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Abstract
Collapsibility is a combinatorial strengthening of contractibility. We relate this property to
metric geometry by proving the collapsibility of any complex that is CAT(0) with a metric
for which all vertex stars are convex. This strengthens and generalizes a result by Crowley.
Further consequences of our work are:

(1) All CAT(0) cube complexes are collapsible.
(2) Any triangulated manifold admits a CAT(0) metric if and only if it admits collapsible

triangulations.
(3) All contractible d-manifolds (d �= 4) admit collapsible CAT(0) triangulations. This

discretizes a classical result by Ancel–Guilbault.

Keywords CAT(0) spaces · Collapsibility · Discrete Morse theory · Convexity
Evasiveness · Triangulations
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1 Introduction

Whitehead’s “simple homotopy theory”, a combinatorial approach to homotopy, was partly
motivated by Poincaré’s conjecture that homotopy recognizes spheres among all closed man-
ifolds. In contrast, Whitehead discovered that homotopy does not recognize R

n among all
(open) manifolds. In fact, for each d ≥ 4, there are compact contractible smooth d-manifolds
whose boundary is not simply-connected [43,44,50].

In 1939, Whitehead introduced collapsibility, a combinatorial version of the notion of
contractibility. All collapsible complexes are contractible, but the converse is false [16,52].
The collapsibility property lies at the very core of PL topology and is of particular interest
when applied to triangulations of manifolds, cf. [12,14]. Using the idea of regular neighbor-

B Bruno Benedetti
bruno@math.miami.edu

Karim Adiprasito
adiprasito@math.huji.ac.il

1 Einstein Institute for Mathematics, Hebrew University of Jerusalem, 91904 Jerusalem, Israel

2 Department of Mathematics, University of Miami, Coral Gables, Florida 33146, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10711-019-00481-x&domain=pdf
http://orcid.org/0000-0001-7774-2748


182 Geometriae Dedicata (2020) 206:181–199

hoods, Whitehead proved that the only manifold admitting collapsible PL triangulations is
the ball [51].

Recently, collapsibility has regained interest in areas ranging from extremal combinatorics
[10] to the study of subspace arrangements [1,46]; similar notions such as nonevasiveness and
dismantlability have been explored in connection with theoretical computer science, cf. e.g.
[23,27,40]. Unfortunately, there are only a few available criteria to predict the collapsibility
of a given complex:

(a) All cones are collapsible.
(b) Chillingworth’s criterion [26]: All subdivisions of convex 3-polytopes are collapsible.
(c) Crowley’s criterion [28]: All 3-dimensional pseudomanifolds that are CAT(0) with the

equilateral flat metric (see below for the meaning), are collapsible.

The main goal of this paper is to show that criterion (c) extends to all dimensions. In fact,
in a separate companion paper, we will show that criterion (b) extends too [3]. Breaking
the barrier of dimension three will allow us to list a few consequences at the interplay of
combinatorics and metric geometry.

Crowley’s criterion was advertised as a first “combinatorial analog of Hadamard’s theo-
rem” [28, p. 36]. Being CAT(0) is a property of metric spaces, popularized in the Eighties
by Gromov [37]. Roughly speaking, CAT(0) spaces are metric spaces where any triangle
formed by three geodesic segments looks thinner than any triangle in the euclidean plane
formed by three straight lines of the same lengths. The classical Hadamard–Cartan theorem
guarantees that simply connected, complete, locally CAT(0) spaces are (globally) CAT(0),
and hence contractible.

Being “CAT(0) with the equilateral flat metric” is instead a property of simplicial com-
plexes. It means that if we give the complex a piecewise-euclidean metric by assigning unit
length to all its edges, then the complex becomes a CAT(0) metric space. Our first result is
to prove the collapsibility of such complexes in all dimensions. In fact, we show something
stronger:

Theorem I (Theorem 3.2.1) Let C be a simplicial complex that is CAT(0) with a metric for
which all vertex stars are convex. Then C is collapsible.

Convexity of vertex starsmeans that for each vertex v, with respect to themetric introduced
on C , the segment between any two points of St (v, C) lies in St (v, C). This condition
cannot be removed, because not all triangulated 3-balls are collapsible (although all of them
are CAT(0) with a suitable metric). It is automatically satisfied by any complex in which
all simplices are acute or right-angled. The same condition plays also a central role in the
authors’ proof of the Hirsch conjecture for flag polytopes [4].

Corollary II Every complex that is CAT(0) with the equilateral flat metric is collapsible.
Similarly, every CAT(0) cube complex is collapsible.

For example, the “space of phylogenetic trees” introduced by Billera, Holmes and Vogt-
mann [15] turns out to be collapsible (Corollary 3.2.10). A further application to enumerative
combinatorics is the discrete Cheeger theorem in [2].

The converses of Theorem I and Corollary II are false. Being CAT(0) with the equi-
lateral flat metric is a more restrictive property than being collapsible; for example, any
vertex-transitive complex with this property is a simplex (Proposition 3.2.11), while Oliver
provided collapsible simplicial complexes with vertex-transitive symmetry group that are not
the simplex, cf. [40]. Nonetheless, a partial converse is possible if we are allowed to change
the triangulation, as explained below.
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Theorem I allows us to understand the topology of manifolds that admit collapsible tri-
angulations. This was investigated by Whitehead only in the PL case, where he proved that
collapsible PL triangulations are balls [51]. Revisiting previous work of Ancel and Guilbault
[7,8], we are able to prove the following:

Theorem III (Theorem 3.3.2, cf. [7,8]) For any integer d, the d-manifolds admitting a col-
lapsible triangulation are precisely those that admit a CAT(0) (polyhedral) metric. In
particular, all contractible d-manifolds admit a collapsible triangulation, except for d = 4.

For simplicial complexes, the situation changes slightly: paired with a result by the first
author and Funar [5, Proposition 15], Theorem I still implies that the complexes admitting a
collapsible subdivision are precisely those that admit a polyhedral CAT(0) metric (Remark
3.3.3). However, these are some, but not all, of the contractible complexes: For example, the
Dunce Hat has no collapsible subdivision.

2 Basic notions

2.1 Geometric and intrinsic polytopal complexes

By R
d , H

d and S
d we denote the euclidean d-space, the hyperbolic d-space, and the unit

sphere in R
d+1, respectively. A (euclidean) polytope in R

d is the convex hull of finitely
many points in R

d . Similarly, a hyperbolic polytope in H
d is the convex hull of finitely many

points of H
d . A spherical polytope in S

d is the convex hull of a finite number of points that
all belong to some open hemisphere of S

d . Spherical polytopes are in natural one-to-one
correspondence with euclidean polytopes, just by taking radial projections; the same is true
for hyperbolic polytopes. A geometric polytopal complex in R

d (resp. in S
d or H

d ) is a finite
collection of polytopes in R

d (resp. S
d , H

d ) such that the intersection of any two polytopes
is a face of both. An intrinsic polytopal complex is a collection of polytopes that are attached
along isometries of their faces (cf. Davis–Moussong [30, Sect. 2]), so that the intersection of
any two polytopes is a face of both.

Two polytopal complexes C, D are combinatorially equivalent, denoted by C ∼= D, if
their face posets are isomorphic. Any polytope combinatorially equivalent to the d-simplex,
or to the regular unit cube [0, 1]d , shall simply be called a d-simplex or a d-cube, respectively.
A polytopal complex is simplicial (resp. cubical) if all its faces are simplices (resp. cubes).
The set of k-dimensional faces of a polytopal complex C is denoted by Fk(C), and the
cardinality of this set is denoted by fk(C).

The underlying space |C | of a polytopal complex C is the topological space obtained by
taking the union of its faces. If two complexes are combinatorially equivalent, their underlying
spaces are homeomorphic.Wewill frequently abusenotation and identify a polytopal complex
with its underlying space, as is common in the literature. For instance, we do not distinguish
between a polytope and the complex formed by its faces. If C is simplicial, C is sometimes
called a triangulation of |C | (and of any topological space homeomorphic to |C |). If |C | is
isometric to some metric space M , then C is called a geometric triangulation of M .

A subdivisionof a polytopal complexC is a polytopal complexC ′ with the sameunderlying
space of C , such that for every face F ′ of C ′ there is some face F of C for which F ′ ⊂ F .
Two polytopal complexes C and D are called PL equivalent if some subdivision C ′ of C is
combinatorially equivalent to some subdivision D′ of D. In case |C | is a topological manifold
(with or without boundary), we say that C is PL (short for Piecewise-Linear) if the star of
every face of C is PL equivalent to the simplex of the same dimension.
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A derived subdivision sdC of a polytopal complex C is any subdivision of C obtained by
stellarly subdividing at all faces in order of decreasing dimension of the faces of C , cf. [38].
An example of a derived subdivision is the barycentric subdivision, which uses as vertices
the barycenters of all faces of C .

IfC is a polytopal complex inR
d (orSd , orHd ) and A is a subset ofRd (resp.Sd , resp.Hd ),

we define the restriction R (C, A) of C to A as the inclusion-maximal subcomplex D of C
such that D lies in A. The star of σ in C , denoted by St (σ, C), is the minimal subcomplex
of C that contains all faces of C containing σ . The deletion C − D of a subcomplex D from
C is the subcomplex of C given by R (C, C\relintD).

Next, we define the notion of link with ametric approach. (Compare also Charney [22] and
Davis–Moussong [30, Sect. 2.2].) Let p be any point of a metric space X . By Tp X we denote
the tangent space of X at p. Let T1

p X be the restriction of Tp X to unit vectors. If Y is any
subspace of X , then N(p,Y ) X denotes the subspace of the tangent space Tp X spanned by the
vectors orthogonal to TpY . If p is in the interior of Y , we define N1

(p,Y ) X := N(p,Y ) X ∩T1
pY .

If τ is any face of a polytopal complex C containing a nonempty face σ of C , then the set
N1

(p,σ )τ of unit tangent vectors in N1
(p,σ )|C | pointing towards τ forms a spherical polytope

Pp(τ ), isometrically embedded in N1
(p,σ )|C |. The family of all polytopes Pp(τ ) in N1

(p,σ )|C |
obtained for all τ ⊃ σ forms a polytopal complex, called the link of C at σ ; we will denote
it by Lk p(σ, C). If C is a geometric polytopal complex in Xd = R

d (or Xd = S
d ), then

Lk p(σ, C) is naturally realized in N1
(p,σ ) Xd . Obviously, N1

(p,σ ) Xd is isometric to a sphere of
dimension d −dim σ −1, and will be considered as such. Up to ambient isometry Lk p(σ, C)

and N1
(p,σ )τ in N1

(p,σ )|C | or N1
(p,σ ) Xd do not depend on p; for this reason, p will be omitted

in notation whenever possible.
If C is simplicial, and v is a vertex of C , then Lk (v, C) is combinatorially equivalent to

(C − v) ∩ St (v, C) = St (v, C) − v.

By convention, Lk (∅, C) := C . If C is a simplicial complex, and σ , τ are faces of C , then
σ ∗ τ is the minimal face of C containing both σ and τ (assuming it exists). If σ is a face of
C , and τ is a face of Lk (σ, C), then σ ∗ τ is the face of C with Lk (σ, σ ∗ τ) = τ . In both
cases, the operation ∗ is called the join.

2.2 CAT(k) spaces and convex subsets

All of the metric spaces we consider here are compact, connected length spaces. For a more
detailed introduction, we refer the reader to the textbook by Burago–Burago–Ivanov [20].
Given two points a, b in a length space X , we denote by |ab| the distance between a and b,
which is also the infimum (and by compactness, the minimum) of the lengths of all curves
froma tob. Rectifiable curves that connecta withb and realize the distance |ab| are (geodesic)
segments of X . A geodesic from a to b is a curve γ from a to b which is locally a segment. A
geodesic triangle in X is given by three vertices a, b, c connected by segments [a, b], [b, c]
and [a, c].

Let k be a real number. Depending on the sign of k, by the k-plane we mean either the

euclidean plane (if k = 0), or the sphere of radius k− 1
2 with its length metric (if k > 0),

or the hyperbolic plane of curvature k (if k < 0). A k-comparison triangle for [a, b, c] is a
triangle [ā, b̄, c̄] in the k-plane such that |āb̄| = |ab|, |āc̄| = |ac| and |b̄c̄| = |bc|. A length
space X “has curvature ≤ k” if locally (i.e. in some neighborhood of each point of X ) the
following holds:
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Triangle condition: For each geodesic triangle [a, b, c] inside X and for any point d
in the relative interior of [a, b], one has |cd| ≤ |c̄d̄|, where [ā, b̄, c̄] is any k-comparison
triangle for [a, b, c] and d̄ is the unique point on [ā, b̄] with |ad| = |ād̄|.
A CAT(k) space is a length space of curvature ≤ k in which the triangle condition holds

globally, i.e. for any geodesic triangle (with edgelengths< k−1/2π if k is positive). Obviously,
any CAT(0) space has curvature ≤ 0. The converse is false: The circle S1 is non-positively
curved (because it is locally isometric toR) but notCAT(0), as shownby any geodesic triangle
that is not homotopy equivalent to a point. Also, all CAT(0) spaces are contractible, while S1

is not even simply connected. This is not a coincidence, as explained by theHadamard–Cartan
theorem, which provides a crucial local-to-global correspondence:

Theorem 2.2.1 (Hadamard–Cartan theorem, cf. Alexander–Bishop [6]) Let X be any com-
plete space with curvature ≤ 0. The following are equivalent:

(1) X is simply connected;
(2) X is contractible;
(3) X is CAT(0).

In a CAT(0) space, any two points are connected by a unique geodesic. The same holds for

CAT(k) spaces (k > 0), as long as the two points are at distance < πk− 1
2 .

Let K be a subset of a metric space X . A set K is called convex if any two points of K
are connected by some segment in X that lies entirely in K .

Let c be a point of X and let K be a closed subset of X , not necessarily convex. We
denote by πc(K ) the subset of the points of K at minimum distance from c, the closest-point
projection of c to K . In case πc(K ) contains a single point, with abuse of notation we write
πc(K ) = x instead of πc(K ) = {x}. This is always the case when K is convex, as the
following well-known lemma shows.

Lemma 2.2.2 ([18, Prp. 2.4]) Let X be a connected CAT(k)-space, k ≤ 0. Let c be a point of
X. Then the function “distance from c” has a unique local minimum on each closed convex
subset K of X. Similarly, if k > 0 and K is at distance less than 1

2πk−1/2 from c, then there
exists a unique local minimum of distance at most 1

2πk−1/2 from c.

2.3 Discrete Morse theory, collapsibility and non-evasiveness

The face poset (C,⊆)of a polytopal complexC is the set of nonempty faces ofC , orderedwith
respect to inclusion. By (R,≤) we denote the poset of real numbers with the usual ordering.
A discrete Morse function is an order-preserving map f from (C,⊆) to (R,≤), such that
the preimage f −1(r) of any number r consists of either one element, or of two elements one
contained in the other. A critical cell of C is a face at which f is strictly increasing.

The function f induces a perfect matching on the non-critical cells: two cells are matched
whenever they have identical image under f . This is called Morse matching, and it is usually
represented by a system of arrows: Whenever σ � τ and f (σ ) = f (τ ), one draws an arrow
from the barycenter of σ to the barycenter of τ . We consider two discrete Morse functions
equivalent if they induce the sameMorse matching. Since anyMorse matching pairs together
faces of different dimensions, we can always represent a Morse matching by its associated
partial function � from C to itself, defined on a subset of C as follows:

�(σ) :=
{

σ if σ is unmatched,
τ if σ is matched with τ and dim σ < dim τ.
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A discrete vector field V on a polytopal complex C is a collection of pairs (σ,�) of faces
such that σ is a codimension-one face of �, and no face of C belongs to two different pairs
of V . A gradient path in V is a concatenation of pairs of V

(σ0, �0), (σ1, �1), . . . , (σk, �k), k ≥ 1,

so that for each i the face σi+1 is a codimension-one face of �i different from σi . A gradient
path is closed if σ0 = σk for some k (that is, if the gradient path forms a closed loop). A
discrete vector field V is a Morse matching if and only if V contains no closed gradient paths
[32]. The main result of discrete Morse Theory is the following:

Theorem 2.3.1 (Forman [33, Theorem 2.2]) Let C be a polytopal complex. For any Morse
matching on C, the complex C is homotopy equivalent to a CW complex with one i-cell for
each critical i-simplex.

Inside a polytopal complex C , a free face σ is a face strictly contained in only one other
face ofC . An elementary collapse is the deletion of a free face σ from a polytopal complexC .
We say that C (elementarily) collapses onto C − σ , and write C ↘e C − σ. We also say that
the complex C collapses to a subcomplex C ′, and write C ↘ C ′, if C can be reduced to C ′
by a sequence of elementary collapses. A collapsible complex is a complex that collapses
onto a single vertex. Collapsibility is, clearly, a combinatorial property (i.e. it only depends
on the combinatorial type), and does not depend on the geometric realization of a polytopal
complex. The connection to discrete Morse theory is highlighted by the following simple
result:

Theorem 2.3.2 (Forman [32]) Let C be a polytopal complex. The complex C is collapsible
if and only if C admits a discrete Morse function with only one critical face.

Collapsible complexes are contractible; collapsible PL manifolds are necessarily balls
[51]. The following facts are easy to verify.

Lemma 2.3.3 Let C be a simplicial complex, and let C ′ be a subcomplex of C. Then the cone
over base C collapses to the cone over C ′.

Lemma 2.3.4 Let v be any vertex of any simplicial complex C. If Lk (v, C) collapses to some
subcomplex S, then C collapses to (C −v)∪ (v ∗ S). In particular, if Lk (v, C) is collapsible,
then C ↘ C − v.

Lemma 2.3.5 Let C denote a simplicial complex that collapses to a subcomplex C ′. Let D
be a simplicial complex such that D ∪ C is a simplicial complex. If D ∩ C = C ′, then
D ∪ C ↘ D.

Proof It is enough to consider the case C ↘e C ′ = C − σ , where σ is a free face of C . For
this, notice that the natural embedding C �→ D ∪ C takes the free face σ ∈ C to a free face
of D ∪ C .

Non-evasiveness is a further strengthening of collapsibility that emerged in theoretical
computer science [40]. A 0-dimensional complex is non-evasive if and only if it is a point.
Recursively, a d-dimensional simplicial complex (d > 0) is non-evasive if and only if there
is some vertex v of the complex whose link and deletion are both non-evasive. Again, non-
evasiveness is a combinatorial property only.

The notion of non-evasiveness is rather similar to vertex-decomposability, a notion defined
only for pure simplicial complexes [45]; to avoid confusions, we recall the definition and
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explain the difference in the lines below. A 0-dimensional complex is vertex-decomposable
if and only if it is a finite set of points. In particular, not all vertex-decomposable complexes
are contractible. Recursively, a d-dimensional simplicial complex (d > 0) is vertex-
decomposable if and only if it is pure and there is some vertex v of the complex whose link
and deletion are both vertex-decomposable. Note that in particular the link and the deletion in
a vertex decomposition have to be pure. All vertex-decomposable contractible complexes are
easily seen to be non-evasive, similar to the basic fact that contractible shellable complexes
are collapsible [17]. An important difference arises when considering cones. It is easy to
see that the cone over a simplicial complex C is vertex-decomposable if and only if C is. In
contrast,

Lemma 2.3.6 (cf. Welker [49]) The cone over any simplicial complex is non-evasive.

By Lemma 2.3.4 every non-evasive complex is collapsible. As a partial converse, we also
have the following lemma

Lemma 2.3.7 (cf. Welker [49]) The derived subdivision of every collapsible complex is non-
evasive. In particular, the derived subdivision of any non-evasive complex is non-evasive.

A non-evasiveness step is the deletion from a simplicial complex C of a single vertex
whose link is non-evasive. Given two simplicial complexes C and C ′, we write C ↘NE C ′
if there is a sequence of non-evasiveness steps which lead from C to C ′. We will need the
following lemmas, which are well known and easy to prove:

Lemma 2.3.8 If C ↘NE C ′, then sdmC ↘NE sdmC ′ for all non-negative m.

Lemma 2.3.9 Let v be any vertex of any simplicial complex C. Let m ≥ 0 be an integer.
Then (sdmC) − v ↘NE sdm(C − v). In particular, if sdmLk (v, C) is non-evasive, then
sdmC ↘NE sdm(C − v).

Proof The case m = 0 is trivial. We treat the case m = 1 as follows: The vertices of sdC
correspond to faces of C , the vertices that have to be removed in order to deform (sdC) − v

to sd (C − v) correspond to the faces of C strictly containing v. The order in which we
remove the vertices of (sdC) − v is by increasing dimension of the associated face. Let
τ be a face of C strictly containing v, and let w denote the vertex of sdC corresponding
to τ . Assume all vertices corresponding to faces of τ have been removed from (sdC) − v

already, and call the remaining complex D. Denote by L(τ, C) the set of faces of C strictly
containing τ , and let F(τ − v) denote the set of nonempty faces of τ − v. Then Lk (w, D)

is combinatorially equivalent to the order complex of L(τ, C) ∪ F(τ − v), whose elements
are ordered by inclusion. Every maximal chain contains the face τ − v, so Lk (w, D) is a
cone, which is non-evasive by Lemma 2.3.6. Thus, we have D ↘NE D − w. The iteration
of this procedure shows (sdC) − v ↘NE sd (C − v), as desired. The general case follows
by induction on m: Assume that m ≥ 2. Then

(sdmC) − v = (sd (sdm−1C)) − v ↘NE sd ((sdm−1C) − v)

↘NE sd (sdm−1(C − v)) = sdm(C − v),

by applying the inductive assumption twice, and Lemma 2.3.8 for the second deformation.
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(a) (b) (c) (d) (e)

Fig. 1 Complex a isCAT(−1)with an equilateral hyperbolicmetric.Complexb isC AT (0)with the equilateral
flat metric. Complex c is not CAT(0) with the equilateral flat metric; it is CAT(0) with the acute piecewise
euclidean metric that assigns length 1 resp. 1.4 to all interior resp. boundary edges. Complex d is flat with
the non-obtuse piecewise euclidean metric that assigns length 1 resp.

√
2 to all interior resp. boundary edges.

Finally, only an obtuse metric can make complex e CAT(0); but the complex is CAT(1) with a non-obtuse
metric

2.4 Acute and non-obtuse triangulations

A simplex is called acute (resp. non-obtuse) if the dihedral angle between any two facets is
smaller than π

2 (resp. smaller or equal than π
2 ). In any acute simplex, all faces are themselves

acute simplices. In particular, all triangles in an acute simplex are acute in the classical
sense. The same holds for non-obtuse simplices. A simplex is called equilateral or regular
if all edges have the same length. Obviously, all equilateral simplices are acute and all acute
simplices are non-obtuse. The next, straightforward lemma characterizes these notions in
terms of orthogonal projections.

Lemma 2.4.1 A d-simplex � is acute (resp. non-obtuse) if and only if, for each facet F of
∂�, the closest-point projection π�−F spanF of the vertex � − F to the affine span of F
intersects the relative interior of F (resp. intersects F).

In 2004, Eppstein–Sullivan–Üngör showed that R3 can be tiled into acute tetrahedra [31].
This was strengthened by Van der Zee et al. [48] and Kopczyński–Pak–Przytycki [41], who
proved that the unit cube in R

3 can be tiled into acute tetrahedra. In contrast, there is no
geometric triangulation of the 4-cube into acute 4-simplices [41]. For d ≥ 5, neither R

d nor
the (d + 1)-cube have acute triangulations, cf. [41]. In contrast, by subdividing a cubical
grid, one can obtain non-obtuse triangulations of R

d and of the d-cube for any d . So, acute
is a much more restrictive condition than non-obtuse.

Let C be an intrinsic simplicial complex in which every face of C is isometric to a regular
euclidean simplex. If such C is CAT(0), we say that it is CAT(0) with the equilateral flat
metric. More generally, a CAT(k) intrinsic simplicial complex C is CAT(k) with an acute
metric (resp. CAT(k) with a non-obtuse metric) if every face of C is acute (resp. non-obtuse),
see Fig. 1.

3 Collapsibility and curvature bounded above

3.1 Gradient matchings and star-minimal functions

Here we obtain non-trivial Morse matchings on a simplicial (or polytopal) complex, by
studying real-valued continuous functions on the complex.

Definition 3.1.1 (Star-minimal) LetC be an intrinsic simplicial complex. A (nonlinear) func-
tion f : |C | → R is called star-minimal if it satisfies the following three conditions:
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Fig. 2 How to match an edge e with respect to the function f = distance from some point v. This (nonlinear)
function has a unique minimum m on |St (e, C)|. The inclusion-minimal face containing m in its interior is
spanned by the vertices x and y. Between these two vertices, we choose the one with minimal distance from
v. If it is x , since x is contained in e, we do nothing. If it is y, which does not belong to e, we match e with
e ∗ y

(i) f is continuous,
(ii) On the star of each face of C , the function f has a unique absolute minimum, and
(iii) No two vertices have the same value under f .

Condition (iii) is just a technical detail, since it can be forced by ‘wiggling’ the complex
a bit, or by perturbing f . Alternatively, we can perform a ‘virtual wiggling’ by choosing a
strict total order � on the vertices of C such that so that if f (x) < f (y), then x � y.

Conditions (i) and (ii) are also not very restrictive: Every generic continuous function on
any simplicial complex is star-minimal.

Our next goal is to show that any star-minimal function on a complex C naturally induces
a certain type of Morse matching, called gradient matching. The key is to define a “pointer
function” y f : C → C , which intuitively maps each face into the “best” vertex of its star.
(How good a vertex is, is decided simply by looking at its image under f .) Unlike f , which
is defined on |C |, the map y f is purely combinatorial. Later, we will obtain a matching
from y f basically by pairing every still unmatched face σ together with the face σ ∗ y f (σ )

(Fig. 2).
In detail: Let σ be a face of C . On the star of σ , the function f has a unique minimum m.

We denote by μ(σ) the inclusion-minimal face among all the faces of St (σ, C) that contain
the point m. We set

y f (σ ) = y,

where y is the f -minimal vertex ofμ(σ). Since f is injective on the vertices ofC , the pointer
function y f is well-defined.

Next, we define a matching � f : C −→ C associated with the function f . The definition
is recursive on the dimension: In other words, we start defining � f for the faces of lower
dimension, working all the way up to the facets. Let σ be a face of C . Set �(∅) := ∅. If for
all faces τ � σ one has � f (τ ) �= σ , we define

� f (σ ) := y f (σ ) ∗ σ.

Note that every face of C is either in the image of � f , or in its domain, or both. In the latter
case, we have � f (σ ) = σ .

Definition 3.1.2 (Gradient matching) Let � : C −→ C be (the partial function associated
to) a matching on the faces of a simplicial complex C . We say that � is a gradient matching
if � = � f for some star-minimal function f : |C | → R.
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Next we show that all gradient matchings are indeed Morse matchings.

Theorem 3.1.3 Let C be a simplicial complex. Let f : |C | → R be any star-minimal con-
tinuous function on the underlying space of C. Then the induced gradient matching � f is a
Morse matching. Moreover, the map

σ �→ (y f (σ ), σ )

yields a bijection between the set C of the (nonempty) critical faces and the set

P := {
(v, τ ) | v ⊂ τ, y f (τ ) = v and y f (τ − v) �= v

}
.

In particular, the complex C admits a discrete Morse function with ci critical i-simplices,
where

ci = #
{
(v, τ ) | v ⊂ τ, dim τ = i, y f (τ ) = v and y f (τ − v) �= v

}
.

Proof Our proof has four parts:

(I) The pairs (τ,� f (τ )) form a discrete vector field;
(II) This discrete vector field contains no closed gradient path;
(III) The image of σ �→ (y f (σ ), σ ) is in P.
(IV) The map σ �→ (y f (σ ), σ ) is a bijection.

Parts (I) and (II) guarantee that the pairs (τ,� f (τ )) form a Morse matching; parts (III)
and (IV) determine how many of the faces are critical. The latter count will turn out to be
crucial for establishing Theorem 3.2.1 below.

Part (I). The pairs (τ,� f (τ )) form a discrete vector field. We have to show that � f is
injective. Suppose � f maps two distinct k-faces σ1, σ2 to the same (k + 1)-face �. By
definition of � f ,

y f (σ1) ∗ σ1 = � = y f (σ2) ∗ σ2.

All vertices of � are contained either in σ1 or in σ2. So St (σ1, C) ∩ St (σ2, C) = St (�, C).
Moreover, each y f (σi ) belongs to� but not to σi ; so y f (σi )must belong to σ3−i . This means
that the function f attains its minimum on St (σi , C) at a point mi which lies in σ3−i . Since
on St (σ1, C) ∩ St (σ2, C) = St (�, C), the function f has a unique minimum, we obtain
m1 = m2. But then y f (σ1) = y f (σ2) = y f (�). Since y f (σ1) ∗ σ1 = y f (σ2) ∗ σ2, it follows
that σ1 = σ2, a contradiction.

Part (II). The discrete vector field contains no closed gradient path. Consider the function
minSt (σ,C)) f from C to R. Choose an arbitrary gradient path (σ1, �1), . . . , (σk, �k). In this
path, consider a pair (σi , �i ). By definition of gradient path, the faces σi and �i are matched
with one another, and σi+1 is matched with �i+1 and so on. In particular � f (σi ) = �i and
� f (σi+1) = �i+1, and hence minSt (σi ,C) f = minSt (�i ,C) f . We claim that in this case

min
St (�i ,C)

f > min
St (σi+1,C)

f .

In fact, suppose by contradiction that minSt (�i ,C) f = minSt (σi+1,C) f . Note that σi+1 ⊂ �i .
By the star-minimality of f , the local minimum of f must be unique. So

y f (σi ) = y f (�i ) = y f (σi+1).

So y f (σi+1) is the unique vertex in �i but not in σi . In particular, we have that y f (σi+1)

belongs to σi+1. Yet this contradicts the fact that σi+1 is matched with coface �i+1. In
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conclusion, for any gradient path σ1, . . . , σm one has minSt (σi ,C) f = minSt (�i ,C) f >

minSt (σi+1,C) f . This excludes the possibility that the gradient path is closed.

Part (III). The image of σ �→ (y f (σ ), σ ) is in P. Recall that

P := {
(v, τ ) : v ⊂ τ, y f (τ ) = v and y f (τ − v) �= v

}
.

Consider an arbitrary vertex w of C . Either y f (w) �= w, or y f (w) = w. If y f (w) is a vertex
x different from w, then w is in the domain of � f ; moreover, we see that � f (w) is the
edge [x, w] and w is not critical. If y f (w) = w, again w is in the domain of � f ; one has
� f (w) = w, so w is critical. In this case it is easy to verify that (w,w) belongs to P.

Now, consider a critical face σ of dimension k ≥ 1. Since σ is critical, there is no (k −1)-
face τ such that � f (τ ) = σ . By the definition of � f , the face σ is in the domain of � f ;
so since σ is critical we must have � f (σ ) = σ . So the vertex y f (σ ) belongs to σ . In order
to conclude that (y f (σ ), σ ) ∈ P, we only have to prove that y f (σ − y f (σ )) �= y f (σ ).
Let us adopt the abbreviations v := y f (σ ) and δ := σ − v. Suppose by contradiction that
y f (δ) = v. If δ were not in the image of any of its facets under the map � f , then we would
have� f (δ) = σ , whichwould contradict the assumption that σ is a critical face. So, there has
to be a codimension-one face ρ of δ such that � f (ρ) = δ. In other words, we see that y f (ρ)

is the unique vertex that belongs to δ but not to ρ. Clearly argmin St (ρ,C) f ∈ St (y f (ρ), C),
whence

argmin St (ρ,C) f = argmin St (ρ∗y f (ρ),C) f = argmin St (δ,C) f .

So y f (ρ) = y f (δ). Recall that we are assuming y f (δ) = v, where δ := σ − v. Hence

y f (ρ) = y f (δ) = y f (σ − v) = v /∈ σ − v.

This contradicts the fact that � f (ρ) = σ − v. Thus, the assumption y f (δ) = v must be
wrong.

Part (IV). The map σ �→ (y f (σ ), σ ) from C to P is a bijection.
The map s : σ �→ (y f (σ ), σ ) is clearly injective. Let us verify surjectivity. Consider a

pair(v, τ ) in P. By definition of s, y f (τ ) = v and y f (τ − v) �= v. Assume that s(τ ) /∈ P,
or, equivalently, that τ is not critical.

Since y f (τ ) = v ⊂ τ , there must be a facet η of τ such that � f (η) = τ . By definition of
� f , we have argminSt (η,C) ∈ St (τ, C) and hence argminSt (η,C) = argminSt (τ,C). Since y f

only depends on the point where f attains the minimum, y f (τ ) = y f (η) = y f (τ − v) = v.
This contradicts the assumption that (v, τ ) is in P. Thus τ is critical, as desired.

Corollary 3.1.4 Every gradient matching is a Morse matching.

In fact, one can characterize gradient matchings within Morse matchings as follows: A
Morse matching is a gradient matching if and only if for every matching pair (σ,�(σ)) there
is a facet � ⊃ �(σ) of C such that, for any face τ of � that contains σ but does not contain
�(σ), we have �(τ) = τ ∗ �(σ).

3.2 Discrete Hadamard–Cartan Theorem

In this section, we prove our discrete version of the Hadamard–Cartan theorem, namely, that
CAT(0) complexes with convex vertex stars are collapsible (Theorem 3.2.1). Our theorem
strengthens a result by Crowley, whose proof technique we shall briefly discuss.
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Crowley’s approachuses the classical notion ofminimal disk,which is the disk ofminimum
area spanned by a 1-sphere in a simply connected complex. Gromov [37] and Gersten [35,36]
have studied minimal disks in connection with group presentations and the word problem;
later Chepoi and others [11,25] have used them to relate CAT(0) cube complexes to median
graphs, and systolic complexes to bridged graphs. To collapse a complex onto a fixed vertex
v, Crowley’s idea is to reduce the problem to the two-dimensional case, by studying the
minimal disk(s) spanned by two geodesics that converge to v. Her argument is based on two
observations:

(1) If the complex is three-dimensional, these minimal disks are CAT(0)with the equilateral
flat metric, as long as the starting complex is. This was proven in [28, Theorem 2]. A
similar result was obtained for “systolic” complexes in [24] and [39], and for “weakly
systolic” complexes in [25, Claim 1], [28, Theorem 2] implies that all three-dimensional
simplicial complex with equilateral simplices are systolic.

(2) Any contractible 3-dimensional pseudomanifold is collapsible if and only if it admits a
discrete Morse function without critical edges.

Neither of these two facts extends to higher-dimensional manifolds:

(1) If we take the join of a triangle with a cycle of length 5, the resulting complex is obviously
collapsible, but not with Crowley’s argument (even though it does support a CAT(0)
equilateral flat metric): The minimal disk bounded by the 5-cycle contains a degree-five
vertex, and is consequently not CAT(0) with the equilateral flat metric.

(2) For any integers m ≥ 0 and d ≥ 6, some contractible d-manifold different from a ball
admits a discrete Morse function with 1 critical vertex, m critical (d −3)-faces, m critical
(d − 2)-faces, and no further critical face. (In particular, no critical edges.) This follows
from discretizing, as in [34] and [13], the smooth result by Sharko [47, pp. 27–28].

Our new approach consists in applying the ideas of Sect. 3.1 to the case where C is a CAT(0)
complex, and the function f : C → R is the distance from a given vertex v of C . Because of
the CAT(0) property, this function is star-minimal—so it will induce a convenient gradient
matching on the complex. The main advantage of this new approach is that it works in all
dimensions.

Theorem 3.2.1 Let C be a CAT(k) intrinsic simplicial complex such that

(i) for each face σ in C, the underlying space of St (σ, C) in C is convex, and
(ii) if k > 0, every facet is contained in some ball of radius < 1

2πk−1/2.

Then C is collapsible.

Proof Fix x in C such that, if k > 0, then every facet is contained in some ball of radius
< 1

2πk−1/2 around x . Let d : C �−→ R be the distance from x in C , and let w denote the
vertex of C that minimizes d. Let us perform on the face poset of C the Morse matching
constructed in Theorem 3.1.3. The vertex w will be mapped onto itself and for each vertex
u �= w we have yd(u) �= u. So every vertex is matched with an edge, apart from w, which is
the only critical vertex.

By contradiction, suppose there is a critical face τ of dimension ≥ 1. Set v := yd(τ ). By
Lemma 2.2.2, on St (τ, C) the function d attains its minimal value in the relative interior of a
face σv ∈ St (τ, C) that contains v. Let δ be any face of St (τ −v, C) containing σv . Clearly δ

contains v. Thus St (τ, C) and St (τ−v, C) coincide in a neighborhood of v. ByLemma 2.2.2,
wehave argmin St (τ−v,C) d = argmin St (τ,C) d.Therefore yd(τ−v) = yd(τ ) = v. Thismeans
that

(v, τ ) /∈ {(v, τ ) : v ⊂ τ, yd(τ ) = v and yd(τ − v) �= v};
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hence by Theorem 3.1.3 τ is not critical, a contradiction.

Remark 3.2.2 In a CAT(0) space, any closed connected locally convex subset is also convex
[21]. So in the assumptions of Theorem 3.2.1 it suffices to check condition (i) locally:We can
replace condition (i) with the request that St (σ, C) is convex for every ridge σ (ridges are
facets of facets of a simplicial complex). In fact, if all ridges have convex stars, the closest-
point projection to St (v, C) is a well-defined map and it is locally non-expansive for every
vertex v. But then the closest-point projection to St (v, C) is also globally non-expansive.
Now let x and y be any two points in St (v, C), and let us assume the geodesic γ from x to
y leaves St (v, C). Let us project γ to St (v, C). The result is a curve γ ′ connecting x and y
that is obviously lying in St (v, C), and not longer than γ . This contradicts the uniqueness
of segments in CAT(0) spaces.

Corollary 3.2.3 Let C be an intrinsic simplicial complex. Suppose that C is CAT(0) with a
non-obtuse metric. Then C is collapsible.

Proof By the assumption, there is a metric structure on C of non-positive curvature, such
that every face of C is non-obtuse. In non-obtuse triangulations, the star of every ridge is
convex. In fact, let �,�′ be two facets containing a common ridge R. Since � and �′ are
convex, and their union is locally convex in a neighborhood of R, we have that � ∪ �′ is
locally convex. Since the embedding space is CAT(0), convexity follows as in Remark 3.2.2.

Corollary 3.2.4 Every intrinsic simplicial complex that is CAT(0) with the equilateral flat
metric is collapsible.

Corollary 3.2.5 (Crowley [28]) Every 3-pseudomanifold that is CAT(0) with the equilateral
flat metric is collapsible.

Remark 3.2.6 Technical details aside, our proof is based on the idea of “distance from a
basepoint”. This idea has widely been used in mathematics, and in particular in graph the-
ory, where it lies at the core of several algorithms, such as Bread-First-Search. Using a
refinement of Bread-First-Search, Chepoi and Osajda proved that weakly systolic complexes
are dismantlable, and in particular collapsible. Their result can thus be viewed as a “more
graph-theoretic” version of Theorem 3.2.1.

Extension to polytopal complexes

Theorem 3.2.1 can be extended even to polytopal complexes that are not simplicial. The key
for this is Bruggesser–Mani’s rocket shelling of polytope boundaries, cf. e.g. Ziegler [53,
Sect. 8.2]. The following, well-known lemma follows from the fact that there is a (rocket)
shelling of ∂ P in which St (σ, ∂ P) is shelled first [53, Cor. 8.13]:

Lemma 3.2.7 (Bruggesser–Mani) For any polytope P and for any face μ, P collapses onto
St (μ, ∂ P).

Theorem 3.2.8 Let C be any CAT(k) (intrinsic) polytopal complex such that

(i) for each face σ in C, the underlying space of St (σ, C) in C is convex, and
(ii) if k > 0, every facet is contained in some ball of radius < 1

2πk−1/2.

Then C is collapsible.
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Fig. 3 How to collapse this
CAT(0) cubical complex to the
bottom left vertex v. We proceed
by induction: Here σ is the top
right square, and F is the
complex highlighted in red.
(Color figure online)

Proof We make the stronger claim that every polytopal complex that admits a function
f : |C | → R that takes a unique local minimum on each vertex star is collapsible. This
situation clearly applies: Fix x in C such that, if k > 0, then every facet is contained in some
ball of radius < 1

2πk−1/2 around x . Let d : C �−→ R be the distance from x in C . This d is a
function that has a unique local minimum on the star of each face by Lemma 2.2.2.

We prove the claim by induction. Let σ be a facet of C maximizing minσ f , and let μ

denote the strict face of σ that minimizes f . Let F ⊂ St (μ, C) be the subcomplex induced
by the facets of C that attain their minimum at μ. By Lemma 3.2.7, we can collapse each
facet P of F to St (μ, ∂ P). Hence, we can collapse F to⋃

P∈F

St (μ, ∂ P) = St (μ, C) ∩
⋃
P∈F

∂ P,

where P ranges over the facets of F . In particular, we can collapse C to C ′ := C − F
(Fig. 3).

It remains to show the existence of a function on C ′ that attains a unique local minimum
on each star. Let us show that the restriction f|C ′ of f to C ′ is the function we are looking for.
Assume that for some vertexw of C the function f|C ′ attains two local minima on St (w, C ′).
Clearly w is in F . Let x be the absolute minimum of f restricted to St (w, C ′); let y be the
other (local) minimum. Let P be a facet of C − F containing x . When restricted to C , the
function f attains a unique local minimum on the star of every face. Therefore, the point y
must lie in F . In particular, the facet P must contain the minimum of f on F . But y is not
that local minimum since P is not in F , so f takes two local minima on P , in contradiction
with the assumption on f .

In particular, Theorem 3.2.8 holds for CAT(0) cube complexes, which are complexes of
regular unit cubes glued together to yield a CAT(0)metric space. These complexes have been
extensively studied in the literature: See for example [9,15,29,37].

Corollary 3.2.9 Every CAT(0) cube complex is collapsible.

One instance of a CAT(0) cube complex is the space of phylogenetic trees, introduced by
Billera, Holmes and Vogtmann [15]:

Corollary 3.2.10 The space of phylogenetic trees is collapsible.

Vertex-transitive triangulations

In this short section we include a connection of Theorem 3.2.1 between metric geometry and
the evasiveness conjecture, following a suggestion by Anders Björner. A vertex-transitive
complex is a simplicial complex with n vertices on which the symmetric group acts transi-
tively. An important open problem in theoretical computer science is whether there is any
vertex-transitive non-evasive simplicial complex, apart from the simplex. This is known as
evasiveness conjecture [40,42].
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It is known that collapsibility is not enough to force a vertex-transitive complex to be
a simplex [42]. However, non-evasiveness is strictly stronger than collapsibility. We have
shown in Sect. 3.2 that the property of “being CAT(0) with the equilateral flat metric” is also
strictly stronger than collapsibility. Thus it makes sense to compare it with vertex-transitivity,
in parallel with the statement of the evasiveness conjecture. Here is a simple observation:

Proposition 3.2.11 Every vertex-transitive simplicial complex that is CAT(0) with the equi-
lateral flat metric is a simplex.

This follows directly from the Bruhat-Tits fixed point theorem for CAT(0) spaces, cf. [19].
A direct proof is simple enough, though, so we present it here:

Proof Let C be a vertex-transitive intrinsic simplicial complex and let v1, . . . , vn be the
vertices of C . Let a : |C | �−→ R be the function a(x) := ∑n

i=1 d(x, vi ). When C is CAT(0),
the function a is strongly convex and has therefore a uniqueminimum m. Since the simplicial
complex is vertex transitive, and the function a is also invariant under the symmetries of C ,
we claim that

d(m, v1) = d(m, v2) = . . . = d(m, vn),

so that m minimizes simultaneously all functions x �→ d(x, vi ). In fact, were d(m, vk) <

d(m, v j ) for some k �= j , we could find by symmetry a point m′ such that

m �= m′ and
∑

i

d(m′, vi ) =
∑

i

d(m, vi ).

But then we would have a(m) = a(m′): A contradiction since a has a unique minimum.
So, there is one point in the complex equidistant from all of the vertices. This implies that

C has only one facet, because for each facet F of C , the unique point equidistant from all
vertices of F is the barycenter of F itself.

3.3 Collapsible, contractible and CAT(0) manifolds

We already mentioned the famous result obtained in 1939 by Whitehead:

Theorem 3.3.1 (Whitehead) Let M be a (compact) manifold with boundary. If some PL
triangulation of M is collapsible, then M is a ball.

Let us focus on non-PL triangulations. Let us introduce a convenient notation:

• By CATd we denote the class of d-manifolds homeomorphic to CAT(0) cube complexes;
• By COLLd we denote the d-manifolds that admit a collapsible triangulation;
• By CONTd we denote all contractible d-manifolds.

Moreover, by PL singular set of M we mean the subcomplex given by the faces of M whose
link is not homeomorphic to a PL sphere or a PL ball.

Theorem 3.3.2 For each d ≥ 5 one has

CATd = COLLd = CONTRd ,

whereas for d = 4 one has

CAT4 = COLL4 � CONTR4.

In particular, when d ≥ 5 not all collapsible manifolds are balls.
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Proof. Clearly, every d-ball can be given a CAT(0) cubical structure (consisting of a single
d-cube). By Theorem 3.2.8, every CAT(0) cube complex is collapsible, and so is its first
derived subdivision [49]; hence CAT(0) cube complexes admit collapsible triangulations.
Finally, collapsible complexes are contractible. This proves that

{d-balls} ⊂ CATd ⊂ COLLd ⊂ CONTRd for all d.

When d ≤ 4, every triangulation of a d-manifold is PL (This is non-trivial; for d =
4, this statement relies on the Poincaré-Perelman theorem). By Whitehead’s theorem, this
implies COLLd ⊂ {d-balls}, so the first two containments above are actually equalities. All
contractible 3-manifolds are balls, so

{d-balls} = CATd = COLLd = CONTRd for d ≤ 3.

In contrast, some contractible 4-manifolds are not balls, like theMazur manifold [43]; hence

{4-balls} = CAT4 = COLL4 � CONTR4.

When d ≥ 5, it is a classical result that {d-balls} � CONTRd . So all we need to show is
that CONTRd ⊂ CATd , namely, that every contractible d-manifold, d ≥ 5, admits a CAT(0)
cube structure. By a result of Ancel and Guilbault [7], every contractible manifold M admits
a triangulation C such that:

(1) The PL singular set S of C lies in the interior of C ,
(2) The PL singular set S of C is a path (i.e. a graph homeomorphic to a curve),
(3) S is a deformation retract of C , and
(4) |C |\|S| is homeomorphic to M × (0, 1].
Let us hyperbolize C (as in Davis–Januskiewicz [29]), and pass to the universal cover. The
resulting complex C ′ is a CAT(0) cube complex. Since S is a path, its image under hyper-
bolization and lift to universal cover is a disjoint union S′ of convex compact sets inC ′. Let N
denote the subcomplex of C ′ consisting of faces that intersect a fixed connected component
of S′. As in [29, Thm. (5b.1)], we have that N is a cubical complex PL homeomorphic to C
and consequently homeomorphic to M . Furthermore N is a convex subcomplex of a CAT(0)
cube complex; in particular, it is itself a CAT(0) cube complex. In conclusion,

{d-balls} � CATd = COLLd = CONTRd for d ≥ 5.

Remark 3.3.3 The first author and Funar have recently extended this result to arbitrary com-
plexes, proving that any collapsible simplicial complex is PL equivalent to aCAT(0) (and even
CAT(−1)) polyhedral complex [5, Proposition 15].With our Theorem 3.2.8, this implies that
a simplicial complex admits a collapsible subdivision if and only if it admits a CAT(0) cube
structure. However, not all contractible simplicial complexes admit a collapsible subdivision:
A well known counterexample is given by the Dunce Hat.

Here is a curious consequences concerning discrete Morse theory:

Corollary 3.3.4 Forman’s discrete Morse theory can give sharper upper bounds than smooth
Morse Theory (or of PL handle theory) for the Betti numbers of a manifold.

Proof Let M be any collapsible (non-PL) triangulation of a contractible manifold different
than a ball, as given byTheorem3.3.2.By a classical result ofGleason, every open contractible
manifold admits a smooth structure, and therefore a smooth handle decomposition; from that
one can always obtain a PL triangulation and a PL handle decomposition. (See e.g.[13] for the
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definitions.) However, since M is not a ball, any of its (smooth or PL) handle decompositions
must containmore than one handle. In particular theBetti vector (1, 0, . . . , 0) is not a possible
smooth or PLhandle vector for M . Yet byTheorem3.3.2, the samevector is a possible discrete
Morse vector for (a suitable triangulation of) M , as long as dim M ≥ 5.

Remark 3.3.5 The situation changes if we restrict ourselves to PL triangulations. Indeed,
every PL handle decomposition naturally yields a discrete Morse function, and vice versa,
as proven in [13].
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