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Abstract: Interest in layered two-dimensional (2D) materials has been escalating rapidly over the
past few decades due to their promising optoelectronic and photonic properties emerging from their
atomically-thin 2D structural confinements. When these 2D materials are further confined in lateral
dimensions toward zero-dimensional (0D) structures, 2D nanoparticles and quantum dots with new
properties can be formed. Here, we report a nonequilibrium gas-phase synthesis method for the
stoichiometric formation of gallium selenide (GaSe) nanoparticles ensembles that can potentially
serve as quantum dots. We show that the laser ablation of a target in an argon background gas
condenses the laser-generated plume resulting in the formation of metastable nanoparticles in the
gas phase. The deposition of these nanoparticles onto the substrates results in the formation of
nanoparticle ensembles, which are then post-processed to crystallize or sinter the nanoparticles. The
effects of background gas pressures, in addition to crystallization/sintering temperatures, are
systematically studied. Scanning electron microscopy (SEM), photoluminescence (PL) spectroscopy,
and time-correlated single-photon counting (TCSPC) measurement are used to study the
correlations between growth parameters, morphology, and optical properties of fabricated 2D
nanoparticle ensembles.

Keywords: 2D materials, 2D nanoparticles, 2D quantum dots, Laser ablation, Laser-based synthesis.

1. Introduction

During the past decade, a large family of two-dimensional (2D) materials beyond graphene have
been under intense investigation.[1-3] Examples of such 2D layered structures include hexagonal
boron nitride (hBN),[4] metal chalcogenides (MCs: e.g., GaSe, InS)[5] and transition metal
dichalcogenides (TMDCs: e.g., MoSz, WSe2).[6-7] These 2D materials family offer a broad range of
remarkable electrical,[7-9] optical,[10] chemical,[11] and mechanical properties[12] that are often
originated from their structural and quantum confinement to 2D plane.[13-15] In general, 2D
materials are an appealing group of materials to substitute or complement traditional 3D electronic
and optoelectronic materials.[16-18]

When these 2D materials are additionally confined in the lateral dimensions, zero-dimensional
(0D) nanoparticles can be formed, mimicking the potential properties of quantum dots (QDs).[19-21]
These 2D nanoparticles show improved or new properties in addition to the inherent properties of
their parent 2D materials.[22-23] Low-toxicity,[24] higher specific surface area,[25-26] tunable
luminescence,[27-29] improved dispersibility in both aqueous and nonaqueous solvents,[30-31]
ability to hybridize with other nanomaterials,[32-33] in addition to doping and functionalization
flexibility[34-35] are few of the advantages exhibited by such 2D nanoparticles. Therefore, they are
strong candidates for electronic,[36] optical,[33] energy,[4] biomedical,[28] sensing,[23] and
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catalytic[37] applications. Ultrasonication-based,[38-39] especially the ones accompanied by
solvothermal treatments,[40-41] syntheses methods have been widely adopted to produce 2D
nanoparticles due to their low-toxicity and ability to maintain the intrinsic properties of 2D bulk
crystals.[42] These techniques are, however, time-consuming with low quantum yield, production
yield, and repeatability.[42] To address such lengthy processes, femtosecond laser ablation in the
aqueous environment has been introduced[43-44] that showed great promise as a fast and green
approach to fabricate and functionalize 2D QDs. [35,45] Another effective method to obtain large-
scale monolayer QDs is intercalation-assisted exfoliation[36,46]. This method could, however, lead to
phase transition[47] and contamination.[48] Electrochemical synthesis[49-50] is another low-cost
technique but with better reproducibility. In general, these methods lack compositional tunability as
well as compatibility with the direct deposition and digital formation of hybrid materials and
heterostructures.

Among 2D materials, gallium selenide (GaSe) is a direct bandgap material (~2.2 eV) in its bulk
form that has Dsn symmetry with a lattice constant of 0.374 nm.[51] In 1996, Stoll et al. obtained
“strings of pearls” shaped GaSe nanoparticles with a mean diameter of 42 nm through metal-organic
chemical vapor deposition (MOCVD) synthesis process.[52] The colloidal GaSe was obtained a year
later by Allakhverdiev et al, through ultrasonication of bulk GaSe crystal in methanol.[53]
Moreover, in 2001, Chikan and Kelly obtained highly confined and luminescent surface capped GaSe
nanoparticles using high-temperature inorganic synthesis and column chromatography.[54] In recent
years, the high-pressure pulsed laser deposition (PLD) process has shown the ability to form
metastable nanoparticles in the gas phase.[55] For instance, Mahjouri-Samani et al., have recently
reported the formation of various metastable nanoparticle and nanosheets using a high-pressure PLD
process.[56] Dai et al. have also reported the deposition of CdSe QDs on Zn25nOs nanowires by
PLD.[57]

Here, we report a solution-free, fast, and effective laser-based approach to synthesize highly
luminescent 2D GaSe nanoparticle ensembles. The pulsed laser ablation/deposition (PLA/PLD)
method is used as a versatile method to ablate a bulk GaSe target and form a stoichiometric plume
(see Supporting Information). Condensation of this plume in background argon gas pressure allows
tuning the formation of aggregates and nanoparticles in gas-phase. Our approach simplifies the
complexity of existing methods through the elimination of slow and uncontrolled chemical reactions.
Also, this method has the potential of forming tunable nanoparticles heterostructures by alternating
the ablation target during the deposition. Scanning electron microscopy (SEM), photoluminescence
(PL) spectroscopy, and time-correlated single-photon counting (TCSPC) spectroscopy were used to
study the correlations between growth parameters, morphology, and optical properties of fabricated
structures.

2. Materials and Methods

The pulsed laser ablation/deposition experiments in this study were performed in a 21-inch
spherical vacuum chamber. Si/SiO:2 substrates (2x2 cm) were placed at the tip of the plume and
parallel to the target. An excimer laser (CompexPro KrF 248nm wavelength with 20 ns pulse
duration) was used to ablate a rotating bulk GaSe target in order to generate GaSe nanoparticles and
deposit them onto the Si/SiO: substrates. The target was irradiated at a 45° angle of incidence with
repetition rates of 2 Hz. The laser repetition rate of 2 Hz was chosen to allow enough time for the
generated plume to clear before the next plume arrives in order to minimize the effect of plume-
plume collisions. Laser energy of 300 m] with a 2x5mm beam size (i.e., 3 Jcm?2) on the target was used
to ensure the stoichiometric transfer of materials. The substrate to target distance was adjusted to be
a few millimeters above the visible laser plume to ensure the collection of pure nanoparticles on the
substrates. The deposition was up to 5000 pulses to collect an adequate amount of nanoparticles for
subsequent characterizations.

The ensemble nanoparticles were heat-treated using a 3-inch diameter 3-zone tube furnace. The
nanoparticle deposited on the Si/SiO:z substrates were placed inside a ceramic boat and entered into
the center zone of the tube furnace. The tube was first pumped down to a few millitorrs. Before
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heating, the pressure was increased to atmospheric pressure by flowing an argon gas into the tube.
During the heating process, 100 sccm Ar gas was continuously flowing through the quartz tube. The
samples were treated under various temperatures ranging from 200 to 500 ‘C. After heating, the
furnace was turned off, and the substrates were cooled down to room temperature while the Ar gas
was flowing.

Photoluminescence spectroscopy and lifetime measurements were performed in a custom-made
optical spectroscopy system capable of measuring PL and PL lifetime. The PL measurements were
performed using a 50x objective lens (NA =0.75). A Horiba HR spectrometer with a 300 g/mm grating
was used for PL. A picosecond 405 nm lasers and a continuous-wave 532 nm laser were used as
excitation sources. The laser power was minimized to avoid potential beam-induced alteration of the
nanoparticles during the measurements. Lifetime measurements were performed using a Horiba
TCSPC system with a picosecond 405 nm laser as the excitation source. The number of counts was
limited to 1000 counts in order to avoid potential beam-induced damage or alteration of the
nanoparticles. Horiba EzTime Software was used to collect and analyze the lifetime measurement
data.

A high-resolution Zeiss EVO 50 variable pressure SEM attached to Oxford Instruments INCA
spectrometer for energy-dispersive x-ray spectroscopy (EDX) was used to characterize the
morphology and structural composition of the deposited nanoparticles. SEM images were obtained
with 10 kV accelerating voltage, while EDX was performed using 20 kV. The EDX data was analyzed
using Oxford INCA software. For transmission electron microscopy (TEM) imaging, a Zeiss EM10
transmission electron microscope with an accelerating voltage of 60 kV was used for single-particle
and aggregation analysis. The TEM grids were prepared by first sonicating the nanoparticles in
ethanol for 1 minute, followed by steering the TEM grids inside the solution to collect the
nanoparticles.

a Substrate b <1 Torr 1-3 Torr >3 Torr
Holder

Excimer o

Laser Beam Vacuum

L]
Pump '. ° o
L] (] L]
— — ——
Thin film Small Nanoparticles Large Nanoparticle
Target Holder Deposition Formation Agglomerations
(a)

Figure 1. Schematic illustration of the experimental setup used for the formation and assembly of the
2D nanoparticles in this study (a). Schematic illustration of the laser-generated plume dynamic and
evolution of nanoparticle formation as a function of background pressure (b).

3. Results and discussion

Typically, the PLD process (Figure 1a) involves the formation of a forward-directed laser-plasma
consisting of fast ions and neutral atoms followed by slower-moving molecules and clusters.[51] For
instance, the ablation of a target in vacuum results in the formation of fast ions and neutrals with
sufficiently high kinetic energies that can form dense films when deposited on a substrate. However,
background gas pressures can be used to condense the laser-generated plume resulting in the
formation of nanoparticles in the gas-phase. Figure 1b shows the schematic illustration of the plume
dynamic as a function of background gas pressures while other parameters (e.g., laser fluence,
repetition rate) are kept constants.

To tune the plume condensation dynamics for the formation of nanoparticles, argon gas was
used to adjust the background pressure ranging from 0.5 to 5 torr. This pressure range allowed us to
create depositions ranging from dense film to mesoporous structures as a function of increasing
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pressure. SEM images of room-temperature-deposited structures at different background pressures
are shown in Figure 2a-c. The images revealed that at pressures up to 0.5 torr (Figure 2a), mainly
dense films are formed on the substrates due to the existence of atoms, molecules, and smaller
aggregates in the plume. As the pressure was increased to around 2 torr (Figure 2b), the plume
condensed to a semi-sphere of about 5cm in diameter. In this condition, nanoparticles were mainly
started forming and creating mesoporous structures as deposited onto the substrates. Increasing the
pressure close to 5 torr resulted in the intense condensation of the plume to a semi-sphere of about
1.5 cm in diameter. This high condensation created partially crystallized and sintered agglomeration
of nanoparticles, which created loosely connected and fluffier structures when deposited onto the
substrates (Figure 2c). It should be noted that pressures beyond 5 torr resulted in small plume sizes
that were challenging to bring the substrate close by for deposition. In general, the density and size
of the nanoparticle agglomerations were found to be in direct correlation with background pressure
due to the condensation effect induced by the background pressure.

Figure 2. SEM Images of ensemble nanoparticles deposited at 0.5 (a, d and g), 2 (b, e, and h) and 5 torr
(¢, £, and i). The baking temperature effects on the morphology of the nanoparticles ensembles for
different pressure conditions are shown for room-temperature (a, b and c), 300 (d, e and f), and 500
°C (g, h and i). The deposition morphology shows a denser film at 0.5 torr and becomes more
mesoporous at higher pressures. Temperature treatments of the samples resulted in the crystallization
and sintering of the nanoparticles and the formation of a larger blub of nanoparticles. All images are
on the same scale bar.
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Following the deposition, nanoparticles were baked at different temperatures aiming reduction
of surface traps and studying their behavior under different temperatures. At atmospheric
background pressure, a temperature window of 200 to 500 °C was used for baking the nanoparticles
in a 3-zone tube furnace for 30 min with continuous argon flow throughout the baking and cooling
process to avoid oxidations. The SEM images of nanoparticles deposited at 0.5, 2, and 5 torr and heat-
treated at 300 and 500 °C are shown in Figure 2d-i. The SEM images revealed that as the temperature
increased, the nanoparticles start sinter together, forming larger agglomerates and pores, as clearly
seen in the samples deposited at 2 and 5 torr background pressures. The depositions at 0.5 torr (Figure
2d, g) are nearly continuous dense structures, and their sintering does not reveal significant
morphological changes.

Figure 3. TEM images of the nanoparticles deposited at 2 torr in the as-deposited case (a, d) in addition
to the baked cases at 300 °C (b, c) and 500 °C (c, f). The TEM images in the as-deposited case are well
separated. However, the particles are sintering at higher temperatures.

As shown in Figure 3, TEM imaging was used to directly observe the nanoparticle size and
structural evolution of nanoparticles deposited at 2 torr and under different crystallization
temperatures. Samples were sonicated in ethanol and captured onto TEM grids for imaging. The
room-temperature deposited samples were easily separated from each other, and individual
nanoparticles of about 5-10 nm in size were collected on the TEM grids (Figure 3a, d). Partial
crystallization and sintering of nanoparticles were observed for the samples heat-treated at 300 "C
(Figure 3b, e). At 500 °C, further sintering of nanoparticles into larger structures was clearly observed
(Figure 3c, f). These observations were consistent with the morphological evolutions observed in the
SEM images.

The optical properties of the ensemble nanoparticles were studied to understand the correlation
between the PL emission, deposition pressures, and crystallization temperatures. The PL
spectroscopy was performed using a 405 nm picosecond laser as an excitation source. The laser power
was minimized to avoid any photo-induced damage, crystallization, sintering, or oxidation of the
nanoparticles during the optical spectroscopy measurements. Figure 4a-e shows the PL emission of
the ensemble nanoparticles formed at different background pressures (0.5, 1, 2, 3, and 5 torr) in the
as-deposited case and at the indicated crystallization/sintering temperatures (200, 300, 400 and 500
°C for 30 minutes). For the ease of observation, these data are also replotted in Figure 5a-e to show
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the crystallization/sintering temperature effect at 0.5, 1, 2, 3, and 5 torr. The PL spectra were also
obtained and analyzed using a continuous-wave 532 nm laser (see Supporting Information).

a woc| (b HOC| |C apooc| (d 400°C| € s00°C
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Figure 4. PL spectra of the nanoparticles deposited at various pressure for the as-deposited case (a)
and at the indicated baking temperatures (b-e). The sample deposited at 0.5 torr shows the weakest
PL emission for all due to the formation of dense films (i.e., no nanoparticles). The PL spectra at 2,

3, and 5 torr have the maximum intensities due to the formation of nanoparticles.
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Figure 5. PL spectra showing the effect of baking temperature on the nanoparticles deposited at the

Intsnelty (e

indicated pressures (a-e). As the temperate raises to a suitable baking temperature of ~200-300 °C,
nanoparticles emission increases largely, and at higher temperatures (i.e., 500 °C) the intensity
reduces again due to sintering and formation of larger particles.

Three interesting phenomena were observed while studying the effect of pressures and
temperatures on the PL properties of the deposited nanoparticles. First, we observed a strong PL
emission from the room-temperature-deposited amorphous nanoparticle (Figure 4a), exhibiting a
significant blue-shifted emission of ~540 nm compared to the bulk GaSe crystal central emission of
~625 nm ( for more information about central emission and FWHM values check tables S1 and S2). In
these room-temperature-deposited samples, the PL emission of the samples at 0.5 torr had the
weakest intensity of all due to the formation of a dense film on the substrates. The PL intensity
increased for nanoparticles deposited at higher pressures, with 2 torr exhibiting the maximum
intensity. Second, we observed strong PL enhancements with minimal FWHM widenings by
increasing the baking temperatures up to 300 °C (Figure 4b, c). At higher temperatures (Figure 4d, e),
the PL intensity was then severely dropped, FWHM was broadened, and the central emission red-
shifted toward the emission of bulk crystal and beyond. Third, the lower pressure deposited samples
experienced red-shifting and broadening at a lower temperature than high pressure deposited
samples. For instance, at 200 “C (Figure 4b), the samples deposited at 1 and 2 torr showed the highest
intensity values compared to other pressures. In addition, they had the most blue-shifted emissions
and lowest FWHM values. At 300 °C (Figure 4c), the nanoparticles deposited at 2, 3, and 5 torr showed
higher intensities, minimal broadening and red-shift. At 400 and 500 °C (Figure 4d, e), significant
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emission broadening, red-shift, and reduction in the intensities are observed (as seen from the noisy
spectra). The low pressure deposited samples (i.e., 0.5 and 1 torr), which were more like thin films
rather than nanoparticles, appeared unstable at higher temperatures (e.g., 400-500 °C) as they
revealed random changes in their optical properties.

To better observe the effect of baking temperatures on the PL emission characteristics, the
temperature effects were plotted for nanoparticles deposited at each background pressure (Figure 5).
For 2, 3, and 5 torr samples (Figure 5¢, d, and e), a slight red-shift is observed. However, the intensity
continued increasing, reaching its maximum at ~300 °C, but this was followed by the steady dropping
of the intensity values. The intensity enhancement suggests that heat treatments lead to the
crystallization of nanoparticles and the reduction of defects. The FWHMs slight widening and the
red-shifting effect could be due to the formation of larger particles as they slowly sinter together at
low temperatures (i.e., 200 and 300 °C). However, the sintering effect at the higher temperatures (i.e.,
400 and 500 °C) could create nanoparticles with random size distributions as well as degradation and
formation of defects in the structures. Such analyses are still primary, and further investigations are
needed to fully understand the fundamental mechanisms governing such behaviors.
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Figure 6. PL lifetime of the nanoparticles deposited at various pressure and heat-treated at different
temperatures, including the as-deposited (a), 300 °C (b), and 500 °C (c). The overall trend shows that
the PL lifetime increases as the deposition pressure increases.
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Figure 7. PL lifetime showing the effect of baking temperature on the nanoparticles deposited at the
indicated pressure (a, b, and c). The overall trend shows that the PL lifetime decreases as the baking

temperature increases.

The PL lifetime of the synthesized nanoparticles was obtained using a time-correlated single-
photon counting (TCSPC) instrument. The measurements were performed using a picosecond 405
nm excitation source. The curves were fitted using EzTime software, and tri-exponential function and
characteristic lifetimes were obtained (see Supporting Information). In general, the lifetime of all
samples was less than 0.4 ns compared to the 1 ns lifetime of the bulk GaSe crystal. According to the
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measurements, the average lifetime of the room-temperature deposited samples (Figure 6a)
gradually increased up to 2 torr and then slightly decreased afterward. At 300 °C (Figure 6b), lifetime
was found to be positively correlated to the deposition background pressure. In general, it could be
inferred that partial crystallization of nanoparticles and hence reduction of the defects are occurring
inside the laser-plasma at higher deposition pressures. As for the nanoparticles baked at 500 °C
(Figure 6c), the lifetimes decreased again due to possible defect formation at this temperature, similar
to the PL emission behaviors.

To better observe the effect of baking temperatures on the PL lifetime of the samples, the
temperature effects were plotted for nanoparticles deposited at each background pressure (e.g., 0.5,
2, and 5 torr) (Figure 7). For instance, the average lifetime of the samples deposited at 2 torr (Figure
7b) noticeably reduced from 0.388 ns for the room-temperature-deposited nanoparticles to 0.29 ns at
200 °C. The average lifetime was almost equal for 200 °C and 300 °C and then decreased slowly to
0.138 ns when baked at 500 °C. This agrees well with the red-shift and broadening of 2 torr PL,
indicating increased crystallization and moderate sintering of the nanoparticles at low baking
temperatures and formation of new defects as the temperature increases. For the sample deposited
at 0.5 torr (Figure 7a), the average lifetime decreased up to 300 °C, similar to the 2 torr sample.
However, it increased again at ~400 °C. For the samples deposited at 5 torr (Figure 7c), the average
lifetime decreased from 0.374 ns for the room-temperature-deposited nanoparticles to 0.266 ns the
nanoparticles baked at 200 °C. The lifetime then increased again at ~300 °C, and gradually reduced
up to 500 °C. This behavior was again in agreement with our previous PL emission behavior and
analyses. In general, the samples tend to crystalize and minimize their defect density when baked up
to certain temperatures (i.e,, ~300 °C), and at higher temperatures (i.e., 400 and 500 °C) new
temperature-induced degradation and defects are further formed. This model is similar to the model
proposed by Fassl et al.[58] on MAPDIs perovskite films. Such initial room-temperature analyses open
the way for more studies on the effect of surface and deep defects on optical properties of GaSe and
other 2D nanoparticles in solution-less conditions.

According to the PL emission and lifetime results, samples prepared at 2 torr background
pressure showed the optimum optical properties. The crystallization of these nanoparticles at 200-
300 °C significantly increased their emission intensity with reduced FWHM. Therefore, the baking
time dependence of the PL emission and PL lifetime of the nanoparticles deposited at 2 torr was
further studied by heating them at 300 °C for 1, 15, 30, and 120 min to understand the effect of baking
time. As shown, a significant increase in the PL intensity was observed by increasing the baking time
(figure 6a). In addition, the average PL lifetime decreased from about 0.4 ns for Imin to 0.25 ns for 30
minutes of baking time, respectively (figure 6b). However, with longer baking time (i.e., 120 min),
the lifetime increased to 0.4 ns. This outcome confirms the competition between crystallization and
sintering during the heat treatments, as also seen in the above PL data.
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Figure 8. Baking time effect on the nanoparticles deposited at 2 torr and baked at 300 °C. PL spectra
increase as the baking time increases (a). This is possibly due to defects-reduction. The average PL
lifetime decreases up to 30 min baking time and then increases at 120 min (b).
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4. Conclusion

In summary, 2D GaSe nanoparticle ensembles mimicking the quantum dots behaviors can be
formed in the gas-phase by precisely tuning the nonequilibrium environment in the laser ablation
process. Room temperature deposition of these nanoparticles results in the formation of amorphous
nanoparticle ensembles on the substrates that can be post-crystallized or sintered. A strong PL can be
observed from the amorphous nanoparticles deposited at background pressures. As the baking
temperature increases, the nanoparticles tend to crystallize and reduce their defects, leading to the
enhanced PL intensities and longer lifetimes. However, increasing the temperatures beyond a
threshold results in sintering these nanoparticles together, forming bigger structures, generating new
defects, or inducing a phase change that could alter the PL emission intensities, central frequency,
and lifetime. This nonequilibrium gas-phase method allows us to investigate the formation of other
2D nanoparticles and explore the new properties emerging from such 2D quantum dot-like
structures. In addition, this method allows the formation of designed heterostructures among
various 2D nanoparticles.
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Spectrum 1

Figure S1. Energy Dispersive X-ray (EDX) results showing the stoichiometry of the as-deposited
nanoparticles at 2 torr (a) and 5 torr (b) background pressures. The results verify that the stoichiometry is
maintained even after baking the sample at 400°C (¢,d).
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Figure S2. PL spectra of the nanoparticles deposited at various pressures and temperatures (a-e), using a 532 nm
continuous-wave laser. The sample deposited at 0.5 torr shows the weakest PL emission for all temperatures due to
the formation of dense films (i.e., no nanoparticles). The PL spectra of samples deposited at 2, 3 and 5 torr have the
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Figure S3. PL spectra showing the effect of baking temperature on the nanoparticles deposited at the indicated
pressure (a-e), using a 532 nm continuous-wave laser. Room temperature deposited samples show the weakest
emission. As the temperate increases to a suitable crystallization temperature of ~300 °C, nanoparticles emission
increases largely, and at higher temperatures (i.e., 500 °C) the intensity reduces again due to sintering and formation
of larger particles.
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Figure S4. PL lifetime of the nanoparticles deposited at various pressures banked at 200 (a) and 400 °C (b).
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Figure S5. PL lifetime showing the effect of baking temperature on the nanoparticles deposited at 1 (a) and 3 (b)
torr.
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Figure S6. PL lifetime (a) and PL (b) of a bulk GaSe crystal.

Table S1. Central emission values of the PL emission obtained using the picosecond 405 nm laser as an
excitation source.

Pressure Central Central Central Central Central
Emission Emission Emission Emission Emission

(nm) (nm) (nm) (nm) (nm)
25°C 200°C 300°C 400°C 500°C

546 549 601 536 546

541 541 614 619 547
539 539 552 612 630
539 544 543 612 631
542 548 547 570 674

Table S2. FWHM values of the PL emission obtained using the picosecond 405 nm laser as an excitation

source.
Pressure FWHM FWHM FWHM FWHM FWHM
(nm) (nm) (nm) (nm) (nm)
Temp (°C) 25°C 200°C 300°C 400°C 500°C
0.5 129 142.1 208 119 123
110 111 233 227 130
109 118 144 226 235
112 119 116 219 235
111 120 116 189 257
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Table S3. Central emission values of the PL. emission obtained using the 532 nm continuous laser as an
excitation source.

Pressure (T) Central Central Central Central Central
Emission Emission Emission Emission Emission
(nm) (nm) (nm) (nm) (nm)

25°C 200°C 300°C 400°C 500°C
619 625 631 643 661
607 607 626 651 657
605 603 603 641 671
604 598 594 612 670
602 601 595 608 667

Table S4. FWHM values of the PL emission obtained using the 532 nm continuous laser as an excitation
source.

Pressure (T) FWHM FWHM FWHM FWHM
(nm) (nm) (nm) (nm) (nm)

25°C 200°C 300°C 400°C 500°C
[ 05 | 119 118 143 167 173
122 119 156 169 159
117 113 116 151 201
114 108 105 136 185

5 | 111 106 103 124 177

Table S5. Lifetime fitting parameters of the nanoparticles deposited at 0.5 torr.

°C A Tl (ms) T2(ns) T3 (ns) Bl B2 B3 Avg T (ns)
Al 03765  0.731225 0.129307 3.627073  0.033445 0.205506 0.003596  0.264171
P 030215 0588688 341839  0.091332 0.032011 0.003651 0290323  0.177437
0.184215 0.078943 0.478933 2.884721  0.36545 0.024806  0.0011  0.112183
0.465397 0.725004 4.066824 0.090214 0.027162 0.004158 0.298196  0.192724
0.63646  0.410023 0.059662 2.369051 0.030851 0.442596 0.003301  0.098325

7
=
=)
=
-~

Table S6. Lifetime fitting parameters of the nanoparticles deposited at 1 torr.

A T1 (ns) T2 (ns) T3 (ns) B1 B2 B3 Avg T (ns)
25 0.4274271 0.7540962 0.1585956 3.2313438 0.032112 0.1708399 0.0042126 0.313385
200 0.3543137 0.7101392 4.3855397 0.1132297 0.0383503 0.0065988 0.2031747 0.31911
300 0.2901749 0.5743158 0.1017695 2.5332397 0.0242911 0.289314 0.0017508 0.151668
400 0.3237967 0.5250072 0.0906471 2.1481171 0.0330297 0.3004887 0.0032448 0.153074
500 0.6234256 0.3056314 1.901737 0.0334506 0.0401633 0.0030453 0.9745709 0.0497813
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Table S7. Lifetime fitting parameters of the nanoparticles deposited at 2 torr.

A T1 (ns) T2 (ns) T3 (ns) B1 B2 B3 Avg T (ns)
0.1750575 0.8592292 4.024655 0.1634982 0.0361958 0.0050445 0.1581142 0.387522
0.4279814 0.6497374 0.1295084 3.0860115 0.040692 0.1824145 0.0052144 0.289746
300 0.4761335 0.6633929 0.1328094 2.8366252 0.0391765 0.1749509 0.0059546 0.300413

400 0.3829398 0.5212455 0.120366 1.9983458 0.0483285 0.1789817 0.0083602 0.269193
500 0.3363721 0.4745001 0.0835505 2.0378402 0.0377126 0.3200647 0.0025176 0.138127

10, T

Table S8. Lifetime fitting parameters of the nanoparticles deposited at 3 torr.

A T1 (ns) T2 (ns) T3 (ns) B1 B2 B3 Avg T (ns)
0.2446444 0.8186526 0.1679898 3.5211749 0.0320765 0.1575633 0.0032469 0.332638
200 0.2543762 0.155196 0.7887412 3.6735355 0.1481988 0.0402304 0.0041208 0.362862
300 0.3710518 0.7357355 0.1141849 4.3359261 0.0444039 0.1743323 0.0077847 0.38111
400 0.4775388 0.7273778 2.7051167 0.1533387 0.0414428 0.0063572 0.1465101 0.359257
0.5027549 0.4406089 2.1853672 0.0809183 0.0506979 0.0058303 0.2861599 0.169936

110, €

Table S9. Lifetime fitting parameters of the nanoparticles deposited at 5 torr.

A T1 (ns) T2 (ns) T3 (ns) B1 B2 B3 Avg T (ns)
0.2624931 0.7419071 0.1670818 3.2860058 0.0396093 0.1460485 0.0054006 0.374413
200 0.3642784 0.7089714 0.1346335 2.8893663 0.0364951 0.1959548 0.0036873 0.266413
300 0.4108882 0.7462776 4.1229113 0.1276789 0.0438383 0.0076454 0.1691439 0.389039
400 0.3218829 0.7118832 2.9545632 0.1211159 0.046988 0.0070916 0.1756727 0.329395
0.2602637 0.0923414 0.5211756 1.8048778 0.2468006 0.0406756 0.0043775 0.177794

10, S
II "
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