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To navigate complex interactions with their environment, 
plants synthesize myriad specialized small molecule metab-
olites1–3. With dynamic and tissue-specific accumulation 

patterns, specialized metabolites serve vital functions in plant devel-
opment, defence and chemical ecology1,2,4. Environmental selection 
pressures, combined with gene duplication and functional diver-
gence, are dominant drivers in gene recruitment enabling special-
ized pathway expansion3,5,6. Moreover, conserved primary pathways, 
especially those underlying hormone biosynthesis, provide genetic 
reservoirs for the continued derivation of bioactive metabolites7–9. 
Precisely how primary and specialized metabolic pathways are reg-
ulated directly impacts stress resistance1.

Phytohormone-biosynthetic and signalling pathways are com-
mon targets for pathogen attack10. Across diverse pathosystems, 
numerous mechanisms driving disease susceptibility are mediated 
by pathogen-induced phytohormone dysregulation10–12. For exam-
ple, plant development relies upon gibberellin (GA) biosynthesis 
generating a series of oxygenated diterpenoid phytohormones13. 
Prior to our awareness of plant GAs14,15, bioactive GAs were discov-
ered as potent virulence factors produced by the fungus Gibberella 
fujikuroi, which causes bakanae disease in rice (Oryza sativa)16. 
Thus, the GA pathway collectively serves not only as a source of 
growth hormones but also as a pathogenesis target and genetic res-
ervoir for defence evolution6,10,12,13,17. Pairs of prototypical class II 

and class I diterpene synthases (diTPS), namely ent-copalyl diphos-
phate synthases (ent-CPS) and ent-kaurene synthases (ent-KS) that 
form the central GA precursor ent-kaurene, have been repeatedly 
duplicated and functionalized in the expansion of diterpenoid 
chemical diversity18.

In Poaceous grain crops, lineage-specific diterpenoid networks 
mediate diverse antimicrobial and allelopathic functions17,19. In 
rice, combinations of CPS, kaurene synthase-like (KSL) diTPS and 
cytochrome P450 (CYP) monooxygenases collectively mediate the 
biosynthesis of protective momilactones, oryzalexins and phytocas-
sanes19,20. More recently, maize (Zea mays) was also discovered to 
contain unique fungal-elicited pathways of ent-CPS-requiring anti-
biotic diterpenoids, termed dolabralexins and kauralexins, which 
are derived from dolabradiene and ent-kaurene, respectively21–24. 
Loss of both pathways through mutations in the maize ent-CPS, 
Anther ear 2 (ZmAN2), causes increased fungal susceptibility21,23,25. 
In addition to the core enzymes of GA metabolism, namely the ent-
CPS termed Anther Ear 1 (ZmAN1) and the ent-KS ZmKSL3, the 
maize genome also contains four CPS and seven KSL genes19,22,26. 
This includes two additional ent-KS, ZmTPS1 and ZmKSL5, that 
could serve GA metabolism22. Furthermore, the kaurene oxidase 
ZmKO1 (ZmCYP701A26) is a P450 displaying substrate promiscu-
ity prototypical for the GA pathway enzyme27,28. Duplicated maize 
GA biosynthetic genes predictably dominate fungal-inducible  
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production of kauralexin antibiotics; however, an inherent challenge 
remains: how can phytohormone and defence-related biosynthetic 
steps be duplicated, while avoiding pathogen-induced dysregula-
tion of primary pathways?

Combining transcriptional coregulation and genome-wide 
association studies (GWAS) with combinatorial enzyme assays, 
proteomics and mutant analyses, we demonstrate that kauralexin 
biosynthesis proceeds via the ent-kaurene positional isomer, ent-
isokaurene. The pathway recruits a diTPS pair and a CYP701A-
family P450 derived from duplicated GA metabolic genes that retain 
ancestral activity yet display regulatory functionalization for patho-
gen-induced expression. Two functionally redundant, promiscuous 
CYP71 family P450s form predominantly ent-isokaurene-derived 
kauralexins that are further converted by a new steroid 5α reductase 
to yield ent-kaurene-associated kauralexins indirectly, while avoid-
ing ent-kaurene as a predominant precursor. Mutant analyses dem-
onstrate that only ent-isokaurene is required for both kauralexin 
production and Fusarium resistance. Collectively, the maize kaura-
lexin pathway highlights multiple functional mechanisms to bypass 
the biosynthesis of GA precursors, while relying on duplicated GA 
biosynthetic genes for defence.

Results
To understand the source of fungal-elicited kauralexins predicted 
to share the GA precursor ent-kaurene22, southern leaf blight 
(SLB; Cochliobolous heterostrophus) inoculation was used to gen-
erate a replicated fungal-elicited transcriptome in maize leaves 
(Supplementary Table 1). Examination of resulting RNA-seq 
expression patterns of all diTPS genes (Fig. 1a) confirmed that 
ZmAN2 was the only strongly induced class II diTPS24,29. Of the 
seven class I diTPS present in maize, ZmKSL4 is specific for the 
dolabralexin pathway23. Transcript levels of the ent-kaurene syn-
thases, ZmTPS1 and ZmKSL5, were not significantly increased 
(Fig. 1a and Supplementary Table 2)22. The remaining kauralexin 
biosynthetic candidate genes, ZmKSL1, ZmKSL2, ZmKSL3 and 
ZmKSL6 exhibited statistically significant transcript accumulation 
following SLB challenge (Fig. 1a and Supplementary Table 2). To 
focus hypothesized endogenous relationships, mutual rank (MR)-
based global gene co-expression analyses were used to associate 
transcript accumulation patterns of maize diTPS in an expansive 
combined RNA-seq dataset30. Select gene co-expression analyses 
revealed the highest degree of coregulation between ZmAN2 and 
ZmKSL2 (Fig. 1b), suggesting a role in kauralexin production. As 
a visual aid, all biochemicals and genes with examined relevance  
to the kauralexin biosynthesis are summarized (Supplementary 

Figs. 1 and 2 and Supplementary Table 2). In contrast to the largely 
constitutive GA pathway transcripts such as ZmAN1 and ZmKSL3, 
the significant accumulation of ZmKSL2, ZmAN2 and kauralexin 
pathway metabolites following attack by four different fungal patho-
gens demonstrate significant coregulation during elicitation (Fig. 1c 
and Supplementary Fig. 2). Phylogenic analyses of maize, wheat, 
rice, switchgrass and sorghum diTPS place ZmKSL2 and ZmKSL4 
in a separate distant branch to ent-kaurene synthases ZmKSL3 and 
ZmKSL5 (Supplementary Fig. 3)22.

ZmKSL2 catalyses production of the ent-kaurene positional 
isomer, ent-isokaurene. Agrobacterium-mediated transient co-
expression of ZmAN2 and ZmKSL2 in N. benthamiana yielded 
ent-isokaurene as a major product with trace amounts (<5%) of 
ent-kaurene, demonstrating that ZmKSL2 predominantly func-
tions as an ent-isokaurene synthase (Fig. 1d and Supplementary 
Fig. 4). To characterize the full range of potential endogenous 
ZmKSL2 products, we performed paired Escherichia coli co-expres-
sion assays with all CPS present in the maize genome, namely  
ent-CPS (ZmAN2), (+)-CPS (ZmCPS3) and a labda-8,13-dien-15-yl 
diphosphate (8,13-CPP) synthase (ZmCPS4)31 using an engineered 
E. coli platform32. Consistent with an ent-isokaurene synthase, pair-
wise activity of ZmKSL2 with ZmAN2 converted geranylgeranyl-
diphosphate (GGPP) into predominately ent-isokaurene, whereas 
pairing with ZmCPS3 and ZmCPS4 resulted in the production of 
an unknown diterpenoid hydrocarbon and manoyl oxide, respec-
tively (Supplementary Fig. 5). ZmKSL2 substrate promiscuity 
is similar to ZmKSL423 and related class I diTPS from rice and 
wheat33,34. However, other than ent-isokaurene (Supplementary Fig. 
2), specific products from different ZmCPS-ZmKSL2 pairings have 
yet to be observed as maize metabolites. To examine the endoge-
nous role of ZmKSL2 we generated an insertion-based frame shift 
mutation using clustered regularly interspaced short palindromic 
repeats (CRISPR)–Cas9 gene editing (Fig. 1e). Zmksl2 plants dis-
played a near-complete deficiency in kauralexin accumulation 
following elicitation with heat-killed Fusarium hyphae (Fig. 1f,g). 
Thus, ZmKSL2 and its major respective product ent-isokaurene are 
required for significant kauralexin biosynthesis.

Tandem duplicate CYP71 P450s catalyse committed kauralexin 
biosynthesis. Cytochrome P450s are essential for GA biosynthe-
sis and dramatically expand the diversity of specialized metabolic 
pathways by facilitating an array of functional modifications35. To 
identify P450 candidates in the kauralexin biosynthetic pathway, 
we analysed RNA-seq data from SLB-challenged leaves to identify 

Fig. 1 | ZmKSL2 is an ent-isokaurene synthase required for kauralexin production. a, Heat map depicting maize leaf RNA-seq expression profiles 
(log2[fragments per kilobase of transcript per million mapped reads (FPKM) + 0.1] of diTPS genes in response to H2O controls (Con) and C. heterostrophus 
(C.h.) inoculation treatments after 24 h. b, Heat map depicting the correlation of co-expression of 11 maize diTPS genes present in a dataset of 2094 
RNA-seq samples. Low numbers in squares indicate supportive MR scores (<250). c, qrtPCR fold change in ZmKSL2 transcript levels from stems of 
35-day-old Mo17 plants, which were damaged and treated with either 100 μl of H2O (Dam) or spore suspensions (1 × 107 ml−1) of Fusarium verticillioides 
(F.v.), Aspergillus parasiticus nor-1 (A.p.), C.h. or Rhizopus microsporus (R.m.), and collected 48 h later. Intact stems were used for controls (Con). Error bars 
in the bar chart indicate mean ± s.e.m. (n = 4 biologically independent replicates). Within plots, different letters (a–c) represent significant differences 
(one-way ANOVA followed by Tukey’s test corrections for multiple comparisons; P < 0.05). d, GC–MS select ion chromatograms (m/z 272) of the major 
(~95%) and minor (~5%) products present in Agrobacterium-mediated transient Nicotiana benthamiana co-expression assays using the class II diTPS 
ent-copalyl diphosphate synthase ZmAN2 paired with the class I diTPS ZmKSL2. Included are corresponding ent-isokaurene and ent-kaurene standards. 
Four independent experiments were performed and showed similar results. e, Gene structure of ZmKSL2 with gRNA sequence designed to target the third 
exon. Nucleotides in red represent target sites, green nucleotides indicate protospacer adjacent motif sequences for the gRNA and +1 bp represents a site-
specific insertion mutation from selected T0 plants. f, Representative GC–MS extracted ion chromatograms (m/z signals: red 303 A-series kauralexins 
(KAs) and black 301 B-series kauralexins (KBs)) from stem tissues of B73 (wild type) and Zmksl2 elicited with heat-killed Fusarium venenatum hyphae 
and collected at 3 d. Four biological repeats were performed and showed similar results. g, Quantity of total kauralexins from B73 (wild-type) and Zmksl2 
plants treated with elicitor. The asterisk denotes significant differences (P < 0.05) using Student t-tests (two-tailed distribution, unpaired). Error bars in 
the bar chart indicate mean ± s.e.m. (n = 4 biologically independent replicates). h, Pathway for ent-isokaurene biosynthesis from GGPP via ent-CPP in 
maize. ZmAN2 catalyses the cyclization of GGPP to ent-CPP and ZmKSL2 sequentially converts ent-CPP to the major (95%) and minor (5%) products 
ent-isokaurene and ent-kaurene, respectively.
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genes displaying significant coregulation. Of 344 maize P450s, we 
identified 55 transcripts that were significantly up-regulated more 
than two-fold (log2) following fungal challenge (Supplementary 

Table 3). To prioritize candidates for biochemical characteriza-
tion, MR analyses of ZmKSL2 with the top 15 co-expressed P450s 
and the entire transcriptome revealed the greatest degree of  
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coregulation with ZmCYP71Z18 (Fig. 2a and Supplementary 
Tables 2 and 4). Quantitative real-time PCR (qrtPCR) transcript 
analysis of ZmCYP71Z18 coupled with restriction digests to dis-
criminate the closely related tandem duplicate gene ZmCYP71Z16 
(Supplementary Fig. 6) confirmed a broadly fungal-inducible  

transcript accumulation pattern consistent with ZmAN2 and 
ZmKSL2 (Figs. 1c and 2b and Supplementary Fig. 2).

To enable a comprehensive functional analysis of ZmCYP71Z18, 
a full-length B73 clone and a synthetic N-terminally modified 
and codon-optimized gene were generated for co-expression with 
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Fig. 2 | two cytochrome P450s, ZmCYP71Z16 and ZmCYP71Z18, catalyse the production of kauralexins from ent-isokaurene and ent-kaurene. a, Heat  
map depicting the co-expression of ZmKSL2 with all ZmCYP71 family genes that contain low MR (<100) scores and are supportive of co-regulation in 
a dataset of 2,094 RNA-seq samples. b, qrtPCR fold change of ZmCYP71Z18 transcript levels present in stems of 35-day-old Mo17 plants, which were 
damaged and treated with either 100 μl of H2O (Dam) or spore suspensions (1 × 107 ml−1) of F.v., A.p., C.h. or R.m., and collected 48 h later for analyses. Intact 
stems were used for controls (Con). Error bars in the bar chart indicate mean ± s.e.m. (n = 4 biologically independent replicates). Within plots, different 
letters (a–c) represent significant differences (one-way ANOVA followed by Tukey’s test corrections for multiple comparisons; P < 0.05). c,d, Select ion 
chromatograms (c) and corresponding EI-mass spectra (d) of hexane extracts derived from Agrobacterium-mediated transient N. benthamiana co-expression 
assays of ZmAN2, ZmKSL2 and ZmCYP71Z16 or ZmCYP71Z18 compared to the authentic kauralexin B1. Four independent experiments were performed and 
showed similar results. e, Schematic representation of the reactions catalysed by ZmCYP71Z16/Z18 in kauralexin biosynthesis.

NAtuRE PLANtS | VOL 5 | OCTOBER 2019 | 1043–1056 | www.nature.com/natureplants1046

http://www.nature.com/natureplants


ArticlesNaTure PlaNTs

ZmAN2 and ZmKSL2 using N. benthamiana and E. coli, respec-
tively. Both in planta and microbial co-expression assays resulted in 
the oxidation of ent-isokaurene to kauralexin B1 (KB1) (Fig. 2c–e 
and Supplementary Figs. 7–9). In a similar combination, pairwise 
activity of ZmAN2 and the ent-KS ZmKSL3 in N. benthamiana and 
E. coli co-expression assays predominantly yielded kauralexin A1 
(KA1) (Supplementary Figs. 7, 9). Consistent with a recent gene 
duplication event, ZmCYP71Z16 occurs in a tandem array with 
ZmCYP71Z18 on chromosome 5 and shares an 89% amino acid 
sequence identity23. Both P450s catalyse the oxidation of dolabra-
diene to 3β-hydroxy-15,16-epoxy-dolabradiene in co-expression 
assays with ZmAN2 and ZmKSL4 (ref. 23). To examine potential 
promiscuous catalytic activity of ZmCYP71Z16 on ent-isokaurene 
and ent-kaurene, we performed enzyme co-expression studies with 
ZmAN2 and either ZmKSL2 or ZmKSL3 in both N. benthamiana 
and E. coli and detected respective KB1 and KA1 product formation 
(Fig. 2c and Supplementary Figs. 7, 9). In contrast, when co-express-
ing the related P450 ZmCYP71Z9 (Fig. 2a and Supplementary Table 
4) with ZmAN2 and ZmKSL2, no KB1 production was observed 
(Supplementary Fig. 8). Although differences in substrate affinity 
and pathway involvement of ZmCYP71Z16 and ZmCYP71Z18 in 
planta cannot be excluded, transcript co-expression analyses and 
heterologous enzyme co-expression assays are consistent with 
redundant catalytic functions as both P450 enzymes are capable 
of oxidizing diterpene olefins to dolabralexins and kauralexins 
A1/B1. ZmCYP71Z18 is part of a narrow phylogenic subclade of 
related sorghum and rice P450s, which includes OsCYP71Z6 and 
Z7 (Supplementary Fig. 10) involved in the production of rice diter-
penoid defences19,36. Although all examined species in the genus 
Zea produce kauralexins (Supplementary Fig. 11), Poaceous P450s 
capable of the C-17 sequential oxidation of ent-(iso)kaurene to car-
boxylic acids have not been characterized outside maize and have 
probably evolved after the divergence from rice and sorghum, 70 
and 26 million years ago, respectively37.

Kaurene oxidase2, recruited from GA biosynthetic enzymes, 
drives kauralexin biosynthesis. To identify the endogenous 
P450(s) responsible for the C-19 oxygenation of kauralexins, we 
used the Goodman diversity panel for metabolite-based GWAS38 
and, specifically, the ratio of C-19-oxygenated to total kauralex-
ins as a phenotypic mapping trait. Statistically significant single 
nucleotide polymorphisms (SNPs) were identified on chromosome 
9 and spanned the genetic location of two ent-kaurene oxidases 
(KO) (Fig. 3a,b, Supplementary Fig. 5 and Supplementary Table 5). 
Known KOs in the CYP701 family catalyse multiple oxidations of 
the ent-kaurene C4α methyl group to yield ent-kaurenoic acid for 
GA biosynthesis39. Furthermore, KO enzymes have been shown to 
exhibit remarkable substrate promiscuity. For example, the single 
Arabidopsis KO (At5g25900) is capable of using over 20 different 
substrates in vitro28. As with gibberellins, a classical KO-like oxida-
tion at the C-19 position is predictably required for producing highly 
oxidized kauralexins24. Phylogenic analyses (Supplementary Fig. 13)  

support the presence of two predicted maize KO homologues, 
namely ZmKO1 (ZmCYP701A26) and ZmKO2 (ZmCYP701A43), 
which share 81% amino acid sequence identity27. Consistent with a 
comparatively recent duplication event 3 million years ago, ZmKO1 
and ZmKO2 are tandemly arrayed, each containing eight exons 
and seven introns (Supplementary Table 2)40. ZmKO1 exhibits 
prototypical KO activity27, substrate promiscuity and parsimoni-
ous GA biosynthetic pathway assignment due to constitutive gene 
expression in growing tissues (Fig. 3c). In contrast, ZmKO2 exhib-
its broadly inducible transcript accumulation in response to fungal 
infection (Fig. 3d), yet it has not been biochemically proven to use 
ent-kaurene or ent-isokaurene as substrates27.

To evaluate function, transient co-expression of ZmAN2 and 
ZmKSL3 with either ZmKO1 or ZmKO2 in N. benthamiana resulted 
in the formation of the GA precursor ent-kaurenoic acid, confirm-
ing that both KO enzymes retain prototypical KO activity (Fig. 3e,f 
and Supplementary Fig. 14). To examine activity on ent-isokaurene, 
ZmKO1/2 enzymes were individually co-expressed with ZmAN2 
and ZmKSL2 and yielded the endogenous maize metabolite ent-iso-
kaurenoic acid (Fig. 3e,f and Supplementary Figs. 2 and 14). E. coli 
expression of codon-optimized and N-terminally modified ZmKO1 
or ZmKO2 combined with ZmAN2 and ZmKSL3 or ZmKSL2 pro-
duced identical results (Supplementary Fig. 15). Replicated genetic 
and biochemical data support the shared C-19 oxidation of ent-
kaurene and ent-isokaurene by ZmKO1/2; however, only ZmKO2 
transcripts are co-expressed with kauralexin genes (Supplementary 
Fig. 16) and accumulate following pathogen attack (Fig. 3c,d).

During the formation of ent-kaurenoic acid (synonym ent-
kauren-19-oic acid), KO catalyses the sequential production of alco-
hol and aldehyde intermediates41. To identify additional ZmKO2 
pathway products in planta, large-scale extraction, chromatographic 
separations, gas chromatography–mass spectrometry (GC–MS) and 
nuclear magnetic resonance (NMR) analyses were performed on 
field-grown maize tissues and confirmed the existence of ent-kaur-
19-ol-17-oic acid and ent-kaur-15-en-19-ol-17-oic acid, termed 
kauralexin A4 (KA4) and B4 (KB4), respectively (Supplementary 
Fig. 17 and Supplementary Table 6), as predicted KO-derived inter-
mediates to kauralexin aldehydes (KA3/KB3) and diacids (KA2/
KB2). To examine the endogenous role of ZmKO2 in kauralexin 
biosynthesis, a maize Mu transposon insertion (mu1068966) 
impacting the first intron was examined (Supplementary Fig. 16). In 
comparison to wild-type W22 parents, both fungal-elicited ZmKO2 
transcript levels and, specifically, C-19-oxygenated kauralexins 
were significantly reduced in the Zmko2 mutant (Supplementary 
Fig. 16). Collectively, our results support KO gene duplication and 
functionalization of ZmKO2 for defence.

A steroid 5α reductase enables partitioning of kauralexin and 
gibberellin biosynthesis. Of all the kauralexins, the A-series kaura-
lexins are typically the dominant accumulated end products in most 
maize inbred lines (Supplementary Fig. 18). This pattern and the 
enzyme co-expression results are consistent with the hypothesis 

Fig. 3 | Kaurene oxidase-like 2 (ZmKO2) catalyses the synthesis of C-19 oxygenated kauralexins. a, Manhattan plot of the Goodman diversity panel 
association analysis (258 inbred lines) using ratio of fungal-elicited C-19-oxygenated kauralexins to total kauralexins as mapping trait. Negative log10-
transformed P values from the compressed mixed linear model are plotted on the y axis. The dashed line denotes the 5% Bonferroni-corrected threshold 
for 246,477 SNP markers with the most statistically significant SNP located at position 79,119,114 (B73 RefGen_v2) on chromosome 9. b, Local Manhattan 
plot surrounding the peak on chromosome 9. c,d, qrtPCR fold changes of ZmKO1 (c) and ZmKO2 (d) transcript levels present in untreated control stems 
(Con) or those damaged and treated with either 100 μl of water alone (Dam) or spore suspensions (1 × 107 ml−1) of F.v., A.p., C.h. or R.m. Error bars in the 
bar charts indicate mean ± s.e.m. (n = 4 biologically independent replicates indicated by green circle plot symbols). Within plots, different letters (a–c) 
represent significant differences (one-way ANOVA followed by Tukey’s test corrections for multiple comparisons; P < 0.05). e, GC–MS selected ion 
chromatograms of hexane extracts derived from Agrobacterium-mediated transient N. benthamiana co-expression assays of ZmAN2, ZmKSL2 and ZmKO1 
or ZmKO2 yield ent-isokaurenoic acid. Four independent experiments were performed and showed similar results. f, GC–MS selected ion chromatograms 
traces of identical DiTPS/KO combinations, with the exception of ZmKSL3 substituted for ZmKSL2 yield ent-kaurenoic acid. Four independent experiments 
were performed and showed similar results. g, Schematic representation of the reactions catalysed by ZmKO1/ZmKO2.
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that ent-kaurene can substantially contribute to kauralexin biosyn-
thesis22,42. As a logical extension, large-scale pathogen-elicited pro-
duction of direct GA biosynthetic precursors, such as ent-kaurene, 
occurs while the GA-related transcripts display only occasional and 

modest decreases (Fig. 3c, Supplementary Fig. 2 and Supplementary 
Table 2). An over-abundance of ent-kaurene could contribute to a 
physiological ‘Achilles’ heel’ by promoting dysregulated GA precur-
sor levels and pathway production43. Opposing results using enzyme 
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co-expression assays demonstrate that ent-kaurene is a minor 
(<5%) ZmKSL2 byproduct and Zmksl2 mutants display dramatic 
reductions in pathogen-elicited kauralexins (Fig. 1f,g). Based on the 
absence of A-series kauralexins in select inbreds (Supplementary 
Fig. 18), we hypothesized that ent-kaurene-derived kauralexins are 
actually products of a subsequent pathway step.

In a forward genetics approach, we performed a replicated 
GWAS of fungal-elicited tissues using the ratio of A- to B-series 
kauralexins as a trait to identify highly significant SNPs on chro-
mosome 7 (Fig. 4a and Supplementary Fig. 18). Similar analyses in 
a B73 × M162W biparental mapping population further confirmed 
the presence of a single significant quantitative trait loci (QTL) on 
chromosome 7 (Fig. 4b) independent of total kauralexin abun-
dance (Supplementary Fig. 18). Within the shared genetic map-
ping interval (Supplementary Table 7), examination of the maize 
genome revealed two candidate kauralexin reductase (KR) genes, 
GRMZM2G394968 (ZmKR1) and GRMZM2G073929 (ZmKR2), 
58.3 kb apart and annotated as 3-oxo-5-α-steroid 4-dehydroge-
nase (that is, steroid 5α-reductase: SRD5α) family proteins, which 

share 74% sequence identity at the amino acid level. In plants and 
mammals, the 5α-reductase family functions in steroid hormone 
metabolism and contains three subfamilies, namely SRD5α type 
1/2, SRD5α type 3 and Glycoprotein Synaptic 2, all of which are 
predicted products of gene duplication events in early eukaryotic 
ancestors44. In plants the SRD5α, termed de-etiolated 2 (DET2), 
catalyses the reduction of campesterol to campestanol, thereby 
enabling brassinosteroid biosynthesis45. Phylogenetic analyses 
placed ZmDET2 in the SRD5α type 1/2 subfamily, while the human 
testosterone 5α-reductase (SRD5A3) and ZmKR1/2 are members of 
the SRD5α type 3 subfamily (Supplementary Fig. 19)46.

Unlike ZmKR1, ZmKR2 transcripts exhibit inducible accumula-
tion in response to fungal pathogens and display strong co-expres-
sion with kauralexin biosynthetic genes (Fig. 4c,d Supplementary 
Table 2 and Supplementary Fig. 20). To examine the function of 
ZmKR2 in planta, we isolated a Dsg transposable element insertion 
mutant impacting second exon (Fig. 4e)47. Elicitor-induced accumu-
lation of both ZmKR2 transcripts and A-series kauralexins were sig-
nificantly decreased in Zmkr2 (Fig. 4f,g and Supplementary Fig. 20).  
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Fig. 4 | Kauralexin reductase 2 (ZmKR2) is a steroid 5α-reductase family enzyme required for the indirect production of ent-kaurene associated 
defences. a, Manhattan plot of the Goodman diversity panel association analysis (258 inbred lines) using the ratio of fungal-elicited total A- to B-series 
kauralexins as a mapping trait. Negative log10-transformed P values from the compressed mixed linear model are plotted on the y axis. The dashed line 
denotes the 5% Bonferroni-corrected threshold for 246,477 SNP markers, with the most statistically significant SNP located at position 7,279,886 (B73 
RefGen_v2) on chromosome 7. b, Linkage analysis of the ratio of the fungal-elicited total A-series to B-series kauralexins in a B73 × M162W recombinant 
inbred line mapping population. Logarithm of the odds score profile with the permutation threshold is indicated by the dashed horizontal line. c, qrtPCR 
fold changes of ZmKR1 (Zm00001d018846). d, ZmKR2 (Zm00001d018847) transcript levels present in untreated control stems (Con) or those damaged 
and treated with either 100 µl of water alone (Dam) or spore suspensions (1 × 107 ml−1) of F.v., A.p., C.h. or R.m.. Error bars in c and d indicate mean ± s.e.m. 
(n = 4 biologically independent replicates indicated by green circle plot symbols). Within plots, different letters (a–c) represent significant differences 
(one-way ANOVA followed by Tukey’s test corrections for multiple comparisons; P < 0.05). e, Schematic of transposon insertions (dsg and Mu elements) 
in the second exon of the ZmKR2 gene. f, GC–MS extracted ion chromatogram (m/z 301, B-series kauralexins, m/z 303, A-series kauralexins) of extracts 
from fungal elicitor-challenged stems of W22 and the DsgR87C04 mutant after 72 h. Four biological repeats were performed and showed similar results.  
g, Schematic representation of ZmKR2 catalysed reactions.
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Fig. 5 | Coregulation, positional isomer specificity, enzyme promiscuity and a 5α-steroid reductase family enzyme partition growth and defence-related 
maize diterpenoid pathways. a, Heat map illustrating the MR correlation of co-expression of ZmAN2 and ZmKSL2 genes with diterpenoid genes involved 
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A second insertion mutant from the Illumina Mu population 
(253466.6) produced identical biochemical results (Supplementary 
Fig. 20). To demonstrate pathway activity, combinatorial tran-
sient expression of all five enzymes, namely ZmAN2, ZmKSL2, 
ZmCYP71Z18, ZmKO2 and ZmKR2, in N. benthamiana yielded the 
combined formation of KB1-3 and KA1-3 (Supplementary Fig. 21). 
Thus, ZmKR2 enables maize plants to predominantly accumulate 
A-series kauralexins (Supplementary Fig. 18) using a pathway that 
is independent from the growth hormone precursor ent-kaurene.

Separation of the maize kauralexin pathway. Combined MR co-
expression analyses of all characterized genes mediating ent-copalyl-
derived maize diterpenoids including early predicted GA metabolic 
genes support the kauralexin pathway and provide powerful predic-
tive relationships (Fig. 5a). To examine endogenous relationships at 
the level of mRNA translation products we performed mass spec-
trometry-based proteomics on Fusarium-elicited maize stem tissue. 
Statistically significant seven-fold, or greater, increases in ZmAN2, 
ZmKSL2, ZmCYP71Z18, ZmKO2 and ZmKR2 occurred between 
early (2 h) and late (96 h) sampling times (Fig. 5b). In contrast, levels 
of established or predicted GA pathway proteins were either unde-
tectable or moderately reduced (Fig. 5c and Supplementary Table 
8). Targeted metabolomics, transcriptomics, heterologous enzyme 
co-expression, genetics and proteomics collectively support the fun-
gal-induced role of ZmAN2, ZmKSL2, ZmCYP71Z16/18, ZmKO2 
and ZmKR2 in kauralexin biosynthesis (Fig. 5c).

Maize fungal resistance is the major predicted biological func-
tion of kauralexins and this hypothesis is partially supported by 
increased fungal susceptibility in Zman2 mutants21. However, due 
to the complexity of branched ZmKSL2 and ZmKSL4 pathways, 
both of which require ZmAN2 products, the specific protective 
role of kauralexins in planta has not been previously examined21,23. 
Using Zmksl2 mutants, we examined alterations in the Fusarium 
graminearum pathosystem where elicited ZmAN2 transcript accu-
mulation was first observed29. Ten days after stalk inoculation with 
F. graminearum, Zmksl2 mutant plants displayed visible and quan-
titative increases in disease susceptibility as estimated by ratios  
of F. graminearum to maize DNA (Fig. 6a,b). Unlike the uniform 
elicitation of sesquiterpenoid zealexins (Supplementary Fig. 22), 
Zmksl2 mutants consistently displayed a lack of inducible kaura-
lexin accumulation, which illustrates a specific endogenous role in 
pathogen protection (Fig. 6).

Discussion
Stress protection in plants is facilitated by dynamic networks of 
specialized metabolites that serve diverse roles in species inter-
actions and ecological adaptation. Given the global footprint of 
Poaceous crops on arable lands, the precise chemical languages 
employed by key species are increasingly sought after for control 
and trait improvement19,48,49. Decades of extensive studies in rice 
have revealed an array of specialized diterpenoids with potent anti-
microbial and allelopathic functions that mechanistically contrib-
ute to stable resistance to major fungal diseases, such as rice blast 
(Magnaporthe oryzae)19,50,51. In maize, related yet distinct diterpe-
noids have been implicated in diverse protective roles providing 
fungal, insect and drought resistance21,23–25. The present effort high-
lights the power of combining multi-omics, GWAS and enzyme co-
expression to define specialized metabolic pathways in the genus 
Zea (Fig. 5c and Supplementary Fig. 11).

Approximately 12 million years ago, two maize progenitors cre-
ated an allopolyploidization event, resulting in the genome-wide 
duplication of gene copies which was eventually followed by the 
loss of many homoeologous gene pairs during a return to the dip-
loid state52,53. Tandem duplicate genes display common associations 
with transposable elements, continue to arise through non-homol-
ogous recombination and account for least 10% of all annotated 
maize genes40. Widespread gene duplications in maize provide a 
rich foundation to facilitate functional radiation of primary meta-
bolic enzymes to expanded specialized metabolism6,53. As a com-
mon evolutionary mechanism in plant diterpenoid metabolism, 
GA biosynthetic genes are repeatedly recruited for gene duplication 
and diversification, thereby enabling vast chemical diversity of ter-
penoid defences17. In addition to kauralexin pathway genes, related 
metabolic expansion is exemplified by the multi-gene diTPS and 
P450 families forming modular diterpenoid-metabolic pathways 
in rice, wheat (Triticum aestivum), switchgrass (Panicum virgatum) 
and others8,19,23,54. Beyond basic paradigms of gene family expansion 
and divergence, precisely how a series of closely related and cata-
lytically conserved phytohormone-derived pathways are function-
ally partitioned to avoid negatively impacting primary metabolic 
processes is thus far unpredictable. In maize, three kauralexin bio-
synthetic enzymes, namely ZmAN2, ZmKSL2 and ZmKO2, display 
phylogenetic relationships consistent with duplication and func-
tional divergence from core diTPS and P450 genes involved in phy-
tohormone pathways (Supplementary Figs. 3, 13). ZmAN2 retains 
the same enzymatic function as ZmAN1, but underwent specializa-
tion towards regulation with patterns of strict stress-inducible gene 
expression (Supplementary Fig. 2)29. Similarly, the magnitude of 
stress-elicited transcript accumulation discriminates ZmKSL2 from 
the GA pathway enzyme ZmKSL3 (Fig. 1c, Supplementary Fig. 2 
and Supplementary Table 2). In addition, ZmKSL2 displays cata-
lytic specificity distinct from the ent-KS ZmKSL3 by predominantly 
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forming ent-isokaurene with only minimal ent-kaurene synthase 
activity (Fig. 1d–f). Formation of specialized diterpenoids via an 
ent-isokaurene pathway node is also a major pathway branch in rice 
catalysed by the pairwise activity of ent-CPS (OsCPS1/2) and the 
ent-isokaurene synthase (OsKSL6)36. Less than 50% protein-level 
identity between OsKSL6 and ZmKSL2 suggests that the formation 
of ent-isokaurene as a branch point towards specialized metabolites 
evolved independently in rice and maize rather than being derived 
from a shared ent-isokaurene synthase progenitor. In contrast to the 
diTPS-catalysed formation of olefin precursors, KO of the CYP701 
family seem to have been recruited for gene duplication and func-
tionalization to a lesser extent. For example, KO in Physcomitrella 
patens (CYP701B1) and Arabiopsis thaliana (CYP701A3) remain as 
single copy genes required for GA biosynthesis55,56; however, despite 
serving targeted roles the enzymes also display remarkable substrate 
promiscuity28. Similar to the expanded family of rice CYP701A KO 
with distinct functions in GA and specialized metabolism, we dem-
onstrate that maize ZmKO1 and ZmKO2 share a nearly exact chro-
mosome location, gene structure and enzyme activity. However, the 
comparatively recent tandem gene duplications (Supplementary 
Table 2) can be discriminated by differential expression, thus offer-
ing alternate regulation of KO pathway steps (Fig. 3c–f). In addition 
to three enzymes recruited from the GA pathway, a small family 
of steroid 5α-reductases conserved in both plants and animals for 
hormone biosynthesis contributed to the origin and function of 
ZmKR2 in kauralexin biosynthesis44–46. Verified by multiple defined 
mutants, ZmKR2 catalysis in planta enables the circuitous produc-
tion of ent-kaurene-associated kauralexins.

Although the duplication and functionalization of genes 
involved in primary pathways underlies plant specialized metabo-
lism6–9, there must be layered fail-safe mechanisms to minimize the 
interference of functionally distinct parallel pathways. For exam-
ple, in Fusarium-elicited maize tissues, kauralexin concentrations 
(Supplementary Fig. 18) can average 100,000-fold higher than total 
bioactive GAs quantified in maize-Fusarium assays57. The kaura-
lexin pathway reveals multiple interactive mechanisms (A–E) to 
reduce the constitutive presence of hormone precursors (Fig. 5c). 
(A) All kauralexin pathway genes display low expression levels in 
healthy tissues and are highly co-expressed during pathogen chal-
lenge (Figs. 1c, 2b, 3d and 4d and Supplementary Table 2). (B) 
Additional class I diTPS, such as ZmKSL4, provide an additional 
pathway branch that uses ZmAN2-derived ent-copalyl diphosphate 
(ent-CPP) precursors for pathogen-elicited defensive production 
(Fig. 5a,c)23. (C) Kauralexins are formed predominantly from the 
ZmKSL2 product ent-isokaurene, a positional isomer not used for 
GA biosynthesis58, thereby avoiding the need for direct ent-kaurene 
production. (D) Independent to the GA pathway, highly promiscu-
ous activities of ZmCYP71Z16/18 enable the committed production 
of kauralexins from both ent-isokaurene and ent-kaurene. Thus, in 
response to pathogen challenge, ZmCYP71Z16/18 can facilitate 
conversion of ent-kaurene derived from ZmKSL2 and other ent-
kaurene synthases into antibiotic defences.

In a large-scale effort to understand mechanisms of pathogen 
resistance, statistical modelling previously ranked the ent-kaurene-
associated metabolite KA3 as being highly associated with fungal 
protection in diverse commercial hybrids21. A-series kauralexins, 
and specifically KA3, accumulate as predominant end products 
in most inbreds and underlie Fusarium resistance (Fig. 6c and 
Supplementary Fig. 18). In the final mechanism, (E), ZmKR2 
enables the production of A-series kauralexins from ent-isokaurene 
derived precursors to yield ent-kaurene-associated A-series kaura-
lexins indirectly. The term ent-kaurene-associated kauralexins 
refers to the combined promiscuous activities of ZmCYP71Z16/18 
and ZmKR2 that typically mask the specific molecular-level source 
of A-series kauralexins. Collectively, significant activation of the 
kauralexin pathway at the transcriptome and proteome levels is 

paired with comparatively modest signatures of GA pathway sup-
pression (Figs. 3c and 5b, Supplementary Fig. 2 and Supplementary 
Tables 2 and 8) and supports additive layers (A–E), thereby aiding 
in the prevention of GA pathway dysregulation (Fig. 5c). More gen-
eralized mechanisms could also play a role in separating defence 
and hormone pathways. For example, although the 2-C-methyl-
d-erythritol 4-phosphate (MEP) pathway is generally accepted as 
rate-limiting in diterpenoid biosynthesis, the position of diTPSs 
at metabolic branching points suggests that kinetic differences 
in diTPS activity may also contribute to pathway partitioning59. 
Furthermore, substrate allocation to distinct pathways might be 
guided by specific diTPS and P450 interactions, either by means 
of functional metabolons, as demonstrated in sorghum for dhurrin 
biosynthesis, or via close physical proximity of plastidial diTPS and 
endoplasmic reticulum-localized P450s through membrane hemi-
fusion, as suggested for GA biosynthesis60,61.

The duplication of hormone pathway genes to fuel plant defence 
metabolite production is common in Poaceous crops and probably 
plants in general. Using maize as a model and kauralexin biosynthe-
sis as a comprehensive example, we detail how multiple hormone 
pathways and mechanisms can combine to enable the partitioning 
of primary and specialized metabolism. Many features of the kaura-
lexin pathway enable the biosynthesis of closely related functional 
antibiotics while minimizing the unregulated accumulation of GA 
metabolic precursors that could otherwise promote dysregulated 
phytohormone signalling commonly targeted by diverse pathogenic 
microbes62,63.

Methods
Plant and fungal materials. Seeds of the Goodman diversity panel for GWAS 
mapping and the Nested Association Mapping (NAM) recombinant inbred lines 
(RIL) (B73 × M162W subpopulation) for linkage analysis were provided by Georg 
Jander (Boyce Thompson Institute) and Peter Balint-Kurti (US Department of 
Agriculture—Agricultural Research Service), respectively (Supplementary Table 9). 
Seeds of NAM parental lines and uniform Mu mutant UFMu-08760 (containing 
mu1068966) were obtained from the Maize Genetic COOP Stock Center. Seeds 
of tdsgR87C04 and mu-illumina_253466.6 were provided by Hugo K. Dooner 
(Waksman Institute of Microbiology) and Alice Barkan (Institute of Molecular 
Biology)47,64. Zea perennis (Ames 21874), Zea diploperennis (PI 462368), Zea 
luxurians (PI 422162), Zea m. parviglumis (PI 384069) and Zea m. mexicana 
(Ames 21851) were acquired from Mark Millard (North Central Regional Plant 
Introduction Station). Unless otherwise mentioned, maize inbreds (B73, Mo17, 
W22) used for replicated elicitation experiments were germinated in MetroMix 
200 (Sun Gro Horticulture Distribution) supplemented with 14-14-14 Osmocote 
(Scotts Miracle-Gro) and grown in a greenhouse as previously described65. Fungal 
stock cultures of R. microsporus (Northern Regional Research Laboratory, stock 
no. 54029), F. verticillioides (Northern Regional Research Laboratory, stock no. 
7415), F. graminearum (Northern Regional Research Laboratory, stock no. 31084) 
A. parasiticus (nor-1) and C. heterostrophus were grown on V8 agar for 12 d before 
the quantification and use of spores66. Heat-killed F. venenatum (strain PTA-2684) 
hyphae was commercially obtained (Monde Nissin Corporation) and used as a 
non-infectious elicitor lacking known mycotoxins.

RNA-seq analyses of fungal-elicited defence genes. To examine the induced 
defence transcriptome activated by a necrotrophic fungal pathogen, 18-day-old 
soil-grown maize (Z. mays var. Golden Queen) seedlings were inoculated with C. 
heterostrophus. Inoculations involved application of six 10 μl H2O (plus 0.1% Tween 
20) droplets (control) or those containing a suspension of SLB spores (1 × 106 ml−1) 
onto the central adaxial portion of newly emerged leaf 4. The droplets were spaced 
15 cm from the leaf tip, with three inoculation sites on each side of the midrib 
approximately 2 cm apart. After treatment all plants were placed into a 100% humidity 
chamber, followed by snap freezing of control and inoculated leaves in N2 after 24 h. 
For RNA-seq analysis, libraries were constructed using an Illumina TruSeq Stranded 
RNA LT Kit following manufacturer protocols. Quantity of total RNA was adjusted 
to 1.3 μg. Deep sequencing was performed using an Illumina NextSeq500 Instrument 
at the University of Georgia Genomics Facility. For RNA-seq data analysis, raw fastq 
reads were trimmed for adaptors and preprocessed to remove low quality reads 
using Trimmomatic v.0.32 (ref. 67). Qualified reads were then aligned to the Z. mays 
AGPv4.34 reference genome using Bowtie2 v.2.2.3.0 (ref. 68) and TopHat v.2.0.13  
(ref. 69). Gene expression values were computed using Cufflinks v.2.2.1 (ref. 70).

MR analyses of coregulated transcripts. RNA-seq datasets from the  
Goodman diversity panel and the Nested Association Mapping qTeller data  
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(http://www.qteller.com/NAM4) were derived from the National Center for 
Biotechnology Information Sequence Read Archive project IDs SRP115041 and 
SRP011480, respectively71. The combined RNA-seq dataset (B73 RefGen_V4) 
was composed of 300 inbred lines represented by 2,094 samples derived from 
developmentally diverse tissues. From this dataset, calculations of MR were used 
as a measure of co-expression by calculating the geometric mean of the product of 
two-directional ranks derived from Pearson correlation coefficients across all  
gene pairs30,72.

Maize stem inoculation with live fungi and heat-killed fungal elicitors. Using 
a surgical scalpel, 35-day-old plants were slit in the centre, spanning both sides 
of the stem, to create a 8–10 cm long parallel longitudinal incision. The incision 
targeted and spanned the upper nodes, internodes and the most basal portion of 
unexpanded leaves. All fungal spore inoculations (1 × 107 ml−1) of R. microsporus,  
F. verticillioides, A. parasiticus (nor-1) and C. heterostrophus were performed in 
100 μl of H2O. For experiments using heat-killed fungal elicitors, approximately 
500 µl of commercial F. venenatum hyphae was introduced into each slit stem, 
which was then sealed with clear plastic packing tape to minimize desiccation of 
the treated tissues. For the Fusarium stalk rot resistance assay, a 1-mm-diameter 
hole was created through the second above-ground node in the stalk of 35-old-
plants. The hole was inoculated with either 10 μl of either H2O alone or 10 μl of a  
F. graminearum spore suspension (1.5 × 105 ml−1). After 10 d, stems were split open, 
photographed and collected using a pool of two individual plants for each of the 
five final collected replicates. Within each experiment, treated maize stem tissues 
were collected in liquid nitrogen at specific time points as indicated.

Nucleic acid isolation and qrtPCR. Total RNA was isolated with TRIzol 
(Invitrogen) according to the manufacturer’s protocol. First-strand complementary 
DNA was synthesized with the RETROscript reverse transcriptase kit (Ambion) 
using random decamer primers. qrtPCR was performed using Power SYBR Green 
Master mix (Applied Biosystems) and 250 nM primers on a Bio-Rad CFX96TM 
Real-Time PCR Detection System. Mean cycle threshold values were normalized 
to ZmEF-1α (GenBank accession no. AF136829)66. Fold-change calculations 
were performed using the equation 2–∆∆Ct. All qrtPCR primers used in the study 
are listed in Supplementary Table 10. Primers for confirmation and tracking of 
maize mutants derived from CRISPR–Cas9, Dsg and Mu-based disruption are 
listed (Supplementary Table 11). For determination of the fungal biomass, total 
genomic DNA was extracted plant stem tissues and subjected to qrtPCR using the 
F. graminearum-specific primers for a deoxynivalenol mycotoxin biosynthetic gene 
(FgTri6) (Supplementary Table 10)73. Plant DNA quantification was performed 
using the maize ribosomal protein L17 gene (ZmRLP17b, Zm00001d049815) 
and specific primers ZmRLP17b_F (5′-CAAAGTCTCGCCACTCCA-3′) and 
ZmRLP17b_R (5′-CGTCCGTGAGCACGGTA-3′). Relative amounts of fungal 
DNA were calculated by the 2−∆∆Ct method, normalized to a conserved genomic 
sequence of ZmRLP17b DNA.

Genetic mapping of fungal-elicited defences. The Goodman diversity panel and 
B73 × M162W NAM subpopulation was planted in summer 2016 at the Biology 
Field Station, UCSD. To avoid plant response variation due to the differential 
expression and action of fungal effectors on diverse inbred lines, all mapping 
experiments used heat-killed F. venenatum hyphae and slit-stem treatments. 
Elicited maize stems were collected after 5 d, frozen in liquid nitrogen, ground  
to a fine powder and stored at −80 °C for further metabolite analyses.

Metabolite-based GWAS was performed as previously described65. GWAS 
was initially conducted using the Unified Mixed Linear Model in TASSEL 5.0, 
with final analyses conducted with the R package GAPIT74–77. SNPs with less 
than 20% missing genotype data and minor allele frequencies >5% from both an 
Illumina 50 K array and a genotyping-by-sequencing strategy were employed in the 
association analysis78–80. To improve association analysis, the kinship matrix (K) 
was used jointly with population structure (Q)81. Manhattan plots were constructed 
in the R package qqman 82. Genetic marker data for the recombinant lines (NAM 
B73 × M162W subpopulation) were downloaded from www.panzea.org and used 
for composite interval mapping implemented in Windows QTL Cartographer 
v.2.5 (https://brcwebportal.cos.ncsu.edu/qtlcart/WQTLCart.htm) using previously 
described settings65.

Identification and quantification of metabolites. All plant tissue samples were 
frozen in liquid nitrogen, ground to a fine powder and stored at −80 °C for further 
analyses. For sample preparation by vapour phase extraction, ~50 mg aliquots 
were weighed, solvent extracted in a bead homogenizer and derivatized using 
trimethylsilyldiazomethane as described previously24,83. GC–MS analysis was 
conducted using an Agilent 6890 series gas chromatograph coupled to an Agilent 
5973 mass selective detector (interface temperature, 250 °C; mass temperature, 
150 °C; source temperature, 230 °C; electron energy, 70 eV). The gas chromatograph 
was operated with a DB-35MS column (Agilent; 30 m × 250 μm × 0.25 μm film). 
The sample was introduced as a splitless injection with an initial oven temperature 
of 45 °C. The temperature was held for 2.25 min, then increased to 300 °C with a 
gradient of 20 °C min−1 and held at 300 °C for 5 min. GC–MS-based quantification 
of kauralexins and related compounds was based on the use of heneicosanoic acid 

as an internal standard24. GC–MS analysis of E. coli-expressed enzyme products 
was performed on an Agilent 7890B GC with a 5977 Extractor XL MS Detector 
at 70 eV and 1.2 ml min−1 helium flow, using a HP5-MS column (30 m, 250 µm 
internal diameter, 0.25 µm film) with a sample volume of 1 µl under the following 
GC parameters: pulsed splitless injection at 250 °C and 50 °C oven temperature; 
hold at 50 °C for 3 min; 20 °C min−1 to 300 °C; hold for 3 min. MS data from 90 
to 600 mass-to-charge ratio (m/z) were collected after a 9 min solvent delay. 
Product identification was conducted using authentic standards and by comparing 
reference mass spectra with Wiley, National Institute of Standards and Technology 
and the Adams libraries.

Analysis of the second replication of the Goodman diversity panel 
examining Fusarium-elicited kauralexin levels with liquid chromatography–mass 
spectrometry (LC–MS) follows from previous descriptions65. Briefly, tissue samples 
were sequentially and additively bead homogenized in (1) 100 μl 1-propanol/
acetonitrile/formic acid (1/1/0.01), (2) 250 μl acetonitrile/ethyl acetate (1/1) and 
(3) 100 μl H2O. Each combined sample consisted of a comiscible acidified solvent 
mixture of primarily 1-propanol/acetonitrile/ethyl acetate/H2O in the approximate 
proportion of 11/39/28/22, which was then centrifuged at 15,000 rpm for 20 min. 
Approximately 150 μl of the particulate-free supernatant was carefully removed 
and filtered for LC–MS automated sample analyses using 5-μl injections. The LC 
consisted of an Agilent 1260 Infinitely Series HP Degasser (G4225A), 1260 binary 
pump (G1312B) and 1260 autosampler (G1329B). The binary gradient mobile 
phase consisted of 0.1% (v/v) formic acid in H2O (solvent A) and 0.1% (v/v) 
formic acid in methanol (solvent B). Analytical samples were chromatographically 
separated on a Zorbax Eclipse Plus C18 Rapid Resolution HD column (Agilent; 
1.8 mm, 2.1350 mm) using a 0.35 ml min−1 flow rate. The mobile phase gradient 
was: 0 to 2 min, 5% B constant ratio; 3 min, 24% B; 18 min, 98% B; 25 min, 98% 
B; and 26 min, 5% B for column re-equilibration before the next injection. Eluted 
analytes underwent electrospray ionization via an Agilent Jet Stream Source 
with thermal gradient focusing using the following parameters: nozzle voltage 
(500 V), N2 nebulizing gas (flow, 12 l min−1, 379 kPa, 225 °C) and sheath gas 
(350 °C, 12 l min−1). The transfer inlet capillary was 3,500 V and both MS1 and 
MS2 heaters were at 100 °C. Negative ionization [M–H]– mode scans (0.1-atomic 
mass unit steps, 2.25 cycles s21) from m/z 100 to 1,000 were acquired. In order of 
relative retention times and [M–H]– parent ions, all eight kauralexins were KA1 
(18.82 min, m/z 303), KB1 (18.61 min, 301 m/z 301), KA2 (15.74 min, m/z 333), 
KB2 (14.62 min, m/z 331), KA3 (16.10 min, m/z 317), KB3 (15.45 min, m/z 315), 
KA4 (15.42 min, m/z 319) and KB4 (14.14 min, m/z 317).

cDNA RACE library construction and cloning of full-length cDNA. Total RNA 
was isolated from 35-day-old B73 meristem tissues elicited with heat-killed F. 
venenatum hyphae collected after 48 h treatment, as described previously. Total 
RNA, approximately 2 μg, was subjected to TURBO DNA free treatment (Ambion) 
and used for the construction of a 5′ rapid amplification of cDNA ends (RACE) 
cDNA library with the SMARTer RACE 5′/3′ Kit (Clontech) in accordance with 
the manufacturer’s protocol. Full-length open reading frames, or those truncated 
to lack predicted N-terminal plastid transit peptides, were amplified using gene-
specific oligonucleotides (Supplementary Table 12). For Agrobacterium-mediated 
transient expression in N. benthamiana, full-length open reading frames, including 
ZmAN2, ZmKSL2, ZmCYP71Z18, ZmCYP71Z16 and ZmKR2, were cloned into the 
expression vector pLIFE33.

Transient co-expression assays in N. benthamiana. For transient expression 
in N. benthamiana, full-length open reading frames in the pLIFE33 vector were 
transformed into Agrobacterium tumefaciens strain GV3101. Resulting cells 
were grown at 28 °C for 24 h in Luria broth media supplemented with 50 mg l−1 
of kanamycin, 30 mg l−1 of gentamicin and 50 mg l−1 of rifampicin. Cells were 
collected and resuspended to a final optical density600 of 0.8 in 10 mM MES buffer 
with 10 mM MgCl2. Equal volumes of different cultures, as well as the silencing 
suppressor strain P19, were combined and infiltrated into the leaves of 6-week-old 
N. benthamiana plants using a needleless syringe84. Five days post transfection, 
inoculated leaves were collected for hexane extraction of diterpenoids and  
GC–MS analyses.

Co-expression of diTPSs and P450s in E. coli. Combinatorial expression of 
diTPSs and P450s was performed using a previously described E. coli system 
engineered for enhanced diterpenoid production32,85. For functional analysis, 
diTPS genes were N-terminally truncated to remove predicted plastid transit 
peptides. ZmKSL2Δ34 (Zm00001d041082) and ZmKSL3Δ53 (Zm00001d002349) 
were synthesized and subcloned into the pET28b(+) expression vector (EMD 
Millipore). For additional co-expression of P450s, synthetic N-terminally modified 
and codon-optimized genes of ZmCYP71Z16 (Zm00001d014136)23, ZmCYP71Z18 
(Zm00001d014134)23, ZmKO1 (CYP701A43, Zm00001d046344) and ZmKO2 
(CYP701A26, Zm00001d046342) were synthesized and subcloned into the 
multiple cloning site 2 of the pETDuet-1 expression vector (EMD Millipore) 
carrying the ZmCPR2 gene (Zm00001d026483) in multiple cloning site 1. Class 
II diTPS were expressed as previously described with the GGPP synthase from 
Abies grandis32. The pACYC-Duet:AgGGPS-ZmAN2 (Zm00001d029648), pACYC-
Duet:AgGGPPS-ZmCPS3 (Zm00001d024512) or pACYC-Duet:AgGGPPS-
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ZmCPS4 (Zm00001d048874) constructs were expressed alone or in combination 
with pET28b(+):ZmKSL2 and pETDuet:ZmCPR2:ZmCYP71Z16 or pETDu
et:ZmCPR2:ZmCYP71Z1823,31. The desired construct combination was then 
co-transformed into E. coli strain BL21DE3-C41 cells (Lucigen) together with 
pCDFDuet:IRS expression vector for co-expression assays32,85. Cultures were grown 
in 50 ml Terrific Broth medium to an optical density600 of ~0.6 at 37 °C and cooled 
to 16 °C, at which time protein expression was induced by adding 1 mM isopropyl-
thio-galactoside (IPTG) followed by incubation for 72 h with supplement 25 mM 
sodium pyruvate. For P450 co-expression, cultures were further supplemented 
with 4 mg l−1 riboflavin and 75 mg l−1 δ-aminolevulinic acid. Enzyme products 
were extracted with 50 ml of 1/1 ethyl acetate:hexane (v/v), concentrated under N2 
stream and resuspended in 1 ml hexane for GC–MS analysis. For in vitro activity 
analysis of diTPSs, constructs in the pET28b(+) vector were expressed in E. coli 
BL21DE3-C41 cells and Ni2+-nitrilotriacetic acid affinity-purified as described 
elsewhere86. Single-vial diTPS enzyme assays were performed using 50 µg of 
recombinant protein and 15 µM of (E,E,E)-GGPP (Sigma–Aldrich) as substrate, 
with gentle shaking for 1 h at 30 °C, followed by product extraction with hexane for 
GC–MS analysis.

Creation of Zmksl2 using CRISPR–Cas9. ZmKSL2 guide RNA (gRNA) target site 
selection used the B73 reference genome sequence criteria as described87. Flanking 
regions with the target site at the middle were PCR-amplified from the maize 
genotype Hi-II and Sanger sequenced for accuracy of genomic sequence including 
the gRNA complementary sequence. The gRNA gene was constructed in the 
intermediate vector and the expression cassette was mobilized through a gateway 
reaction into the Cas9-expressing binary vector for maize Hi-II transformation at 
the Iowa State University Plant Transformation Facility as previously described88. 
A total of ten independent T0 transgenic plants were obtained. To examine if the 
target gene sequence was edited, the PCR amplicons encompassing the gRNA 
target site (Supplementary Table 11) from each plant were sequenced. Two 
independent homozygous T0 plants with 1 bp insertion at the same position were 
identified, referred to as ZmKSL2–7 and ZmKSL2–20. The homozygous plants 
were outcrossed with B73 and the resulting F1 plants were self-pollinated to 
generate F2 progenies. Forty-eight F2 plants were genotyped, and a homozygous 
plant without the CRISPR transgene was selected and backcrossed to B73.  
Finally, two homozygous plants and two wild-type siblings were selected for 
bioassays by genotyping from self-pollinated plants after B73 backcrossing four 
successive times.

Identification of Zmkr2 and Zmko2 mutants. The Dsg insertion (tdsgR87C04) 
in ZmKR2 (Zm00001d018847, B73RefGen_V4) was verified by designing 
PCR primer pairs, with one gene-specific pairs (Supplementary Table 11) 
from ZmKR2 and one primer from the insertion, GFP gene (GFP_AC-DS: 
TTCGCTCATGTGTTGAGCAT)47. qrtPCR analysis confirmed that the Dsg 
insertion severely affects transcription of ZmKR2 in response to fungal elicitation 
(Supplementary Fig. 20). The Mu insertion line mu-illumina_253466.6 was 
confirmed in ZmKR2 by PCR genotyping with one pair of gene-specific primers 
from ZmKR2 (Supplementary Table 11) and a degenerate MuTIR primer 
(GCCTC(T/C)ATTTCGTCGAATCC(C/G))64. Mu elements in mu-Illumina 
mutants have terminal inverted repeats, so the primer for MuTIR works 
in both directions. The mu1068966 insertion in the first intron of ZmKO2 
(Zm00001d046342, B73RefGen_V4) was verified by PCR genotyping with a pair 
of gene-specific primers (Supplementary Table 11) and a primer MuTIR6 from 
mu insertion. qrtPCR analysis further confirmed that the mu1068966 insertion 
significantly compromised transcription of ZmKO2 in response to SLB elicitation 
(Supplementary Fig. 17).

Analyses of maize diterpenoid pathway proteins. W22 maize plants were 
grown individually in 1G pots for 35 d. All plants were stem elicited with heat-
killed F. venenatum hyphae under staged timings such that all time points (0, 2, 
4, 72, 96 and 120 h) could be collected within the same hour and precise plant 
age. Stem tissues from four plants were collected and pooled to generate a single 
homogenous sample per time point, ground in liquid nitrogen and stored at 
−80 °C. Tissue powders were suspended in extraction buffer (8 M urea/100 mM 
Tris/5 mM Tris(2-carboxyethyl)phosphine (TCEP)/phosphatase inhibitors, pH 7). 
Proteins were precipitated by adding four volumes of cold acetone and incubated 
at 4 °C for 2 h. Samples were centrifuged at 4,000g for 5 min at 4 °C. Supernatant 
was removed and discarded. Proteins were resuspended in urea extraction buffer 
and precipitated by cold acetone. Protein pellets were washed by cold methanol 
with 0.2 mM sodium orthovanadate to further remove non-protein contaminants 
and resuspended in the original extraction buffer. Proteins were then digested with 
Lys-C (Wako Chemicals, 125-05061) at 37 °C for 15 min, diluted eight-fold with 
1 M urea containing 100 mM Tris and secondarily digested with trypsin (Roche, 
03 708 969 001) for 4 h. Digested peptides were purified on Waters Sep-Pak C18 
cartridges and eluted with 60% acetonitrile. TMT-10 labelling was performed in 
50% acetonitrile/150 mM Tris, pH 7 and checked by LC–MS/MS to confirm >99% 
efficiency. Labelled peptides from each time point sample were pooled together 
for 2D-nanoLC–MS/MS analysis. An Agilent 1100 high-performance liquid 
chromatography (HPLC) system was used to deliver a flow rate of 600 nl min−1 to 

a custom 3-phase capillary chromatography column through a splitter. Column 
phases consisted of a 30-cm long reverse phase (RP1: 5 μm Zorbax SB-C18, 
Agilent), 8-cm long strong cation exchange (SCX: 3 μm PolySulfoethyl, PolyLC) 
and 40-cm long reverse phase 2 (RP2: 3.5 μm BEH C18, Waters) coupled with 
an electrospray tip of fused silica tubing pulled to a sharp point (inner diameter 
<1 μm). Peptide mixtures were loaded onto RP1 and the three column sections 
were joined and mounted on a custom electrospray adaptor for online nested 
elutions. Peptides were eluted from the RP1 section to the SCX section using a 
0–80% acetonitrile gradient for 60 min, and then fractionated by the SCX column 
section using a series of 20 step salt gradients of ammonium acetate over 20 min, 
followed by high-resolution reverse phase separation on the RP2 section of the 
column using an acetonitrile gradient of 0–80% for 150 min. Spectra were acquired 
on a Q-exactive-HF mass spectrometer (Thermo Electron Corporation) operated 
in positive ion mode with a source temperature of 275 °C and spray voltage of 
3 kV. Xcalibur 4.0 (Thermo Scientific) was used for automated data-dependent 
acquisition and employed the top 20 ions with an isolation window of 1.0 Da and 
normalized collision energy of 30. The resolving power was set at 60,000 full 
width at half maximum (FWHM) for MS and 30,000 FWHM for MS–MS scans, 
respectively. Dynamic exclusion was used to improve the duty cycle. The raw data 
was extracted and searched using Spectrum Mill v.B.06 (Agilent). MS–MS spectra 
with a sequence tag length of 1 or less are considered to be poor spectra and were 
discarded. The remaining MS–MS spectra were searched against the maize W22 
gene set. Search parameters were set to Spectrum Mill’s default settings, with the 
enzyme parameter limited to full tryptic peptides with a maximum mis-cleavage 
of 1. A 1/1 concatenated forward–reverse database was constructed to calculate the 
false discovery rate. Cut-off scores were dynamically assigned to each dataset to 
obtain the false discovery rates of 0.1% for peptides and 1% for proteins. Proteins 
that share common peptides were grouped using principles of parsimony to 
address protein database redundancy. Total TMT-10 reporter intensities were used 
for relative protein quantitation. Peptides shared among different protein groups 
were removed before quantitation. Isotope impurities of TMT-10 reagents were 
corrected using correction factors provided by the manufacturer (Thermo Fisher 
Scientific). Median normalization was performed to normalize the protein TMT-
10 reporter intensities in which the log ratios between different TMT-10 tags were 
adjusted globally such that the median log ratio was 0.

Purification, analyses and NMR of KA4 and KB4. For the purification of 
kauralexin A4 and B4, 1 kg of 80-day-old field-grown B97 husk tissue was ground 
to a powder in liquid nitrogen, extracted with 1 l of methanol, filtered and dried 
using a rotary evaporator. The resulting oily residue was then separated by 
preparative flash chromatography (CombiFlashRf; Teledyne ISCO) on a 15.5-g 
Silica (RediSepRf High Performance GOLD) column. The mobile phase consisted 
of solvent A (100% hexane) and solvent B (100% ethyl acetate), with a continuous 
gradient of 0–100% B from 1 to 50 min using a flow rate of 19 ml min−1. Fractions 
were collected and analysed every 5 min by LC–MS. In the 25–30 min fraction, an 
enrichment of putative candidates for KA4 and KB4 was observed. This fraction 
was purified further by HPLC using repeated 1 mg injections on a Zorbax RX-
C18 (length, 250 mm; particle size, 3 μm; internal diameter, 4.6 mm; Agilent) 
column and a mobile phase consisting of solvent A (1:4 acetonitrile (ACN)/H2O) 
and solvent B (100% ACN) with a continuous gradient of A–B from 0 to 27 min 
using a flow rate of 1 ml min−1. The recollected fractions spanning 15–16 min and 
17–18 min contained KB4 and KA4 at approximately 85% purity and were used to 
generate samples for NMR. Purified KA4 and KB4 were dissolved in chloroform-d 
(Cambridge Isotope Laboratories), and NMR spectra were acquired on a Bruker 
600-MHz spectrometer equipped with a 1.7-mm cryo probe triple resonance 
interface. Chemical shifts were calculated by reference to known chloroform-d 
(13C 77.2 ppm, 1H 7.26 ppm) signals. All spectra were acquired using standard 
experiments on a Bruker Avance III console and TopSpin 2.1.6 software, including 
1D 1 H and 2D heteronuclear single quantum coherence spectroscopy, correlated 
spectroscopy and heteronuclear multiple bond correlations (600 MHz).

Phylogenetic analysis of protein sequences and gene sequences used for 
heterologous expression. Protein sequence alignments derived from UniProtKB 
and Genbank IDs (Supplementary Table 13) were performed using ClustalW 
as implemented in the BioEdit software package (http://www.mbio.ncsu.edu/
BioEdit/bioedit.html). The maximum-likelihood phylogenetic trees were built 
using MEGA7 (http://www.megasoftware.net/megabeta.php) with bootstrap 
values based on 1,000 iterations. All gene sequences used in this study for enzyme 
characterization are detailed (Supplementary Table 14).

Statistical analyses. Statistical analyses were conducted using GraphPad  
Prism 8.0 (GraphPad Software, Inc.) and JMP Pro 13.0 (SAS Institute Inc.). 
One-way analyses of variance (ANOVAs) were performed to evaluate statistical 
differences. Tukey tests were used to correct for multiple comparisons between 
control and treatment groups. Student’s unpaired t-tests were used for pairwise 
comparisons. P values < 0.05 were considered significant.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.
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Data availability
Raw read sequences have been deposited in the National Center for Biotechnology 
Information Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/) under 
the accession number GSE120135. All other data that support the findings of this 
are available from the corresponding author upon request.
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Supplementary	Fig.	1.	Maize	isoprenoid	precursors	and	products	in	the	current	study	relevant	to	elucida:on	of	the	kauralexin	
pathway.	(A)	Precursor	required	for	all	type	II	DiTPS,	geranylgeranyl-diphosphate	(GGPP)	and	the	dephosphorylated	product	
geranylgeraniol	(1).	(B)	Products	of	the	ent-CPS	ZmAN1	and	ZmAN2,	include;	ent-copalyl	diphosphate	(ent-CPP)	and	the	
dephosphorylated	product	ent-copalol	(2).	Products	of	ent-CPS	paired	with	ZmKSL2	are	ent-isokaurene	(3)	and	ent-kaurene	(4).	(C)	
Products	of	the	(+)-CPS	ZmCPS3	include	(+)-copalyl-diphosphate	[(+)-CPP],	the	dephosphorylated	product	(+)-copalol	(5)	and	pairings	
with	ZmKSL2	yield	an	unknown	diterpenoid	possibly	similar	to	labda-8(20),12,14-triene	(6).	(D)	Products	of	ZmCPS4,	a	labda-8,13-
dien-15-yl	diphosphate	(8,13-CPP)	synthase	include	8,13-CPP,	the	dephosphorylated	product	8,13-copalol	(9),	an	unknown	
diterpenoid	derivaWve	of	8,13-copalol	or	labda-13-en-8-ol	(8),	labda-13-en-8-ol	diphosphate	(LPP),	the	dephosphorylated	product	
labda-13-en-8-ol	(10)	and	manoyl	oxide	(7).	(E)	Products	of	ZmAN2+ZmKSL2	plus	kaurene	oxidases	ZmKO1	or	ZmKO2,	ent-isokaurenol,	
ent-isokaurenal,	ent-isokaurenoic	acid	(11).	(F)	Products	of	ZmAN2+ZmKSL3	plus	kaurene	oxidases	ZmKO1	or	ZmKO2,	ent-kaurenol,	
ent-kaurenal,	ent-kaurenoic	acid	(12).	(G)	B-series	kauralexins	(KB)	include	KB1	(13),	KB4	(14),	KB3	(15),	KB2	(16).		(H)	A-series	
kauralexins	(KA)	include	KA1	(17),	KA4	(18),	KA3	(19),	KA2	(20).	(I)	Known	dolabralexin	products	derived	from	ZmAN2	+	ZmKSL4	include	
dolabradiene,	epoxydolabrene	(15,16-epoxydolabrene),	epoxydolabranol	(3b-hydroxy-15,16-epoxydolabrene),	and	
trihydroxydolabrene	(3b,15,16-trihydroxydolabrene).	(J)	RepresentaWve	acidic	maize	sesquitepenoids	include	zealexin	A1	and	zealexin	
B1.	Note:	Numbered	compounds	(1-22)	in	approximate	order	of	occurrence	represent	those	directly	measured	in	the	present	study,	
unnumbered	compounds	represent	intermediates	or	enzyme	products	not	directly	detected	or	measured	in	samples.		
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Supplementary	Fig.	2.	The	kauralexin	pathway	spans	5	chromosomes,	is	fungal	inducible	and	results	in	the	
accumula:on	of	precursors	and	products.	(A)	Chromosomal	locaWon	of	maize	gibberellin	(blue),	kauralexin	
(red),	and	other	(black)	pathway	genes	examined	in	the	current	study.	Chromosome	sizes	are	scaled	in	
megabases	(Mbs)	according	to	B73	RefGen_V4,	for	addiWonal	details	refer	to	Supplementary	Table	2.		Average	
(n	=	4,	±SEM)	abundance	of	(B)	ZmAN2,	(C)	ZmAN1	and	(D)	ZmKSL3	transcripts	in	stems	by	elicited	by	diverse	
fungi	and	resulWng	(E)	kauralexins	and	(F)	pathway	precursors.	Stems	of	30-day	old	maize	(var.	Mo17)	were	
damaged	and	treated	with	either	100	µL	of	either	water	alone	(Dam)	or	spore	suspensions	(1	×107	µL-1)	of	F.	
ver3cillioides	(F.v.),	A.	parasi3cus	nor-1	(A.p.),	C.	heterostrophus	(C.h.),	or	R.	microsporus	(R.m.).	Tissues	were	
harvested	at	2-	and	4-d	for	qRT-PCR	transcripts	and	metabolite	levels,	respecWvely.	Intact	stems	were	used	for	
controls	(Con).	Gene	expression	was	normalized	to	the	internal	reference	ZmEF-1α.	Error	bars	in	the	bar	charts	
(B,	C,	D,	E,	and	F)	indicate	mean	±	SEM	(n	=	4	biologically	independent	replicates).	Within	plots,	different	lejers	
(a–d)	represent	significant	differences	(one-way	ANOVA	followed	by	Tukey’s	test	correcWons	for	mulWple	
comparisons,	P	<	0.05).	
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Supplementary Fig. 3. Maximum likelihood phylogenetic tree of DiTPSs from maize (Zea 
mays, blue), sorghum (Sorghum bicolor, pink), rice (Oryza sativa, green), wheat (Triticum 
aestivum, red), and switchgrass (Panicum virgatum, black). The tree is rooted (A) with spruce 
diterpene synthases (purple) or unrooted (B). Bootstrap values calculated from 1,000 iterations are 
indicated at the nodes. Protein accession numbers are listed in Supplementary Table 13. 
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4	

Supplementary	Fig.	4.	In	planta	func:onal	characteriza:on	of	maize	class	I	enzyme	ZmKSL2	as	an	ent-
isokaurene	synthase.	Corresponding	EI-mass	spectra	(from	Fig.	1d)	of	the	major	(≈	95%)	and	minor	(≈5%)	
products	present	in	Agrobacterium-mediated	transient	N.	benthamiana	co-expression	assays	using	the	class	I	
diTPS	ent-copalyl	diphosphate	synthase	ZmAN2	paired	with	the	class	II	diTPS	ZmKSL2.	Included	are	
corresponding	mass	spectra	of	authenWc	ent-isokaurene	and	ent-kaurene	standards.	EI-spectra	labeling	is	
referenced	to	Supplementary	Fig.	1	(3,	ent-isokaurene;	4,	ent-kaurene).	Four	independent	experiments	were	
performed	and	showed	similar	results.		
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Supplementary	Fig.	5.	Substrate	specificity	of	ZmKSL2	using	paired	maize	diterpene	precursors.	(A)	Extracted	ion	
chromatograms	(EIC)	of	products	resulWng	from	in	E.	coli	co-expression	of	ZmKSL2	with	characterized	maize	class	II	
diTPSs,	namely	ent-CPS	(ZmAN2),	(+)-CPS	(ZmCPS3)	and	a	labda-8,13-dien-15-yl	diphosphate	(8,13-CPP)	synthase	
(ZmCPS4).	Compound	1	is	geranylgeraniol	(GG),	compound	2	is	ent-copalol,	compound	3	is	ent-isokaurene,	compound	4	
is	ent-kaurene	(trace	abundance),	compound	5	is	(+)-copalol,	asterisk	(*)	denotes	a	plasWcizer	contaminant,	compound	6	
is	an	unknown	diterpene	displaying	parWal	spectral	resemblance	to	(B)	labda-8(20),12,14-triene	(i.e.	biformene,	CAS	
5957-33-5)	based	on	the	NaWonal	InsWtute	of	Standards	and	Technology	Database,	compound	7	is	manoyl	oxide,	
compound	8	is	an	unidenWfied	labda-13-en-8-ol	or	8,13-CPP	derivaWve,	compound	9	is	8,13-copalol,	compound	10	is	
labda-13-en-8-ol.	(C)	EI-mass	spectra	of	all	compounds	in	panel	A.	Four	independent	experiments	were	performed	and	
showed	similar	results.		
 

A B 

1 

ZmCPS3 
5 

2 

1 

In
di

vi
du

al
ly

 s
ca

le
d 

E
IC

 (2
57

 m
/z

) 

ZmCPS3 + ZmKSL2 

ZmCPS4 

6, ZmCPS3 + ZmKSL2  

ZmCPS4 + ZmKSL2 

Retention time (min) 

* 

6 

7 
8 1 

9 

10 

1, ZmAN2, ZmCPS3/4 C 

2, ZmAN2 

5, ZmCPS3 

( * ), contaminant  

7, ZmCPS4 

8, ZmCPS4 

9, ZmCPS4 

10, ZmCPS4 

R
el

at
iv

e 
A

bu
nd

an
ce

 o
f I

on
s 

3, ZmAN2 + ZmKSL2 

272 
257 

106 

163 119 

94 

69 

81 
93 
107 

272 
257 

137 
95 

275 257 

137 
81 

109 

281 

257 
207 

73 
137 

275 

192 
177 

207 

275 

205 149 

95 

109 

275 
257 

177 

95 

95 

81 

210 

275 
257 

191 137 

R
el

at
iv

e 
A

bu
nd

an
ce

 o
f I

on
s 

m/z 

3 

4 



6	

ZmCYP71Z16  ATGGAGGACAAGGTGCTCCTCGCCGTGGCCATGGTGGCGCTGATCGCCGTCCTCTCCAAGCTCAAGTCGTTGCTCGAGAC 80    
ZmCYP71Z18  ATGGAGGACAAGGTGCTCATCGCCGTGGGAACGGTGGCGGTGGTCGCCGTCCTCTCCAAGCTCAAGTCGGC---CGTGAC 77    
 
ZmCYP71Z16  CAAGCCGAAGCTGAACCTGCCCCCAGGGCCATGGACGCTGCCATTGATCGGCAGCATCCACCACCTCGTCAGCAGCCCGC 160   
ZmCYP71Z18  CAAGCCGAAGCTGAACCTTCCTCCAGGGCCATGGACGCTGCCGTTGATTGGCAGCATCCACCACATCGTCAGCAACCCGC 157   
 
ZmCYP71Z16  TGCCCTACCGAGCGATGCGCGAGCTCGCACACAAGCACGGGCCGCTCATGATGCTGTGGCTGGGCGAGGTGCCCACGCTG 240   
ZmCYP71Z18  TGCCCTACCGGGCGATGCGCGAGCTCGCGCACAAGCACGGGCCGCTCATGATGCTGTGGCTGGGCGAGGTGCCCACGCTG 237   
 
ZmCYP71Z16  GTGGTGTCGTCGCCGGAGGCCGCGCAGGCGATCACCAAGACGCACGACGTCACGTTCGCCGACCGTCACATGAACAGCAC 320   
ZmCYP71Z18  GTGGTGTCGTCGCCGGAGGCCGCGCAGGCGATCACCAAGACGCACGACGTGTCGTTCGCCGACCGTCACATCAACAGCAC 317   
 
ZmCYP71Z16  CGTCGACATACTCACCTTCAACGGCAATGACATAGTGTTCGGGACGTACGGCGAGCAGTGGCGCCAGCTCCGTAAGCTCA 400   
ZmCYP71Z18  CGTCGACATACTCACCTTCAACGGCATGGACATGGTTTTCGGGTCCTACGGCGAGCAGTGGCGGCAGCTCCGCAAGCTCA 397   
 
ZmCYP71Z16  GCGTGCTGGAGCTGCTGAGCGTGGCGCGGGTGCAGTCGTTCCAGCGCATCCGCGAGGAGGAGGTGGCGCGGTTCATGCGG 480   
ZmCYP71Z18  GCGTGCTGGAGCTGCTGAGCGCCGCGCGGGTGCAGTCGTTCCAGCGCATCCGCGAGGAGGAGGTGGCGCGGTTCATGCGG 477   
 
ZmCYP71Z16  AACCTGGCCGCGTCCGCCGGCGCCGGTGCCACCGTCGACCTGTCGAAGATGATATCTAGCTTCATCAACGACACCTTCGT 560   
ZmCYP71Z18  AGCCTCGCCGCGTCCGCCAGCGCCGGCGCCACCGTCGACCTGTCCAAGATGATCTCAAGCTTCATCAACGACACCTTCGT 557   
 
ZmCYP71Z16  CAGGGAGTCCATCGGCAGCCGGTGCAAGCATCAGGACGAGTACCTGGATGCACTGCACACTGGCATTCGGGTGGCCGCGG 640   
ZmCYP71Z18  CAGGGAGTCCATCGGCAGCCGGTGCAAGTATCAGGACGAGTACCTGGCTGCCCTGGACACTGCCATTCGGGTGGCCGCGG 637   
 
ZmCYP71Z16  AGCTAAGCGTAGCTAACCTCTTCCCGTCGTCTAGGCTGTTGCAGAGTCTTAGCACGGCGCGACGCAAGGCGGTAGCGGCC 720   
ZmCYP71Z18  AGCTAAGCGTAGGTAACATCTTCCCGTCGTCTAGGGTGTTGCAGAGTCTTAGCACGGCGCGACGCAAGGCGATAGCGTCC 717   
 
ZmCYP71Z16  CGCGACGAGATGGCGCGCATCCTCGGGCAGATCATCCGCGAGACCAAGGAAGCCATGGACTGGGGTGACAAGGCTTCAAA 800   
ZmCYP71Z18  CGCGACGAGATGGCGCGCATCCTCGGGCAGATCATCCGCGAGACCAAGGAATCCATGGATCAGGGTGACAAGACTTCAAA 797   
 
ZmCYP71Z16  CGAGAGCATGATCTCCGTCCTGCTGAGGCTGCAGAAAGAGGCCGGCTTGCCCATCGAGCTTACGGACGACATCGTCATGG 880   
ZmCYP71Z18  CGAGAGCATGATCTCCGTCCTGCTCAGGCTTCAGAAAGACGCCGGCTTGCCCATCGAGCTCACCGACAACGTCGTCATGG 877   
 
ZmCYP71Z16  CGCTCATGTTTGTAAGTCGTATTCCGATCA---CCGCCTAGCTTGCTAGAGCTTCAAAAACGGCTAGCAAGCTTCAAAAA 957   
ZmCYP71Z18  CGCTCATGTTTGTAAGTCTGATCCCCATCGTCGCCGCCTAGCTTGCTTCAGAAA-GAAGTTAGCTAGCAAGCT--GGAAT 954   
 
ZmCYP71Z16  AGACGACATCGATATGACTGCTGTTTAATTTGATCTCTAGGACTTGTTTGGCGCGGGCAGCGACACCTCGTCGACAACGC 1037  
ZmCYP71Z18  TTAACAAGTCGATTGGTGTTTTTAATTATTTGATCTCTAGGACTTGTTTGGCGCGGGCAGCGACACCTCGTCGACAACGC 1034  
 
ZmCYP71Z16  TAACCTGGTGCATGACAGAGATGATCCGGTACCCGGCCACGATGGCCAAAGCGCAGGCCGAGGTCCGGGAGGCCTTCAAG 1117  
ZmCYP71Z18  TGACCTGGTGCATGACAGAGCTGGTCCGGTACCCGGCAACGATGGCCAAAGCGCAGGCCGAGGTCCGGGAGGCTTTCAAG 1114  
 
ZmCYP71Z16  GGGAAGACCACAATCACGGAAGACGACCTGTCCAGGGCAAACCTTAGCTACCTCAAGCTCGTGGTGAAGGAAGCGCTCAG 1197  
ZmCYP71Z18  GGGAAGACCACGATCACGGAGGACGACCTGTCCACGGCAAATCTTAGGTACCTGAAGCTCGTGGTGAAGGAAGCGCTCAG 1194  
 
ZmCYP71Z16  GTTGCACTGCCCGGTGCCGCTCCTGATCCCACGCAAATGCCGCGAGACATGCCAGATCATGGGCTACGACATCCCTAAAG 1277  
ZmCYP71Z18  GTTGCACTGCCCGGTGCCGCTCCTGCTCCCACGCAAATGCCGGGAGGCGTGCCAGGTCATGGGCTACGACATCCCTAAAG 1274  
 
ZmCYP71Z16  ACACATGCGTGCTCGTCAATGTCTGGGCCATCTGTAGGGACTCTAGGTACTGGGAAGATGCCGACGAATTCAAGCCGGAG 1357  
ZmCYP71Z18  GCACATGCGTGTTCGTCAATGTCTGGGCGATCTGTAGGGACCCTAGGTACTGGGAAGACGCCGAGGAATTCAAGCCGGAG 1354  
 
ZmCYP71Z16  CGGTTCGAGAACTCCAGCCTAGACTACAAAGGGACAAGCCACGAGTACCTCCCGTTCGGGTCTGGCCGTCGAATGTGCCC 1437  
ZmCYP71Z18  CGGTTCGAGAACTCCAACCTAGACTACAAGGGAACATACTACGAGTACCTCCCGTTCGGGTCTGGCCGTCGCATGTGCCC 1434  
 
ZmCYP71Z16  AGGAGGGAACCTTGGAGTGGCCAACATGGAGCTTGCACTAGCCAGCCTTCTGTACCATTTCGATTGGAAGCTACCAAGTG 1517  
ZmCYP71Z18  GGGAGCAAACCTTGGAGTGGCCAACTTGGAGCTTGCACTGGCCAGCCTTCTGTACCATTTCGATTGGAAGCTACCAAGTG 1514  
 
ZmCYP71Z16  GACAGGAGCCCAAGGATGTGGATGTTTGGGAGGCTGCAGGACTGGTTGGAAGGAAAAACGCAGGCCTGGTTTTGCACCCG 1597  
ZmCYP71Z18  GACAGGAGCCTAAGGATGTCGATGTCTGGGAGGCTGCAGGACTGGTTGCGAAGAAAAACATAGGCCTGGTTCTGCACCCT 1594  
 
ZmCYP71Z16  GTCAGCCGCTTTGCTCCGGTTAATGCCTAA 1627  
ZmCYP71Z18  GTCAGCCACATTGCTCCGGTTAATGCCTAA 1624  
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Supplementary	Fig.	6.	Restric:on	digest-based	discrimina:on	of	2	closely	related	ZmCYP71	transcripts	reveals	the	
predominant	presence	of	ZmCYP71Z18.	(A),	DNA	sequence	alignment	of	ZmCYP71Z18	and	ZmCYP71Z16	with	primer	
annealing	sites	for	both	genes	(yellow-highlighted).	Both	genes	contain	two	exons	and	one	intron	(labelled	above).	The	
Hind	III	recogniWon	site	(AAGCTT)	in	ZmCYP71Z18	is	highlighted	in	green	with	an	arrow	denoWng	the	cut	site.	The	Hind	
III	cut	site	is	missing	in	the	ZmCYP71Z16	amplicon.	(B),	Photo	of	gel	electrophoresis	separaWon	of	undigested	as	well	as	
Hind	III-digested	RT-PCR	product.	ZmCYP71Z18	cDNA	amplicon	is	clipped	to	yield	fragments	217	bp	and	159	bp	in	size.	
(C),	Photo	of	gel	electrophoresis	separaWon	of	undigested,	double	digested	with	Hind	III	and	EcoRV	(recogniWon	site,	
GATATC,	highlighted	in	light-blue	in	ZmCYP71Z16),	Hind	III-digested,	and	EcoRV-digested	PCR	products	of	B73	genomic	
DNA.	ZmCYP71Z18	PCR	product	is	clipped	to	yield	fragments	217	bp	and	159	bp	in	size,	and	ZmCYP71Z16	PCR	product	is	
clipped	to	yield	fragments	213	bp	and	163	bp	in	size.	Two	independent	experiments	were	performed	and	showed	
similar	results.		

B 

0.4	
0.3		
0.2		

0.1		

kb Hind III - +
++
--

+
- EcoR V 

C 

Intron 



 

ZmAN2+ZmKSL3 

ZmAN2+ZmKSL3+ZmCYP71Z16 

ZmAN2+ZmKSL3+ZmCYP71Z18 

Retention time (min) 
14 15 16 

KA1 standard 
123 

303 

95 69 

262 231 195 

318 

40 80 120 160 200 240 280 320 

123 

303 
95 69 

262 231 195 

318 

KA1 standard 

ZmAN2+ZmKSL3+ZmCYP71Z18 

123 

303 
95 69 

262 231 195 

318 

ZmAN2+ZmKSL3+ZmCYP71Z16 

m/z 

91 

257 69 
123 229 

187 
272 

ZmAN2+ZmKSL3 

In
di

vi
du

al
ly

 S
ca

le
d 

S
el

ec
te

d 
Io

n 
C

hr
om

at
og

ra
m

  (
m

/z
  2

72
 +

 3
03

) 

R
el

at
iv

e 
A

bu
nd

an
ce

 o
f I

on
s 

4 

17 

17 

17 



14 15 16 17 18 19 

ZmAN2+ZmKSL2+CYP71Z16 

ZmAN2+ZmKSL2+CYP71Z18 

ZmAN2+ZmKSL2+CYP71Z9 

In
di

vi
du

al
ly

 S
ca

le
d 

S
el

ec
te

d 
Io

n 
C

hr
om

at
og

ra
m

  (
m

/z
 3

01
) 

13 

13 



(a) ZmAn2, ZmKSL2, ZmCPR2 

(a) + ZmCYP71Z18 

(a) + ZmCYP71Z16 

ent-isokaurene standard 

Kauralexin B1 standard 

3 

13 

A 

13 

B 

10 11 12 13 [min] 

Product 13 (ZmKSL2) 

41 
94 

163 
213 257 272 

Product 13 (ZmCYP71Z18) 

ent-isokaurene 

41 
94 

163 
213 257 272 

Kauralexin B1 

41 
91 

178 150 
301 

316 

[ / ] m z 
(b) ZmAn2, ZmKSL3, ZmCPR2 

(b) + ZmCYP71Z18 

(b) + ZmCYP71Z16 

ent-kaurene standard 

Kauralexin A1 enriched standard 

4 

17 

C 

17 

D 

10 11 12 13 [min] 

Product 4 (ZmKSL3) 

Product 17 (ZmCYP71Z18) 

Product 17 (ZmCYP71Z16) 

ent-kaurene 

Kauralexin A1 

[ / ] m z 
17 

179.1 
55 

91 
147 213 229 

257 
272 

41 
123 

231 
303 

318 81 

41 

123 

231 
303 

318 81 

41 

123 

231 
303 

318 81 

55 
91 147 213 229 

257 

272 

41 
91 

178 
150 

301 
316 123 

41 
91 

178 150 
301 

316 123 

123 

262 

262 

262 

13 

S
el

ec
te

d 
Io

n 
C

hr
om

at
og

ra
m

 (m
/z

 2
57

, 3
03

) 
S

el
ec

te
d 

Io
n 

C
hr

om
at

og
ra

m
 (m

/z
 2

57
, 3

01
) 

Supplementary	Fig.	9.	FuncWonal	promiscuity	of	ZmCYP71Z16	and	ZmCYP71Z18	in	kauralexin	biosynthesis.	(A)	Selected	ion	
chromatograms	(SIC;	m/z	257	for	diterpene	olefin	scaffold,	m/z	301	&	303	for	oxygenated	diterpenoids)	and	(B)	EI-spectra	of	
products	resulWng	from	in	E.	coli	co-expression	of	ZmCYP71Z16	and	ZmCYP71Z18	with	ZmAN2,	the	cytochrome	P450	reductase	
ZmCPR2	and	the	ent-isokaurene	synthase	ZmKSL2	or	(C)	idenWcal	E.	coli	co-expression	combinaWons	that	subsWtute	ZmKSL2	for	the	
ent-kaurene	synthase	ZmKSL3	and	(D)	corresponding	EI-mass	spectra	of	enzyme	products	and	authenWc	standards.	Peaks	labeling	is	
referenced	to	Supplementary	Fig.	1	(3,	ent-isokaurene;	13,	kauralexin	B1,	4,	ent-kaurene;	17,	kauralexin	A1).	Four	independent	
experiments	were	performed	and	showed	similar	results.		
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Supplementary	Fig.	10.		ZmCYP71Z16	and	ZmCYP71Z18	belong	to	a	narrow	subclade	of	Poaceous	Cyp71	family	of	
P450s.	Maximum-likelihood	phylogeneWc	analysis	of	the	CYP71	family	from	maize,	sorghum	and	rice.	(A)	Members	of	
the	CYP71	family	from	three	species	of	Zea	mays,	Sorghum	bicolor,	and	Oryza	sa3va	with	protein	sequence	idenWty	
>40%	are	included.	ZmCYP71Z18	was	used	a	seed	query	(blue	phylogeneWc	branch).	B,	Members	of	the	CYP71Z18	
subclade	from	three	species	of	Z.	mays,	S.	bicolor,	and	O.	sa3va.	Bootstrap	values	calculated	from	1000	iteraWons	are	
indicated	at	the	nodes.	All	Protein	accession	numbers	for	the	full	tree	are	listed	in	Supplementary	Table	13.	
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Supplementary	Fig.	11.	Fungal-elicited	kauralexin	accumula:on	occurs	in	all	Zea	species	examined.		
Average	(n	=	3,	±	SEM)	kauralexin	levels	in	stems	of	4-week	old	Zea	mays	ssp.	mays	var.	B73,		
	Z.	mays	spp.	parviglumis	(AMES21889),	Z.	perennis	(AMES21874),	Z.	diploperennis	(PI462368),	Z.	mays	spp.	
mexicana	(AMES21851),	and	Z.	luxurians	(PI422162)	treated	with	a	heat-killed	F.	venenatum	hyphae.	All	stem	
Wssues	were	harvested	5	days	awer	treatment	and	analyzed	by	GC-MS.	Error	bars	in	the	bar	charts	indicate	mean	
±	SEM	(n	=	3	biologically	independent	replicates).	Within	plots,	different	lejers	(a–f)	represent	significant	
differences	(one-way	ANOVA	followed	by	Tukey’s	test	correcWons	for	mulWple	comparisons,	P	<	0.05).	NA	
represents	missing	samples/data	due	to	low	seed	germinaWon	rates.	
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Supplementary Fig. 13. Unlike monotypic kaurene oxidases (KO) present in many plants, 
maize contains both ZmKO1 and ZmKO2 consistent with a gene duplication event. Maximum 
likelihood phylogenetic tree of kaurene oxidase (KO) family from four monocot species (Oryza 
sativa, Sorghum bicolor, Zea mays, and Hordeum vulgare), and seven dicot species (Solanum 
lycopersicum, Brassica rapa, Arabidopsis thaliana, Stevia rebaudiana, Cucurbita maxima, Pisum 
sativum, and Lactuca sativa). Bootstrap values calculated from 1000 iterations are indicated at the 
nodes. Protein accession numbers are listed in Supplementary Table 13. 
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Supplementary Fig. 14. EI spectra confirm the catalytic promiscuity of ZmKO1 and ZmKO2 that results 
in the C19 oxidation of both ent-kaurene and ent-isokaurene. Corresponding EI mass spectra of 
predominant analytes present in Fig. 3e-f corresponding to Agrobacterium-mediated transient N. benthamiana 
co-expression assays of (A) ZmAN2 and ZmKSL2 paired with either ZmKO1 or ZmKO2 (Fig. 3e) and (B) 
ZmAN2 and ZmKSL3 paired with either ZmKO1 or ZmKO2 (Fig. 3f). EI-spectra labeling is referenced to 
Supplementary Fig. 1 (3, ent-isokaurene; 11, ent-isokaurenoic acid, 4, ent-kaurene; 12, ent-kaurenoic acid). 
Four	independent	experiments	were	performed	and	showed	similar	results.		
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Supplementary	Fig.	15.	Enzyme	co-expression	in	E.	coli	confirms	ZmKO1	and	ZmKO2	as	kaurene	oxidases	ac:ng	on	
both	ent-kaurene	and	ent-isokaurene.	(A-C)	Gas	chromatography-mass	spectrometry	(GC-MS)		total	ion	
chromatograms	(TIC)	of	extracts	from	E.	coli	engineered	for	producWon	of	ent-isokaurene	co-expressing	proteins	in	core	
set	1	(A)	ZmCPR2/ZmAN2/ZmKSL2;	(B)	core	set	1	+	ZmKO1;	and	(C)	core	set	1	+	ZmKO2.	(D-F)	GC-MS	TIC	of	extracts	
from	E.	coli	engineered	for	producWon	of	ent-kaurene	co-expressing	proteins	in	core	set	2	(D)	ZmCPR2/ZmAN2/ZmKSL3;	
(E)	core	set	2	+	ZmKO1;	and	(F)	core	set	2	+	ZmKO2.	TIC	product	peaks	are	labelled	as	follows:	1,	ent-isokaurene;	2,	ent-
kaurene;	3,	ent-isokaurenoic	acid;	4,	ent-kauranoic	acid.	EI-mass	spectra	of	corresponding	dominant	products	in	panels	
A	-	F	are	displayed	in	the	adjacent	right	side	panels.	Peak	labeling	is	referenced	to	Supplementary	Fig.	1	(3,	ent-
isokaurene;	11,	ent-isokaurenoic	acid,	4,	ent-kaurene;	12,	ent-kaurenoic	acid).	Four	independent	experiments	were	
performed	and	showed	similar	results.		
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Supplementary	Fig.	16.	ZmKO2	transcripts	are	highly	co-expressed	with	kauralexin	pathway	genes	and	an	
intronic	transposon	inser:on	promotes	reduced	levels	of	C19-oxidized	kauralexins.	(A)	Heatmap	depicWng	the	
correlaWon	of	coexpression	of	ZmKO1	and	ZmKO2	with	kauralexin	biosyntheWc	genes	in	an	RNA-seq	dataset	of	
2094	samples.	Numbers	in	squares	represent	mutual	rank	(MR)	scores	while	empty	squares	represent	MR	scores	
>	250.	(B)	SchemaWc	of	the	analyzed	Uniform	Mu	transposon	inserWon	(mu1068966)	present	in	the	first	intron	of	
ZmKO2	from	a	collecWon	derived	from	the	inbred	line	W22.	(C)	RepresentaWve	GC-MS	extracted	ion	
chromatogram	(EIC)	of	extracts	from	C.	heterostrophus	(C.h.)-challenged	W22	and	mu1068966	mutant	leaves,	
Leaves	of	60-d-old	plants	were	wounded	and	treated	with	either	100	mL	of	water	alone	or	spore	suspensions	
(1×107	ml-1)	of	C.h.	for	72	h.	Four	biological	repeats	were	performed	and	showed	similar	results.	(D)	RaWo	of	the	
total	C-19	oxidized	kauralexins	to	the	total	kauralexins	in	C.h.-challenged	W22	and	Uniform	Mu	(mu1068966)	
leaves	at	72	h.	(E)	qRT-PCR	transcript	levels	of	ZmKO2	in	C.h.-challenged	leaves	of	W22	and	mu1068966	at	24	h	
with	normalizaWon	relaWve	to	the	ZmEF-1α	reference	control	gene.	Error	bars	in	the	bar	charts	(D	and	E)	indicate	
mean	±	SEM	(n	=	4	biologically	independent	replicates).	All	asterisk	(*)	denote	significant	differences	(P	<	0.05)	
using	Student	t-tests	(two-tailed	distribuWon,	unpaired.)	
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Supplementary	Fig.	17.	Kauralexin	A4	and	B4	are	co-occurring	members	of	four	A-series	and	B-series	kauralexin	
pairs	assigned	by	rela:ve	GC-MS	reten:on	:mes.	(A)	RelaWve	DB35-GC	retenWon	Wmes	and	EI-mass	spectra	of	the	
kauralexin	alcohols	KA4	(ent-kaur-19-ol-17-oic	acid)	and	KB4	(ent-kaur-15-en-19-ol-17-oic	acid)	as	methyl	ester	
derivaWves	are	co-present	in	fungal	elicited	maize	Wssue	and	detectable	using	a	cool-on	column	injecWon	mode.	(B)	
The	methyl	ester	of	KA4	lacks	an	idenWfiable	parent	ion	(m/z	334)	consistent	with	a	predominant	loss	of	H2O	yielding	
m/z	316	as	the	highest	MW	ion	detectable.	(C)	The	methyl	ester	of	KB4	contains	the	predicted	parent	ion	m/z	332.	
In	each	case,	A-series	kauralexins	share	a	predominant	fragment	ion	m/z	303	and	likewise	B-series	kauralexins	share	
the	fragment	ion	m/z	301.	Two	independent	experiments	were	performed	and	showed	similar	results.	Note:	KA4	
and	KB4	can	readily	escape	detecWon	due	to	2	reasons	as	follows:	1)	typical	GC/MS	sample	introducWon	methods	
using	split-splitless	injecWon	modes	for	KA4	and	KB4	do	not	yield	appreciable	detecWon,	and	2)	Cool-on	column	
injecWon	mode	enables	KA4/KB4	detecWon	but	only	on	new	prisWne	GC	columns	that	display	dramaWc	losses	in	peak	
resoluWon	with	each	subsequent	injecWon.	Thus	despite	being	present,	using	exisWng	rouWne	and	high-throughput	
GC/MS	methods	employed,	KA4	and	KB4	are	neither	detected	nor	includable	in	analyses.	In	addiWon	to	EI-spectra	
(B-C),	structures	of	KA4	and	KB4	were	confirmed	by	NMR	(Supplementary	Table	6).	
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Supplementary	Fig.	19.	Kauralexin	reductase	2	(ZmKR2)	is	part	of	a	small	and	high	conserved	family	of	plant	and	
animal	steroid	5α-reductases	responsible	for	steroid	hormone	biosynthesis.	Maximum	likelihood	phylogeneWc	tree	of	
SRD5α	family	from	human	(Homo	sapiens),	arabidopsis	(Arabidopsis	thaliana),	rice	(Oryza	sa3va),	sorghum	(Sorghum	
bicolor)	and	maize	(Zea	mays).	ZmKR2	specifically	resides	in	SRD5α	type	3	family	which	includes	the	human	protein	
SRD5A3	(uniprot	Q9H8P0)	catalyzing	the	conversion	of	testosterone	to	the	highly	acWve	agonist	5α-dihydrotestosterone	
(Uemura	et	al.,	2008).	Bootstrap	values	calculated	from	1000	iteraWons	are	indicated	at	the	nodes.	The	protein	
accession	numbers	are	listed	in	the	Supplementary	Table	13.	Note,	AED92234	(GI	ID:15237245,	At5g16010)	was	
previously	assigned	to	SRD5α	type3	subfamily	(Langlois	et	al.	2010).		
	
Uemura	M,	Tamura	K,	Chung	S,	Honma	S,	Okuyama	A,	Nakamura	Y,	Nakagawa	H	(2008)	Novel	5	alpha-steroid	reductase	
(SRD5A3,	type-3)	is	overexpressed	in	hormone-refractory	prostate	cancer.	Cancer	Science	99:81-86	
	
Langlois	VS,	Zhang	D,	Cooke	GM,	Trudeau	VL	(2010)	EvoluWon	of	steroid-5alpha	reductases	and	comparison	of	their	
funcWon	with	5beta-reductase.	General	and	Compara3ve	Endocrinology,	166:	489-497.	
	
Hartwig	T,	Chuck	GS,	Fujioka	S,	Klempien	A,	Weizbauer	R,	Potluri,	DP,	Choe	S,	Johal	GS,	Schulz	B.	(2011).	Brassinosteroid	
control	of	sex	determinaWon	in	maize.	Proc	Natl	Acad	Sci	U	S	A.	2011;108(49):19814–19819.		
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Supplementary	Fig.	21.	Heterologous	co-expression	of	ZmKR2	in	planta	completes	a	func:onal	
characteriza:on	of	the	core	maize	kauralexin	biosynthe:c	pathway.	(A-E)	Gas	chromatography-mass	
spectrometry	(GC-MS)	select	ion	chromatograms	(SIC)	of	hexane	extracts	of	N.	benthamiana	leaves	
transiently	expressing	combinaWons	of	diterpene	synthases	(A)	ZmAN2	and	ZmKSL2	with	(B)	
ZmCYP71Z18,	(C)	ZmCYP71Z18	and	ZmKR1,	(D)	ZmCYP71Z18	and	ZmKO2,	and	(E)	ZmCYP71Z18,	ZmKO2	
and	ZmKR2.	(F)	GC-MS	SIC	of	extracts	from	B73	stems	elicited	with	heat-killed	F.	venenatum	hyphae	
were	used	for	authenWc	standards	of	six	kauralexins	readily	captured	by	GC/MS	analyses.	Peak	labeling	
is	referenced	to	Supplementary	Fig.	1	(3,	ent-isokaurene;	13,	kauralexin	B1;	15,	kauralexin	B3;	16,	
kauralexin	B2;	17,	kauralexin	A1;	19,	kauralexin	A3;	20,	kauralexin	A2).	Four	independent	experiments	
were	performed	and	showed	similar	results.		
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ksl2-2 

Supplementary	Fig.	22.	Zmksl2	mutants	display	increased	Fusarium	graminearum	stalk	rot	yet	unaltered	
levels	of	inducible	acidic	sequiterpenoid	defenses,	namely	zealexins.	(A)	Disease	symptoms	in	stems	of	
B73,	two	WT	siblings	and	two	ksl2	mutant	lines	in	response	to	Fusarium	graminearum.	Photos	were	taken	
at	10	days	awer	inoculaWon	with	10	µL	of	1.5	×	105	conidia	mL-1	F.	graminearum.	Two	independent	
experiments	were	performed	and	showed	similar	results.	(B)	Average	(n	=	5;	±	SEM)	esWmate	of	
corresponding	total	zealexins	(combinaWon	of	zealexin	A1	and	B1)	present	in	F.	graminearum	(F.g)	
challenged	maize	stems.	Error	bars	in	the	bar	chart	indicate	mean	±	SEM	(n	=	5	biologically	independent	
replicates).	Within	plots,	different	lejers	(a–d)	represent	significant	differences	(one-way	ANOVA	followed	
by	Tukey’s	test	correcWons	for	mulWple	comparisons,	P	<	0.05).	
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Supplementary Table 6a. NMR spectral data for KA4 (ent-kaur-19-ol-17-oic acid), page S2
1H NMR spectrum (600 MHz, CDCl3), page S3
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Supplementary Table 6b: NMR spectral data for KB4 (ent-kaur-15-en-19-ol-17-oic acid), page S8      
1H NMR spectrum (600 MHz, CDCl3), page S9

COSY spectrum (600 MHz, CDCl3), page S10 

HSQC spectrum (600 MHz, CDCl3), page S11 

HMBC spectrum (600 MHz, CDCl3), page S12
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Supplementary Table 6. NMR analyses confirm the co-occurrence of kauralexin C19 
alcohols, namely KA4 (ent-kaur-19-ol-17-oic acid) and KB4 (ent-kaur-15-en-19-ol-17-oic 

acid).
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Supplementary Table 6a. Combined NMR spectral data for KA4 in CDCl3 at 600 MHz.

Carbon #a δC δH (mult., (J (Hz)) COSY HMBC NOESY 
1 40.6, CH2 1.83 (d, 13.0) α 

0.79 (dd, 13.0, 3.9) β 
1β 
1α, 2α 

2, 9, 10 
2, 9, 10 

20 
5, 9 

2 18.3, CH2 1.57 (overlap) α 
1.42 (m) β 

1β 1, 3, 10 
1, 3, 10 

19b, 20 

3 35.7, CH2 1.78 (d, 13.6) α 
0.93 (overlap) β 

3β 
3α 1, 2, 4, 5, 19 

19b 

4 38.7, C ---- ---- ---- 
5 56.9, CH 0.94 (overlap) 6α 6, 20 9 
6 21.1, CH2 1.32 (dq, 12.7, 3.3) α 

1.67 (overlap) β 
5, 6β 
6α 

5, 7, 8, 10 19a 
18, 19a 

7 41.4, CH2 1.51 (overlap) 5 
8 45.3, C ---- ---- ---- 
9 56.3, CH 1.04 (d, 7.6) 11a 1, 8, 10, 12, 14, 20 1β, 5, 7, 15 

10 39.3, C ---- ---- ---- 
11 18.6, CH2 1.52 (overlap) a 

1.66 (overlap) b 
9 10, 12, 13 

10, 12, 13 
12 31.3, CH2 1.59 (overlap) α 

1.52 (overlap) β 13 16 
13 41.5, CH 2.53 (br) 12β, 14β 8, 11, 12, 15, 17 12α, 12β, 14α, 14β 
14 38.1, CH2 1.86 (d, 11.7) α 

1.19 (dd, 11.7, 4.5) β 
14β 
13, 14α 

8, 12, 13, 9 
8, 12, 15 

13, 20 
13 

15 44.7, CH2 1.68 (overlap) 16 
16 45.4, CH 2.64 (dd, 8.7, 6.3) 15 12, 13, 14, 15, 17 12β 
17 181.8, C ---- ---- ---- 
18 27.2, CH3 0.96 (s) 3, 4, 5, 7, 19 3β, 6β 
19 65.7, CH2 3.44 (d, 10.9) a 

3.73 (d, 10.9) b 
19b 
19a 

3, 4, 5, 18 
3, 4, 5, 18 

6α, 6β, 20 
2α, 3α, 20 

20 18.1, CH3 0.98 (s) 1, 5, 9, 10 1α, 2α, 19a, 19b 
a Carbon chemical shifts were based on HSQC and HMBC data 
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1H NMR (600 MHz, CDCl3) of KA4  
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COSY (600 MHz, CDCl3) of KA4  12 
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HSQC (600 MHz, CDCl3) of KA4 12 
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HMBC (600 MHz, CDCl3) of KA4 
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NOESY (600 MHz, CDCl3) of KA4 12 
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Supplementary Table 6b: NMR spectral data for KB4 in CDCl3 at 600 MHz. 

Carbon #a δC δH (mult., (J (Hz)) COSY HMBC NOESY 
1 43.0, CH2 1.86 (d, 13.0) α 

0.81 (dd, 13.0, 5.2) β 
1β 
1α, 2α 

2, 3, 4, 5 
2, 3, 4, 5, 9 

2α, 2β, 20 
9 

2 18.2, CH2 1.59 (overlap) α 
1.43 (m) β 

1β, 3β 1α, 19b, 20 
1α, 1β 

3 35.6, CH2 1.78 (d, 13.7) α 
0.96 (overlap) β 

3β
2α, 3α 

4, 5, 6 2β, 19b 

4 38.8, C ---- ---- ---- 
5 56.4, CH 0.97 (overlap) 6α 
6 19.0, CH2 1.32 (overlap) α 

1.67 (overlap) β 
5, 6β 
6α 

5, 7, 8, 9, 10 14α, 19a, 20 
18, 19a 

7 38.6, CH2 1.66 (overlap) 15 
8 50.6, C ---- ---- ---- 
9 46.7, CH 1.08 (d, 6.7) 11 1, 5, 8, 10, 11, 12, 

14 
1β, 5, 11, 15 

10 39.7, C ---- ---- ---- 
11 18.3, CH2 1.57 (overlap) 9 
12 25.3, CH2 1.56 (overlap) α 

1.65 (overlap) β 13 
13 

13 40.4, CH 2.94 (br) 12β, 14β 8, 11, 12, 14, 15, 16 12α, 12β, 14α, 14β 
14 43.0, CH2 2.14 (d, 10.4) α 

1.48 (dd, 10.4, 5.2) β 
14β 
13, 14α 

8, 12, 13, 15, 16 
7, 8, 12, 13, 15, 16 

6α, 13, 20 
13 

15 155.8, CH 6.62 (s) 7, 8, 12, 13, 14, 16, 
17 

7, 9 

16 137.1, C ---- ---- ---- 
17 168.7, C ---- ---- ---- 
18 27.0, CH3 0.97 (s) 3, 4, 5 3α 
19 65.4, CH2 3.45 (d, 10.8) a 

3.73 (d, 10.8) b 
19b 
19a 

3, 4, 5, 18 
3, 4, 5, 18 

6α, 6β, 18, 20 
2α, 3α, 18, 20 

20 18.2, CH3 1.05 (s) 1, 5, 9, 10 1α, 6α, 11, 14α, 
19a, 19b 

a Carbon chemical shifts were based on HSQC and HMBC data
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1H NMR (600 MHz, CDCl3) of KB4  
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COSY (600 MHz, CDCl3) of KB4  12 
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HSQC (600 MHz, CDCl3) of KB4  12 
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HMBC (600 MHz, CDCl3) of KB4  12 
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NOESY (600 MHz, CDCl3) of KB4  12 
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Optical rotations 

KA4: [α]D = –34 (c = 0.15, CH2Cl2) 
KA4: [α]D = –30 (c = 0.15, EtOH) 

KB4: [α]D = –26 (c = 0.10, CH2Cl2,) 
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