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A B S T R A C T

We consider the school bus scheduling problem (SBSP) which simultaneously determines school
bell times and route schedules. Often, the goal of the SBSP is to minimize the number of buses
required by a school district. We extend a time-indexed integer programming model to in-
corporate additional considerations related to equity and efficiency. We seek to equitably reduce
the disutilities associated with changing school start times via a minimax model, then propose a
lexicographic minimax approach to improve minimax solutions. We apply our models to ran-
domized instances based on a moderately-sized public school district to show the impact of in-
corporating equity.

1. Introduction

Since the economic recession in 2008, public school districts across the United States have faced budget crises as stagnant funding
levels have often been insufficient to offset rising operational costs. Between 2008 and 2015, state funding per student for public
schools declined in 29 states; in some states, state funding in 2017–18 had yet to return to pre-2008 levels (Leachman et al., 2017).
Often, budget cuts entail a reduction in transportation spending (see recent examples in Kentucky (Spears, 2018) and Missouri (Rowe,
2016)), necessitating more cost-efficient use of available transportation resources.

Public school transportation spending in the United States for 2012–13, the last school year with full data, totaled about $23
billion – approximately 4 percent of total public education spending (Urban Institute, 2017). Transportation costs for public school
systems often include a component proportional to the total number of buses used. A typical contract for outsourced transportation
services may include a fixed per-bus cost structure, with additional costs – significantly lower than the fixed cost – for multiple uses of
the same bus. Previous analyses have encountered fixed costs per bus in Drummondville, Québec (Desrosiers et al., 1986) and New
Haven, Connecticut (Swersey and Ballard, 1984), among other places. One way to reduce the number of buses required by a school
district, thereby reducing the associated outsourcing costs (or capital costs if the district owns the buses), is to schedule schools and
routes in such a way that buses can be reused to serve multiple routes. Consider an example with two schools, each with two morning
bus routes. In Fig. 1(a), both schools start at the same time. Because all four routes run simultaneously, four buses are required to
complete the routes. In Fig. 1(b), School A starts 45min before School B. Only two buses are required to complete the routes: one bus
can service routes A1 and B1, while the other bus can service A2 and B2.

The combined problem of route scheduling and school bell time scheduling, with the primary objective of minimizing the number
of buses required, has been studied in operations research as the school bus scheduling problem, or SBSP (Fügenschuh, 2009; Raff,
1983). The SBSP is a part of the more general school bus routing problem (SBRP), which consists of five components: data preparation,
bus stop selection, bus route generation, school bell time adjustment, and route scheduling (Park and Kim, 2010).

Our collaboration with a moderately-sized public school district has motivated a need to explicitly consider equity in the SBSP.
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Changing school start times can have both positive and negative effects on communities. For example, studies suggest that later
school start times are correlated with improved behavior and academic performance in adolescents (Owens et al., 2010; Wolfson
et al., 2007). Based on this research, an unsuccessful bill was recently proposed in California which would have required middle and
high schools to start at 8:30 a.m. or later (Racker, 2018). At the same time, some parents express concerns that later school start times
interfere negatively with after-school activities (Dunietz et al., 2017). An optimal schedule should ensure that the effects of any
school time changes are distributed equitably across the district. Specifically, our partner school district prefers schedules with lower
absolute deviation in start times from the current schedule, and the district prefers any such absolute deviations to be distributed
equitably.

The remainder of the paper is organized as follows. Section 2 reviews the relevant literature. Section 3 details the base integer
programming model formulation for the SBSP and our approach to equity. Section 4 presents methods for integrating equity in regard
to school start time changes. Section 5 contains numerical studies of our models. Finally, Section 6 contains our concluding remarks.

2. Literature review

A thorough survey on mathematical approaches to the SBRP (through 2009) can be found in a review by Park and Kim (2010).
While numerous recent studies (e.g., Bögl et al., 2015; Chen et al., 2015; Hashi et al., 2016; Kim et al., 2012; Shafahi et al., 2018; Yan
et al., 2015) discuss “school bus scheduling” in various contexts, these papers focus on route scheduling without considering school
bell time adjustment. There are limited studies which examine school bell time adjustment in conjunction with route scheduling (i.e.,
the SBSP).

One such study is Desrosiers et al. (1986) which proposes a framework to solve parts of the SBRP sequentially: (1) route gen-
eration, followed by (2) school bell time scheduling, followed by (3) route scheduling. As such, the route generation component (1)
provides the required route data for the SBSP components (2) and (3). Desrosiers et al. (1986) establish and use the following
proposition, restated formally by Zeng et al. (2018):

Proposition 1. Given a set of routes with fixed starting and ending times, the minimum number of buses required to complete all the routes is
equal to the maximum number of routes in operation in the same time period.

In practice, a bus which completes a route requires a transition time to travel to the starting location of its next route. As a result,
the actual number of buses required will likely be more than the number implied by Proposition 1. However, if the transition time is
included in the operational time of each route (i.e., a route is “in operation” during the transition period), then Proposition 1 can be
used to accurately determine the minimum number of buses required. Many approaches to route scheduling (e.g., Bookbinder and
Edwards, 1990; Fügenschuh, 2009; Spada et al., 2005) use exact travel times between routes, explicitly considering the travel
distance between the ending point of one route and the starting point of the next route serviced by the same bus. As discussed in
Section 3, we assume that the transition time between routes is constant (e.g., 10 or 15min) and is added to the true duration of the
route, as in Zeng et al. (2018). Desrosiers et al. (1986) formulate the problem of scheduling school bell times as an integer linear
program (ILP), which they solve using decomposition and heuristic approaches. Route schedules are determined heuristically via
iteratively solving transportation problems. Their approach for the entire SBRP found significant savings when applied to the Saint-
François school board in Drummondville, Québec, comprised of 47 schools and over 17,000 students.

Fügenschuh and Martin (2006) present an ILP formulation to model both components of the SBSP concurrently, which they solve
using a two-stage heuristic to minimize seven lexicographically ordered objectives: number of buses required, total driving time

Fig. 1. School and route scheduling to minimize the number of buses required.
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without passengers, waiting time of buses between trips, total waiting time of students at school, total waiting time of students at
transfer bus stops, total absolute change of school start times, and total absolute change of route start times. Fügenschuh (2009)
solves a similar model to minimize the first two objectives via branch-and-cut methods. When applied to five school districts in
Germany, this model found that the number of buses required could be reduced by 10–25%. Fügenschuh (2011) later improves the
model’s lower bounds using a set partitioning reformulation.

Using Proposition 1, Zeng et al. (2018) present a time-indexed ILP model for the SBSP based on machine scheduling and bin
packing problems. While Desrosiers et al. (1986) and Fügenschuh (2009) determine a sequence of routes for each bus, Zeng et al.
(2018) focus solely on determining route arrival times and school start times, noting that the associated problem of assigning buses to
routes given a route schedule can be solved separately in polynomial time using an algorithm detailed by Olariu (1991). For cases
where all routes associated with a school must arrive at the same time, a LP relaxation-based rounding algorithm with a probabilistic
Chernoff upper bound and a greedy algorithm are presented. An LP relaxation-based rounding algorithm is presented for a slightly
modified formulation of the general SBSP without the condition on time window lengths, and numerical tests are conducted on
randomized instances of varying sizes. Park and Kim (2010) discuss the need for a generalized SBRP; in this paper we demonstrate the
potential of the model proposed by Zeng et al. (2018) to serve as a generalized SBSP upon which modifications can be made to meet
the planning needs of a particular school system.

Equity, in the context of transportation systems, “refers to the distribution of impacts (benefits and costs) and whether that
distribution is considered fair and appropriate” (Litman, 2002). Savas (1978) discusses four broad characterizations of equity in the
provision of public services: (1) equal payment, (2) equal output results or metrics, (3) equal provided inputs, and (4) equal sa-
tisfaction of demand. Of these, our approach focuses on equal output metrics, e.g., how changes in start times impact the student
population. Equal payment is largely irrelevant to public education as all students have the same educational rights regardless of their
ability to pay. Equal inputs and equal satisfaction of demand are accomplished outside of our analysis, as school districts should
provide an adequate number of schools and all eligible students are provided transportation. Marsh and Schilling (1994) introduce a
framework for incorporating equity in operations research models (with a focus on facility location) which we employ in our paper.
First, they define the determinants of equity – the effects which should be distributed fairly. Next, they define the groups across which
equity is to be pursued. Finally, they review 20 potential measures of inequity to be minimized.

In the SBRP literature, a limited number of studies pursue equity as an objective. In selecting bus stops and constructing routes for
a single school, Bowerman et al. (1995) and Li and Zhuo (2002) aim to balance the number of students on each route and the length
of each route. To achieve this, Bowerman et al. (1995) include nonlinear measures of inequity in their objective function, while Li and
Zhuo (2002) incorporate inequity minimization into a heuristic improvement strategy. Serna and Bonrostro (2001) minimize the cost
of the costliest route in a modification to the classical vehicle routing problem (VRP), and Pacheco et al. (2013) simultaneously
minimize both the maximum route length and the total route length in another modification to the VRP; both models are applied to
the construction of school bus routes. Spada et al. (2005) aim to balance students’ time loss by minimizing the maximum time loss
across all students as a secondary objective. Time loss is the sum of a student’s delay (the difference in time between the “actual
journey time [between the student’s home and school] and the shortest possible time between home and school”) and waiting time
(the difference between the student’s arrival time at school and the school’s start time). Equity is one of the objectives considered in a
recent study motivated by potential start time changes to Boston Public Schools (Bertsimas et al., 2019): minimizing the variance
(across neighborhoods or communities) in satisfaction with a potential new schedule is included as an objective in a quadratic
optimization model.

Equity-based objectives also appear in recent operations research approaches to other problems in public education and public
service at large. Bouzarth et al. (2018) minimize socioeconomic variation across schools in conjunction with transportation costs
when assigning students to public schools, while Campbell et al. (2008) minimize the maximum arrival time of relief supplies after a
disaster.

Further examples of equity considerations in the community-based operations research literature can be found in recent reviews
by Leclerc et al. (2012) and Johnson et al. (2018). In this paper, we integrate equity considerations into the SBSP as has been done in
other public sector operations research problems. Our primary contributions to the literature are threefold. Firstly, we develop
minimax and lexicographic minimax ILP models which simultaneously promote equity and efficiency in school bell time and school
bus schedules with respect to disutilities arising from changing school start times. Through our partnership with an urban public
school district, we ensure that our models, which are guided by the familiar idea of improving the condition of those who are worst-
off, are readily accessible to policymakers. Secondly, we develop an iterative algorithm for solving the lexicographic minimax model
which avoids numerical issues which may lead to incorrect solutions. Finally, we demonstrate that the lexicographic model produces
significantly improved schedules while maintaining computational tractability. As such, the lexicographic approach presented in this
paper serves as a practical framework for public school districts which seek to design equitable school and bus schedules, and as a
potential foundation for operations researchers who seek to incorporate equity considerations into other modern transportation and
logistics problems.

3. Preliminaries

In this section, we present the base model of school bus scheduling.
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3.1. Modeling school bus scheduling

The formal definition of the problem, adapted from Zeng et al. (2018), is as follows:

School Bus Scheduling Problem (SBSP): Given a set of schools, each with a set of morning and afternoon routes, time windows for
school start and end times, and associated time windows for route arrival and departure, determine the starting and ending time of each school
and the arrival and departure times for all morning and afternoon routes, respectively, such that time windows are satisfied, and assign routes
to buses. The objective is to minimize the number of buses required to complete all of the routes.

The problem statement is necessarily broad, as each school district faces a unique problem setting in practice. In the literature,
additional assumptions are included based on the motivating case. Our modeling assumptions, which reflect the problem setting of
our partner school district, are as follows:

(i) School day lengths are sufficiently large such that all morning routes are completed before afternoon routes begin.
(ii) The district area is geographically compact such that the travel times between the ending point of one route and the starting

point of another route are modeled as uniform and short enough so that reusing buses on multiple routes is practical.
(iii) Each route is associated with a single school (i.e., no mixed loads).

The second assumption implies that if the constant travel time between routes is added to the route length, Proposition 1 can be
used to determine the minimum number of buses required instead of directly assigning routes to buses. The constant transition time
may also provide an additional buffer in case of delays, increasing the reliability of the transportation system. It should be noted that
these assumptions are appropriate for our partner school district, but should be revisited as necessary based on the specific appli-
cation context. Our approach to equity can be incorporated into base SBSP models with other underlying assumptions. For con-
ciseness, we present the part of our ILP model associated with morning scheduling. In Appendix A, we show how the extension to
include afternoon scheduling can be implemented easily.

3.1.1. ILP formulation
The morning time interval during which all routes must arrive and all schools must start is discretized over a total of M periods.

For example, the interval 8:00 AM to 8:15 AM discretized by 5min gives =M 4, where the times are {8:00, 8:05, 8:10, 8:15}. We are
given N schools, where the nth school is associated with n morning routes. The ith route associated with school n has discretized length
(duration) of ri n, consecutive time periods, including a constant transition time added to each route. The parameter denotes the
maximum number of time periods before the school start time that a route can arrive, and denotes the minimum number of time
periods before the start time that a route must arrive. Fig. 2 illustrates a scenario where time is discretized by five minute intervals; if
= =4, 2, and a school starts at 9:00 AM, then the routes associated with the school may arrive at 8:40 AM, 8:45 AM, or 8:50 AM.
Define binary variables xi n

m
,
( ) for all n N i m M[ ], , [ ]n and un

m( ) for all + …n N m M[ ], { 1, , } as such: =x 1i n
m

,
( ) if route

i n arrives at time m and 0 otherwise; =u 1n
m( ) if school n starts at m and 0 otherwise. Note that including school start time

variables is not necessary in the base formulation to find the optimal number of buses; it is easy to show that start times can be
inferred if the problem is formulated using only xi n

m
,
( ) and z variables (as in Zeng et al., 2018) given the time window parameters.

However, start time variables are required for our model extensions. The use of binary variables to track school start times is similar
to the approach used by Desrosiers et al. (1986) but is a departure from Fügenschuh’s (2009) more recent approach of using an
integer variable to denote each school’s start time.

Define z as the minimum number of buses required to service all routes. Our goal is to determine a route and school bell schedule,

Fig. 2. Arrival time window example.
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defined by the values of the binary variables, such that z is minimized. We formulate the SBSP as follows:

min z (ILP 1)

=
= +

s t u n N. . 1, [ ]
m

M

n
m

1

( )

(1.1)

+ …
=

u x n N i m M, [ ], [ ], 1, ,n
m

t m

m

i n
t

n
( )

max{ ,1}
,
( )

(1.2)

= = =

+

x z m M, [ ]
n

N

i t m

m r M

i n
t

1 1

min{ 1, }

,
( )

n i n,

(1.3)

x n N i m M{0, 1}, [ ], [ ], [ ]i n
m

n,
( ) (1.4)

+ …u n N m M{0, 1}, [ ], { 1, , }n
m( ) (1.5)

Constraints (1.1) ensure that each school is assigned to exactly one start time. Constraints (1.2) ensure that every route for a given
school arrives within the correct time window as defined by and . Constraints (1.3) set the minimum number of buses required to
be greater than or equal to the number of routes in operation during any time period, as given in Proposition 1. An analogous set of
variables and constraints, detailed in Appendix A, implements combined morning and afternoon scheduling.

Together, constraints (1.1) and (1.2) imply that each route is assigned to at least one arrival time; in practice, the model will
generally ensure that each route is assigned to exactly one arrival time in order to minimize z via constraints (1.3). In the rare case
where a route is assigned to multiple arrival times, any of these arrival times are feasible to achieve the minimum number of buses.
While not strictly required, the following constraints can be added to ensure the model returns an optimal schedule with only one
arrival time designated per bus:

=
=

x n N i1, [ ], [ ]
m

M

i n
m

n
1

,
( )

(1.6)

The base model can easily be extended to incorporate practical scheduling considerations. For example, if certain schools are
restricted from starting at certain times or are required to start at a certain time, constraints of the form =u 0n

m( ) or =u 1n
m( ) ,

respectively, can be added as needed. Similar constraints for school ending time and bus arrival/departure can be added as well. If
two schools are required to start at certain times relative to one another, constraints similar to (1.2) can be added as needed.

Every potential schedule affects the students, schools, and administration of a school district beyond the fixed cost of trans-
portation associated with the schedule. As such, scheduling decisions cannot be based only on minimizing the number of buses
required. We extend the base SBSP model to consider supplementary metrics, with a focus on equity, as additional criteria for
determining school and route schedules.

4. Equity and start time changes

We focus on the disutility associated with changing school start times as the equity determinant, and we pursue equity across
schools. The formulations we present are easily adaptable to pursuing equity across other groups, including student demographic
groups. The measure we examine is the center, or maximum negative effect on any one group; minimizing this measure is known as
the minimax method. A drawback of minimax is that it does not consider how equitably and efficiently effects are distributed among
groups which do not experience the maximum negative effect (Luss, 1999). The lexicographic approach extends the minimax concept
by sequentially minimizing the largest negative effect, followed by the second-largest, followed by the third-largest, and so on,
leading to improved equitable solutions (Wang et al., 2004). Other measures of inequity reviewed in Marsh and Schilling (1994) can
be implemented within the model as required.

In addition, we use the concept of the “price of fairness” as proposed by Bertsimas et al. (2011) to assess solutions. For a given
schedule, let f (·) represent the value of some efficiency metric associated with the schedule. For example, f (·) could represent the
number of buses required. For a given minimization problem, if OPT represents the most efficient scheduling solution in regard to
f (·) and FAIR represents an equitable solution, then we define the price of fairness (PoF) as:

= f f
f

PoF OPT, FAIR (FAIR) (OPT)
(OPT)

.

Bertsimas et al. (2011) consider the price of fairness to be generally unavoidable but potentially negligible based on the specific
characteristics of the problem and utility set. We return to the idea of the price of fairness when analyzing the trade-offs between
equity and efficiency in our numerical studies.
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4.1. Achieving minimax equity in start times

For a school n N[ ] and start time m M[ ], let the parameter cnm( ) denote the disutility associated with changing school n’s
current start time to m. The disutility can be positive or negative – a negative disutility implies that changing a school’s start time
benefits the school and its students. We define the term generally such that it is possible that there be a disutility associated with
maintaining a current start time (e.g. the current start time of school n is m, and cnm( ) is positive).

In our motivating work, we assume that the school district prefers schedules with lower absolute deviation in school start times
from the current schedule. A proposed schedule is more likely to be approved by the school board and to be well-received in the
community if the absolute changes in start times are distributed evenly across schools. In such a case, the disutility associated with
changing school n’s start time from its current time m to a new time m can be represented as =c m mn

m( ) . An efficient solution
would minimize the sum of these changes, as in Fügenschuh and Martin (2006), but may lead to certain schools having significantly
larger start time changes than others.

We first pursue equity by seeking to minimize the maximum disutility associated with changing start times across all schools. This
minimax approach, which promotes equity and efficiency concurrently, has the dual benefits of lending itself to straightforward ILP
modeling and being easy to interpret from a policymaking perspective. We introduce a new variable n to denote the disutility
associated with school n’s start time change. Let the variable max denote the maximum disutility across all schools and let be a
nonnegative scaling parameter between the two objectives. When = 0, the problem reduces to the basic SBSP from Section 3,
whereas higher values of correspond to a greater importance on max when selecting a schedule. The SBSP with minimax equity
across schools in regard to start time changes can be formulated as follows:

+min z max (ILP 2a)

=
= +

s.t. c u n N, [ ]n
m

M

n
m

n
m

1

( ) ( )

(2.1)

n N, [ ]max n (2.2)

(1.1) (1.13)

We simultaneously minimize the number of buses required and the maximum disutility. The relative importance of the two
objectives is determined by the chosen value of . Constraints (2.1) calculate each school’s associated disutility based on its new start
time, and constraints (2.2) define max as the maximum across all n. Defining the disutilities a priori in conjunction with the use of a
time-indexed formulation allows for greater model flexibility. For example, a school district may determine start time change dis-
utilities differently for each school, possibly leading to negative values or using complex nonlinear formulae. However the individual
disutilities are defined, the model remains linear and the number of constraints needed to determine the disutility for each school do
not increase.

An alternate approach to the minimax problem is to minimize the maximum disutility given a number of available buses z̄ , an
application of the -constraint method for multi-objective optimization (Chankong and Haimes, 1983):

min max (ILP 2b)

=s.t. z z̄ (2.3)

(1.1) (1.13), (2.1), (2.2)

4.2. Lexicographic minimax improvement

Minimax focuses on minimizing the highest disutility across all schools, but does not guarantee an equitable or efficient dis-
tribution of disutility beyond the schools associated with the largest disutility. As with the base SBSP model, there may be many
optimal solutions to the minimax problem. We propose a lexicographic minimax strategy to improve the efficiency of minimax
solutions while maintaining or improving equity.

The lexicographic minimax approach, in the context of school scheduling, seeks to first minimize the highest disutility across
schools, then the second highest disutility, etc. until finally minimizing the lowest (Nth highest) disutility. Suppose we have two
solutions, A1 and A2, to the minimax problem each requiring the same number of buses. Solution A1 is lexicographically smaller than
A2 if and only if the jth highest disutility across schools for A1 is less than or equal to that of A2 for all j N[ ] (Wang et al., 2004). Our
strategy is to first solve either (ILP 2a) or (ILP 2b) to find the optimal number of buses z and maximum disutility max . We then
lexicographically improve the solution without increasing the number of buses or maximum disutility. The lexicographic minimax
solution will be an optimal solution to the original minimax problem, equitable, and Pareto optimal across schools (Luss, 1999).
While approximate approaches (such as minimizing the sum of disutilities with additional constraints, or a combination of the
minimax and minimum sum objectives) may lead to solutions comparable to that of lexicographic minimax in some instances, only an
optimal solution to the lexicographic problem can guarantee equity based on the extended minimax principle.

Consider the disutilities associated with each school ranked in descending order. For all …j N{1, , }, let the variable j represent
the jth highest ranked disutility. Define the binary variable hj n, for all j n N, to equal 1 if n j and 0 otherwise. Let the parameter
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c represent the largest difference between any two disutilities c c,n
m

n
m( ) ( )

1
1

2
2 . We formulate the lexicographic minimax problem as

follows:

…lexmin [ , , , , ]N1 2 3 (ILP 3)

=s.t. z z (3.1)

= max1 (3.2)

+
=

h N j j N1 , [ ]
n

N

j n
1

,
(3.3)

c h j n N(1 ) , , [ ]j n n j, (3.4)

+ j N, [ 1]j j 1 (3.5)

h j n N{0, 1}, , [ ]j n, (3.6)

(1.1) (1.13), (2.1)

The objective minimizes each of the jth highest ranked disutilities in order, i.e., higher values of j correspond to lower ranks and
lowered priority. Constraints (3.1) and (3.2) define the number of buses and maximum disutility based on the solution to the minimax
problem. Constraints (3.3) require that, for each j N[ ], the appropriate number of school utilities are at or below the jth highest
disutility. Constraints (3.4) require hj n, to equal 0 if >j n. Constraints (3.5) ensure the correct ordering of the j variables.

One approach to solving this model directly is to scale each objective by a small positive value such that the priority order is
preserved, i.e. =min j

N n
j1 where is sufficiently small. Attempting this approach with optimization software can lead to numerical

issues. Gurobi (2017) recommends that the ratio between the largest and smallest coefficients in a model should not exceed 108 or 109,
this guideline is violated even in a small instance with only ten schools and = 0.1.

Klotz and Newman (2013) recognize that large ratios – by many orders of magnitude – between MIP model coefficients may lead
to round-off errors and inefficient solutions. As expected, Gurobi produces solutions inconsistent with the model when we test the
approach on randomized instances with 15 schools. Specifically, (ILP 3) returns solutions with suboptimal j for larger values of j. As
an illustrative example, Gurobi solved a test instance with (ILP 3) to optimality (i.e., with an optimality gap of 0%) in 76 s, producing
the following solution:

… =( , , , ) (13, 11, 7, 7, 6, 6, 4, 4, 1, 1, 1, 1, 1, 1, 1)1 2 15

However, lexicographically smaller solutions to the same test instance exist for which = 0j for at least one j. Because the
exponentially decreasing objective coefficients render the values of j for larger j negligible relative to the values of j for smaller j,
solvers are unable to distinguish between solutions which differ only on the j for larger j. The issue of large ratios between model
coefficients often requires attention when working with MIP models (see Talebian and Zou (2015) and Çağlar and Gürel (2017) for
examples).

The solution to the lexicographic problem can instead be obtained by determining each j iteratively:

Algorithm 1. Iterative lexicographic schedule improvement

Without the constraints of the form =j j , (ILP 4) is as follows:

min j (ILP 4)

+
=

s.t. h N j j j1 , [ ]
n

N

j n
1

,
(4.1)

c h j j n N(1 ) , [ ], [ ]j n n j, (4.2)

h j j n N{0, 1}, [ ], [ ]j n, (4.3)
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(1.1) (1.13), (2.1), (3.1), (3.2)

While the size of (ILP 4) increases with each iteration, an additional j variable is fixed after each iteration. Thus, even the final
iteration is easier to solve than (ILP 3).

It should be noted that some optimization software packages (Gurobi, CPLEX) provide functionality for optimizing a single model
with lexicographically ordered objectives by assigning a priority level to each objective, while others (Xpress Solver, GLPK,
LP_SOLVE) do not. In the numerical study, we compare the performance of Algorithm 1 against Gurobi’s built-in lexicographic
optimization functionality, which uses a similar iterative process.

5. Numerical studies

In this section, we analyze our models using randomized instances based on real data from an urban public school district serving
grades kindergarten through 8th. We compare the effectiveness of objectives in regard to start time change equity on instances of two
sizes. Next, we assess the computational efficiency of implementing our models. Finally, we examine the managerial implications of
objective trade-offs in the context of start time change equity. All models in this section are solved using Gurobi Optimizer 8.0.1
implemented in Python 3.6.6.

5.1. Scenarios I-III: 15 schools, 59 morning and afternoon routes

We first construct and analyze instances with 15 schools serviced by 59 morning routes and 59 afternoon routes, the size of our
partner school district’s primary bus network. The district is among the largest 15% of public school districts in the United States by
population and number of schools (Gray et al., 2013).

5.1.1. Background and parameters
We construct ten randomized instances as detailed in Table 1. For modeling purposes, time is discretized by five minute intervals,

and we discretize route lengths by rounding up to the next multiple of five minutes. As such, schools must start and end, and routes
must arrive and depart on the five-minute marks relative to the hour (8:15 AM, 8:20 AM, 8:25 AM, etc.). In practice, all route
transitions within the district occur in less than 15min due to the geographic compactness of the district; the constant transition time
provides an additional buffer in case of delays, increasing the reliability of the transportation system. As discussed earlier, we
consider the disutility associated with changing a school’s start time to be proportional to the absolute change in start time; i.e., the
disutility associated with changing school n’s start time from m to a new time m is =c m mn

m( ) .
For each of the ten instances, we consider three scenarios. In Scenario I, all schools currently start at 8:45 AM. In Scenario II, all

schools currently start at 9:20 AM. In Scenario III, the current start times of the 15 schools are evenly split between 8:15 AM, 8:45
AM, and 9:20 AM.

Table 1
Summary of parameters for randomized instances.

Schools 15
School length Randomly assigned 6 h. 30min., 6 h. 45min., or 7 h. 30min.
Total routes 59 morning, 59 afternoon
Routes per school Randomly distributed; equal number of morning and afternoon routes per school
Route length Randomly assigned between 10 and 50min. plus 15min. constant transition time
School start time window 8:15 AM to 9:20 AM
Morning route arrival time window Between 10 and 20min. prior to school start; no arrivals prior to 7:55 AM
Afternoon route departure time window Between 5 and 20min. after school start

Fig. 3. Start time change distribution, (ILP 1).
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5.1.2. Comparing equity-centered and efficiency-centered models
We initially apply the base model (including afternoon scheduling) to each instance, only minimizing the number of buses

required, and observe the associated absolute changes in start time for each school. The optimal number of buses z is 23 for two of
the instances and 24 for the remaining eight instances. As expected, the start and end times of the schools vary greatly in the optimal
solution to facilitate reusing buses. Fig. 3 shows the distribution of start time changes for each scenario across all ten instances.

These results illustrate the motivation for our work: focusing solely on reducing transportation costs in the modeling process leads
to inefficient and inequitable distributions of start time changes.

For every instance and scenario, we then set the number of available buses equal to z , as in (ILP 2b), and apply both our basic
minimax and lexicographic minimax approaches. For comparison, we also optimize a “Minimum Sum” objective, in which we set the
number of available buses equal to z , then minimize the total disutility across all schools associated with changing or maintaining
start times. It should be noted that minimizing the sum of disutilities is strictly an efficiency-based objective, unlike the minimax and
lexicographic minimax objectives. We solve the problem with respect to each objective ten more times, setting the number of
available buses equal to + + … +z z z1, 2, , 10. Table 2 summarizes the average and standard deviation of start time changes
within each instance for each scenario for each model.

Appendix B contains similar tables for each scenario up to +z 10 available buses as well as additional start time change dis-
tribution figures. We discuss key observations here.

Given a value of z , introducing the lexicographic minimax or minimum sum objective leads to lower average changes in absolute
start time compared to the base model, as expected. For all three objectives, the average change and the spread of the changes tend to
decrease as the number of available buses increases. As an example, Fig. 4 shows the relative frequency of absolute start time changes
for the lexicographic minimax objective applied to Scenario III for +z z, 4, and +z 8 buses.

Compared to basic minimax, the lexicographic minimax solutions demonstrate significant improvements to both equity and
efficiency in every scenario. The solutions produced by minimizing the sum tend to have a wider spread of absolute changes, with a
higher maximum change but also more schools that do not change their start time at all.

The lexicographic minimax approach should be used instead of basic minimax to improve equity in practical applications.The
choice between the lexicographic minimax and minimum sum approaches is determined by whether equity or efficiency is prioritized
in the planning process. As an example, Fig. 5 shows the relative frequency of absolute start time changes for +z 8 buses in Scenario
I. Compared to the lexicographic minimax solutions, the minimum sum solutions have significantly more schools with no start time
change at the expense of some schools’ start times changing by 30 or 35min.

5.1.3. Notes on computational efficiency
The ten instances of the base model and the 330 minimax problems (ten instances with three scenarios each considering eleven

possible values for the number of available buses) were solved to optimality without a time limit. Table 3 presents a summary of the
time taken to solve these models.

We observe that these problems are generally solvable to optimality in a short time using commercial optimization software for
instances of comparable size. Every instance of the base model and nearly every minimax problem was solved in five minutes. In five
of the six minimax cases which were not solved in five minutes, the optimal solution was found in under one minute (the last required

Table 2
Start time change results (in minutes), z buses.

Base Minimax Lex. Minimax Minimum Sum

Scen. Avg. Change Std. Dev. Avg. Change Std. Dev. Avg. Change Std. Dev. Avg. Change Std. Dev.

I: all 8:45 AM 23.80 12.59 24.57 11.88 21.07 11.81 19.77 13.17
II: all 9:20 AM 31.60 26.44 30.77 26.70 26.00 24.35 24.47 25.04
III: split times 29.67 22.54 22.57 18.31 19.17 17.28 16.90 18.74

Fig. 4. Start time change distribution, lexicographic minimax, Scenario III.
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13min and 45 s) with the vast majority of time spent on closing the optimality gap.
We also observe that lexicographic minimax solutions can be computed efficiently using the iterative algorithm (Algorithm 1).

Initial attempts to solve the lexicographic problem directly using (ILP 3) led to inconsistent solutions as expected. Thus, we used the
iterative algorithm with a time limit of five minutes per iteration. To improve efficiency and to ensure a feasible solution was found
within the time limit, we used the solution of the basic minimax problem as a warm start for the first iteration ( =j 2), and we used
the solution of the preceding iteration as a warm start for subsequent iterations. Of the 4,620 total iterations required to lexico-
graphically improve all 330 basic minimax solutions, only 766 reached the time limit.

The performance of Algorithm 1 is comparable to that of Gurobi’s built-in lexicographic multiobjective functionality. Using the
same five minute iteration time limit, 33 lexicographic improvement problems were re-solved using the built in functionality. Of
these 33 problems solved using the built-in functionality, 7 produced better solutions than Algorithm 1, 6 produced worse solutions
than Algorithm 1 produced identical solutions. On average, Algorithm 1 produced solutions 9.6% faster than the built-in function-
ality. As such, Algorithm 1 (with warm starts) can be used to produce quality solutions to the lexicographic improvement problem.

Overall, the equity-centered models we present lead to improved solutions when compared to the base model. The lexicographic
minimax approach outperforms the basic minimax model while remaining computationally tractable, and the lexicographic minimax
approach leads to more equitable solutions than minimizing the sum in absolute changes in start times.

5.2. Scenario IV: 30 schools, 100 morning and afternoon routes

To explore how these numerical and computational results hold for larger instances, we analyze a case with 30 schools serviced by
100 morning routes and 100 afternoon routes. Additionally, a strength of our time-indexed model formulations is that nonlinear
disutility functions can be implemented without requiring additional constraints; we consider such a function here.

5.2.1. Background and parameters
We consider five randomized instances of a newly constructed Scenario IV. Each instance of Scenario IV has 30 schools with a

total of 100 morning routes and 100 afternoon routes. As in Scenario I, all schools currently start at 8:45 AM and schools are
permitted to start only at five minute marks relative to the hour between 8:15 AM and 9:20 AM.

We introduce a new disutility function in this scenario. For any school n and for times m m M, [ ], the disutility associated with
changing school n’s start time from m to m is:

=
<
=
>

c
m m m m

m m
m m m m

( ) if ,
0 if ,

if .
n

m( )
1.25

Fig. 6 illustrates the disutility associated with changing a school’s current start time to each potential new start time in the
morning window.

The remaining parameters are identical to those of Scenarios I-III (see Table 1).

Fig. 5. Start time change distribution, +z 8, Scenario I.

Table 3
Summary of solve times for base and minimax model, Scenarios I-III.

Count Mean CPU Solve Time Median CPU Solve Time Max CPU Solve Time % solved in 1min % solved in 5min

Base Model 10 62.53 s 18.52 s 3min 39 s 70% 100%
Minimax 330 85.03 s 10.85 s 137min 16 s 91.5% 98.2%
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Fig. 6. Disutility function values, Scenario IV.

Fig. 7. Scenario IV disutilities, (ILP 1).

Fig. 8. Scenario IV disutilities, z buses.

Fig. 9. Scenario IV disutilities, +z 5 buses.
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5.2.2. Comparing equity-centered and efficiency-centered models
For each of the five instances, we first solve the base model (ILP 1) to minimize the number of buses required. The minimum

number of buses z required in each instance to service the 100 morning and 100 afternoon routes is 41, 41, 42, 41, and 40,
respectively. Fig. 7 shows the distribution of start time change disutilities aggregated across all five instances.

As in Scenarios I-III, only minimizing the number of buses required leads to inefficient and inequitable distributions of start time
change disutilities. For each instance, we optimize in regard to the basic minimax, lexicographic minimax, and minimum sum
objectives for z and +z 5 available buses. Fig. 8 and Fig. 9 show the distribution of start time change disutilities aggregated across
all five instances for z and +z 5 buses, respectively.

For both z and +z 5 available buses, the lexicographic minimax objective outperforms the basic minimax objective, just as in
Scenarios I-III. We observe that for z available buses, the disutility distributions for lexicographic minimax and minimum sum are
similar, with the minimum sum objective function leading to slightly more schools experiencing disutilities at either end of the
spectrum. This effect is stronger for +z 5 available buses, where minimum sum leads to more schools experiencing no start time
change disutility at the cost of more schools experiencing the highest levels of start time change disutility as compared to lexico-
graphic minimax. These observations reflect the trends observed in Scenarios I-III.

5.2.3. Notes on computational efficiency
For Scenario IV, the five instances of the base model and the ten minimax problems (z and +z 5 for each instance) were solved

to optimality. For more information on cases of this size, we also solved the minimax problem for + + +z z z1, 2, 3 and +z 4.
Table 4 presents a summary of the solve times.

We observe that the base models of this size (30 schools, 100 morning and afternoon routes) require similar computational effort
to solve as the smaller instances. While the minimax problems of this size remain tractable using commercial software, they require
significantly longer computational time than the minimax problems of smaller size (a median of 110.88 s vs. 10.85 s). For instances
which take longer to solve, much of the computational time is spent on closing the optimality gap, suggesting that future work should
prioritize developing stronger lower bounds for the minimax problem.

We again use the iterative algorithm with warm starts to solve the lexicographic minimax problem for each instance with z and
+z 5 buses. Based on the computational results of the minimax problems, we use an iteration time limit of 15min. Of the 290 total

iterations required to lexicographically improve the basic minimax solutions, only 46 reached the time limit.

5.3. Objective trade-offs and managerial implications

Previously, we fixed the number of buses z available and minimized inequity via max . We now examine the managerial im-
plications of pursuing various levels of equity in different scenarios by fixing max and minimizing z. In this analysis, we include
additional practical constraints reflecting a restriction faced by our partner school district: the maximum number of distinct school
start times in the district cannot exceed three. Let the binary variable k m( ) equal 1 if schools are permitted to start at time m and 0
otherwise. We model the additional restriction as follows:

= +
k 3

m

M
m

1

( )

(1.14)

+ …u k n N m M, [ ], { 1, , }n
m m( ) ( ) (1.15)

+ …k m M{0, 1}, { 1, , }m( ) (1.16)

Constraints (1.14) limit the total number of distinct start times to three. Constraints (1.15) ensure that schools must start at one of
the distinct start times as defined by the k m( ) variables.

For an instance, let OPT represent the solution which minimizes the number of buses required with no restriction on the changes
in start time. Let FAIR represent the solution which minimizes the number of buses required subject to the maximum absolute
change in start time across all schools being bounded above by minutes. For any solution, let f (·) represent the required number of
buses associated with the solution. Note that f (FAIR )0 is the minimum number of buses required to service the current school bell
time schedule. For every instance in every scenario, we solve for FAIR0, FAIR5, …FAIR ,10 and OPT. Fig. 10 displays the average
results for Scenario I across all ten instances.

We first observe that the price of fairness PoF(OPT, FAIR ) is large for smaller values of . The key characteristic of solutions
requiring fewer of buses is that school start and end times are spread out. However, because all schools currently start at the same
time in Scenario I, smaller values of restrict the spread of start times. At the same time, these results are favorable from an alternate

Table 4
Summary of solve times for base and minimax model.

Count Mean CPU Solve Time Median CPU Solve Time Max CPU Solve Time % solved in 5min % solved in 15min

Base Model 5 22.73 s 11.79 s 59.85 s 100% 100%
Minimax 30 252.29 s 110.88 s 32min 76.7% 96.7%
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managerial perspective. A district can equitably save a significant number of school buses with a maximum absolute change in school
start time of as little as 15min, translating to a potential annual savings of over $750,000 (based on the bus rental rates of our partner
district) with a slight change in schedule which may face lower resistance from the district’s community. The results for Scenario II,
displayed in Fig. 11, exhibit some differences.

Like Scenario I, in Scenario II the price of fairness PoF(OPT, FAIR ) is large for smaller values of . However, the price of fairness
does not decrease until = 20 min. Consider that Scenario I, where all schools current start at 8:45, allows a spread of start times
between 8:30 AM and 9:00 AM. The same = 15min in in Scenario II, a value of 15min, necessitates every school to begin between
9:05 AM and 9:20 AM because all schools currently start at 9:20 AM, the end of the allowable start time window. As such, it requires
sacrificing equity and efficiency in start time changes to achieve a significant reduction in the number of buses required. Fig. 12
displays the results for Scenario III.

The key observation is that the price of fairness PoF(OPT, FAIR ) is smaller in this scenario for all values of as the number of
buses required with the current schedule is much lower on account of the current start times being spread across the interval.
However, this implies that it is difficult to achieve a significant reduction in the number of buses while maintaining an equitable and
efficient distribution in school start time changes when school start and end times are already spread out.

Fig. 10. = …f (FAIR ), {0, 5, ,35}, Scenario I.

Fig. 11. = …f (FAIR ), {0, 5, ,65}, Scenario II.

Fig. 12. = …f (FAIR ), {0, 5, ,65}, Scenario III.

D. Banerjee and K. Smilowitz Transportation Research Part E 131 (2019) 228–246

240



6. Concluding remarks

In this paper, we explicitly consider equity as a factor when determining optimal school bell times and route schedules for public
school transportation systems. Motivated in part through a collaboration with a moderately-sized public school district, we also seek
to extend the focus on equity in public sector operations research to the school bus scheduling problem. We present a minimax
formulation for equitably reducing the disutilities associated with changing school start times. We then propose a lexicographic
minimax strategy with an iterative algorithm for improving minimax solutions.

We perform numerical studies on randomized instances based on actual data from a public school transportation system.
Quantifying disutility as the absolute change in a school’s start time, we compare the efficiency and equity of schedules produced by
the base model, by minimax, by lexicographic minimax, and by minimizing the total disutility. We find that the lexicographic model
significantly outperforms the base and minimax models, and produces more equitable solutions than simply minimizing total dis-
utility. Our numerical studies demonstrate the practical applicability of our models to improving public school transportation systems
using optimization software.

A limitation of our approach is that we do not consider route-dependent or location-dependent bus transition times between
routes. Instead, we use constant transition times due to the geographically compact nature of our collaborating school district, so the
time-indexed formulation proposed by Zeng et al. (2018) serves as an appropriate foundation for our analysis. However, the general
strategies we use to address issues of equity can be readily adapted to formulations which use exact transition times, presenting a
potential avenue for future work. Future research should also focus on developing provable bounds and heuristic algorithms for our
models, as relying on commercial optimization software may be impractical for instances significantly larger than the ones analyzed
in this paper.
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Appendix A. Afternoon scheduling constraints

Let n denote the length of the school day for school n. Let n represent the number of afternoon routes for school n. The ith

afternoon route associated with school n has a discretized length (duration) of ri n
PM
, consecutive time periods, including a constant

transition time added to each route. Let the parameter denote the minimum number of time periods after the ending time of a
school that any associated route may depart from that school, and let µ denote the maximum number of time periods after the ending
time of a school that all associated routes must depart from that school. We denote the set of potential bus departure times as

= …P p p{ , , }min max ; to prevent infeasibility, it should hold that +p M min{ }min n and + +p M max{ }max n , as well as
+p pmax min .

For the afternoon counterparts to the morning scheduling variables, define binary variables yi n
m

,
( ) for all n N i m M[ ], , [ ]n

and vn
m( ) for all …n N m p p[ ], { , , }min max n as such: =y 1i n

m
,
( ) if route i n departs at time m and 0 otherwise; =v 1n

m( ) if school n
ends at m and 0 otherwise. The following constraints implement afternoon scheduling:
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min max
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Constraints (1.7) ensure that each school is assigned to exactly one start time. Constraints (1.8) ensure that every morning route
for a given school arrives within the correct time window as defined by and µ. Constraints (1.9) set the minimum number of buses
required to be greater than or equal to the number of routes in operation during any time period, as given in Proposition 1. Con-
straints (1.10) link the otherwise independent morning and afternoon variables using n.

The following optional constraints, analogous to (1.6), require each route to be assigned to exactly one departure time:
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Appendix B. Results of start time change analysis

See Figs. B.1–B.3 and Tables B.1–B.3.

Fig. B.1. Start time change distribution, Scenario I.
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Fig. B.2. Start time change distribution, Scenario II.
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Fig. B.3. Start time change distribution, Scenario III.

Table B.1
Average and standard deviation of absolute start time changes within each instance (in minutes), Scenario I.

Minimax Lexicographic Minimax Minimum Sum

Buses Average Change Standard Deviation Average Change Standard Deviation Average Change Standard Deviation

z 24.57 11.88 21.07 11.81 19.77 13.17
+z 1 23.60 10.94 19.70 10.56 16.97 13.91
+z 2 23.13 10.60 18.10 9.41 15.53 13.89
+z 3 22.67 9.46 17.27 8.60 14.60 13.83
+z 4 21.53 8.37 16.53 8.31 13.77 13.31
+z 5 20.83 7.07 15.60 8.16 12.87 12.81
+z 6 20.10 6.62 14.50 7.64 12.17 12.58
+z 7 18.90 6.01 14.13 7.21 11.40 12.47
+z 8 18.07 5.97 13.17 7.11 10.77 12.21
+z 9 17.53 4.95 12.97 6.43 10.10 11.96
+z 10 17.17 4.51 12.40 6.14 9.50 11.58
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Table B.2
Average and standard deviation of absolute start time changes within each instance (in minutes), Scenario II.

Minimax Lexicographic Minimax Minimum Sum

Buses Average Change Standard Deviation Average Change Standard Deviation Average Change Standard Deviation

z 30.77 26.70 26.00 24.35 24.47 25.04
+z 1 27.57 25.30 22.70 22.69 19.67 23.61
+z 2 25.57 23.61 20.80 21.29 18.20 22.46
+z 3 23.87 23.36 18.43 19.87 16.67 21.04
+z 4 22.37 22.09 19.10 18.91 15.23 19.67
+z 5 22.27 21.09 15.67 17.72 14.17 19.10
+z 6 19.23 20.78 14.90 17.05 13.20 17.94
+z 7 19.37 19.43 14.97 16.47 12.50 17.23
+z 8 17.23 18.52 13.77 15.38 11.43 16.54
+z 9 16.97 17.57 12.57 14.57 10.67 15.77
+z 10 15.30 16.64 11.10 14.28 9.90 15.03

Table B.3
Average and standard deviation of absolute start time changes within each instance (in minutes), Scenario III.

Minimax Lexicographic Minimax Minimum Sum

Buses Average Change Standard Deviation Average Change Standard Deviation Average Change Standard Deviation

z 22.57 18.31 19.17 17.28 16.90 18.74
+z 1 11.13 11.82 8.57 10.66 7.53 12.30
+z 2 6.90 8.78 5.90 8.01 4.97 8.52
+z 3 6.47 7.86 4.03 6.48 3.30 6.83
+z 4 4.93 6.36 3.13 5.40 2.50 6.08
+z 5 3.63 5.27 2.23 4.56 1.77 4.94
+z 6 3.27 4.12 1.63 3.63 1.47 4.21
+z 7 2.70 3.50 1.20 2.81 1.13 3.09
+z 8 1.53 2.31 0.70 1.88 0.70 2.07
+z 9 1.20 1.63 0.47 1.25 0.47 1.25
+z 10 0.77 1.24 0.27 1.00 0.27 1.00
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