onto
J. We thus get a pseudo-character (t = tr o f,d = detof) on the Galois group II = Gg 3
which is an admissible pseudo-deformation of p = 1 & w3 and whose image is G. As seen
above, this Galois pseudo-deformation is a counter-example to the assertion that A is an
ideal and that (¢, d) has congruence-large image.

Finally, note that if R; denotes the universal deformation of p as a pseudo-representation
in characteristic p and with constant determinant, and A; denotes the Hecke algebra of
modular forms modulo 3 and level 1, the natural map R; — A; is an isomorphism by [22],
and both rings are isomorphic to F3[[Y, Z]]. Thus, the pseudo-deformation (¢,d) induces a
surjective map R; = A; — A = F3[[X]], such that (¢,d) is the composition of the natural

pseudo-character (t;,d;) with this map.

10. DENSITY OF MODULAR FORMS

In this section we prove the main results of our work, the ones regarding the density of
modular forms, namely Theorems I, IT and III.

We revert to the notation of the introduction: p is prime, N > 1 an integer, k €
Z/(p—1)Z and T a (large enough) finite extension of F,,. The space of modular forms on
F of weight k, level N, and coefficients null at indices not prime to Np is denoted by F.
We note that to prove Theorems I, II and III, we can without loss of generality replace F

by a finite extension. We shall always assume that the finite field F is large enough below.

10.1. The Hecke algebra of mod p modular forms. The space F is endowed with an
action of the Hecke operators Ty for £ Np. Let A = A, (N,F) be the topological closure®
of the F-subalgebra of Endp(F) generated by the Hecke operators Ty for £ not dividing Np.

For every k € Z/(p — 1)Z, the F-algebra A = Ay(N,F) is semi-local. More precisely, if
F is large enough, its maximal ideals are in bijection with a certain set R = R(k, N,F) of
semi-simple continuous Galois representations p : Gg np — GL2(F) up to F-isomorphism:

the correspondence is given by A\; = tr p(Froby). This set R(k, N,F) can be described as

k—1
P

Serre’s level N. This is the content of Serre’s conjecture, now a theorem of Khare and

the set of all semi-simple representations p : Gg,np — GL2(F) of determinant w and
Wintenberger.

Still assuming that F is large enough, and p € R(k, N,F), we shall denote by A; the
corresponding local component of A = Ay (N,F), that is the localization of A;(N,F) at the
maximal ideal corresponding to p. The generalized eigenspace F; = F5(N,F) for the T},
¢4 Np, with generalized eigenvalues A\, (already considered defined in the introduction) is
equivalently the localization of the A = Ax(N,F)-module F = Fj(N,F) at that maximal
ideal mj corresponding to p.

Then, A;(F) is a compact local F-algebra with residue field F. The image of the elements
T, of A in that localization A, shall also by denoted by Ty. The image of T; € A in the

6The topology on F is the discrete topology and the topology on Endg(F) is the compact-open topology
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residue field F is tr (p(Frob,)) = A¢. Equivalently, the Aj;-module F; can be described as
the generalized eigenspace in F(IF) for the Ty, £ 1 Np, with generalized eigenvalues A;. To
summarize, we have decompositions
(2) A=1]4, F=6p 7.
PER PER

Recall that we have a perfect pairing F x A — F, (f,t) — a1(¢tf), which induces a
perfect pairing F; x As — F.

We note that the ring A thus satisfies all hypotheses made in Section 8. Moreover we

have the following results on the structure of A:

Proposition 10.1.1. The rings A; are always infinite, and have Krull dimension > 1. If
p>3,0rifp=3and p is a twist of 1 ®ws (w3 the cyclotomic character), or if p =2 and
p is a twist of 1 ® 1, the Krull dimension of A; is at least 2.

Proof —  See [13] for the first assertion, [4] and [10] for the case p > 3 and [21] in the case
p =3, [24] in the case p = 2. 0

It is expected that A; always has dimension exactly 2, and this is known in many cases,

see the references above.

10.2. The canonical Galois pseudo-representation over A.

Proposition 10.2.1. There exists a unique continuous pseudo-representation (t,d) of di-
mension 2 of Go np with values in A such that t(Frob,) = Ty for all £ f Np. One has
d= w’;’l and t(c) = 0.

For a proof of the proposition, which is well-known to specialists, see [2] where the
case p = 2 is dealt with — the case p > 2 is exactly the same. We denote by (¢5,d;)
the composition of (t,d) with the map A — Aj, and observe that by definition, ¢; = trp
(mod mp) and d; = det 5 (mod my).

Corollary 10.2.2. The pseudo-deformation (Gg,np, (pi)i=1,...r,t,d) is admissible.

Proof —  Condition (5.2.1) is trivial. The hypothesis (5.2.2) is satisfied because the
representations p; are odd, hypotheses (5.2.3) and (5.2.4) are clear, and (5.2.5) follows from
the fact that ¢(Gg,np) contains T for all prime ¢ not dividing Np and those operators, by

construction, generates A as an F-algebra. |

Corollary 10.2.3. The ring A is noetherian.

Proof —  Since Gg np satisfies the p-finiteness condition ([18]), this follows from the
preceding corollary and Cor. 5.3.2. O
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We observe that if p = 2, the ideal generated by all the Ty, £+ Np, in A is the maximal
ideal. It is also the orthogonal of the eigenform A, which is up to a scalar the only form
in Fi(F) killed by all Hecke operators. We shall denote that ideal by my since it is the

maximal ideal of A corresponding to the trivial representation p =1 & 1.

Lemma 10.2.4. The closed F-subspace generated by t(Go,np) is A when p > 2 and my
when p = 2.

Proof — When p > 2, the lemma is just (5.3.1). When p = 2, the same argument
gives that the closed F-subspace generated by ¢(Gg,np) is an ideal, and contains all the T},
€1 Np. Thus it is my or A. But ¢(Gg,,) C m1 because ¢ (mod m;) = tr (14 1) = 0. O

10.3. Proof of Theorem I. We now give the proof of Theorem I. Let f € Fi(F), f # 0.
If p = 2 we assume in addition that f & FA’. We want to show that 6(f) > 0.

Let I; be the F-linear form on Ay(F) defined by I;(T) = a1(Tf). In other words,
l¢ is the linear form on Ay (F) corresponding to f &€ Fy(F) through the perfect duality
Ap(F) x Fp(F) = F, (T, f) = a1(Tf), and in particular, Iy is non-zero. Let H; be the
closed hyperplane Ker Iy of A¢(F). If p = 2, our supplementary assumption means that H
is not the maximal ideal m;.

If  denotes the Haar measure of total mass 1 on the compact group Gg,np, We claim
that

(10.3.1) 8(F) = 1 — (t~*(Hy)).

To prove the claim, note that for ¢ a prime not dividing Np, one has a;(f) = 0 <
ar(Trf) = 0 < a1 (t(Frobd)f) = 0 < t(Frob,) € Hy < Frob, € t71(Hy). Observe that
H, being closed and of finite index, is open in A, and therefore ¢t~ (Hy) is open in Gg, np-
Thus Chebotarev’s density theorem implies that the density of primes ¢ such that Frob is
not in t71(Hy) is 1 — u(t~'(Hy)), and the claim follows.

To finish the proof, we therefore just have to prove that t~1(H ¢) is a proper subset
of Gg,np. We do not have t'(Hs) = Gg np, because that would mean ¢(Gg np) C Hy,
contradicting Lemma 10.2.4. This completes the proof of Theorem I.

10.4. Definition of special modular forms. From now on, we assume p > 2. The
admissible pseudo-deformation (G, nyp, (7:), ¢, d) over A defines a closed F-subspace Aegs of
A (cf. §8). We say that a modular form f € F is special if a1(tf) = 0 for all t € Aegs.
Thus, special modular forms in F form a F-sub-vector space Fgpe, which is the orthogonal
of Aess for the perfect pairing A x F — F.

For p € R, we set as in the introduction Fjgpe = F5 N Fype. The admissible pseudo-
deformation (Go,np, p, t5,ds) over A; defines a closed F-subspace Aj spe of A;, which is the
image of Agpe by the projection map A — A;. Thus, Fj spe is the orthogonal complement

of Aj ess for the perfect pairing A; x F; — F.
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10.5. Proof of Theorem III. Given a representation p € R (which in the case p =3 is a
twist of 1®ws), we need to show that F e is of infinite codimension in Fj, or equivalently,

that Aj ess is infinite-dimensional.

Proposition 10.5.1. If (Gg np, p, t,d) is a virtually abelian admissible pseudo-deformation
over a noetherian local compact domain A such that pA = 0 for some odd prime p, then

the Krull dimension of A is at most 1.

Proof — Let K the fraction field of A. Let p : Gg,np — R* be a (¢, d)-representation. By
Lemma 2.2.3, p can be seen as a representation Gg np — GLa2(K).

Let M be a finite Galois extension of Q such that (¢,d) factors through an abelian
quotient of Grnp. The representation p : Gar,np — GL2(K) becomes reducible over a
quadratic extension K’ of K, so there are two characters x1,x2 : Gam,np — (K')* such
that p = x1 @ x2 as a representation over K'. Since y;(g) for i = 1,2 are the roots of the
polynomials X2 — t(g9)X + d(g) € A[X], xi(g) belongs to the integral closure A’ of A in
K’. Since A is a complete noetherian local ring, then by a theorem of Nagata, A’ is a finite
type module over A and is a complete noetherian local ring as well.

We claim that the characters x; : Ga,np — (A')* for ¢ = 1,2 are continuous. Indeed, if
they are equal they are continuous since 2x; = t. If not, there is a gy such that x1(go) #
X2(go). By the continuity of the roots of polynomial, there exists a neighborhood U of 1 and
two continuous functions 1, 19 on goU (with values in (A’)*) such that X2 —t(g) X +d(g) =
(X —11(9))(X —12(g)) on goU 13(go) = x:(go) for i = 1,2. Shrinking U if necessary, we may
assume that U is an open subgroup of Gy, np and that g — ;(gg0)xi(g0) " is a character
on U. By uniqueness of the decomposition of a representation into sum of characters over a
field (K), it follows that for ¢ = 1,2, there exists j = 1, 2 such that 1;(g990)x:(g90) ™" = x;(g)
on U. It follows that the x; are continuous on U, hence everywhere.

Let I' = Gal(M/Q). Since the functions ¢t and d = x1x2 = det p on Gar,np are invariant
by conjugation of the argument by any element of Gal(M/Q), there exists a subgroup I
of T" of index 1 or 2 such that

(10.5.1) for every v € T’, x] = xi and for every vy € T —T", x7 = det px; "

Let Ryniv be the universal deformation ring in characteristic p of the character y; :
Gum.np — F* satisfying condition (10.5.1). The character x1 : Ganp — (A)* de-
fines a morphism of F-algebras R,y — A’ whose image Ag is the closed F-subalgebra
of A’ generated by x1(Ga,np). For g € G np, we can write x1(g9) = Xi1(g) + = with
x1(g9) € F* and x in the maximal ideal of A’, and y2(g) = detp(g)(x1(9) + x)~! =
X1(9)(1 = x1(9) '@ + x2(9)%2% —...).
is the closed W (IF)-subalgebra generated by the image of ¢, we see that A C Ag C A’. Since

Thus x2(g) is in Ap, and so is t(g). Since A

A’ is finite as an A-module, Cohen-Seidenberg’s theorem ensures that A, A’ and Ag have
the same Krull dimension. Thus to prove the proposition it suffices to prove that Ay has
dimension at most 1, and for this it is enough to prove that Ry, has dimension at most
1. This follows easily from Class Field Theory. ]
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By Prop. 10.1.1, the ring A; has Krull dimension at least 2 under the hypothesis on
p of Theorem III. Let B be the reduced ring of the ring of a 2-dimensional irreducible
component of Spec A;. Then B is a quotient of A;, which is domain of dimension 2. To
prove that A; . is infinite (as a set or F-vector space), it is enough to prove that the
image Begs 0f Apess in B is infinite. The subspace Begs is the essential subspace of the
admissible pseudo-deformation (Gg,np,p,t,d) over B, which is not virtually abelian by
the above proposition. Therefore, Begs is infinite by Propositions 8.4.2, 8.5.1, 8.6.1, and

Theorem III is proved.

10.6. Proof of Theorem II. Let f € F be a modular form which is not in Fspe. This
means that the linear form [ : A — F, ¢ — a1 (¢f) is not zero on the subspace Aegs of A.

By Theorem 8.2.1

oy (10071 (F7) 2 P,

that is by (10.3.1)

where n = |G|. This proves the main part of Theorem II. This theorem also states that Fype
is of infinite codimension in F. To prove this, it is sufficient to prove that for one p € R,
Fepe,p = Fspe N Fp is of infinite codimension in F5. The results follow from Theorem III
for any p € R if p > 3, and also for p = 3 if we choose for p the representation 1 ® ws,
which always belong to R(V, 3,F) since it is the representation attached to the eigenform
A (mod 3).

11. CYCLOTOMIC AND K-ABELIAN MODULAR FORMS

We keep the notation of the preceding section. We do not assume p > 2 unless explicitly
mentioned. We fix a representation p € R.

For f € F;, we denote by I the annihilator ideal of f in A, and by A; the quotient
Aj/Is. The perfect duality A; x F; — F induces a perfect duality Ay x A;f — F. The
space A;f is finite, because the action of the Hecke operators is locally finite; it follows
that the ring Ay is finite, and it is therefore a local artinian F-algebra. We obtain an
admissible pseudo-deformation (G np,p,ts,ds) on Af by post-composing t; and d; with

the surjective map A; — Ay.

11.1. Fields of determination of a modular form f € ;. For S a finite set of primes,
let us denote by Qg the maximal algebraic extension of Q unramified outside .S and oo,
and by Gg s the group Gal(Qg/Q). If S is the set of primes dividing an integer N, we also
use N instead of S in these notations.

Let us denote by Ly the subfield of Qu, fixed by Ker (t;,ds). Note that Ly is a Galois
extension of Q, unramified outside Np and oo, such that Gal(L;/Q) = Gg np/Ker (tf,dy).

Lemma 11.1.1. The field Ly is finite over Q.
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Proof —  Let py : Gonp — R} be a (tf,dy)-representation. By assertion (vii) of
Proposition 2.4.2, Ry is of finite type as a module over Ay, hence is finite as a set,
Go.n, 18 Ker (ty,dy). Therefore,
Gal(L;/Q) = py(Gg,n,p) and since the later is a subset of the finite set Ry, it is finite. O

and by assertion (vi) of the same, the kernel of Ker (py)

Theorem 11.1.2. Let L be a Galois extension of Q contained in Q, unramified outside a
finite set S of primes dividing Np and co. The following properties are equivalent:
(i) For every prime £ € S, the form Tyf depends on ¢ only through the conjugacy class
Froby 1o € Gal(L/Q).
(i) For almost every prime £, the form Tyf depends on ¢ only through the conjugacy
class Frob 1o € Gal(L/Q).
(ii) For every prime £ & S, the coefficient ay(f) depends on € only through the conjugacy
class Frob 1 /o € Gal(L/Q).
(ii’) For almost every prime £, the coefficient a;(f) depends on ¢ only through the con-
Jugacy class Frob, 1,/q € Gal(L/Q).
(i) One has Ly C L.

Definition 11.1.3. If L satisfies the conditions of the above theorem, we shall say that L

is a determination field of f.

Obviously, there is always a smallest determination field, namely L, and it is finite over
Q and unramified outside Np. However, it is sometimes convenient to consider also other

determination fields.

Proof. We see the pseudo-representation (¢, ds) of Gal(Qp,/Q) as a pseudo-representation

of Gal(Qg/Q) by inflation. Let us call 7 the surjective map Gal(Qgs/Q) — Gal(L/Q). To

ease notations, let us denote by Frob ¢ the element Frob 4 g_/q. Thus m(Frob,) = Frob, 1, /q.
Since tf(Frobf) =T, f, the assertion (i) (resp. (i), is equivalent to

(11.1.1) ty(Froby) depends only on w(Frob,) = Frob, g for all £ not in L (resp.
for almost all ?)

By Chebotarev’s density theorem, both these assertions are equivalent to:
(11.1.2) The map ty factors through 7,
which amounts to Kerm C Kerty, that is Ly C L. We thus have proved the equivalence
between (i), (i’) and (iii).
Since the coefficient a, of f is the coefficient a; of Ty(f), it is obvious that (i) implies
(ii). Since (ii) obviously implies (ii’), it just remains to prove that (ii’) implies (i’). For

every prime ¢ not in S, one has

a1 (T (Frobe) f) = ar(Tef) = au(f),

so (ii’) means that for almost all £, a1 (ty(Frob)f) depends only on Frob, 1, /g = m(Frob).
Using Chebotarev, this means that there exists a continuous map S : Gal(L/Q) — F such
that
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(11.1.3) for all v € Gal(Qs/Q), a1(t;(7)f) = B(r(7)).

Let ¢ be a prime number not in S.
aq(Tef) = ar(TeTyf)
= ay(ty(Frob gz /0)ts(Frob, 0s/0)f)
= ai(ty(Frob, g, oFrob 4 q4/0f) + qkflal(tf(Frob 2,05 /0Frob ;as/(@)f)
= B(Frob 1 /gFrob g 1/q) + ¢"~1B(Frob ¢,1,/oFrob ;i/Q)
Thus the coefficient a, (for ¢ any prime not in S), as well as the coefficient a; of the form
Ty f depends on ¢ only through Frob, /Q- Since by the corollary of Theorem I a modular
form is determined by its coefficient at primes (excluding a finite set) and at 1 , it follows

that the form T, f itself depends on £ only through Frob, ;,q. In other words, we have
proved (1"). O

11.2. Cyclotomic modular forms.

Proposition 11.2.1. Let f =" anq™ € F;(F). The following are equivalent:

(i) f has a determination field which is abelian over Q.
(ii) There exists an integer M > 1 such that for all prime ¢ not dividing Np, a; depends
on ¢ only trough ¢ (mod M).
(iii) There exists an integer M > 1 such that for all prime £ not diwiding Np T,f,
depends on ¢ only trough ¢ (mod M).

If they hold, we can take M in (ii) and (iii) such that all prime factors of M divide Np.

Proof — This is a special case of Theorem 11.1.2, taking into account the Kronecker-

Weber theorem that every number field abelian over Q is a subfield of a cyclotomic field

Q(Cmr)- O
Definition 11.2.2. We say that f is cyclotomic if it satisfies the conditions of the above
proposition.

Definition 11.2.3. Let us denote by Iy the ideal generated by the elements ¢;(zyx 'y~ 1s)—
t5(s) for z,y,s € Go,np-

Since A5(F) is noetherian the ideal Ioyq is finitely generated and closed. Clearly, Iy is
the smallest ideal I of A; such that G/Ker (t7,dy) is abelian, where ¢; is the composition
t:G— A— A/I and similarly for d.

Example 11.2.4. In the case p =2, p = 1@ 1, the ideal Iy is principal, and generated
by the square of the element T5 + T3 + T5 + T + T35 + Tat +T32° +...: see [2].

Proposition 11.2.5. A form f is cyclotomic if and only if it is annihilated by I yci.

Proof — A form f is killed by I.ya if and only if Iy C 15 which is visibly equivalent to
Go,np/Kerts being abelian, or Ly being an abelian extension of Q. (|
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Proposition 11.2.6. If p is irreducible, the only cyclotomic form in F5(F) is 0.

Proof —  Recall that if p is irreducible, it is absolutely irreducible, hence its image
p(Gg,np) is not abelian. If there is a non-zero cyclotomic form f in F;(F), then the
pseudo-representation (tr,ds) : Gg,np — Ay reduces modulo the maximal ideal of Ay to the
pseudo-representation (tr p,det p) : G, np — F, and it follows that the group Go,np/Kert;
is a quotient of Gg np/Kertys, hence is abelian. Since p is semi-simple, Kerp = Kertr p,

hence G, np/Kert; >~ p(Gg,np) is abelian, a contradiction. O

For the rest of this subsection we assume that p > 2 (for similar but more complicated
results in the case p = 2, N = 1, see [2]), and that the projective image of p is cyclic,
in other words that p is reducible. Let p : Gg np — R* be a (,d)-representation with
n_ A B

—\C A)

Proposition 11.2.7. One has I.yoy = BC. In other terms, I.yc s just the reducibility
ideal of the pseudo-representation t; (see [3, §1.5]).

Proof — Let I be any ideal of Az, and let (Gg,np,p,tr,dr) be the admissible pseudo-
deformation obtained by reducing the pseudo-deformation over A; modulo I. Let pr :
Go,np — R} be a (t1,dr)-representation attached to the admissible pseudo-deformation

(Go,np, P, t1,dr) adapted to an element of Gg, nyp for which p is also adapted. Then Ry =

A/l By
( Ccr A/l
R; inducing identity maps A/I — A/I on the diagonal components, and maps B/IB — By,

) and there is a natural surjective morphism of algebras R®4 A/I = R/IR —

C/IB — Cr on the non-diagonal components. Note that the map R/IR — Ry, as well as
the maps B/IB — By and C/IC — C7 need not be injective (this is because R/IR may
not be faithful.) The ideal B;C of A/I is nevertheless the image in A/T of the ideal BC'
of A, because the map R — R; preserves multiplication of matrices (see [3, §1.5] for more
detailed proofs of the assertion of this paragraph).

By construction Ieye is the smallest ideal I of A such that G, np/Ker (t7,dr) is abelian.
One has Ker (pr)¢ = Kert; because R; is faithful. Hence Go,np/Kertr ~ pr(Go,np),
and Icyq is the smallest ideal I of A such that p;(Go,np) is abelian, or again, since Ry
is generated by pr(Gg,np) as an A/I-module, the smallest ideal I such that R; is com-

mutative. It is easy to see that the GMA R; = (/g_f AB/II) is commutative if and only
T

if By = C; = 0. Since the product By x C; — A/I is a non-degenerate pairing, this is
equivalent to ByCt = 0, that is by the above paragraph, to BC C I. Thus BC = Iyq. U

Corollary 11.2.8. Assume as above that the projective image of p is cyclic, but also that
it is not of order 2. Then Icye; = Ap ess- In other words, a form f € Fj is cyclotomic if

and only if it is special.

Proof — This follows from the preceding proposition and Theorem 8.4.3. ]
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11.3. K-abelian forms. In this subsection, we assume p > 2. For K-abelian forms in
the case p = 2, see [24] and an article in preparation by J. Bellaiche, J.-L. Nicolas, and

Jean-Pierre Serre. Let K be a quadratic extension of Q.

Definition 11.3.1. A form f € F, is K-abelian if it has a field of determination L which

is an abelian extension of K.

Note that the composition of two Galois extensions of Q which contain K and are abelian
over K is also a Galois extension of Q which contains K and is abelian over K. It follows
that if f and f’ are K-abelian, f + f’ is K-abelian as well: if L and L’ are fields of
determination of f and f’, then LL’ is a field of determination of f -+ f’. Thus the set of
K-abelian forms is a vector space. It is also obviously stable by the Hecke operators Tj.
Hence its orthogonal complement for the duality A; x F; — F is an ideal Ixap.

From now on, we assume that the projective image of p is dihedral of order
> 4. Thus the projective image of p has a unique quotient of order 2, which corresponds
to a quadratic extension K of Q. Thus Gk np is a subgroup of index 2 in Gg, np and the
projective image of p(Gx np) is cyclic. We choose a well-adapted (¢, dj;)-representation
p: Gg,np — GLa(Ap). By §6.3.3, the A algebra generated by p(Gk,np) is a sub-GMA of

My (A;), of the form R = (%ﬁ f) for some proper ideal B of A;.
p

Proposition 11.3.2. One has B = Ikqp.

Proof — By definition, Ikay, is the smallest ideal I of A; such that the image of Gk np
in the quotient Gg np/Ker (t7,dr) is abelian. Since the representation p; : Gonp —
GL2(Ap/I) obtained by reducing p modulo I has trace ¢; and determinant dy, and since the
GMA M5(A/I) is faithful, p; realizes an isomorphism Gg np/Ker (t7,dr) — pr(Go,np) C
GL2(Ap/I), and the image of Gk np into Go np/Ker (tr,dr) is pr(Gr,np). Thus, Ixap C I
if and only if the group p(G i, np) is abelian, if and only if the A;/I-subalgebra of M2 (Az/1)
generated by pr(Gk np) is commutative, if and only if the image of R = (%ﬁ f) in
My(A;/I) is commutative. Clearly, the latter condition is equivalent to B C I. pThus
B = Ixan. 0

Corollary 11.3.3. Assume that the projective image of p is dihedral of order > 4, and
divisible by 4. The one has Ap css = Mzl Kap.

Proof — By Theorem 8.5.2, one has Aj; ¢ss = mzB. The corollary follows. |

Corollary 11.3.4. Assume that the the projective image of p is dihedral of order > 4, and
divisible by 4. A form f € F5 is special if and only if (T — Ae) f = 0 is K-abelian for every
prime £ not dividing Np (here Ay = tr (p(Froby))). In particular, the space Fj spe contains

the space of K -abelian forms as a finite dimensional subspace.

Proof —  This is just a translation of the preceding corollary, using that m; is finitely

generated since Aj is noetherian. |
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The case of a large or exceptional p. In this case it is easy to see that there are

no cyclotomic forms in F;, nor K-abelian forms for any K. The space A; e is the ideal

m%, hence Fj;spe is the space of forms which are killed by (T, — A¢)? for all £ not dividing

Np. This space is finite-dimensional since A5/ m% is finite-dimensional.
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