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Abstract

A classical question in PL topology, asked among others by Hudson, Lickorish, and
Kirby, is whether every linear subdivision of the d-simplex is simplicially collapsible.
The answer is known to be positive for d < 3. We solve the problem up to one
subdivision, by proving that any linear subdivision of any polytope is simplicially
collapsible after at most one barycentric subdivision. Furthermore, we prove that any
linear subdivision of any star-shaped polyhedron in R? is simplicially collapsible
after d — 2 derived subdivisions at most. This presents progress on an old question by
Goodrick.

1 Introduction

Collapsibility is a combinatorial version of the notion of contractibility, introduced in
1939 by Whitehead. All triangulations of the 2-dimensional ball are collapsible. In
contrast, Bing and Goodrick showed how to construct non-collapsible triangulations
of the d-ball for each d > 3 [6], [3, Cor. 4.25]. (See also [4] for an explicit example
with 15 vertices.)

In Bing’s 3-dimensional examples, the obstruction to collapsibility is the presence
of subcomplexes with few facets that are isotopic to knots. This is also an obstruction
to admitting a convex geometric realization: For example, if a 3-ball contains a knot
realized as subcomplex with < 5 edges, then the 3-ball cannot be embedded in R3
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(since the stick number of the trefoil is 6). In particular, such 3-ball cannot have any
convex geometric realization in any RX.

This led Bing to ask whether simplicial subdivisions of convex 3-polytopes are
collapsible. In 1967, Chillingworth answered Bing’s question in the affirmative [10].
Chillingworth’s proof is based on an elementary induction. Consider the highest vertex
v of the complex (according to some generic linear functional). The link of v is
necessarily planar, and all planar simply connected 2-complexes are collapsible. In
particular, the star of v collapses to the link of v. This implies that the complex C
collapses to C — v, the subcomplex of C consisting of all faces that do not contain v.

Unfortunately, Chillingworth’s argument is specific to dimension 3, because vertex
links in a 4-ball are no longer planar. In fact, whether all convex d-balls are collapsible
represents a long-standing open problem, where little progress has been made since the
Sixties. The problem has appeared in the literature in at least three different versions:
Conjecture 1.1 (Lickorish’s Conjecture, cf. Kirby [15, Prob. 5.5 (A)]) Let C be a sim-
plicial complex. If C is a subdivision of the simplex, then C is collapsible.

Conjecture 1.2 (Goodrick’s Conjecture, cf. Kirby [15, Prob. 5.5 (B)]) Let C be a sim-
plicial complex. If (the underlying space of ) C is star-shaped, then C is collapsible.

Problem 1.3 (Hudson’s Problem [13, Sect. 2, p.44]) Let C be a simplicial complex.
If C collapses onto some subcomplex C', does every simplicial subdivision D of C
collapse to the restriction D' of D to the underlying space of C'?

In this paper, we show that all three problems above can be solved if we are allowed
to modify the complex C by performing a bounded number of barycentric subdivisions.
Our bounds are universal, i.e., they do not depend on the complex chosen.

The new idea is to refine Chillingworth’s inductive method by expanding the prob-
lem into spherical geometry. In fact, if v is the top vertex of a (geometric) simplicial
complex C C RY, the vertex link of v has a natural geometric realization as spherical
simplicial complex, obtained by intersecting C with a small (d — 1)-sphere centered
at v.

Our trick is to find a special subdivision S of the complex C in which the link of the
top vertex is a (geodesically) convex subset of the sphere. It turns out that a subdivision
combinatorially equivalent to the barycentric subdivision does the trick. So we aim
for a stronger statement, namely, that both convex d-complexes in R? and convex
spherical d-complexes in S¢ become collapsible after one barycentric subdivision.
This way we can proceed by induction on the dimension: The inductive assumption
will tell us that the subdivided link of the top vertex is collapsible.

After a few technicalities, this idea takes us to the following sequence of results.

Main Theorem L. Let C be an arbitrary simplicial complex in R?.

(1) (Theorem 4.5) If the underlying space of C in R? is convex, then the (first)
barycentric subdivision of C is collapsible.

(2) (Theorem 3.6) If the underlying space of C in R? is star-shaped, then its (d —2)-
nd barycentric subdivision is collapsible.

(3) (Theorem 4.3) If C collapses simplicially onto some subcomplex C’, then for
every simplicial subdivision D of C the barycentric subdivision of D collapses
fo its restriction to the underlying space of C'.
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2 Preliminaries
2.1 Geometric and Intrinsic Polytopal Complexes

By R? and 5S¢ we denote the Euclidean d-space and the unit sphere in R4*!, respec-
tively. A (Euclidean) polytope in R? is the convex hull of finitely many points in R%. A
face of a polytope is any set which is minimized by some linear function. Examples of
faces are the empty set and the whole polytope itself. A facet is an inclusion-maximal
proper face (that is, not the whole polytope). A spherical polytope in §¢ is the convex
hull of a finite number of points that all belong to some open hemisphere of S¢. Spher-
ical polytopes are in natural one-to-one correspondence with Euclidean polytopes, by
taking radial projections.

A geometric polytopal complex in R (resp. in S¢) is a finite collection of polytopes
in R? (resp. §%) such that the intersection of any two polytopes is a face of both. Two
polytopal complexes C, D are combinatorially equivalent, denoted by C = D, if
their face posets are isomorphic. Any polytope combinatorially equivalent to the d-
simplex, or to the regular unit cube [0, 1]%, shall simply be called a d-simplex or a
d-cube, respectively. A polytopal complex is simplicial if all its faces are simplices.
(For us simplicial complexes are always “geometric”.)

The underlying space |C| of a polytopal complex C is the topological space obtained
by taking the union of its faces. If two complexes are combinatorially equivalent, their
underlying spaces are homeomorphic. We will frequently abuse notation and identify
a polytopal complex with its underlying space, as is common in the literature. For
instance, we do not distinguish between a polytope and the complex formed by its
faces. If C is simplicial, C is sometimes called a triangulation of |C| (and of any
topological space homeomorphic to |C).

A subdivision of a polytopal complex C is a polytopal complex C’ with the same
underlying space of C, such that for every face F’ of C’ there is some face F of C for
which F/ C F. Two polytopal complexes C and D are called PL equivalent if some
subdivision C’ of C is combinatorially equivalent to some subdivision D’ of D. The
star of o in C, denoted by St (o, C), is the minimal subcomplex of C that contains
all faces of C containing o. In case |C| is a topological manifold (with or without
boundary), we say that C is PL (short for Piecewise-Linear) if the star of every face
of C is PL equivalent to the simplex of the same dimension.

If C is a polytopal complex, and A is some set, we define the restriction R (C, A)
of C to A as the inclusion-maximal subcomplex D of C such that D lies in A. The
deletion C — D of aface D from C is the subcomplex of C given by R (C, C\relint D),
where ‘relint’ stands for relative interior of D. A stellar subdivision of C at a face
F is defined by first choosing a point v (called “stellar center” or “starring vertex’’)
anywhere in the relative interior of F', and then by setting

stel(C, F) = (C — F)UconvivpUo : 0 € St (F,C) — F}.
A derived subdivision sd C of a polytopal complex C is any subdivision of C obtained

by stellarly subdividing at all faces in order of decreasing dimension of the faces of
C, cf. [13, pp.8-9]. Different choices of the stellar centers vy result in (geometric)
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Fig.1 A purple subcomplex D of the boundary of a disc [LEFT] and its derived neighborhood [RIGHT]. Any
subcomplex D is a deformation retract of its derived neighborhood, because the latter collapses onto the
former, in the sense of Sect. 2.2

simplicial complexes that are different, but combinatorially equivalent. An example
of a derived subdivision is the barycentric subdivision, which chooses always as vp
the barycenter of F. Given any derived subdivision sd C of C, the (first) derived
neighborhood N (D, C) (Fig. 1) of D in C is the simplicial complex

N(D,C) := U St (o, sd C).
oesd D

Next, we define (a geometric realization of) the /ink with a metric approach. We took
inspiration from Charney [9] and Davis—Moussong [11, Sect. 2.2]. Let p be any point
of a (geometric) simplicial complex X. By T, X we denote the “space of directions” in
the sense of Burago—Burago—Ivanov [8, Sect. 10.9], which coincides with the tangent
space at p when X is (piecewise) smooth. For simplicity, we call the elements of
T, X “tangent vectors”. Let T;,X be the restriction of T, X to unit vectors. If Y is any
subspace of X, then N(, y)X denotes the subspace of T, X spanned by the vectors
orthogonal to T, Y. If p is in the interior of ¥, we define N X =NpnX DT Y.
If 7 is any face of a polytopal complex C containing a nonempty face o of C, then the
set N( p.o) T of unit tangent vectors in N( .0) |C| pointing towards t forms a spherical
polytope P,(7), isometrically embedded in N( »lCl The family of all polytopes
Pp(7)in N1 - |C | obtained for all T O o forms a polytopal complex, called the link
of C ato; We w111 denote it by Lk ,, (o, C). If C is a geometric polytopal complex in

Rd (or X d— gd ), then Lk , (o, C) is naturally realized in N1 (p.0) x4 . Obviously,
(. X 4 is isometric to a sphere of dimension d — dim o — 1, and will be considered
as such. Up to ambient isometry Lk , (o, C) and N1 )T in N(p o) |C| or N(p J)Xd do
not depend on p; for this reason, p will be omltted in notatlon whenever possible. By
convention, we define Lk (4, C) = C
If C is simplicial and v is a vertex of C, we have the combinatorial equivalence

Nl

Lk(v,C)=(C—-v)NSt(v,C) =St (v,C) —v.
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If C is a simplicial complex, and o, 7 are faces of C, then o * t is the minimal face
of C containing both ¢ and 7 (assuming it exists). If o is a face of C, and 7 is a face
of Lk (0, C), then o % 7 is the face of C with Lk (0, 0 * 7) = 7. In both cases, the
operation x is called the join.

2.2 Collapsibility and Non-evasiveness

Inside a polytopal complex C, a free face o is a face strictly contained in only one other
face of C. An elementary collapse is the deletion of a free face o from a polytopal
complex C. We say that C (elementarily) collapses onto C — o, and write C \, C —o0.
We also say that the complex C collapses to a subcomplex C’, and write C \( C’, if C
can be reduced to C’ by a sequence of elementary collapses. A collapsible complex is
a complex that collapses onto a single vertex. Collapsibility depends only on the face
poset.

Collapsible complexes are contractible. Moreover, collapsible PL manifolds are
necessarily balls [18]. Here are a few additional properties:

Lemma 2.1 Let C be a simplicial complex, and let C' be a subcomplex of C. Then the
cone over base C collapses to the cone over C'.

Lemma 2.2 Let v be any vertex of any simplicial complex C. If Lk (v, C) collapses to
some subcomplex S, then C collapses to (C — v) U (v x S). In particular, if Lk (v, C)
is collapsible, then C \( C — v.

Lemma 2.3 Let X be a simplicial complex with subcomplexes C and D such that
X = CUD. IfC collapses onto C N D, then X collapses onto D.

Proof Ttis enough to consider the case C \, C' = C — o, where o is a free face of C.
The conclusion follows from the observation that the natural embedding C < DUC
takes the free face o € C to a free face of D U C. O

Non-evasiveness is a further strengthening of collapsibility that emerged in theo-
retical computer science [14]. A O-dimensional simplicial complex is non-evasive if
and only if it is a point. Recursively, a d-dimensional simplicial complex (d > 0)
is non-evasive if and only if there is some vertex v of the complex whose link and
deletion are both non-evasive. Again, non-evasiveness depends only on the face poset.

The notion of non-evasiveness is rather similar to vertex-decomposability, a notion
defined only for pure simplicial complexes [16]; to avoid confusions, we recall the
definition and explain the difference in the lines below. A 0-dimensional simplicial
complex is vertex-decomposable if and only if it is a nonempty, finite set of points.
In particular, not all vertex-decomposable complexes are contractible. Recursively, a
d-dimensional simplicial complex (d > 0) is vertex-decomposable if and only if it
is pure and there is some vertex v of the complex whose link and deletion are both
vertex-decomposable (so in particular pure). All vertex-decomposable contractible
complexes are non-evasive.

Animportant difference arises when considering cones. Itis easy to see that the cone
over a simplicial complex C is vertex-decomposable if and only if C is. In contrast,
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Lemma 2.4 (cf. Welker [17]) The cone over any simplicial complex is non-evasive.

By Lemma 2.2 every non-evasive complex is collapsible. As a partial converse, we
also have the following lemma.

Lemma 2.5 (cf. Welker [17]) The barycentric subdivision of every collapsible complex
is non-evasive. In particular, the barycentric subdivision of a non-evasive complex is
non-evasive.

A non-evasiveness step is the deletion from a simplicial complex C of a single
vertex whose link is non-evasive. Given two simplicial complexes C and C’, we write

C \ne C’

if there is a sequence of non-evasiveness steps that leads from C to C’. We will need
the following lemmas, which are well known and easy to prove.

Lemma 2.6 Let v be any vertex of any simplicial complex C. Then
(sdC) — v \\nE sd(C —v).

Proof The vertices of sd C correspond to faces of C; the vertices that have to be
removed in order to deform (sd C) —v to sd (C —v) correspond to the faces of C strictly
containing v. The order in which we remove the vertices of (sd C) — v is by increasing
dimension of the associated face. Let t be a face of C strictly containing v, and let
w denote the vertex of sd C corresponding to t. Assume all vertices corresponding
to faces of t have been removed from (sd C) — v already, and call the remaining
complex D. Denote by L(z, C) the set of faces of C strictly containing 7, and let
F(r —v) denote the set of nonempty faces of T —v. Then Lk (w, D) is combinatorially
equivalent to the order complex of L(z, C) U F(tr — v), whose elements are ordered
by inclusion. Every maximal chain contains the face t — v, so Lk (w, D) is a cone,
which is non-evasive by Lemma 2.4. Thus, we have D \\Ng D — w. The iteration of
this procedure shows (sd C) — v \(ng sd (C — v), as desired. O

Lemma 2.7 If C \\ng C’, then sd™ C \\ng sd™ C’ for all non-negative m.
Proof Apply Lemma 2.6 to all vertices that are removed in deforming C to C’. O

Lemma 2.8 Let v be any vertex of any simplicial complex C. Let m > 0 be an integer.
Then

(sd™ C) — v \\nE sd"(C — v).

In particular, if sd™ Lk (v, C) is non-evasive, then sd”™ C \\ng sd”(C — v).

Proof We proceed by induction on m, the case m = 1 being Lemma 2.6. For m > 2,
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(sd™ C) —v = (sd (sd" ' C)) — v \ng sd((sd”""'C) —v)
e sd (sd”H(C = v)) = sd™(C — v),

where the first deformation is by inductive assumption (applied twice), and the second
deformation follows by Lemma 2.7. O

3 Non-evasiveness of Star-Shaped Complexes

Here we show that any subdivision of a star-shaped set becomes collapsible after d —2
derived subdivisions (Theorem 3.6); this proves Goodrick’s conjecture up to a fixed
number of subdivisions.

Definition 3.1 (Star-shaped sets) A subset X C R is star-shaped if there exists a
point x in X, a star-center of X, such that for each y in X, the segment [x, y] lies in
X. Similarly, a subset X C S¢ is star-shaped if X lies in a closed hemisphere of §¢
and there exists a star-center x of X, in the interior of the hemisphere containing X,
such that for each y in X, the segment from x to y lies in X. With abuse of notation,
a polytopal complex C (in R or in %) is star-shaped if its underlying space is
star-shaped.

Via central projection, one can see that star-shaped complexes in R? are precisely
those complexes that have a star-shaped realization in the interior of a hemisphere
of §¢. The more delicate situation in which C is star-shaped in S¢ but touches the
boundary of any closed hemisphere containing it, is addressed by the following lemma.

Lemma 3.2 Let C be a star-shaped polytopal complex in a closed hemisphere H | of
S9. Let D be the subcomplex of faces of C that lie in the interior of H ... Assume that
every nonempty face o of C in H := 9H . is the facet of a unique face t of C that
intersects both D and H. Then the complex N(D, C) has a star-shaped geometric
realization in RY.

Proof Let m be the midpoint of H ;. Let B, (m) be the closed metric ball in H ;. with
center m and radius r (with respect to the standard Riemannian metric d on S, 1f
C C int H,, then C has a realization as a star-shaped set in R? by central projection,
and we are done. Thus, we can assume that C intersects H. Without loss of generality,
let us assume that C has a star-center x in the interior of H . Since D and {x} are
compact and in the interior of H |, there is some real number R < 7/2 such that the
ball Bg(m) contains both x and D. Let J := (R, 7/2].

If o is any nonempty face of C in H, let v, be any point in the relative interior
of o. If 7 is any face of C intersecting D and H, which exists by assumption, define
o(t) := t N H. For each r € J, choose a point w(z, r) in the relative interior of
T N dB,(m), so that for each t the point w(t, r) depends continuously on r and tends
to Vg () as r approaches 7/2. Extend each family w(z, r) continuously to r = 7/2 by
defining w(r, 7/2) := Vg (7).

Next, we use these one-parameter families of points to produce a one-parameter
family N, (D, C) of geometric realizations of N (D, C), where r € J. For this, let
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Q4

Fig.2 In the northern hemisphere (here seen from above) consider a quadrilateral {a1, a, a3, a4} with two
opposite edges on the equator. Suppose the North Pole o is in its interior and let C be the stellar subdivision
of the quadrilateral from the North Pole. Let D = {0}. The region N, (D, C), here delimited by the eight
points x; = x; (r), is a geometric realization of the derived neighborhood of D in C. A priori this N (D, C)
is not convex. So it might be that in two extremal faces like [x17, x2] and [x34, x3] we can find two points
a, b connected by a geodesic that contains a star-center x of C, but does not completely lie in N, (D, C). If
this is the case, we say that [x12, x2] and [x34, x3] are “folded”

o be any face of C intersecting D. If ¢ is in D, let x, , be any point in the relative
interior of o (independent of r). If ¢ is not in D, let x,, = w(o, r). We realize
N,(D,C) = N(D, C),forr in J, so that the vertex of N, (D, C) corresponding to the
face g is given the coordinates of x, . As the coordinates of the vertices determine a
simplex entirely, this gives a realization N, (D, C) of N(D, C), as desired (Fig. 2).

To finish the proof, we claim that if r is close enough to 7/2, then N, (D, C) is star-
shaped with star-center x. Let us prove the claim. First we define the extremal faces
of N, (D, C) as the faces all of whose vertices are in d B, (m). We say that a pair o, o’
of extremal faces is folded if there are two points a and b, in o and ¢’ respectively,
and satisfying d(a, b) < m, such that the great circle through a and b contains x, but
the (geodesic) segment [a, b] is not contained in N, (D, C).

When r = 7/2, weakly folded faces do not exist since for every pair of points @ and
b in extremal faces, d(a, b) < m, the great circle through distinct points a and b lies
in 0 Bx,; hence, all such great circles have distance at least d(x, H) > 0 to x.

Alternatively, we can modify the definition of folding: Folding is not a closed
condition, but we can strengthen it by saying that N, (D, C) is weakly folded in a face
7 of C and at a pair o, o’ of extremal faces if there are two points a and b, in o and
o’ respectively, and satisfying d(a, b) < 7, such that the great circle through a and
b contains x, but there is no open neighborhood U of (a, b) such that U N relint 7 is
contained in N, (D, C). Clearly, folded implies weakly folded. Moreover, it is a closed
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H H

— B

Fig.3 An example of an H-splitting derived subdivision. (As we are free to choose where to position the
new vertices, whenever possible we place them on the red hyperplane H.)

condition as long as we restrict to the 7 such that faces of N, (D, C) do not degenerate.
This finishes the argument as we have no weak folding at » = 7/2.

Thus, as the set of pairs a, b in extremal faces is compact, and since we chose
the vertices of N, (D, C) to depend continuously on r € (R, 7/2], so do above great
circles, and we can find a real number R’ € (R, 7/2) such that for any r in the open
interval J' = (R/ R ﬂ/z) , the simplicial complex N, (D, C) contains no folded pair of
faces.

But then, for every r € J’, in N, (D, C) folded pairs of extremal faces are avoided.
Hence, for every y in N, (D, C), the segment [x, y] lies entirely in N, (D, C), since
every part of the segment not in N, (D, C) must have boundary points in a folded
extremal pair. O

In the following, for any simplicial complex C, we denote by F; (C) the collection of
all i-dimensional faces of C. In order to perform collapses on barycentric subdivisions,
we now need to introduce an order on Fy(sd C). Recall that, if (S, <) is an arbitrary
posetand S C T, an extension of < to T is any partial order < that coincides with <
when restricted to (pairs of elements in) S.

Definition 3.3 (Derived order) Let C be a polytopal complex. Let S denote a subset
of mutually disjoint faces of C. Let < be a total order on S. We extend this order to
an irreflexive partial order < on C as follows: Let o be any face of C, and lett C o
be any strict face of 0.

e If 7 is the minimal face of o under <, then t X 0.
o If 7 is any other face of o, then o X 1.

Since we started from a total order, the transitive closure of the relation < gives an
irreflexive partial order on the faces of C. Since faces of C are in bijection with vertices
of sd C, this gives an irreflexive partial order on Fy(sd C). Any total order that extends
the latter order is a derived order of Fy(sd C) induced by <.

Definition 3.4 (H-splitting derived subdivisions) Let C be a polytopal complex in R¢,
and let H be a hyperplane of R?. An H -splitting derived subdivision of C is a derived
subdivision, with vertices chosen so that the following property holds: for any face ©
of C that intersects the hyperplane H in the relative interior, the vertex of sd C that
corresponds to T in C lies on the hyperplane H (Fig. 3).

Definition 3.5 (Split link and lower link) Let C be a simplicial complex in R?. Let v
be a vertex of C. Let H . be a closed halfspace in R that contains v in its boundary
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Fig.4 The lower link of v (dashed) within the split link of v

H := dH ,.Letv be the outer normal of H; at v. The split link (of C at v with respect
to v_), denoted by SLk" (v, C), is the intersection of Lk (v, C) with the hemisphere
TVH ., that is,

SLk"(v,C) := (o NT'H, : 0 € Lk (v, O)}.

The lower link LLk " (v, C) of C at v with respect to the direction v is the restriction
R (Lk (v, C), int TlﬁJr) of Lk (v, C) to the interior of the hemisphere Tlﬁ+ (Fig. 4).

The complex LLk " (v, C) is naturally a subcomplex of SLk" (v, C): we have as an
alternative definition of the lower link the identity

LLk"(v, C) = R(SLk"(v, C),int T H ).

Finally, for a polytopal complex C and a face 7, we denote by L(z, C) the set of
faces of C strictly containing t.

Theorem 3.6 Let C be a polytopal complex in RY, d > 3, or a simplicial complex
in R%. If C is star-shaped in R?, then sd=>(C) is non-evasive, and in particular
collapsible.

Proof The proof is by induction on the dimension. The case d = 2 is easy: Every
simply connected planar simplicial complex is non-evasive [1, Lem. 2.3].

Assume now d > 3. Let v be generic in $9-1 < R4, so that no edge of C is
orthogonal to v. Let H be a hyperplane through a star-center x of C such that H
is orthogonal to v. Throughout this proof, let sd C denote any H-splitting derived
subdivision of C. Let H ; (resp. H ) be the closed halfspace bounded by H in direction
v (resp. —v), and let H; (resp. H_) denote their respective interiors. We make five
claims:

(1) For v € Fo(R (C, Hy)), the complex sd? 3N (LLk" (v, C), Lk (v, C)) is non-
evasive.

(2) Forv € Fy(R (C, H-)), the complex sddﬁSN(Lka"(v, C), Lk (v, C)) is non-
evasive.

(3) sd? PR (sdC, Hy) e sd“ PR (sd C, H).

(4) sd? 3R (sdC, H_) g sd? PR (sd C, H).
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(5) sd¥3R (sd C, H) is non-evasive.
Here are the respective proofs:

(1) Letv be a vertex of C that lies in H;.. The complex SLk " (v, C) is star-shaped in
the (d — 1)-sphere T,B]Rd ; its star-center is the tangent direction of the segment
[v, x] at v. Furthermore, v is generic, so SLk" (v, C) satisfies the assumptions
of Lemma 3.2. The lemma tells us that the complex

N(LLK" (v, C), SLk" (v, C)) = N(LLk"(v, C), Lk (v, C))

has a star-shaped geometric realization in RY~!. So by the inductive assumption,
the simplicial complex sd43N(LLk" (v, C), Lk (v, C)) is non-evasive.

(2) This is symmetric to (1).

(3) Since v is generic, the vertices of C are totally ordered according to their value
under the functional (-, v). Let us extend such order to a derived total order on the
vertices of sd C, as explained in Definition 3.3. Note that the order on the vertices
of sd C does not have to be induced by (-, v); it is however easy to arrange the
vertices of sd C in such a way that both orders agree.

Let vg, vq, ..., v, be the vertices of R (sd C, H;) C sd C, labeled according to
the derived order (so that the maximal vertex is vg). Clearly, these vertices form
an order filter (i.e., an upward closed subset) for the order on vertices of sd C
defined above. Define C; by restricting sd C to ﬁ+, and deleting {vo, ..., vi—1},
ie.,

C;:=R(sdC,H}) —{vo,...,vi_1}
and define
¥ =sd? 3¢

It remains to show that, for all i, 0 < i < n, we have ¥; \\Ng Zi+1. We
distinguish two cases, according to whether v; was introduced when subdividing
or not.

e If v; corresponds to a face T of C of positive dimension, then let w denote the
vertex of T minimizing (-, v). Following the definition of the derived order,
the complex Lk (v;, C;) is combinatorially equivalent to the order complex
associated to the set of faces L(t, C) U {w}, whose elements are ordered by
inclusion.

Since w is the unique minimum in that order, Lk (v;, C;) is combinatorially
equivalent to a cone over base sd Lk (z, C). But every cone is non-evasive
(Cf. Lemma 2.4). Thus, C,’ \NE C,' — vV = Ci+1. By Lemma 2.7, 2,’ \NE
Xitl
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e If v; corresponds to an original vertex of C, we have by claim (1) that the
(d — 3)-rd derived subdivision of Lk (v;, C;) = N(LLk" (v;, C), Lk (v;, C))
is non-evasive. With Lemma 2.8, we conclude that

T =sd"Ci \ng s (C - vy) = sdT3 iy = D

Hence in both cases X; “\Ng X;+1. This means that we can recursively delete
one vertex, until the remaining complex has no vertex in H,. Thus, the complex
sd43R (sdC, ﬁ+) can be deformation retracted to sd? >R (sd C, H) via non-
evasiveness steps.

(4) This is analogous to (3), exploiting claim (2) in place of claim (1).

(5) This follows from the inductive assumption. In fact, R (sd C, H) is star-shaped
in the (d — 1)-dimensional hyperplane H: Hence, the inductive assumption gives
that sd? 3R (sd C, H) is non-evasive.

Once our five claims are established, we conclude by showing that claims (3), (4) and
(5) imply that sd?=2(C is non-evasive, as desired. First of all, we observe that if A, B
and A U B are simplicial complexes with the property that A, B \\Ng A N B, then
AUB \\Ng ANB. Applied to the complexes sd’ 3R (sd C, H),sd“ >R (sd C, H_)
and sd?2C = sd? 3R (sdC, Hy) U sd¥ 3R (sd C, H_), the combination of (3)
and (4) shows that sd4-2C \WNE sd?3R (sd C, H), which in turn is non-evasive
by (5). ]

4 Collapsibility of Convex Complexes

As usual, we say that a polytopal complex C (in R orin §¢) is convex if its underlying
space is convex. A hemisphere in S is in general position with respect to a polytopal
complex C in ¢ if it contains no vertices of C in the boundary.

Since all convex complexes are star-shaped, the results of the previous section
immediately imply that Lickorish’s conjecture and Hudson’s problem admit positive
answer up to taking d — 2 derived subdivisions. In a companion paper [2], we proved
that one can do better: up to taking at most two barycentric subdivisions, every convex
complex is shellable. All contractible shellable complexes are collapsible, cf. e.g. [12,
Lem. 17].

In this section, we improve the previous results even further, by establishing that
for Lickorish and Hudson’s problems a positive answer can be reached after only
one derived subdivision (Theorems 4.3 and 4.5). For this, we rely on the following
Theorem 4.1, the proof of which is very similar to the proof of Theorem 3.6.

Theorem 4.1 Let C be a convex polytopal d-complex in S and let H . be a closed
hemisphere of S¢ in general position with respect to C. Then we have the following:

(A) If C intersects the interior of Hy non-trivially, then N(R (C, H,), C) is col-
lapsible.

(B) If C intersects H . in its boundary, then N(R (C, H..), C) collapses to the sub-
complex N(R (3C, H), dC).
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(C) If C lies in H there exists a facet o of sddC such that sd C collapses to
Cy :=sdoC —o.

Part (C) of Theorem 4.1 can be equivalently rephrased as follows: “If C lies in H 4,
for any facet o of sd dC the complex sd C collapses to C, := sd dC — o”. In fact,
for any d-dimensional simplicial ball B, the following statements are equivalent [5,
Prop. 3.7 & Lem. 3.9]:

(i) B \( B — o for some facet o of 9B,;
(i) B — o \ 9B for any facet o of B.

Thus, we have the following corollary:

Corollary 4.2 Let C be a convex polytopal complex in RY. Then for any facet o of
sd C we have that sd C — o collapses to sd 9C.

Proof of Theorem 4.1 Claims (A), (B) and (C) can be proved analogously to the proof
of Theorem 3.6, by induction on the dimension. Let us adopt convenient shortenings.
We denote:

— by (A)g, the statement “(A) is true for complexes of dimension < d”’;
— by (B)4, the claim “(B) is true for complexes of dimension < d”’; and finally
— by (C)4, the claim “(C) is true for complexes of dimension < d”.

Clearly (A)¢ and (B)g are true. (C)g is also true, because in this case dC is the empty
set, so o is the empty face. We assume, from now on, that d > 0 and that (A)y—1,
(B)4—1 and (C)4—1 are proven already. We then proceed to prove (A)g4, (B)4 and (C)g4.
Recall that L(z, C) denotes the faces of C strictly containing a face t of C. We will
make use of the notions of derived order (Definition 3.3) and lower link (Definition 3.5)
from the previous section.

Proving (A), and (B);: Let m denote the center of H .

If 3C N Hy # @, then C is a polyhedron that intersects S\ H in its interior
since H 4 is in general position with respect to C. Thus, H\C is star-shaped, and
for every p in int C\ H, the point —p € int H is a star-center for it. In particular,
the set of star-centers of H_\C has non-trivial interior. If we choose a star-center x
of H_\C generically, and apply a linear transformation ¢ of the corresponding fan
(the collection of cones over the faces of C) that takes the halfspace corresponding to
H to itself and identifies x and m. If we then denote by d(y) the distance from x
of a point y € §¢ with respect to the canonical metric on S¢, we can assume that the
distance function d to faces induces a total order on the faces. Indeed, up to moving the
midpoint, and the whole hemisphere with it, by a small amount in any direction, we do
not change N (R (C, H), C) combinatorially (specifcally, as long as the boundary
of the hemisphere does not pass vertices of C). But generically, the distance from the
midpoint will now distinguish faces of C. This is obvious: The distance to a totally
geodesic subspace is real analytic in polar coordinates, and as such, having an open set
where the distance to two polyhedra is the same implies that they generate a common
subspace by geodesic closure, and have the projection points in their relative interior
in common. Hence, they are the same polyhedron in C.
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Let M(C, H ) denote the faces o of R (C, H ) for which the function d attains its
minimum in the relative interior of . In particular, M(C, ﬁ+) contains all vertices of
R (C, H ). With this, we order the elements of M(C, H . ) strictly by defining o < o’
whenever miny e, d(y) < minye,r d(y).

This allows us to induce an associated derived order on the vertices of sd C,
which we restrict to the vertices of N(R (C, ﬁ+), C). Let vg, vy, v, ..., v, denote
the vertices of N(R (C, H,), C) labeled according to the latter order, starting
with the maximal element vy. Let C; denote the complex N(R (C ,ﬁ+), C) —
{vo, v1, ..., vi—1}, and define

% :=CiUNR@OC, Hy),d0).

We will prove that £; N\ Z; 41 foralli, 0 <i <n — 1; from this (A)y and (B), will
follow. There are four cases to consider here.

(1) v; is in the interior of sd C and corresponds to an element of M(C, H ).

(2) v; is in the interior of sd C and corresponds to a face of C not in M(C, ﬁ+).
(3) v; is in the boundary of sd C and corresponds to an element of M(C, H ;).

(4) v; is in the boundary of sd C and corresponds to a face of C not in M(C, H ).

We need some notation to prove these four cases. Recall that we can define N, N!
and Lk with respect to a basepoint; we shall need this notation in cases (1) and (3).
Furthermore, let us denote by t the face of C corresponding to v; in sd C, and let u
denote the point arg min, . d(y). Finally, define the ball B, as the set of points y in
§4 with d(y) < d(u).

Case (1): The complex Lk (v;, X;) is combinatorially equivalent to N (LLk,(z, C),
Lk, (z, C)), where

YyeT

LLk, (7. C) := R (Lk, (7, C), int N}, ., By)

is the restriction of Lk, (7, C) to the interior of the hemisphere N%M r)Bu of N(lu T)Sd .
Since the transformation ¢ was chosen to be generic, N(lu) o Bu is in general position
with respect to Lk, (r, C)! and

LLk, (7, C) = R (Lk, (t, C). N, ;, By).
Hence, by assumption (A);_1, the complex
N(LLk,(z, C), Lk, (7, C)) = Lk (v;, X})
is collapsible. Consequently, Lemma 2.2 proves X; \( Xi1| = X — v;.

Case (2): If 7 is not an element of M(C, H ), let o denote the face of T containing u
in its relative interior. Then, Lk (v;, X;) = Lk (v;, C;) is combinatorially equivalent to

! This is true because any movement of star-center x normal to the geodesic span of 7 and x induces a
motion of the hemisphere N(lu 0 B, inN (lu 0 s, specifically, by moving the midpoint of the hemisphere
in the same direction.
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the order complex of the union L(z, C) Uo, whose elements are ordered by inclusion.
Since o is a unique global minimum of the poset, the complex Lk (v;, X;) is a cone,
and in fact combinatorially equivalent to a cone over base sd Lk (z, C). But all cones
are non-evasive (Lemma 2.1), so Lk (v;, %) is collapsible. Consequently, Lemma 2.2
giVCS 2,' \ Ei+1 = El‘ — V;.

Case (3): This time, v; is in the boundary of sd C. As in case (1), Lk (v;, C;) is
combinatorially equivalent to the complex

N(LLk,(z, C),Lk,(r, C)) =LLk,(r,C) =R (Lk, (7, C), N(lu’r)Bu)

in the sphere N(lu,T)Sd . Recall that H, \C is star-shaped with star-center x and that

is not the face of C that minimizes d(y) since v; # vy, so that N(lm’f)Bu N N(IM’T)BC
1

(m.o)Bu is a hemisphere in general position with

respect to the complex Lk, (7, C) in the sphere Nlu T)Sd, the inductive assumption
(B)4—1 applies: The complex N (LLk,(z, C), Lk, (t, C)) collapses to

is nonempty. Since furthermore N

N(LLk,(z, 3C), Lk, (t, dC)) = Lk (v;, C}),
C):=Ciy1U(CiNNR(DC, Hy), dC)).

Consequently, Lemma 2.2 proves that C; collapses to C;. Since

Ziy1NC = (Ciyt UNR@OC, Hy), dC)) NG
=Cit1U(CINNR@BC, Hy),00)) = Cf,

Lemma 2.3, applied to the union X; = C; U X;41 of complexes C; and X;11 gives
that X; collapses onto X .
Case (4): As observed in case (2), the complex Lk (v;, C;) is combinatorially
equivalent to a cone over base sd Lk (7, C), which collapses to the cone over the
subcomplex sd Lk (, dC) by Lemma 2.1. Thus, the complex C; collapses to C; :=
CiriU(CiNN(R (9C, ﬁ+), dC)) by Lemma 2.2. Now, we have X;;1 NC; = le as
in case (3), so that X; collapses onto X1 by Lemma 2.3.

This finishes the proof of (A); and (B); of Theorem 4.1. It remains to prove the
notationally simpler case (C)g4.

Proving (C)4: Since C is contained in the open hemisphere int H . (by the general
position of H ), we may assume, by central projection, that C is actually a convex
polytopal complex in R?. Let v be generic in $4~! c R?.

The vertices of C are totally ordered according to the decreasing value of (-, v) on
them. Let us extend this order to a total order on the vertices of sd C, using the derived
order. Let v; denote the i-th vertex of Fy(sd C) in the derived order, starting with the
maximal vertex vy and ending up with the minimal vertex v,,.

The complex Lk (vg, C) = LLk"(vp, C) is a subdivision of the convex polytope
TII)OC in the sphere TiOR" of dimension d — 1. By assumption (C),4_1, the complex
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Lk (vg, sd C) = sd Lk (vg, C) collapses onto dsd Lk (vg, C) — o', where ¢’ is some
facet of dLk (vg, sd C). By Lemma 2.2, the complex sd C collapses to

Y1:=06dC —v)U(@sdC —o0) = (sdC —vg) UCq,

where 0 == vy *x o’ and C, = dsd C — o.

We proceed removing the vertices one-by-one, according to their position in the
order we defined. More precisely, set C; := sdC — {vg, ..., vi—1}, and set X; :=
C; UCy,. We shall now show that X; N\ X;4 foralli, 1 <i < n—1;thisin particular
implies (C)4. There are four cases to consider:

(1) v; corresponds to an interior vertex of C.

(2) v; is in the interior of sd C and corresponds to a face of C of positive dimension.
(3) v; corresponds to a boundary vertex of C.

(4) v; isin the boundary of sd C and corresponds to a face of C of positive dimension.

Case (1): In this case, the complex Lk (v;, X;) is combinatorially equivalent to the
simplicial complex N(LLk"(v;, C), Lk (v;, C)) in the (d — 1)-sphere Tll)l_Rd. By
assumption (A)y—1, the complex

N(LLk" (v, C), Lk (v;, €)) = Lk (v;, X7)

is collapsible. Consequently, by Lemma 2.2, the complex X; collapses onto X1 =
2,’ — ;.

Case (2): If v; corresponds to a face T of C of positive dimension, let w denote the
vertex of T minimizing (-, v). The complex Lk (v;, X;) is combinatorially equivalent to
the order complex of the union L(z, C')) Uw, whose elements are ordered by inclusion.
Since w is a unique global minimum of this poset, the complex Lk (v;, X;) is a cone
(with a base naturally combinatorially equivalent to sd Lk (z, C)). Thus, Lk (v;, X})
is collapsible since every cone is collapsible (Lemma 2.1). Consequently, Lemma 2.2
gives X; \( Xiy1 = X — v;.

Case (3): Similary to case (1), Lk (v;, C;) is combinatorially equivalent to the derived
neighborhood N (LLk" (v;, C), Lk (v;, C)) in the (d — 1)-sphere Tll;,- RY. By assump-
tion (B)4_1, the complex

N(LLk"(v;, C), Lk (v;, C)) = Lk (v;, C;)
collapses to
N(LLk"(v;, 9C), Lk (v;, dC)) = Lk (v;, C)), C!:= Ciy1 U (Ci NCy).
Consequently, Lemma 2.2 proves that C; collapses to C l/ . Now,
Zit1NCi = (Cit1UC,)NCi =Cip1 U(CiNCy) =C.

If we apply Lemma 2.3 to the union X; = C; U X; 1, we obtain that X; collapses to
the subcomplex X; .
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Case (4): As in Case (2) above, Lk (v;, C;) is naturally combinatorially equivalent
to a cone over base sd Lk (r, C), which collapses to the cone over the subcomplex
sd Lk (z, 9C) by Lemma2.1. Thus, the complex C; collapses to Ci’ = Cij+1U(CiNCy)

by Lemma 2.2.
Now, we have X;+1 N C; = C{ as in Case (3), so that X; collapses onto X;11 by
Lemma 2.3. O

Lickorish’s Conjecture and Hudson’s Problem

In this section, we provide the announced partial answers to Lickorish’s conjecture
(Theorem 4.5) and Hudson’s Problem (Theorem 4.3).

Theorem 4.3 Let C, C’ be polytopal complexes such that C' C C and C Ny C'. Let
D denote any subdivision of C, and define D' := R (D, C’). Then, sd D N\ sd D'.

Proof 1t suffices to prove the claim for the case where C is obtained from C by a single
elementary collapse; the claim then follows by induction on the number of elementary
collapses. Let o denote the free face deleted in the collapsing, and let X denote the
unique face of C that strictly contains it.

Let (8, A) be any pair of faces of sd D, such that § is a facet of R (sd D, 0), Aisa
facetof R (sd D, X), and § is a codimension-one face of A. With this, the face § is a free
face of sd D. Now, by Corollary 4.2, R (sd D, ') — A collapses onto R (sd D, 9%).
Thus, sd D — A collapses onto R (sd D, sd D\relint X'), or equivalently,

sd D —§ \(R(sd D, sd D\relint X) — §.
Now, R (sd D, o) — § collapses onto R (sd D, do) by Corollary 4.2, and thus
R (sd D, sd D\relint X¥') — 6 Ny R (sd D, sd D\ (relint ¥ U relinto)).
To summarize, if C can be collapsed onto C — o, then

sdD N\ sdD —§
¢ R (sd D, sd D\(relint ¥ Urelinto)) = R(sd D, C — o)
=R (sd D, C"). O

Lemma 4.4 (Bruggesser—Mani [7]) Let o be any nonempty face of a d-dimensional
polytope P. As polytopal complex, P collapses onto St (o, d P), which collapses onto
o, which is collapsible.

Proof By induction on d. When d = 1 the claim boils down to the obvious fact that
a segment collapses onto any of its endpoints. When d > 2, let us perform a rocket
shelling of d P with a generic line through o, as explained in [19, Cor. 8.13] (for the case
where o is a vertex). This yields a shelling of d P in which St (o, d P) is shelled first.
Let t be the last facet of such a shelling. Now, any contractible shellable complex is
collapsible; the collapsing sequence of the facets is given by the inverse shelling order,
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cf. e.g. [12, Lem. 17]. Therefore d P — t collapses onto St (o, d P). But as a polytopal
complex, the complex P collapses polyhedrally onto d P — 7; so P collapses also onto
St (o, 3 P). But by the inductive assumption each (d — 1)-dimensional polytope Q in
St (o, 9 P) collapses down to St (o, d Q). Repeatedly applying collapses St (o, 9 P) to
o. By inductive assumption, o is collapsible. O

Theorem 4.5 Let C denote any subdivision of a d-dimensional polytope. Then sd C is
collapsible.

Proof By Lemma 4.4, the polytope is collapsible. Now for any subdivision C of the
polytope, the facets of C are all polytopes (not necessarily simplicial). Hence sd C is
collapsible by Theorem 4.3. i
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