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Abstract—A major challenge in mobile crowdsensing applica-
tions is the generation of false (or spam) contributions resulting
from selfis and malicious behaviors of users, or wrong perception
of an event. Such false contributions induce loss of revenue
owing to undue incentivization, and also affect the operational
reliability of the applications. To counter these problems, we
propose an event-trust and user-reputation model, called QnQ,
to segregate different user classes such as honest, selfish or
malicious. The resultant user reputation scores, are based on
both ‘quality’ (accuracy of contribution) and ‘quantity’ (degree
of participation) of their contributions. Specificall , QnQ exploits
a rating feedback mechanism for evaluating an event-specifi
expected truthfulness, which is then transformed into a robust
quality of information (QoI) metric to weaken various effects
of selfis and malicious user behaviors. Eventually, the QoIs of
various events in which a user has participated are aggregated to
compute his reputation score, which in turn is used to judiciously
disburse user incentives with a goal to reduce the incentive
losses of the CS application provider. Subsequently, inspired by
cumulative prospect theory (CPT), we propose a risk tolerance and
reputation aware trustworthy decision making scheme to deter-
mine whether an event should be published or not, thus improving
the operational reliability of the application. To evaluate QnQ
experimentally, we consider a vehicular crowdsensing application
as a proof-of-concept. We compare QoI performance achieved
by our model with Jøsang’s belief model, reputation scoring
with Dempster-Shafer based reputation model, and operational
(decision) accuracy with expected utility theory. Experimental
results demonstrate that QnQ is able to better capture subtle
differences in user behaviors based on both quality and quantity,
reduces incentive losses and significantl improves operational
accuracy in presence of rogue contributions.

Index Terms—Crowdsensing, Quality of information, Trust,
Reputation, Dependable Systems, Participatory Sensing

I. INTRODUCTION

Sophistication in mobile devices (e.g., smartphones, tablets)
and their widespread adoption have given rise to a novel inter-
active sensing paradigm, known as Participatory Sensing [9].
A variant of participatory sensing system involving explicit
human participation for sensing the environment, is termed as
Crowdsensing (CS) [14]. In such systems, a crowd of citizens
voluntarily submit certain observations termed as contributions
(viz., report, image, audio) about some phenomena in their

immediate environment to a CS server, which in turn fuses
these contributions to conclude a summarized statistic (or
information) and publishes for the benefi of the public at large.

An important category of CS applications is vehicular traffi
monitoring and management [5]. In such applications, a user’s
contributions are equivalent to ‘reports’ about various traffi
conditions that they might have observed. Based on certain
correlations among such reports, the CS application decides
whether a certain traffi ‘event’ has occurred, and publishes
this ‘information’ as a broadcast notificatio on a user’s smart-
phone application. Such information help to improve driving
experiences through dynamic route planning and re-routing of
traffi in busy cities. Two notable examples of real vehicular
CS applications include Google’s Waze (www.waze.com) and
Nericell [26]. Other practical examples include FourSquare
and Yelp which help users to fin best destinations in their
geographical proximity for food, entertainment, and other
attractions or events of interest.

The real benefi of CS paradigm is that rich, fin grained and
precise sensory observations can be obtained quickly without
establishing dedicated infrastructure [32]. Thus, it reduces
significan infrastructure overheads incurred due to sensor
deployment, management, and periodic maintenance. However,
a major drawback is its “open” nature (accessible to all) which
may expose CS applications to false contributions [18], [37],
which result in publishing erroneous information.

Most of the CS applications depend on various incentive
mechanisms to motivate the users to keep contributing regu-
larly, and thus preserve their viability [24]. It has been noted
that in most of these mechanisms, the deciding factor of
incentive is the user’s degree of participation (i.e. “quantity" or
how much they contribute). However, selfis users may take
advantage of this loophole and intermittently generate false
contributions to boost their participation for gaining undue
incentives [32], thereby incurring revenue losses to the CS
application. Furthermore, there could be malicious users who
attempt to cripple the CS applications by generating a large
number of bogus contributions in collusion [37]. Recently, such
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colluding attack was launched against Waze in Israel, by which
fake traffi jam reports were created to orchestrate traffi re-
routing and unnecessary roadblocks [34]. Occasionally, false
contributions may also be generated owing to wrong percep-
tion. Regardless of the motive, false contributions incur revenue
loss due to unnecessary disbursement of incentives and also
tarnishes the operational reliability of the CS application.

In a preliminary work, we studied a real data set from
Waze [5], and established that the ‘quantity’ rather than ‘qual-
ity’ of contributions decides incentives (details presented in
Section II-B). Here we argue that besides the quantity, there is
also a simultaneous need for assessing quality of information
(QoI) generated from user contributions. This QoI is essentially
a measure of trustworthiness of the summary statistic and is
equivalent to its trust score. Additionally, user reputation based
on his level of truthful participation is required to determine:
(i) if a user is honest, selfish or malicious; (ii) the incentive
received by the user; and (iii) acceptance of future reports from
the user for decision making.

A. Motivation of this Work
Apart from other expensive methods (e.g., ground truth,

sensor based) of evidence collection, a simple way to assess
QoI is to allow other users in the proximity to provide a
feedback rating (viz., positive, negative, or uncertain) for each
published information [20], [32]. Based on such feedbacks
(serving as evidence), the event trust and user reputation are
quantified In the literature, most existing trust and reputation
models are based on Jøsang’s belief model [20], Dempster-
Shafer reputation [42] model, or their variants (see Sec. II for
details).

A synthesis of existing works reveal that they only utilize the
proportion of positive feedbacks in the QoI measure. However,
we show that accurate QoI scoring should also include the
effect of total number of feedbacks (i.e., feedback mass) that
a published information has received. This step is important to
weaken the ill effects of malicious ratings. Second, most exist-
ing works do not consider a dynamic discounting of uncertain
feedbacks to ensure that the QoI measure is null invariant (i.e.,
not influence by high uncertainty or orchestrated inconclusive
feedbacks). Third, and most importantly, these models are
not able to propose a reputation scoring model that unifie
both degree of participation (quantity) as well the quality of
each contribution. Fourth, existing models provide insufficien
provisions for embedding heterogeneity among various CS
providers in terms of economic behaviors such as risk tolerance
attitude under possibilities of threat and uncertainty.

B. Contributions of the Paper
This paper proposes a model, called QnQ, for trust and

reputation scoring in a CS system in presence of malicious
and selfis users. First, we propose a QoI measure for every
published information. Based on the feedbacks received over
a particular published information (event), we calculate the

Bayesian inference based belief, disbelief, and uncertainty
masses. Thereafter, we model the expected truthfulness of the
published information as a regression model using generalized
Richard’s curve and Kohlsrausch relaxation function as the
weights to belief and uncertainty masses, respectively. This
step weakens the effect of malicious feedbacks (such as ballot
stuffin or bad mouthing) while also being null invariant
against obfuscation stuffin attack in the sense that our model is
not influence by high uncertainty or orchestrated inconclusive
feedbacks. Subsequently, we transform the expected truthful-
ness to a QoI (trustworthiness) measure that captures the odds
of an event’s occurrence. The transformation is achieved using
cumulative prospect theory (CPT) inspired link function that
captures varying risk tolerance attitudes (risk seeking, risk
averse, risk neutral).

Second, we keep track of the QoI measure of all the
published information contributed by each user via reports,
and then calculate a raw user reputation score by aggregat-
ing them. The aggregated raw user reputation is normalized
within an interval of [-1, +1] through a logistic distribution
function. This normalized user reputation score is: (i) utilized
for classificatio of users into honest, selfis and malicious;
(ii) judicially disburse incentives based on both his degree of
participation (quantity) and quality of those contributions; and
(iii) utilized for robust decision making.

Third, we propose a CPT inspired two-level decision making
scheme that exploits the reputation scores and other contextual
information to improve accuracy of publishing true events
while avoiding false (spam) events. In contrast with other
works, a significan benefi of our scheme is that it can embed
heterogeneity that might exist among various CS providers in
terms of economic behaviors such as risk or loss aversion and
avoid certain biases that negatively affect decision accuracy.

Finally, we conduct extensive performance to evaluate the
proposed QnQ model using a vehicular crowdsensing system
as a proof-of-concept. We use some real data from Waze
and Epinions to parameterize the simulation environment. We
demonstrate that our approach outperforms Jøsang’s belief
and Dempster-Shafer (D-S) based reputation models in terms
of classification incentivization, and scalability. Experimental
results show that QnQ is able to give a reputation score, that
rewards both quality and quantity and saves significantl on
incentives in presence of dishonest users while maintaining
fairness. Furthermore, we show that our cumulative prospect
theoretic decision making scheme ensures better operational
accuracy compared to expected utility theory (EUT) based
models. We also present some recommendations for the system
parameters that show how QnQ can be adapted to any CS
application’s requirements.

The rest of the paper is organized as follows. Section II
summarizes the limitations of the existing literature. Section III
describes the system and threat models. Section IV proposes
the QnQ model for trust and reputation scores while Section V
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extends the QnQ model for trustworthy decision making.
Section VI presents results and performance. Section VII
discusses parameter recommendations and extensions under
various CS systems while Section VIII offers conclusions and
future research directions.

II. LIMITATIONS OF EXISTING WORK

This section reviews the state-of-the-art research for QoI
and user reputation scoring models and certain important
limitations of existing literature for crowdsensing applications
under selfis and malicious users.

A. Quality of Information (QoI) Scoring Models

The QoI scoring aims at assessing the ‘veracity’ of the
information contributed by the users. The veracity assessment
may be either on the individual reports or on the inferred
information statistic. Broadly, the QoI is assessed by modeling
evidence obtained using (i) ground truth, (ii) similarity based
outlier detection, (iii) spatio-temporal provenance, (iv) prior
reputation context, and (v) the rating feedback mechanism.
Such evidence is then mathematically modeled into a QoI.

However, the availability of ground truth is not immediate,
and often not guaranteed or feasible. Additionally, acquiring
ground truth often requires deployment of dedicated infras-
tructure, or agents thus obviating the relevance and benefit
of crowdsensing. Similarity based outlier detection [2], [18],
[40] awards higher QoI to an event if most of the user’s
contributions agree in terms of event type, location, and time
stamp. However, for fake events orchestrated by a group of
rogue users, high degree of similarity among contributions is
implicit, since honest users will not be reporting anything. Such
QoI scoring therefore, fails under orchestrated fake events.
Spatio-temporal provenance based schemes [38] assume ex-
istence of a prior and reliable reputation scores of each user
and quantifie QoI based on prior reputation and similarity in
reports. However, this does not address the cold start problem
and variability in user behaviors.

Some real CS applications, viz., FourSquare, Waze, YikYak,
Yelp, Ebay, etc. use a rating feedback mechanism, whereby
other consumers/agents of the service provide positive, negative
or neutral ratings on the published information. For example,
in case of a 5-star rating system, the ratings 4 and 5 correspond
to positive, 1 and 2 as negative and 3 as neutral. The estimation
of QoI is achieved based on the feedbacks received. The
benefit of using a feedback rating paradigm are that it is
easy, fast, and less expensive. Moreover, it really exudes the
essence of a true mobile crowd sensing paradigm and do
not suffer from weaknesses of the other evidence modeling
approaches. In most cases, QoI scoring is done using variants
of Jøsang’s belief model [20] that compute the QoI based on
the ratio of positive feedback to the total feedback with some
fi ed weight to the ratio of uncertain feedbacks. Nevertheless,
there exist threats such as ballot and obfuscation stuffin in

rating feedback paradigms. We observe the following inherent
weaknesses in Jøsang’s belief models:
Confidenc of the Feedback Community: Jøsang’s belief
model (details in Appendix A) fails to capture the differences
in confidenc of the feedback community, thereby making the
resultant expected belief (QoI in our case) more vulnerable
to manipulation by malicious raters who provide positive
ratings to false events (Ballot Stuffin attack) and vice-versa
(Bad Mouthing attack). This may influenc the QoI score of
false events in favor of the adversaries. As shown in Table I,
each event is denoted as E : 〈N, r, s, t〉, where N is the total
number of received ratings while r, s, t are positive, negative,
and uncertain ratings, respectively. For event E1, 3 out of 7
feedbacks are good, whereas for event E2, 30 out of 70 are
good. Jøsang’s belief model generates almost the same QoI in
both examples. From an adversary’s perspective, it is easy to
compromise or manipulate 3 good raters in E1 and maintain
the same fraction of positive ratings as E2. However, it is
harder to maintain the same fraction when the crowd is large
(as in E2), in which case the adversary has to manipulate 30
raters. Hence, given the same fraction of positive feedbacks,
any event with more feedbacks should be considered as
more trustworthy. If this feature is not incorporated, the QoI
becomes more vulnerable [8].

Table I: Limitations of Jøsang’s Belief Model
Issues Examples Jøsang’s QoI

Confidenc of Community E1:〈7, 3, 2, 2〉 0.55
E2:〈70, 30, 20, 20〉 0.57

Not Null Invariant E3:〈105, 5, 0, 100〉 0.51
E4:〈25, 5, 0, 20〉 0.53

Not Null Invariant to Uncertainty: Jøsang’s belief models do
not offer null invariance property. This means that QoI of
an event can achieve unwarranted increased trustworthiness
due to high proportion of uncertain feedbacks, which may be
either intentionally generated (Obfuscation Stuffin attack), or
be a result of legitimate uncertainty. Either way, such event
should not unduly increase the trust (QoI) score. For example,
event E3 in Table I, has 100 uncertain feedbacks out of 105.
However, it achieves almost the same QoI as event E4 which
in contrast has only 20 uncertain ratings. For most services,
it may be risky or unwise to give as high a QoI score to E3
as that of E4. Thus, the QoI scoring needs a mathematical
provision for controlling the impact of high uncertainty on it.

B. User Reputation Scoring Models

Traditionally, reputation scoring models in crowdsensing use
either Beta (for binary evidence) or Dirichlet distributions (for
multinomial evidence) as theoretical basis for probabilistic and
evidence based reputation modeling [27]. Jøsang’s belief [20]
and Dempster-Shafer (D-S) based trust models [42] provide
the state-of-the-art approaches that exploit either of these
distributions to model rating feedback based evidence into trust
or reputation scores.
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Figure 1: Study on Waze Dataset

Recent works [2], [18], [27] have proposed a determin-
istic time varying reputation management system based on
Gompertz functions. However, rather than evidence based
scoring, they mainly investigate the evolution of trust over
time and do not actively assume threats. Most of the recent
works [2] [3], [32] [31] [13] [39] do not consider orchestrated
dishonest reports, consequent economic implications attached
with the reputation dynamics, cannot unify quality and quantity
of participation, has no provision to handle uncertainty, and
cannot thwart the effect of rogue ratings. To our understanding,
some limitations of these models are as follows:
Sacrificin Participation for Quality: D-S model [42] (as de-
scribed in Appendix B) does not fairly capture the degree of
participation and quality together into the reputation score.
Table II illustrates this limitation. Although users 1 and 2
have the same reputation, the latter with 52 additional good
contributions ends up with a score almost similar to user 1. This
is unfair and undermines the higher participation of users. If
the same high reputation is attainable with lower contributions,
the users will not be motivated to participate, and hence the
existence of CS will be threatened.

Table II: Sacrificin Participation for Quality
User Participation Good Bad Dempster Score

1 9 9 0 0.99
2 61 61 0 1.00
3 20 18 2 0.99

Sacrificin Quality for Participation: In [5], we studied a real
data set from Waze and identifie that quality may be sacrifice
for participation. Fig. 1b shows that the majority of the users
have generated around three reports over the span of one week.
However, there are a few users who have generated a very
large number of reports (around 600 to 1000). Additionally, it
is evident from Fig. 1a that the incentive of the users gradually
increases with higher participation rate. Conversely, the ratings
assigned to the users with high participation are very low
and even drops to zero while maximum incentive is received.
Thus, the reputation score of a user needs to unify both degree
(quantity) and quality of participation.
Lack of Adaptive Risk Modeling: The general notion of trust
and reputation has emphasized the need for incorporating the
risk tolerance attitude of the defender. This is because two
entities may perceive the same evidence differently because the
former might have more to lose than the latter in case of an
unfavorable breach of trust. Before entering into a relationship
of dependence, the concerns over potential losses caused by

possible breaches loom large, if evidence suggest possible
threats or presence of considerable uncertainty. Unfortunately,
existing trust and reputation scoring models poorly capture the
economic behavioral aspect linked to risk perceptions. Our
proposed model, on the other hand has provisions to adapt
according to different risk attitudes.

Figure 2: System Model

III. SYSTEM AND THREAT MODELS

In this section, we present the system and threat models and
the underlying assumptions.

A. System Model
Fig. 2 depicts the system model which consists of U users,

each equipped with a smartphone and subscribed to a vehicular
CS application. Two important aspects of this system are:
Report: A report is an alert furnished by a user after he per-
ceives an incident (viz., accident, jam, road closure). However,
due to the presence of selfis and malicious users, there may
be reports generated for incidents that have never occurred.
Event: An event denoted by k ∈ E = {1, · · · , |E|} is
a summarized information which is published after the CS
application receives a predefine number of “similar” reports.
Each k belongs to one out of a set of possible event types
denoted by E indexed as j ∈ {1, · · · , |E|}. If reports from
two different users indicate similarity in terms of location,
time epoch (t), and event type, they indicate the ‘same’ event.
As evident from Fig. 2, an event can be either true or false
and has a boundary within which subscribed users are liable
to participate. Event boundaries can be constructed through
various geo-spatial clustering methods from GPS stamps to
MGRS (Military Grid Reference System) conversion [18].

In the system model, there exists two types of users:
Reporter: A reporter is a user who has a propensity to generate
reports and has reported at least one event. Any such user is
liable to have a reputation score which reflect the overall qual-
ity of reports contributed, as well as the degree of participation.
Furthermore, to remove biases from the feedbacks, a reporter
is not allowed to rate a published event for which he himself
has generated a report.
Rater: A rater is a user who provides feedback on his perceived
usefulness of an event as: Useful (α), Not Useful (β), and Not
Sure (γ). For a published event, a rater is allowed to submit
only one rating.
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In our system model, we view the act of providing ratings
as an obligation, and it is not rewarded. Hence, for majority
of normal users, there is no selfis incentive to provide false
ratings, although some false ratings could be motivated by
malicious intent.

The design principle of the system model entails collection
of as much feedbacks as possible to get a notion of truthfulness
of the event in absence of ground truth. This may be achieved
by pushing a pop-up rating query to all active users navigating
through the event boundary (provided that that user has not
reported that event under scrutiny). The rating query asks to
click one of three possible options: Useful, Not useful, and Not
sure, to gather a subjective judgment about the published event.

B. Threat Model and Assumptions

Dishonest reporters may be selfis or malicious. A selfis
user is a legitimate user who generates true and false reports
intermittently, with certain probabilities for maximizing his
incentives. We consider two variations of selfis users. The firs
type reports more true events than false events and the other
type reports more false events than true events. The rationale
of two selfis user subtypes is explained in Section VII-B.

In contrast, malicious users are either actual user devices
compromised and (or hardware emulators) controlled by an
adversary that may intentionally act in collusion to cripple the
CS platform. A part of these devices can be made to act in
collusion as reporters to generate a false event while the rest
are ‘malicious’ raters who may act in the following ways:
Ballot stuffin : A rater submits positive feedbacks to an incor-
rect (false) published event (generated by dishonest reporters).
Obfuscation stuffin : A rater submits uncertain feedbacks to a
(false) published event (generated by dishonest reporters).
Bad mouthing: A rater submits negative feedbacks to a legiti-
mate published event (generated by honest reporters).

Note that, hardware emulators can further generate numerous
sybil interfaces to magnify the problem of false reports and
ratings. However, such sybil interfaces could be identifie by
existing methods [37]. Hence, we assume that it is only the
hardware emulators or compromised devices which pose a
threat of colluding attacks. In general, the adversary has a f xed
attack budget by which it can compromise or manage a limited
number of reporters and raters. This is evident from [37], where
the authors generated 1000+ sybil (virtual) interfaces to collude
a Waze-like application, but were compelled to deploy only 10
emulators (physical systems) due to budgetary constraints.

Hence, the adversary uses this finit attack budget that
effectively manipulates a fraction δmal of the reporters and
raters in order to generate false reports and ratings. It will
be a significan fraction for areas with limited number of
legitimate users. However, in presence of a significan crowd of
independent users, δmal will be low, and it will not be possible
to sabotage the entire proportion of genuine feedbacks. Since
crowdsensing paradigms are more prevalent in urban spaces, it

Table III: Notations
Symbol Meaning
N Total Number of Ratings
k Published Event ID
α, β, γ Rating Categories
b, d, u Probability Masses for Rating Categories
wb Weighing Function for b
wu Weighing Function for u
Ab, Au Initial Asymptote for wb, wu

Bb, Bu Growth Rate for wb, wu

ν Tipping Point for wb, wu

ϕ Kohlsrausch Relaxation Parameter for wu

wmax
u Maximum benefi of doubt towards u

τk Expected Truthfulness of a k-th published event
Nthres Rating Mass where discounting of u starts
θ1 Gain Exponent for QoI value function
φ1 Loss Exponent for QoI value function
Qk QoI Score of Event k
Si Aggregate Score of User i
Ri Normalized Final Reputation Score of User i
j Event Type ID
Cj Confidenc on event type j
v(Cj) Value function of Cj

Nagg(j) Total ratings for the j-th event type
Ragg(j) Total reputation for the users reporting j-th event type
ρ Preference factor for Cj

U+(z) Total set of active users in z-th region
θ2 Gain Exponent of v(Cj)
φ2 Loss Exponent of v(Cj)

π+, π− Probability Weighing Functions
δ1, δ2 Steepness Exponent for π+, π−

pj Prior Likelihood of occurrence of j type

may be assumed that for majority of times, substantial number
of authentic raters are likely to be present in the vicinity of
an event, thus reducing the proportion of false ratings to the
total number of feedbacks. In most cases, with larger rater
populations, the rating mechanism becomes less likely to get
sabotaged. For any rating-based system, the number of raters is
always higher compared to the number of reporters generating
reports/reviews. Our study from the Epinions dataset [25]
shows that the number of feedbacks is roughly three to four
times the number of reviews (reports) for any item.

IV. QNQ: PROPOSED REPUTATION SCORING MODEL

Now we present the modules of the proposed reputation
scoring model, called QnQ. The model is divided into 4 major
phases. First, the posteriori probability masses phase calculates
for each event published, the belief mass for each rating cate-
gory using Bayesian inference. Second, the QoI scoring phase
calculates QoI for each event through a non-linear weighted
regression score (expected truthfulness) followed by a modifie
Tversky-Kahnemann link function. Third, the user reputation
phase accumulates the QoI of events over a time window and
associates them with the users who generated them to calculate
an aggregate user reputation score. Fourth, the trustworthy
decision making phase utilizes the user reputation scores,
contextual evidence, etc., to make event publish decision more
accurate and is presented in Section V.

A. Posteriori Probability Masses
The firs step is to derive the expressions for the posteriori

probability masses associated with rating feedbacks: Useful,
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Not Useful, and Not Sure. The probability masses are es-
timated for each event k based on the available evidence
(i.e., supporting each rating type), using a classical Bayesian
approach. Let ω̄ = {ωα, ωβ , ωγ} be the three tuple probability
parameter to be estimated. Here, ωα, ωβ , ωγ are the unknown
probabilities of observing a Useful, Not Useful, or Not Sure
feedback, respectively. We denoted H(ω̄) as the hypothesis,
such that it has three possibilities of either taking α , β or γ.
Formally, P (H(ω̄) = α|ω̄) = ωα, P (H(ω̄) = β|ω̄) = ωβ ,
P (H(ω̄) = γ|ω̄) = ωγ . Let Fα, Fβ , and Fγ be the random
variables denoting the number of feedbacks ηα, ηβ , and ηγ ,
received for each feedback category, respectively, such that
Nk = ηα+ηβ+ηγ . For simplicity, we drop k from all the nota-
tions. The evidence vector, denoted as F (N) = {Fα, Fβ , Fγ},
should be modeled as a multi-nomial distribution given by:

P (F (N)|ω̄) = N !

ηα!ηβ !ηγ !
ωηα
α ω

ηβ

β ωηγ
γ (1)

The posteriori hypothesis of positive outcome of any event
based on the evidence vector and assumed prior is given as:

P (H(ω̄) = α|F (N)) =
P (H(ω̄) = α, F (N))

P (F (N))
(2)

Similarly, the posteriori hypothesis of negative and uncertain
outcomes can be represented by replacing α with β and γ
respectively in Eqn. (2). Solving the above (see [6]), belief,
disbelief, and uncertainty probability masses of an event are
derived as follows: P (H(ω̄) = α|F (N)) = ηα+1

N+3 = b,
P (H(ω̄) = β|F (N)) =

ηβ+1
N+3 = d, and P (H(ω̄) =

γ|F (N)) =
ηγ+1
N+3 = u, respectively. These are the posteri-

ori probability masses for Useful, Not Useful, and Not Sure
feedbacks as perceived by the raters, respectively. Note that,
when ηα = ηβ = ηγ = 0, all the possibilities are equiprobable
under no information (i.e., non-informative prior).

B. Expected Truthfulness of an Event

Since trustworthiness is related to choice under uncer-
tainty and risk, it is natural that trustworthiness of an event
should account for uncertain evidence apart from the positive
evidence [11], [20]. Thus, we propose wb and wu as the
coefficient (or weights) of belief and uncertainty masses
respectively, where the weights control the extent to which
positive and uncertain probability masses contribute to the
truthfulness score of k-th event. The problem is modeled simi-
lar to a weighted regression approach where probability masses
are explanatory variables and the expected truthfulness is a
response variable. We apply Richard’s generalized curve [30]
and Kohlrausch relaxation functions [4] to model wb and wu.
The expected truthfulness for any published event k is:

τk = (wb).b+ (wu).u (3)

where, 0 < {wb, wu} < 1. Hence, 0 < τk < 1.
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Figure 3: Parameters of Richard’s Equation

1) Design of Belief Coefficien : We mentioned earlier that
expected truthfulness should also consider the volume of the
feedbacks, i.e., how many feedbacks have been received for
an event apart from the belief mass b. Intuitively, lesser N
(total number of feedbacks/ratings) should have lower wb,
which in turn, contributes to a smaller expected truthfulness.
However, wb should gradually increase with N . Thus, to model
this nature of wb, we use a Generalized Richard’s Equation
normalized between 0 and 1 as:

wb =
1

(1 +Abe−BbNR)1/ν
(4)

where Ab > 0 but Ab �= ∞ is the initial value of the coefficient
Bb is the rate of growth, and ν �= 0 is the parameter controlling
the point where the curve enters into exponential growth.
Physical Significanc of wb : The wb is modeled by the

Richard’s curve (refer to Fig. (3a)) and is motivated from
deductive reasoning and learning studies in cognitive psychol-
ogy [30], [11]. Intelligent humans are subconsciously rational
enough to know that the possibility of a biases negatively
affecting a belief inference is greater, if fewer number of
sources say the same thing (b in this case), as opposed to the
same endorsed by more sources. Hence, a Bayesian inference
backed by more people/sources carries more weight than the
same Bayesian inference backed by fewer people/sources.
This phenomena is modeled through incremental change pro-
cesses [30], [11], that are characterized by a slower initial
phase followed by an inflectio point where the learning rate
exponentially peaks in the face of increasing evidences and
finall saturates into a stationary phase where the learning rate
approaches an upper asymptote. Such provisioning enables the
CS application to better nullify the effects of ballot stuffing
More details on the advantage of using richards’ curve is
discussed in our preliminary work [8].
2) Design of Uncertainty Coefficien : In Eqn. (3), wu con-

trols the contribution of uncertainty mass to the effective truth-
fulness. Intuitively, uncertainty is high if an incident has just
occurred, and the majority of users are uninformed. However, it
gets reduced as more feedbacks are received. Thus, for smaller
values of N , we should have an increasing function for wu. As
this is also similar to growth curve, we model by a Richard’s
function upper bounded at wmax

u . However, once N attains a
threshold value, say N = Nthres, the coefficien should start
to decrease. The value of Nthres and wmax

u depend on the
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Figure 4: Impact of Parameter Choices on wu

empirical data of relevant application scenario and risk attitude
(as later discussed in Section VII-D.

Typically, Kohlsrausch relaxation function [4] is used to
model the property of a system that evolves towards equilib-
rium after sudden perturbation or a trigger. In our proposed
model, after N = Nthres, this function is used to capture
the discounting effect of uncertain ratings on trustworthiness.
Its parameter ϕ, where, 0 < ϕ < 1, controls the rate of
discounting of wu with N . The larger the value of ϕ, the more
is the decrease (refer to Fig. 4a). The following equation gives
the variation of wu w.r.t the number of received feedbacks:

wu =

⎧⎪⎨
⎪⎩

wmax
u

(1+Aue−BuNR)1/ν
, if NR < Nthres

e−(NR−Nthres)
ϕ

, if NR ≥ Nthres

(5)

where Au and Bu are respectively the corresponding asymptote
and growth parameters (as discussed in Eqn. (4)). Note that,
0 < wmax

u < 1 is a f xed parameter controlling the maximum
allowable benefi of doubt for an event. Choice of wmax

u should
be guided by risk attitude or availability of trusted agents [32].
Physical Significanc of wu: The concept of trust cannot

exist without a certain level of acceptance of uncertainty [10].
Especially for trusting some decisions that tend to be objective,
people tend to give some ‘benefi of doubt’ if uncertainty
is reported from a small number of people. But if the same
uncertainty mass occurs even as more people/sources have
participated, the effect of that uncertainty does not contribute to
the increase of trust, since the risk perception is magnifie [11].
The uncertainty involves a trigger point (or knot point), around
which there is a relatively brisk reorientation of the existing
state of ‘benefi of doubt’ into a qualitatively different state
of discounting the benefi of doubt. Such phenomenon in
developmental learning theory is known as transformational
change processes [30], which fi into a family of spline curves
and these phase transitions are modeled by multiple equations
around the knot point [10]. The nature of wu mimics such
effects on the modeling of uncertainty evidence. Appendix D
shows how this step increases resilience to obfuscation attacks.

C. QoI of Published Event
In Eqn. (3), τk is the expectation that the published event k

has actually happened. Now, the CS system needs to determine
the odds of k-th event being true or false which we model as

the QoI. When the response/predictor variables are categorical
(true/false, yes/no, etc.), the error distribution is non-normal.
We need a link function to provide the relationship between the
predictor variable and the mean of the distribution definin the
QoI. Normally, under risk neutral case, a logit link function is
used as in our preliminary work [8]. However, when it comes
to trust relationships under risk and uncertainty given economic
objectives, another factor to be considered is the risk tolerance
attitude. Logit link function is inappropriate as it does not have
a provision to embed such attitude while making decisions.
Therefore, we propose the use of cumulative prospect theory
(CPT) inspired link function to embed such risk tolerance.
CPT [23] [36] is a descriptive model of how a decision maker
perceives/interprets risky prospects that may lead to losses and
gains. CPT properties relevant to our work are given below:
1. Reference Point: A decision maker judges a prospect based
on the potential gains or losses with respect to a reference
point, which acts as a neutral boundary about which gains or
losses of an outcome are visualized. In our case, τ = 0.5 is
the neutral point of the outcome variable.
2. Asymmetrical Value Function: A decision maker is by de-
fault risk or loss averse, and thus he strongly prefers avoiding
losses than achieving gains. As a result, the value function is
S-shaped and asymmetrical. Mathematically, it is concave for
gains, convex for losses, and steeper for losses than for gains.
3. Principle of Diminishing Sensitivity: A decision maker
tends to over-react to smaller deviation from the reference point
and the sensitivity decreases at the boundary points.
The link between τk and the QoI of the event Qk is established
by the following modifie value functions from CPT:

Qk =

⎧⎨
⎩

(τk)
θ1 , if τk ≥ 0.5

−λ1(0.5− τk)
φ1 , if τk < 0.5

(6)

where Qk has the value in the interval [−λ1, 1], λ1 > 1, θ1 >
0, and 0 < φ1 < 1. The variations of QoI with respect to
different parameters are depicted in Fig. 5.
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As evident from Eqn. (6), Qk has two value functions on

either side of the reference point, (τk = 0.5). The exponents θ1
and φ1 enable the CS administrator to control the rate of change
of QoI above and below the reference point respectively. The
values taken may vary according to the risk attitude. For
instance, if the administrator wants to prevent loss of revenue
and business goodwill of the application, he exhibits risk averse
attitude through a very gradual increment of QoI (with θ1 > 1)
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A. Simulation Settings and Datasets
We simulated a realistic environment for vehicular crowd-

sensing system by extracting important simulation parameters
from the Waze data set [5] and Epinions dataset [25]. The Waze
data comprises of reports for four major traffi event types: jam
(ja), accident (ac), weather hazard (wh), and road closure (rc).
It has approximately 22,910 users, 71,505 reports, spanning
across 10 geographical regions adjacent to Boston, USA. In
each region, prior probabilities of occurrences (likelihood) of
different event types have been computed from the dataset, as
summarized in Table IV.

Table IV: Event Probabilities from Waze Dataset
Region P(ja) P(ac) P(wh) P(rc)

1 0.48 0 0.52 0
2 0.75 0.01 0.2 0.02
3 0.56 0.008 0.19 0.23
4 0.66 0.008 0.33 0
5 0.47 0 0.53 0
6 0.86 0.02 0.12 0
7 0.79 0.01 0.19 0
8 0.74 0.01 0.25 0
9 0.45 0.02 0.53 0
10 0.45 0.02 0.52 0

For simulation, we consider a city area of 20 X 20 sq.
miles as the region of interest. This area is partitioned into
ten rectangular grids to replicate regions from the dataset. The
system is initialized with U = 2400 number of active users,
among which Urp = 800 are reporters and Urt = 1600 are
raters. We extracted a realistic expected ratio of reporters to
raters by studying an Epinions dataset collected from [25]
since the Waze data did not offer this information. We assume
the presence of 520 dishonest devices out of which 120 (i.e.,
15% of total reporters) are used for generating false reports and
400 (i.e., 25% of total raters) are used for false ratings. These
devices have been distributed uniformly in the simulated city
area at the start of the simulation. The total simulation time is
slotted into T = 240 number of epochs, each of which is of
duration 30 minutes.

We consider an event to have a f xed radius (5 miles) within
which all reporters and raters are liable to report or rate. Each
event has a tunable lifetime within which reports and feedbacks
are accepted. For example, if an event occurred in epoch t and
the duration of its lifetime is two epochs, then it can be reported
and rated until epoch t+2. The probability of event type j in
a particular region is extracted from Table IV.

We consider random paths along which a user moves with
speeds of 20-50 miles/epoch. We parameterize the number of
raters and ratings to account for all possible realistic combina-
tions. However, we considered that users progressively leave
the region of interest mimicking a dense location becoming
sparse over time to capture effects of crowd movement.

For the reporters, we emulate honest, selfish and malicious
behaviors in the following ways. 20% of the reporters are
programmed as selfish while 15% act as malicious and the

rest act honestly. Given that an event has occurred, an honest
reporter reports 99% of the time and has minuscule probability
of generating a false report (simulating occasional wrong
perception). Malicious reporters within a randomly generated
location (chosen for false event) collude to generate fake
reports of a fictitiou event with high probability ≈ 100%.
One class of selfis users reports more true events (about 60%)
than false events, while the other class reports fewer true events
(about 40%) than false events.

For the raters, the compromised raters give positive ratings to
false events and negative ratings to true events, while the honest
raters provide genuine ratings with 5% legitimate uncertainty.
Note that a user reporting a particular event is prevented from
rating it. The percentages of compromised raters corresponding
to an event varies with the variation in the population size.
Since 400 out of 1600 raters are compromised, on average
the fake rating percentage for true and false events is about
25%. We have discussed its effects in the scalability analysis
(see Section VI-F). Let the parameters of our system take
the following values: Ab = Au = 20, ν = 0.25, ϕ = 0.2,
Nthres = 60 and wmax

u = 0.5. Only the parameters Bb and
Bu are adjusted during runtime of QoI scoring. The growth rate
parameter is adjusted to Bb = Bu = 0.08 if low feedbacks are
received for a particular event. For higher feedbacks received,
we keep Bb = Bu = 0.04. The value function parameters
considered for simulation are θ1 = 2.5, φ1 = 0.6, and λ1 = 3.
An analytical study of effect of varying these parameters is
provided in Appendix D.

B. Expected Truthfulness (QoI) of Events
Fig. 9a illustrates a comparison between the expected truth-

fulness (QoI score) achieved by QnQ vs. Jøsang’s belief model
for a false event. We observe that QnQ refrains from giving an
undue high QoI score, unlike Jøsang’s model for low ratings.
As higher number of ratings are received, the confidenc of the
crowd and the uncertainty discounting is taken into account
to converge to the true value, preventing malicious raters to
harness an advantage. This is however not true for Jøsang’s
model, and false events end up getting higher scores even if
the number of ratings were smaller. In contrast, Fig. 9b shows
the the QoI score comparison for a true event. For QnQ, the
QoI converges to the true value only after sufficien number of
ratings are received, while for Jøsang’s model this aspect does
not matter. This is essential to prevent potential sabotaging by
an organized minority of rogue raters.

Note that QnQ will always assign low QoI to events receiv-
ing low feedbacks. When the number of ratings are limited,
there could be two possible options: (i) the published event
may not be significan enough and does not draw attention of
majority of raters, resulting in low QoI and (ii) the place has an
inherently low population, implying N is not very high. The
parameters Ab, Au, Bb, Bu and ν could be tuned to achieve
higher QoI score at comparatively lower number of ratings to
adapt to contextual requirements (explained in Section VII-D).
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Figure 9: QoI Score Comparison
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Figure 10: User Reputation: Quality and Quantity

C. User Reputation Scores
We evaluate the performance of reputation scoring with a

goal to unify quality and quantity, achieve fair classificatio of
user behaviors, and compare with existing work.
1) Unifying Quality and Quantity: Fig. 10 shows how

QnQ is able to reflec both quantity (i.e., total number of events
participated) and quality (i.e., the number of events found to
be true) of participation in the resultant user reputation score.
The firs observation is that three distinct user groups emerged.
The lowest group corresponds to malicious, the middle group
to selfish and the top group to honest users. Another key
observation is that selfis and malicious users cannot increase
their reputation by boosting up only participation. Since selfis
users intermittently contribute true and false events, their scores
are higher than malicious but lower than honest users.
2) Classificatio of Users with Fairness: We considered

two different types of selfis users: (i) those who report
more true events than false events, and (ii) those who report
more false events than true events. Intuitively, selfis users
with higher number of genuine contributions should have
higher scores than others from the same class. However, it
is noteworthy that the penalty factor of reporting a fake event
is higher (λ1 = 2) than the reward for generating a true one.
Hence, the majority of both categories of selfis users end
up with negative score. This aspect is evident in Fig. 11a.
However, only few selfis users (around six out of 160) owing
to their participation in true events (with higher QoI) manage to
have positive scores. Likewise, very few honest and malicious
users end up having negative and positive scores, respectively.
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Figure 11: Comparison: Reputation based User Classificatio

These are the outliers to our user behavior classification
Table V compares the reputation scores of various user

classes and their outliers. Here ni is the number of events for
which user i has generated reports. Honest user #1 has very
low event participation compared to that of honest user #2, and
hence has a lower score. Although selfis user #1 has reported
more true events than #2, both have reported a large number
of false events, leading to negative scores. Evidently, malicious
users (malicious #1 and #2) reporting majority of false events
have negative scores.
3) Comparison with Dempster Shafer (D-S) Model: Our

model exhibits better performance in terms of accuracy and
fairness than D-S based reputation score as shown in Fig. 11b,
where many selfis users end up with very high scores.

Table V: Comparative Reputation Scores
Type ni True # False # Score

Honest #1 3 3 0 0.245
Honest #2 100 99 1 0.842
Selfis #1 41 26 15 -0.346
Selfis #2 37 13 24 -0.462

Malicious #1 4 0 4 -0.299
Malicious #2 102 2 100 -0.919

D. Reducing Incentive Losses
QoI-aware incentive mechanisms account for quality of each

sensing report before making incentive/reward assignments.
The QoI metrics can be broadly classifie into two cate-
gories: (i) reputation scoring based micropayments [19], (ii)
satisfaction index-based involving data quality in terms of
sampling rate, accuracy, similarity, and timeliness [29], [35].
In particular, [29] proposes an Expectation Maximization (EM)
algorithm to estimate "effort matrix" for the participants, which
captures the goodness of reports in terms of temporal proximity
of the reported data with the time interval of ground truth
occurrence. A scalar function maps the effort matrix to a
QoI score which forms the basis of a reward mechanism that
achieves both individual rationality and profi maximization.

Beside this, game-theoretic (auction-based) incentive mech-
anisms exist but some of their limitations include: (a) Ra-
tionality of agents: Consider human users to be perfectly
rational agents and absence of malicious participants in the
sensing task [17], [41]; (b) System/Computational inefficien y:
Consider incentivization as a maximum coverage problem
which is essentially NP-hard [44]. Therefore, the system and
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Figure 12: Protecting Undue Incentive Leakage

computational efficien y of the mechanism are not guaranteed;
(c) Static tasks and users: Few works have assumed incentive
task and the number of users in the system to be static [12],
[15]. However, for real mobile crowdsensing applications, such
assumptions may not hold.

Based on the above discussions, we argue the incentive
mechanism in mobile crowdsensing applications should have
the following features: (i) computationally inexpensive, (ii)
dynamic, and (iii) maintain fairness. Dynamism entails that
over time the reward for users should change and fairness is
guaranteed if participants are incentivized based on both the
changing quality and quantity of contributions. Incidentally,
the reputation score generated by QnQ encompasses these
attributes. Furthermore, consideration of a simpler reputation
score based reward function will ensure a lightweight incen-
tive mechanism, suitable for real-time systems like vehicular
crowdsensing applications. Thus, we adopt the reputation based
incentive function presented in [32] as our choice. In [32], the
incentive received by user i at the end of tth time epoch is:

Iti =
Rt

i
∑U+

k=1 R
t
k

.
B.U+

U
(17)

where Rt
i is the reputation score of user i as computed after

tth time epoch, U+ is the number of users in the system
with positive reputation score, B is the total incentive budget
allocated in time epoch t, and U is the total number of users in
the system. The fraction Rj

i
∑U+

k=1 Rj
k

acts as a discounting factor

to the maximum possible incentive B.U+

U any user can gain.
Thus, the user with relative reputation on the higher side will
yield less discount and ends up getting handsome reward and
vice versa. Fig. 12a shows that QnQ offers a larger variation
of incentives disbursed to the honest users according to the
variations in quality and quantity. However, the D-S model
gives higher incentives since it only awards quality but not
quantity. Hence, users with lower participation also end up with
a high score and hence a higher incentive. In contrast, Fig. 12b
shows that mean QnQ-based incentives for selfis users is 50%
that of honest ones and is three times smaller than that yielded
by D-S based reputation model. Unlike D-S model, QnQ can
distinguish between honest and selfis behaviors, and penalize
the latter with low rewards thus preventing loss of revenue due
to false contributions.

E. Trustworthy Decision Making Accuracy

As mentioned, the simulator was run for 240 time epochs to
generate a history of occurrences of events, and a set of eligible
reporters with reputation score greater than 0. Following this,
we again run the simulator for another 240 epochs to evaluate
the operational accuracy of the proposed decision scheme.

In practice, eligible reporters may get compromised at the
current time epoch (zero-day attack) or experience wrong
perception of a true event. Moreover, given that an eligible
reporter generates a false event, he generates the correct event
type with probability 1.

We evaluate the performance of our CPT-inspired decision
scheme against EUT-based model by computing (i) success
rate, i.e., the fraction of true events successfully published
among of all true events that actually occurred (ii) detection
rate, i.e., fraction of true events published among all published
events. The objective of our decision scheme is to ensure that
rare events with sufficien quality and quantity support has a
higher chance of getting published.
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Figure 13: Performance Evaluation of Decision Scheme

The values of various parameters are considered as follows:
θ2 = φ2 = 0.88, λ2 = 2.25, ρ = 0.5, g1 = 2, g2 = 1,
and l1 = l2 = −1. For performance analysis of CPT versus
EUT, we analyze the success rates against the two following
parameters: (i) pj as the prior likelihood of occurrence of an
event (rare) and (ii) Fg(U

+) as the fraction of users reporting
correctly among all eligible users (with Ri > 0) (termed as
fraction of genuine participation).
Publishing Low Likelihood Events: Fig. 13a shows that the

success rates of the proposed CPT-based model is significantl
better than EUT for publishing true events whose prior like-
lihood of occurrences are very low (pj < 0.5). The reason
is CPT uplifts the likelihood of occurrences of rare events
(less than 0.3), and thereby increases the publishing utilities.
This ensures that the rare events do not remain unpublished
if it generates higher confidenc in the current time epoch.
To realize this scenario, we have considered the probability of
reporting the accurate event type for a true event as 0.75.
Fraction of Genuine Participation Fg(U

+): As shown in
Fig. 13b, CPT yields notable improvement in success rate
over EUT for any fraction of genuine participation greater
than 0.5. This is because, unlike EUT, CPT produces an
enhanced value for the confidenc of true events, and thereby
increases the number of published true events. Consequently,
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the success rate for CPT gradually reaches 1 with increase in
the fraction of genuine participation. Similarly, a comparison
of the detection rates of our CPT inspired decision scheme is
shown to outperform EUT in Appendix C.

F. Scalability and Robustness of Performance
Unlike all prior plots with total number of users U = 2400,

let us we consider U = 1200 and U = 3600 (fake devices
inclusive), under the same population 520 dishonest devices.
For U = 1200 (low population scenario), malicious users form
about 43% of the total population, and there is presence of
a very low proportion of genuine raters (only 45% of all
raters). Although the chances of such a scenario is rare, it
is still possible and some conservative systems may want to
understand the performance limits of the defense model. Now
we examine the scalability in the context of risk aversion and
risk neutral attitudes. Fig. 15a shows the reputation scores
for a risk averse system for U = 1200. Note that, we still
succeed to keep all malicious and selfis users in the lower
reputation tier with negative scores. Interestingly, our model
misclassifie all the honest users too due to the presence of
very low proportion of genuine raters (only 45% of all raters).
Since our system follows a protective risk averse approach, this
sacrific is significant For the risk neutral approach, Fig. 15b
shows that we still manage to put all malicious and selfis users
in the lower reputation tier but the misclassificatio of honest
into the malicious tier is much smaller. However, as and when
the crowd increases (under U = 3600), the reputation of all
honest users are improved for both risk averse and risk neutral
approaches, reinforcing the significanc of the crowd.

Fig. 14a is the reputation score distribution for the risk averse
system (with value function as link function) while Fig. 14b,
shows the same for a risk neutral system (with classical logit
link function (used in our preliminary work)). Here, we see
that the risk aversion embedded by the value function is better
at keeping selfis users regardless of their subtype in the lower
reputation tier, while for risk neutral systems, all selfis users
with more true events than false events are in the positive
side on the reputation scale. For conservative systems, the
system may want to keep all kind of selfis users from being
considered for any sort of decision making. Thus, it is evident
that the risk tolerance attitude is not only related to losses, gains
and uncertainty but also to the scalability aspect. We intend to
study in our future work, how a system can perform better
with fewer misclassificatio of honest users than the current
case when the population is low, system is risk averse with
bad mouthing attacks.

Classificatio accuracy is expressed in terms of whether an
honest user and dishonest user is accurately inferred or not. If
a legitimate selfis and malicious user is classifie as honest
then it is a missed detection while if an honest user is classifie
as anything else it is a false alarm. Missed detections and
false alarms are an index of classificatio accuracy that is
affected by varying population sizes and attack budgets which
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we study through Figs. 16a, 16b and 17b. Fig. 16a, shows the
classificatio accuracy when the attack budget is fi ed (520
fake devices) and the rating population varies, showing that
larger crowd populations are more robust. On the other hand,
Fig. 16b, shows the effect of varying attack budgets under
a f xed population size of 3600. It is evident from Fig. 16b,
that attackers need to control a sizeable number of the crowd
(around 52%) for the classificatio to fail completely. However,
52% for a crowd of 3600 is about 1800 devices that attacker
needs to control which is very expensive.

Additionally, in most crowdsensing systems, the volume of
ratings are always higher than reporters. We verifie this claim
from Epinions dataset across different items in the dataset
(See Fig. 17a above). Many other works have studied Yelp
and Amazon datasets and found similar observations. In most
paradigms including Waze, there is no incentive to provide
ratings on reviews/reports, but the volume of ratings remain
high due to the relative ease of the pop-up feedback. Fig. 17b,
clearly shows that missed detection rates are minimal and false
alarm rates become miniscule when the raters are about 4
times the reporters. In general as the ratio of raters to reporters
increases the performance only improves. To show conservative
results we have assumed a much lesser rater to reporter ratio
for most results.
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VII. DISCUSSIONS

In this section, we present various discussions on possible
extensions of QnQ and parameter recommendations under
varying assumptions of rating systems, risk attitudes, availabil-
ity of trusted agents.

A. Extension to Multinomial or Real Valued Rating
The QnQ framework can be easily extended under crowd-

sensing systems with more than 3 rating levels or have real
valued ratings. For a 5-point rating mechanism viz., Bad,
Mediocre, Average, Good, Excellent (proposed in [22]), the
levels bad and mediocre may correspond to the disbelief mass,
while good and excellent form the belief mass, and average
correspond to the uncertainty mass. In IMDB like 10 point-
grading mechanisms levels 1-4 will correspond not useful or
negative feedbacks, 5,6,7 are uncertain and 8,9,10 are useful
or positive feedback categories. In case of real valued ratings,
a membership function may be used that discretizes the real
valued rating space into discrete rating levels.

B. Rationale of Two Selfis User Subtypes
The rationale of two sub-types of selfis users are inspired

from certain real world incidents. For example, in Los Angeles
California, news reports [45] surfaced that residents in a
particular uptown residential area generated fake reports such
that Waze would not reroute traffi through their neighborhood.
Of course, fake reports are legitimately possible when such
users are located in that particular area. Suppose an user goes
out for work in the downtown area where she spends 10 hours
of her day. She could only false report during the evening when
her location is in this target uptown residential area. On the
other times of the day, she has no selfis incentive to report
false events. Conversely, a user who works from or stays at
home throughout; for her it makes complete sense to generate a
fake report on jam because these reports are auto-GPS stamped.
Occassionaly, when she goes out she does not produce fake
reports since she does not any incentive to produce false report
at other locations. Thus for the same selfis objective in the
same area, different users could have different quantities of
true and false reports. Conversely, there may be users whose
selfis objective is in terms of maximizing her incentives. In
such case, this user will often have the urge to report some
event, even if she is in a place that is relatively less eventful.

Note that, this is a selfis user with more false events than true
events.

C. Filtering of Rogue Raters
The report and rating are different roles that may be per-

formed by the same physical user (interface). Over several
time epochs, this assignment of the malicious roles to phys-
ical interfaces have two possible alternatives. First, the same
physical (user) interface can act as a fake reporter on certain
time epochs and fake rater at other time epochs, depending
on their location/convenience. Second, each physical interface
controlled by an adversary has a f xed role that it only act as a
fake reporter or a fake rater across all time epochs. In the firs
case, the false rater is a role attached to the physical interface,
just like a false reporter. When our QnQ framework identifie
and isolates the false reporting users, they implicitly isolate
the fake raters too. Hence, a separate reputation mechanism is
not required under the firs case. For the second case, where
each malicious interface has fi ed roles; once the initial false
reporters in malicious team are identifie by our reputation
mechanism, there will be no option left for the adversary but
to use some of the fake rater interfaces as fake reporters.
Else, there will be no interfaces left for fake events, hence
the purpose of having fake raters will be defeated. In such a
case, our proposed mechanism will eventually detect all these
malicious interfaces incrementally.

D. Parameter Choices under Risk Attitudes
Parameters need to be adjusted according to risk attitudes

for following functions: (i) coefficient of belief mass wb

(Ab, Bb, ν), and (ii) coefficien of uncertainty mass wu

(Au, Bu, Nthres, ϕ, wmax
u ). (iii) coefficient of value func-

tion (θ1,θ2,φ1,φ2,λ1,λ2), (iv) coefficient of weighing function
(δ1,δ2). A provider could be risk averse in terms of the QoI and
reputation scoring by having a conservative increase of scores.
It could be risk neutral or risk seeking in terms of the QoI and
reputation scoring with more liberal increase of scores with
evidence. Any instance of availability of trusted agents means
that the provider may afford to lessen its risk aversion.
1) Choice of Ab, Bb and ν: The Ab is the base value of

the weight given to belief mass when no rating is received. If
the system is not restrictive, then a higher initial weight wb

is required, and hence a lower value of Ab is recommended.
In contrast, for a conservative system, the initial weight of wb

should be very low, to ensure that it should acquire a sufficien
number of ratings before attaining a substantial weight.

Fig. 3a shows the effect of Bb that controls the number of
ratings N required to attain the maximum possible value of
wb once it enters the exponential phase. For example, if the
concerned area is inherently crowded and higher N is expected,
then Bb should be kept low such that the full weight to wb is
awarded only after a sufficien number of ratings is received.
If the system is less restrictive, it can lower the value of Bb.
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The parameter ν controls the value of N at which the curve
firs enters into the exponential growth phase. A lower value of
ν is preferred if the CS system expects receipt of false ratings,
or if the location historically receives lower number of ratings.
Fig. 3b shows the different values of ν. To conclude, the more
risk averse a provider, the smaller is the ν, the smaller is the
Bb and larger is the Ab, to be chosen in the belief coefficient
This is because more evidence in terms of ratings are required
for wb to attain a higher weight which controls how positive
ratings contribute to the fina trust values.
2) Choice of ϕ, Nthres and wmax

u : The Kohlrausch factor
ϕ determines how quickly wu discounting effect reaches min-
imum after Nthres is reached. Fig. 4a shows the effect of
various choices of ϕ. A CS system chooses a higher value
of ϕ if the proportion of uncertainty needs to be immediately
discounted or vice versa. Effects of Au and Bu to wu are
similar to that of Ab and Bb to wb.

A small Nthres would prevent wu to reach its maximum
value, before the uncertainty discounting starts. This is true
for more conservative systems and is evident from Fig. 4b. A
low wmax

u may be required when the CS administrator comes
to know about the ground truth (from other sources such as
mobile trusted participants [32]), and does not want uncertainty
mass to obtain higher weights. To conclude, the more risk
averse a provider, the smaller is the wmax

u and larger is the
ϕ parameter, and smaller Nthres. If the trusted agents, then
we should have a smaller wmax and a smaller Nthres, and
larger ϕ.
3) Choice of θ1, θ2, φ1, φ2, λ1, λ2: The parameters

{θ1, θ2} < 1 gives us a risk seeking system, while {θ1, θ2} > 1
gives a risk averse system. A larger φ gives a risk seeking
system, while a smaller φ is risk averse. A larger λ is a
penalty factor that is high if the system is more risk averse.
The problem of being risk averse in scoring is that some
users may end up being demotivated due to lesser scores.
For example, if the provider already has a decent user base,
{θ1, θ2} > 1 is recommended.
4) Choice of δ1, δ2: The parameters δ1 and δ2 control the

curvatures of weighing functions at their endpoints (finit
asymptotes). If most of the events in a region are non-recurring
in nature, then intuitively high prior likelihoods should not be
accounted for decisions on event publishing. In such cases, a
high δ1 values is required and lower δ2 is required. If a system
has events that show recurrence or periodicity, the δ1 value
should be lower and δ2 should be higher.

VIII. CONCLUSIONS

In this work, we addressed the issue of quality of information
and reputation scoring in crowdsensing (i.e., vehicular CS
application) and propose a regression-based reputation model,
QnQ, which is resilient to rogue contributions and null
invariance. The model assesses the QoI for a published
event by incorporating the cardinality of rating feedback,
proportion of positive support, and uncertainty in ratings.

The QoIs of relevant events are aggregated to generate the
fina reputation score of a user. The resultant reputation
score provides a clear segregation among honest, selfis and
malicious users, and implicitly guarantees fairness within
each segregated group without sacrificin either participation
or quality. Further, we propose CPT-based decision scheme
which takes the generated reputation score as input and
supports publish/not publish decisions, and implicitly ensures
operational reliability of the CS application. Extensive
analytical and simulation study was carried out to establish
the effica y of the proposed approach in terms of scalability,
fairness, and decision accuracy. Finally, we present the
recommendations on system parameters to enable QnQ adapt
under varying conditions of risk and uncertainty. In future,
we will study incentive and classificatio trade-offs under risk
averse and risk seeking systems for varying crowded locations.
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Appendix for:

QnQ: A Quality and Quantity Unified Approach for Secure and

Trustworthy Crowdsensing

1 Appendix A

Expected Bayesian belief (EJ ) is given as: EJ = b + a.u,
where b = r+1

r+s+t+3 ; d = s+1
r+s+t+3 ; u = t+1

r+s+t+3 ; and r, s,
and t denote the number of positive, negative, and uncer-
tain ratings. The value a = 0.5 is the relative atomicity
which is equal to the reciprocal of the cardinality of infer-
ence state space {true, false}.

2 Appendix B

D-S based reputation model uses ternary feedback-based
evidence space. For a particular agent, each witness as-
signs probability values to the three elements (viz. trust-
ful, distrustful, uncertain) in the state space, thus forming
the belief, disbelief, and uncertainty masses, respectively.
The probability masses obtained from different sources are
combined by an orthogonal sum (

⊕
) operator and then the

difference between overall belief and disbelief masses gives
the agent’s reputation score. The orthogonal sum operator
is defined as follows:

Let Bel1 and Bel2 be the belief functions of two sources
over a frame of discernment Θ, with the belief mass assign-
ments m1 and m2 respectively. If the focal elements be
given as x1, x2, . . . , xk and y1, y2, . . . , yl respectively, then
the combined belief mass function m

1,2
Θ = m1

Θ

⊕
m2

Θ :
2|Θ| �→ [0, 1] is defined by:

m1,2(Φ) = 0

m1,2(x) = m1(x)
⊕

m2(x) =

∑

i,j,xi∩yj=x

m1(xi).m2(yj)

1−
∑

i,j,xi∩yj=φ

m1(xi).m2(yj)

As the underlying principle of both QnQ and D-S repu-
tation model is based on classical Bayesian, we considered
the latter for fair comparison. Mathematically, Dempster-
shafer theory proposes an orthogonal sum operator⊕ which
combines evidences from multiple sources to generate cu-
mulative belief, disbelief and uncertainty functions.

For example, if Bel1 Bel2 · · · are the belief functions ob-
tained from different sources, the cumulative belief is given
as: Bel(i) = Bel1

⊕
Bel2

⊕
· · · and the cumulative disbe-

lief is: DisBel(i) = DisBel1
⊕

DisBel2
⊕

· · ·
Then, the reputation of agent i will be given by

Rep(Ai) = Bel(Ai)−DisBel(Ai) (1)

3 Appendix C

The following Fig. 1, shows that our better performance
during decision making is preserved over time compared to
the EUT performance.

Figure 1: Success Rate vs Time Epochs

Figure 2: Decision Model Comparison over Time Epochs

4 Appendix D

The generalized logistic curve is parameterized by a vari-
able N , is given as:

w(N) = L+
U − L

(1 +A.e−BN )1/ν
(2)

where, L is the lower asymptote, U is the upper asymptote,
B is the growth rate, ν is the parameter that controls the
value ofN at which the curve enters the exponential growth
phase, and A is the initial value of the coefficient at w(0).

5 Appendix E

In this section, we compare the QoI score generated by
QnQ with Jøsang’s expected truthfulness (EJ), which is
equivalent to τk in our approach (because the scale of both
metrics have to be between 0 and 1 for fair comparison).

To better explain, the five important aspects of QoI
and reputation scoring in QnQ, we consider two different
scenarios: (i)sparsely-crowded location, and (ii) densely-

crowded location. Let the total number of ratings received
be 50 and 300 for the sparse and the dense locations respec-
tively. The event published by the CS administrator based
on the reports can be either true or false. Thus, there could

1



be four possible scenarios: (a) false event/sparse location,
(b) false event/dense location, (c) true event/sparse loca-
tion, and (d) true event/dense location. The densities keep
changing all the time. Under the four cases, let the adver-
sary have a budget to manage a fixed number of raters (say
20), in every location, who can pose the following four types
of threats: (i) false ratings to true events (bad mouthing);
(ii) true ratings to false events (ballot stuffing); (iii) delib-
erate undecided ratings to boost up expected truthfulness
of false events (obfuscation stuffing); and (iv) combine false
and undecided ratings (mixed attack). Let the parameters
of our system take the following values: Ab = Au = 20,
ν = 0.25, ϕ = 0.2, Nthres = 60 and wmax

u = 0.5. Only
the parameters Bb and Bu are adjusted in the runtime of
QoI scoring. For cases (a) and (c), which correspond to
a sparse location that has a low number of feedbacks, the
growth rate parameter is adjusted Bb = Bu = 0.08. For
cases (b) and (d), which correspond to a dense location,
Bb = Bu = 0.04. Note that the only difference is in the
growth parameter B which mostly depends on the expec-
tation that more ratings will be available over time.

For cases (a) and (b), where the event is false, we do
not consider the bad mouthing attack as it is not relevant,
as such attacks are meant to manipulate a true events into
false by deliberate fake (negative) ratings. We represent the
rating distributions for each threat barring bad mouthing
by a tuple 〈r, s, t〉. The expected truthfulness scores gen-
erated by Jøsang’s model and QnQ are depicted in Table
1. It is clearly evident from Table 1, for sparse location,

Table 1: Case-a: False Event at a Sparse Location

Threat 〈r, s, t〉 b/d/u Jøsang QnQ

No threat 〈5, 42, 3〉 0.11/0.81/0.0750.128 0.036

Ballot stuff-
ing

〈25, 22, 3〉 0.49/0.43/0.07 0.525 0.147

Obfuscation 〈5, 22, 23〉 0.11/0.43/0.45 0.335 0.093

Mixed 〈15, 22, 13〉 0.3/0.43/0.26 0.43 0.12

the truthfulness score assigned by QnQ to false events are
much less compared to that given by the Jøsang’s model.
Moreover, our model can readily detect the obfuscation at-
tack, assigning it lowest value.

For case (b), the truthfulness comparison is presented
in Table 2. If the location is densely populated, the QoI
score assigned by Jøsang’smodel is relatively less compared
to sparse locations. However, it is still on the higher side
compared to the scores generated by QnQ, which computed
the coefficients as wb = 0.99 and wu = 0.05. Like (A), here
also QnQ is particularly able to be severe on obfuscation
attack.

For cases (c) and (d), as the event is true, ballot stuffing
attack is not practical since that is meant to manipulate
a false event to true by deliberate fake (positive) ratings.
Tables 3 and 4 give the comparison of truthfulness val-

Table 2: Case-b: False Event at a Dense Location

Threat 〈r, s, t〉 b/d/u Jøsang QnQ

No threat 〈25, 260, 15〉 0.085/0.86/0.052 0.111 0.087

Ballot stuff-
ing

〈45, 240, 15〉 0.15/0.79/0.052 0.176 0.15

Obfuscation 〈25, 240, 35〉 0.085/0.79/0.12 0.205 0.09

Mixed 〈35, 240, 25〉 0.12/0.79/0.085 0.163 0.12

ues computed by the two models in these two cases. For

Table 3: Case-c: True event at a Sparse Location

Threat 〈r, s, t〉 b/d/u Jøsang QnQ

No threat 〈30, 15, 5〉 0.58/0.3/0.11 0.635 0.177

Bad
mouthing

〈30, 35, 5〉 0.42/0.49/0.08 0.46 0.128

Obfuscation 〈30, 15, 25〉 0.42/0.22/0.36 0.6 0.156

Mixed 〈30, 25, 15〉 0.42/0.36/0.22 0.53 0.164

case (c), it is clearly evident that Jøsang’s model assigns
high QoI even . However, QnQ refrains from assigning
higher truthfulness value even to true events unless it re-
ceives a substantial number of ratings. The truthfulness
value given by QnQ is lowest under bad mouthing at-
tack, which shows that our model is less robust if rogue
raters give deliberate false ratings to true events. The val-
ues of the coefficients computed here are wb = 0.28 and
wu = 0.14(normal), 0.2(other threats). Unlike the other

Table 4: Case-d: True event at a dense location

Threat 〈r, s, t〉 b/d/u Jøsang QnQ

No threat 〈180, 90, 30〉 0.597/0.3/0.102 0.648 0.596

Bad
mouthing

〈180, 110, 30〉 0.56/0.34/0.09 0.605 0.558

Obfuscation 〈180, 90, 50〉 0.56/0.28/0.16 0.64 0.562

Mixed 〈180, 100, 40〉 0.56/0.31/0.13 0.625 0.56

three cases, the truthfulness scores assigned in (d) by both
models are on the higher side and are at par with each
other. This is because, the event is true and substantial
ratings have been received, which has lead to the genera-
tion of high scores.

Summarizing the results depicted in Tables 1, 2, 3, and 4,
we draw three important observations: (i) QnQ is resilient
to ballot stuffing attack by preventing false events to be
portrayed as a true ones for both low and high number of
ratings; (ii) unlike Jøsang’s model, QnQ is completely null-
invariant and thwarts the threat of obfuscation; and (iii) the
proposed model is robust against bad mouthing attacks, if
substantial number of ratings are available.

2


