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Abstract. This paper introduces the covering path problem on a grid (CPPG) that finds the
cost-minimizing path connecting a subset of points in a grid such that each point that
needs to be covered is within a predetermined distance of a point from the chosen subset.
We leverage the geometric properties of the grid graph, which captures the road network
structure in many transportation problems, including our motivating setting of school bus
routing. As defined in this paper, the CPPG is a biobjective optimization problem com-
prising one cost term related to path length and one cost term related to stop count. We
develop a trade-off constraint, which quantifies the trade-off between path length and stop
count and provides a lower bound for the biobjective optimization problem. We introduce
simple construction techniques to provide feasible paths that match the lower bound
within a constant factor. Importantly, this solution approach uses transformations of the
general CPPG to either a discrete CPPG or continuous CPPG based on the value of the
coverage radius. For both the discrete and continuous versions, we provide fast constant-
factor approximations, thus solving the general CPPG.
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1. Introduction

School bus routing is an activity performed by school
districts across the United States, with annual costs
over $20 billion (Urban Institute Student Transporta-
tion Working Group 2017). The core subproblem in
school bus routing considers an area where children
are to be picked up by a bus. The goal is to identify bus
stops such that each child is sufficiently close to a stop
and a bus route such that the total cost/time of the bus
is minimized. Both travel and stops incur cost and
time for the bus. Our goal in this paper is to find high-
quality solutions to the subproblem quickly. This will
allow decision makers to interactively change param-
eters, such as the area assigned to a bus or the definition
of “sufficiently close,” to evaluate the extent to which
such changes impact total cost.

The covering path problem (CPP) that has been
studied in the literature captures many elements of
the core subproblem in school bus routing. The CPP is
a variant of the traveling-salesman problem (TSP), in
which the vehicle is not required to visit every point
and the path does not end at the starting point. Like
the TSP, the CPP is NP-hard on general graphs (Current
1981). We develop efficient solution methods for the
CPP when the problem is restricted to a grid graph.
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This is an important restriction that naturally arises
when routing school buses in many urban and sub-
urban settings, where the underlying road network
resembles a grid.

Definition 1 (CPP). Consider a graph G = (V,E) with
edge weights I, for e € E and node weights t, forv € V,
a coverage region R, and a coverage radius k> 0. The
CPP finds a set of stops Vi C V such that for every
point x € R, there exists v; € V7 at a distance at most k,
and the minimum cost path P connecting the nodes in
V1. Given scalars L € R and T € R and any function
C(L, T), the cost of path P is given by

Cost(P) = C(L, T) = C(Z L > tv).

ecP veVy

@)

A point v; € V; is referred to as a stop, and a path
connecting all nodes in V; is referred to as a covering
path. Point A is said to cover point B if and only if the
distance between A and B is no more than k. The two
cost terms L and T are referred to as path length and
stop count, respectively. In the CPP literature, the
coverage region R is typically a set of nodes to be
covered (which may be the set V), and the stops V; are
chosen from that node set. In our work for school bus
routing, we interpret the coverage region as the area
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in which students live and choose bus stops from a
discrete subset of nodes in the area.

This paper is motivated by a collaboration with a
public school district focused on improving service
and lowering cost for bus transportation. The un-
derlying road network for the district resembles a
grid, and our goal is to leverage this structure to ob-
tain robust transportation solutions, thus allowing
the school district to (1) employ simple strategies to
identify bus-stop locations and plan bus routes and
(2) embed these strategies and associated cost ap-
proximations in broader decision frameworks, cov-
ering decisions such as student assignments to schools.

The School Bus Routing Problem (SBRP) has been
extensively studied in the literature (e.g., Desrosiers
1980, Newton and Thomas 1969, and Park and Kim
2010). The SBRP itself is a composite of five sub-
problems: data preparation, bus-stop selection, bus-
route generation, school bell time adjustment, and
route scheduling. As noted earlier, students are often
not picked up at their homes, but, rather, are assigned
to bus stops within a set walking distance; thus, the
SBRP is studied as a combination of routing and
covering. Existing SBRP literature typically does not
specify the underlying graph structure of the road
network. The joint subproblem of bus-stop selection
and bus-route generation is modeled with integer-
programming models (Gavish and Shlifer 1979,
Desrosiers 1980, Bowerman, Hall, and Calamai 1995,
Park and Kim 2010). As the joint subproblem is NP-
hard, finding solutions can be challenging for imple-
mentation in practice. Later work designs heuristics
to tackle the computational complexity, such as ge-
netic algorithm (Diaz-Parra et al. 2012), tabu search
(Pachecoetal.2013), and randomized adaptive search
procedure (Schittekat et al. 2013). Heuristics for the
combined problem of bus-stop selection and route
generation mainly follow two strategies: the location—
allocation-routing (LAR) strategy (Bodin and Berman
1979) and the allocation-routing—location (ARL) strat-
egy (Bowerman, Hall, and Calamai 1995). The LAR
strategy sequentially selects bus stops, assigns stu-
dents to bus stops, and designs bus routes. The ARL
strategy first groups students into clusters, selects
stops and generates routes for each cluster, and then
assigns students to bus stops. These strategies solve
routing and location problems sequentially. In our
work, we aim to solve these two subproblems si-
multaneously by leveraging the grid structure of the
underlying graph. This study of the CPP in a stylized
grid setting is a first step in our analysis of the joint
problem of route design and bus-stop selection. Our
solution approach is particularly useful in a setting
where the decision maker cares about both the
number of stops and route length and wants to in-
teractively adjust the weight assigned to either when

designing routes. Our approach quickly provides a
high-quality solution to the decision maker. In the con-
clusion, we discuss next steps to use these results in a
stylized setting to address more complex settings with
multiple vehicles and other generalizations.

Motivated by the SBRP, in which students are typi-
cally located along streets and bus-stop locations are
selected from intersections, we define the following
notation. A unit grid graph, also known as a square
grid graph (Weisstein 2001), is a graph whose nodes
correspond to integer points in the plane with the
x-coordinates from 0 to m and y-coordinates from 0 to
n. Two nodes in the grid graph are connected if and
only if they are end points of an edge of distance 1.
Given that students live on streets that correspond to
edges of the grid graph and walk primarily along the
streets, we use the [; norm to measure the distance
between any two points. The [; norm is the shortest
path length between two points traveling only along
edges in the grid graph. We show in our analysis that
the grid structure leads to strong approximation re-
sults (in some cases near-optimal) for the optimiza-
tion problem with a linear objective function of the
number of stops and the route length. We define the
unit grid formally below.

Definition 2 (Unit Grid). Given m,n € N*, let D;,;; be the
set of integer points (x,y) with0 < x <mand 0 <y < n.
Let E be the set of grid edges connecting nodes (x, y) in
Dj,; with adjacent grid nodes. G = (Djy, E) defines a
m X n unit grid.

The vertices of the unit grid, V, are equivalent to the
set Djy, the set of integer points in the grid. In a unit
grid, [, =1 for e€ E and t, = 1 for v € V. We further
define D,4q. to be all points on the edges E of the grid.
Observe that D, includes not only the vertices V but
also all points on the edges E. CPPG can now be
specialized from the definition of CPP as follows:

CPPG (Covering Path Problem on a Grid). Solve CPP
given m xn unit grid G=(V,E) with R =D,4e and
V1S Dint.

In practice, it may be hard for decision makers to
provide an exact cost function C(L, T). Thus, we look
to solve the optimization problem of minimizing
C(L, T) without specifying the form of the function
C(+,-). In order to do so, we consider a related decision
version of the CPPG. By fully characterizing the de-
cision problem, we can quantify the trade-off between
the path length L and the number of stops T, thereby
efficiently solving the biobjective optimization problem.

Decision Version of CPPG. Given L, T € R, determine
if there exists a set of stops Vi and a covering path P
such that Y,epl, <L and Yyey, to < T.
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To solve the CPPG, we first show that one can re-
duce the CPPG with any coverage radius k>0 to one
of two cases: k as integer or half-integer. Recall that
the coverage region in the CPPG is the set of points on
the edges D,4q.. We show that: (1) When k is an integer,
covering D, is equivalent to covering the rectangle
D ={(x,y),0 <x <m,0 <y < n} with coverage radius
k; and (2) when k is a half-integer, covering D,z is
equivalent to covering integer points D;,; with cov-
erage radius k — 1. The transformation then leads to
two variations of the CPPG: the continuous CPPG, in
which we cover all points in the rectangular grid D,
and the discrete CPPG, in which we cover all inte-
ger points in Djy; (see Figure 1 for illustration). The
continuous CPPG falls into a stream of continuous
facility location and routing models, which have been
shown to offer computational simplicity compared
with their discrete counterparts. We show that in-
sights from the continuous CPPG can be used for the
discrete CPPG, which can be viewed as a CPP on a
grid graph in which only a finite number of points
must be covered. We develop efficient methods to
find feasible, high-quality solutions for both varia-
tions, thus solving the original problem.

We solve both covering path problem variants in a
biobjective setting; that is, we minimize a function of
the path length L and stop count T. Similar covering
tour problems have been studied in the literature:
Jozefowiez, Semet, and Talbi (2007) seek to minimize
two objectives—tour length and coverage radius—
and Tricoire, Graf, and Gutjahr (2012) study the trade-
off between fixed cost and uncovered demand in a
stochastic setting by characterizing the Pareto fron-
tier. We solve the biobjective problems by identify-
ing the set of all nondominated solutions (or Pareto
frontier) with an inequality that quantifies the trade-
off between path length and stop count. Our approach
allows us to find high-quality solutions quickly, which
is necessary in an interactive setting where the deci-
sion maker evaluates different weights on length and
number of stops. By high-quality, we mean solutions

Figure 1. (Color online) Solution Approach for CPPG

CPPG with coverage radius k

half-integer

Solve discrete
CPPG with k — 1

2

Solve continuous
CPPG with k

that are within a fixed ratio of the optimal solution. By
quickly, we mean polynomial time.

The remainder of this paper is organized as follows.
In Section 2, we review related work on the CPP and
optimization problems on grid graphs. In Section 3,
we establish the transformations needed for the ap-
proach in Figure 1 and formally introduce the con-
tinuous and discrete CPPG. In Section 4, we present
a relaxation of the continuous CPPG that leads to
foundational results, which are used in Sections 5
and 6 for the continuous and discrete CPPG, re-
spectively. Finally, we conclude in Section 7 with next
steps to apply these results to the SBRP.

2. Literature Review
We review two relevant streams of related research:
covering tour and path problems and optimization
problems on grid graphs.

2.1. Covering Tour and Path Problems
Current (1981) introduces the CPP and shows its NP-
hardness from a reduction of the TSP when the cov-
erage radius equals to zero. The covering tour problem
(CTP) is similar to the CPP, requiring the path to start
and end at the same point. The CPP can be reduced to
the CTP by adding a dummy node that is connected to
all other nodes with zero cost but not covered by any
other nodes. Existing work formulates the CTP as an
integer linear program (ILP), beginning with Current
and Schilling (1989), and builds corresponding solu-
tion approaches. Gendreau, Laporte, and Semet (1997)
study the polyhedron of the ILP and provide a branch-
and-cut algorithm. Hachicha et al. (2000) present an
ILP formulation and heuristics for the multivehi-
cle CTP. The CTP can also be treated as a general-
ized traveling-salesman problem (GTSP) (Fischetti,
Gonzalez, and Toth 1997): Given several sets of nodes,
the GTSP seeks to determine a shortest tour pass-
ing at least once through each set. Recent work
continues on designing solution approaches for the
CTP and multivehicle CTP, such as branch and price
(Jozefowiez 2014), column generation (Murakami
2014), and adaptive large neighborhood search
(Vargas, Jozefowiez, and Ngueveu 2015). The CTP
has also been studied in the biobjective setting.
Jozefowiez, Semet, and Talbi (2007) introduce the
biobjective CTP, which aims to minimize both the
tour length and the coverage radius. Tricoire, Graf,
and Gutjahr (2012) study the stochastic biobjective
CTP and discuss the fundamental trade-off between
fixed cost and uncovered demand. Different from pre-
vious work, we develop polynomial solution methods
that exploit the underlying grid structure to obtain
provable bounds.

Combining facility location and route design has
also been broadly studied in other related problems.
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The location-routing problem (LRP) pays special at-
tention to the underlying issue of vehicle routing (see
Albareda-Sambola 2015, Drexl and Schneider 2015,
and Prodhon and Prins 2014 for reviews). There have
been several different formulations of the capacitated
LRPinrecentwork (Contardo, Cordreau, and Gendron
2013a, b, Cherkesly, Rancourt, and Smilowitz 2017),
where the coverage distance is relaxed and the dis-
tance to nodes not on a path becomes a cost to min-
imize. In the ringstar problem (Labbé et al. 2004), the
objective function combines location and routing
costs with a linear combination of path costand access
cost from assigning nodes to facilities.

Recently, attention has been given to continuous
facility-location problems with access costs. Carlsson
and Jia (2014) introduce a problem that is related to
our work. They consider facility location with back-
bone network costs, where the objective function is a
linear combination of fixed costs from installing fa-
cilities, backbone network costs from connecting fa-
cilities, and access costs from connecting customers to
facilities. The fixed costs in Carlsson and Jia (2014) are
equivalent to our fixed costs of stops, and the back-
bone network is equivalent to our covering path. In
our problem, the access cost is modeled as a coverage
constraint, where each stop covers points within a
given distance, consistent with how the problem is
viewed by the school district. Our use of the [; norm to
calculate distance is also consistent with the practical
problem. In this setting, we develop a solution ap-
proach that provides high-quality approximation so-
lutions when the objective function is increasing and
convex. Our solution approach characterizes the bound-
ary of all feasible solutions and uses this character-
ization to solve the optimization problem.

2.2. Optimization on Grid Graphs

Some of the most fundamental combinatorial opti-
mization problems have been well studied on grid
graphs and other graphs with special metrics and
topological structures. For the Hamiltonian Cycle
Problem, Itai, Papadimitriou, and Szwarcfiter (1982)
prove its NP-hardness on general grid graphs, and
Umans and Lenhart (1997) show that the problem can
be solved in polynomial time on a simple grid graph
(e.g., a grid without holes). For the TSP, Arora (1998)
provides a polynomial-time approximation scheme
for problems on grid graphs, but the algorithm is com-
putationally challenging for large instances. Recent
advances in the TSP also indicate potential benefits
of working on structured graphs. Arkin, Fekete, and
Mitchell (2000) give a &-approximation polynomial-
time algorithm for the TSP on a simple grid graph.
Gharan, Saberi, and Singh (2011) provide a (- ¢)-
approximation polynomial-time algorithm for the
graph TSP, where edge cost is measured by the

shortest path length on a unit graph. Their algo-
rithm follows the structure of Christofides heuristic
by cleverly choosing a random spanning tree (not
always the minimum spanning tree) in the first step.
The results improve the 3-approximation due to
Christofides (1976) for this TSP variant. Sebo and
Vygen (2012) later improve the approximation ratio
to  together with a derandomized algorithm using
forest representations of hypergraphs. Savas, Batta,
and Nagi (2002) study the facility location problem
with barriers using the /; norm to measure distance.
In general, the grid assumption provides a unified
geometric structure with fewer degrees of freedom.
Such structures can be easier to analyze with the help
of geometric and combinatorial techniques. Motivated
by these results, our paper looks to leverage the grid
structure to solve the CPP.

Our contribution in this paper is to provide a
polynomial algorithm for the CPPG that exploits the
underlying grid structure to obtain high-quality so-
lutions for an objective function that accounts for both
the number of stops and the path length. This bio-
bjective scenario naturally arises as the core problem
in school bus routing.

3. Characterizing CPPG Problem Settings
In this section, we present preliminaries for our CPPG
solution approach in Figure 1. On a unit grid graph,
when k<1, CPPG has a trivial solution where all
nodes in V are stops; that is, V1 = V. Thus, for the rest
of the paper, we assume that k > 1. We show that one
can round the coverage radius k down to the nearest
integer or half-integer and maintain the coverage
properties. When this rounding results in an integer
value, the CPPG can be solved with the continuous
CPPG, and when the rounding results in a half-
integer value, the CPPG can be solved with the dis-
crete CPPG.

3.1. Rounding the Coverage Radius

Recall the rectangular region D = {(x,y)|0 <x <n,0 <
y < m}in R? with a grid graph with the set of points on
the edges Degee = {(x,y)|(x,y) € D,x € Z or y € Z} and
integer point set Dy, = {(x,y)0<x<n,0<y<m,x,
y € Z}. Without loss of generality, we assume m >
n>0. The following proposition shows that, to solve
the CPPG, it is sufficient to model k as either integer
or half-integer.

Proposition 1. In the CPPG, a covering path with coverage
[2K]

radius k is also a covering path with coverage radius 5-.
Proof of Proposition 1. Let V; C D;,; be the set of stops
in a covering path with coverage radius k. Given two
points x and F, let ||x — F||; represent the [; distance
between x and F.
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For each point x € Degq., let

dist(x) = m1n||x F|;

be the distance from x to its nearest stop. All points
in Degq are covered with radius k if and only if
maxyep,q, {dist(x)} < k. We prove that the value of
maxyep,,, {dist(x)} is an integer or a half-integer.
Therefore, maXyep,, {dist(x)} < szJ

Leta,b € D;,; betwo Connected integer points in the
grid graph. Given that all stops are located at integer
points, dist(a) and dist(b) must be integers. Because a
and b are connected, |dist(a) — dist(b)| <|la - bll; =1,
which leads to three cases when we consider E, the
edge connecting a and b.

Case 1. dist(a) = dist(b) = c € Z. For x € ab the func-
tion dist(x) takes maximum value of ¢ i) (which is a

half-integer) at the midpoint of edge ab.
Case 2. dist(a) — dist(b) = 1. For x € %, the function
—

dist(x) is linear on edge ab and takes maximum value
at point a.
Case 3. dist(a) — dist(b) = —1. This case is symmetric
to Case 2, and dist(-) takes maximum value at point b.
In summary, the maximum function value of dist(-)
is either an integer or a half-integer on each edge.
Therefore, the coverage property remains unchanged

LZkJ

after rounding k down to m

Propos1t10n 1 states that the coverage radius k can
be reduced to 2 2 | which is the largest 1nteger or half-
integer less than or equal to k. When Lz lis an integer,
we expand the coverage region from Dedge to the full
rectangle D, so that the problem falls into the stream
of continuous facility location; when @ is a half-
integer, we restrict the coverage reglon to integer
points Dj,;, and the problem can be viewed as a CPP on
a grid graph in which we only cover a finite number of
points. By replacing D4, with D and D;,;, we are able
to obtain tighter approximation results for both the
optimization and decision versions of the CPPG.

3.2. Solving the CPPG with Integer Coverage Radius
As a first step, we show that when the coverage ra-
dius k is an integer, solving the CPPG with coverage
region D, is equivalent to solving the CPPG with
coverage region D.

Proposition 2. Given a positive integer k, covering all
points on the edges, D, with radius k is equivalent to
covering all points in the rectangle, D, with the same radius.

Proof of Proposition 2. Given that D,y C D, covering
all points in D with radius k naturally covers all points
in Degge with radius k. To prove the other direction,
it suffices to show that if dist(x) <k Vx € Dygq, then
dist(x) <k Vx € D. We call y € D a midinteger point if

one of its coordinates is an integer and the other a half-
integer; that is, y is the midpoint of two integer points
with distance 1. Given x € D, let y, € D be the closest
midinteger point to x. We have ||x — y,||; < 1. Because y
is a midinteger point, dist(y,) must be a half-integer.
Together with the fact that y, € D,gq., we have dist(y,) <
k — 1. From the tr1angle inequality, dist(x) < dist(y,) +
llx — yll; < (k—1)+3 <k. Thus, all points in the rect-
angle D are covered with radius k. O

With Proposition 2, when k is an integer, we solve
the CPPG by defining an equivalent problem called
the continuous CPPG, where the coverage region is
expanded to the rectangle D.

C-CPPG (Continuous CPPG). Solve CPP given an m X
n unit grid G = (V,E) with R = D and V7 C Djy.

3.3. Solving the CPPG with Half-Integer

Coverage Radius
When the coverage radius k is a half-integer, we show
that solving the CPPG with coverage region D,g, is
equivalent to solving the CPPG with coverage region
Dy, the set of integer points.

Proposition 3. Given a half-integer k, covering all points in
the edges, Deaq., with radius k is equivalent to covering the
integer points, Dy, with radius k — 1.

Proof of Proposition 3. For any integer point z € Dy,
dist(z) is an integer less than or equal to k. Because k is
a half-integer, dist(z) < k — % For any x € D, let z, be
the nearest integer point to x. From the triangle in-
equality, dist(x) < dist(zy) +|1x — zll; < (k—1) +1 =k. Given
that all x € D;;; are within distance k—— of stops all xe
D.gqe must be within distance k of stops ]

With Proposition 3, when k is a half-integer, we
solve the CPPG by defining an equivalent problem
called the discrete CPPG, where the coverage region is
restricted to the integer points Djy, equivalent to the
node set V.

D-CPPG (Discrete CPPG). Solve CPP given an m X n
unit grid G = (V, E) with R = Djyy and V7 C Djps.

3.4. A Relaxation of the C-CPPG

To develop solution approaches for the C-CPPG and
D-CPPG, we define a relaxation of the C-CPPG, RC-
CPPG, where the set of stops V7 can be selected from
all points in D (rather than Dj,;). The three key ele-
ments in the definition of each problem we study in
the paper (potential stop locations, coverage region,
and coverage radius) are presented in Table 1. Note
in Table 1 that choosing stop locations from the set
of integers D, is equivalent to choosing from the
node set V in the unit grid.
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Table 1. Differences in CPPG Problem Settings

Setting /problem CPPG C-CPPG D-CPPG RC-CPPG
Potential stop locations  Djy; Dipy Di D
Coverage region Degge D Dt D
Coverage radius k>0  keN* ke N* k>0

RC-CPPG (A Relaxation of the C-CPPG). Solve CPP
given an mxn unit grid G=(V,E) with R=D
and V; C D.

In Section 4, we show that the optimization prob-
lem defined for the RC-CPPG can be solved to near-
optimality. The continuity in the relaxed problem
(both in potential stop locations and coverage re-
gion) allows for more accurate analysis and tighter
bounds for the optimization and decision problems.
The analysis approach developed for the RC-CPPG is
applied to the C-CPPG in Section 5 and the D-CPPG
in Section 6 to obtain tight bounds.

4. Analysis of the RC-CPPG

The RC-CPPG falls into the regime of continuous
facility location (Daganzo and Newell 1986). Carlsson
and Jia (2014) study a similar problem of finding a
minimum cost path that covers a convex polygon. The
objective function in Carlsson and Jia (2014) is a linear
combination of fixed cost, path cost, and access cost.
Both Carlsson and Jia (2014) and our work handle
the continuity of the coverage region with combina-
torial and geometric approaches. Although our pa-
per only considers covering a rectangle with minimum
;fixed cost and path cost, we obtain stronger approx-
imation results (in some settings near-optimal) by
leveraging the structure of the I; norm and the
grid graph.

The remainder of this section is organized as fol-
lows. We introduce the trade-off constraint, which
quantifies the trade-off between the path length L and
number of stops T and provides lower bounds for the
set of feasible solutions to the optimization problem.
We then construct a family of feasible paths called
“up-and-down paths” that provide an upper bound
that matches the lower bound obtained from the
trade-off constraint. Finally, we present a polynomial
algorithm that solves the optimization problem with
a linear objective function in a near-optimal fashion.
The proof techniques and results in this section are
used in Sections 5 and 6 with slight changes.

4.1. Trade-Off Constraint for the RC-CPPG

We show in this section that one cannot minimize
path length L and stop count T simultaneously in the
biobjective CPPG. To minimize stop count (Corollary 1),
the overlap in coverage region for consecutive stops
is minimized, resulting in longer path lengths. To
minimize path length (Corollary 2), traversals across

theregion are minimized, which increases the overlap
of coverage regions, resulting in more stops.

In the RC-CPPG and other CPPG variants, the
parameter pair (L, T) is feasible if there exists a cov-
ering path with at most T stops and path length at
most L. The set of all feasible pairs forms the feasible
region. Note that if (L, T) is a feasible pair, then both
(L,T+1) and (L+AL,T) are feasible pairs, where
AL > 0. We explore the functional form of the trade-off
between L and T to characterize the boundary of the
feasible region. We define a trade-off function and use
this function to solve the optimization version of the
RC-CPPG. Our analysis of the boundary in the form
of a trade-off between path length and stop count uses
two functions based on L and T:

e the average distance between consecutive stops
on a path of length L with T stops, d = 7. Intuitively,
when d is large, the overlap between regions covered
by consecutive stops is small, which is associated
with fewer stops.

o f(d) =d(2k —% represents the maximum area of
the region covered by a stop that is not covered by the
previous stop on the path.

The function f(-) is an approximate measure of the
area of the unique coverage region for consecutive
stops. To minimize the number of stops T, one strives
to maximize this area. Thus, this function plays an
important role in the trade-off analysis governed by
the choice of L and T through d = 7.

We show the geometric interpretation of function
f(-) in Figure 2. The region covered by any stop is a
diamond under the [; norm. If two consecutive stops
F;and F;;1 are separated by distance d, f(d) is an upper
bound of the area of the region covered by F;,; but
not F; (shaded region in Figure 2). Therefore, f(d) can
be interpreted as the maximum area covered by stop
Fi+1 but not by the union of stops with lower index.
If d> 2k, then F; and F;;; serve disjoint regions and

Figure 2. Geometric Interpretation of Function f(-)

Size of shaded region< f(d)

dist(F, Fiuy) = d
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f(d) = 2k?, which is the size of the diamond region
covered by Fi.i.

Theorem 1 characterizes the trade-off between L
and T.

Theorem 1 (Trade-Off Constraint for the RC-CPPG). If
(L, T) is a feasible pair for the RC-CPPG with T >1, then

L
(T-1)f (ﬁ) >N -2k  (trade-off constraint)

where f(-) is a function of the average distance between
consecutive stops, d, defined as

dy .
) - {d(Zk—E) if d e (0,2K] -
242 if d € (2K, o),

and N = mn is the area of rectangle D.

Moreover, when % < 2k (which is shown in Section 4.3
to hold for an optimal path), the trade-off constraint is
equivalent to

L2 ’
2k, — ——— > N — 2k*“.
k T-1 > N -2k (3)

Proof of Theorem 1. Let F; — F, —--- — Fr be a covering
path, where {F;}]; is the set of stops. Denote by d; the
distance between F; and Fi;;. The total path length is
L= ZiT:‘f d;. Let S; be the region covered by F; and |S;|
its area. Note that N < |UL, S| < |S1]+ 151 [Sii1 — Sil-
We first show that |S;11 — S;| < f(d;) through the fol-
lowing lemma.

Lemma 1. For k>0 and (a,b) € R?, let B((a,b), k) =
{(x, )llx —al + [y — b] < k} be the diamond region covered
by (a,b) € R? with radius k. For p,q € R,

IB((0,0), k) N B((Ip| + Iq1, 0), k)|
< [B((0,0), k) N B((p, q), k)!. 4)

Proof of Lemma 1. Without loss of generality, we as-
sume that p > g > 0 [else, we replace (p, q) with (|p, |9])
and (|p|, |g]) with (], [p|) if necessary; neither operation
changes [B((0,0),k) N B((p, q), k). We now show that
B((0,0), k) N B((Ipl + lg1,0), k) € B((0,0), k) N B((p, 9), k),

©)
and therefore prove inequality (4).

Because p > g >0, |p| + |9l = p + q. For (x1,y1) € B((0,
0),k) NB((p + g,0), k), we show that (x1,1) € B((p, 9), k)
and therefore (x1,y1) € B((0,0), k) N B((p, 9), k).

Ifx; <p, then|x; —pl+y1 =gl < (p —x1) + (g + [y1]) <
1 —p —ql+nl <k.

Ifx; >p, then|x; —pl+[y1 —ql < (x1 —=p) + (@ + [y1]) =
(1 + i) + (g =p) < Pl +[nl <k

Therefore, [x1 —p|+|y1 —gl <k and (x1,y1) € ]B((p, q),k).
Thus, (5) follows, implying (4). O

When d; is fixed, Lemma 1 implies that the most
efficient way to minimize |S; N Si11] is to locate F; and
Fiyq either vertically or horizontally within the grid.

From inequality (4), |S;N Si+1| must be at least
[B((0,0), k) N B((d;, 0), k)|. Together with the fact that
|Si+1] = 2k%, we have,

|Si+1 = Sil = [Sis1] = 1Si N Sz
< 2k* - |B((0,0),k) N B((d;, 0), k). (6)

For 0 < d; <2k, B((0,0),k) N B((d;,0),k) is a diamond
region centered at (%,0) of radius k—% with area
2(k — %)2. With f(d;) defined in (2), we obtain

B((0,0), k) N B((d;, 0), k)|
di

—)2= 2k* — d; (Zk - dE) = 2k* — f(d)).

-2(k-5

When d; > 2k, [B((0, 0), k) N B((d;, 0), )| = 0. Thus,
f(di) = 2k*.

Inequality (6) is then equivalent to |Si1 — Si| < f(d;).
We thus obtain

T-1 T-1
N <[S1] + D181 = Sil <2k + > f(dy). 7)

i=1 i=1
Because f(-) is a concave function [see (2)], we have

T-1
N -2k* < > f(dy)
i=1

s5td; .
<(T-1)f ﬁ (from the concavity of f(-))
L
=(T- 1)f(ﬁ)- 8)
Note that if
L
<2k,

- 2f{rSg) = -0 5 2 -

L2

=2kL AT-1)

In this case, the trade-off constraint is equivalent to
2kL —2(%—11)2 N —2k?%. Thus, (3) follows. O

Theorem 1 provides a lower bound on the feasible
region for L and T, which we use to show that the
feasible paths defined in Section 4.2 are near-optimal.
We show that the trade-off constraint is almost tight
in the sense that, given a pair (L, T) that satisfies the
trade-off constraint at equality, we can always find a
feasible pair (L, T”), where Lis close to L’ and T is close
toT".
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4.2. Near-Optimal Paths

We define a group of paths called “up-and-down
paths.” One can consider the up-and-down path as
aspecial case of the swath path (Daganzo 1984), which
is shown to be near-optimal for the TSP in zones of
different shapes. In defining an up-and-down path, we
use the term “traversal” to represent the vertical line
connecting points (s,0) and (s,m). An up-and-down
path connects a set of traversals, and the separation
between consecutive traversals is a function of d, as in
Definition 3. Once the path is defined, stops are lo-
cated as described in Definition 3.

Definition 3 (Type-d Up-and-Down Path). For d € (0, 2k],
define r = 2k — 4. In the RC-CPPG, a type-d up-and-
down path connects the following points sequentially
(as shown in Figure 3):

0,0) = (0,m) — (r,m) — (r,0) = (2r,0) — (2r,m)
— (Br,m) — (3r,0) — ---.

For an odd traversal connecting (2ir, 0) to (2ir, m) for
i=0,1,---(i < 3), we establish stops at (2ir, jd) for j =
0,1,--- for jd < m. For an even traversal connecting
((2i+1)r,m) to ((2i +1)r,0) for i=0,1,---(i < ), we
establish stops at ((2i + 1)r,jd +%) for j=0,1,--- for
jd +4 < m.Finally, we establish a stop at point (-, m) for
each traversal to ensure coverage (which may not
always be necessary, as discussed in the proof of
Proposition 4).

Figure 3 illustrates a type-d up-and-down path where
the black dots are the locations of selected stops. The
points (x,y), (xu, yn), (x;, y;) are used in the proof of
Proposition 4.

Proposition 4 shows the feasibility of the up-and-
down path, and Proposition 5 computes the corre-
sponding costs.

Figure 3. Up-and-Down Path for the RC-CPPG

(0,m) (rsm) (2r:m) (n.m)
' .E ....... : .
N s | T )
® E . (1) .c:l'hlyh) . r'S
‘ ,,,,,, ‘ ,,,,,,,,,,,,
& S S R - . o S .
I 0 L U

e - A ®

T ]

Lg- i

Proposition 4 (Feasibility of the Up-and-Down Path). For
any point (x,y) € D, there exists a stop that covers (x,y) ona
type-d up-and-down path.

Proof of Proposition 4. Assume that (x, y) lies between
traversals i and i+ 1. Let (x;,y;,) be the highest stop
on these two traversals with y;, <y and (x;, ;) be the
lowest stop on these two traversals with y; >y (see
Figure 3 for illustration). From the alternating pattern
of stop locations, we can pick (x;,y,) and (x;,1;) such
that they are on adjacent traversals. Because the sep-
aration between traversals i and i + 1 is at most 2k — 4
(equal to 2k — 4 except for the rightmost one), we have
[xy — x)| < 2k —4. With the alternating pattern of stop
locations on traversals i and i + 1, we have |y, — y)| <4.

Because y, <y < y; and x is always between x;, and
x;, we have

G, y) = G, ymlly + 11Cx, ) = Go, yolly

d d
= WG = Gl < (26 -5) +5 = 2
This implies that (xy, y,) or (x, 1) (and possibly both)
covers (x,y). O

Proposition 5 (Cost of Up-and-Down Path for the RC-
CPPG). Ford € (0,2k], the path length of a type-d up-and-
down path is at most 3"+ 3m and the stop count is at
most (ﬁ+2)(§+2). As d — 0, the path length ap-
proaches 5t + 3m = Tt + O(m); if d = 2k, the stop count is
at most (} +2)(3; +2) = 55 + O(m).

Proof of Proposition 5. In a type-d up-and-down path,
the separation between consecutive traversals (except
the rightmost one) is 2k — 4, yielding at most 575 +2
traversals. Two parts contribute to the path length:
length from the traversals and length from traversal
connections. The first part is bounded by (%75 + 2)m,
and the second part is at most n. Because m >n,
the total path length is at most (z'5; +2)m+n <

mn
Sedn T 3m.

The distance between consecutive stops on one tra-
versal is d (except for the topmost one). Given that the
number of stops on a single traversal is at most ’f + 2,
the total stop count is at most (ﬁ +2)%+2). o

Theorem 2 (Tightness Result for the RC-CPPG). In the
RC-CPPG, for any (L,T) satisfying the trade-off con-
straint at equality, there exists a feasible up-and-down path
of length L’ with T’ stops such that

L' —L < 3m+ 2k, )

and

T 2k? 4k\2
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Note that when m, n are large, (9) and (10) suggest
thatbothX and I can be arbitrarily close to 1. We show
in Section 4.3 how this claim can be used to obtain a
near-optimal solution for the optimization problem.

Proof of Theorem 2. We discuss two cases based on the
value of d: d < 2k and d > 2k. When d < 2k, we show that
a type-d up-and-down path is near-optimal, and when
d > 2k, a type-2k up—and-down path is near-optimal.

Case 1. d < 2k. If d = 7= € (0, 2k], the trade-off con-
straint at equality is (T 1)f(T_1) =N -2k>. We can
rewrite L and T as functions of d,

N — 2k? N - 2k?
T=Td)= @ +1=d(2k—d/2)+1 (from (2))
and
N — 2k?

Consider a type-d up-and-down path and let L and T”
be the path length and stop count. From Proposition 5,
we have

(N —2k?) + 2k

+3m=w+3m

2 2
2k —d/2
< L(d) + 3m + 2k. (11)

< L(d) +3m +

For stop count, from Proposition 5, we know

s (Zk—nd/2+2)(%+2)

. n 2(2k — d/2) m 2d
_Zk—d/2(1+ n )d(1+m)

= k- d/Z)( +ik)( )

<T(d)(1+N 2k2)(1 )( )

(recall that d < 2k and m > n)

) (12)

= T(d)(l + N 2k2)

Case 2. d>2k. If d =& >2k, from the trade-off
constraint, we have

N - 2k?

T>———+1=T(2k),L > 2k(T — 1) > L(2k).
o (26), L2 (T - 1) 2 L(2K)
From the analysis of Case 1, the cost of a type-2k up-
and-down path satisfies (9) and (10) for L = L(2k) and
T = T(2k). Because we are only increasing L and T in
Case 2, (9) and (10) still hold when d>2k. O

4.3. Optimization Problem for the RC-CPPG

The optimization version of the CPPG finds a feasi-
ble parameter pair (L, T) that minimizes the objective
function C(L,T). This is equivalent to minimizing
C(L, T) over the feasible region defined by the trade-
off constraint. Lemma 2 guarantees the convexity of
the feasible region, where the cost function C(-, ) is
increasing and convex.

Lemma 2. For given N and k, the trade-off constraint
(T - 1)f(ﬁ) > N — 2k? defines a convex region. O

Proof of Lemma 2. Because f(:) is concave, it is the
minimum of a set of linear functions; that is, f(d) =
min;{a;d + b;}. Therefore, the trade-off constraint is
equivalent to min;{a;L + b;(T — 1)} > N — 2k*. Note that
a;L +bi(T — 1) > N — 2k? defines a halfspace in R? for
each i. Thus, (T — 1)f(75) > N — 2k?, which is the in-
tersection of halfspaces, must be convex. O

Given an increasing and convex function C(L,T),
consider the following subproblem:

minimize C(L,T)

subject to (T - Df(Tf 1) > N — 2k

T>2,L>0. (13)

The problem minimizes a convex function over a
convex set; therefore, it can be solved in polynomial
time. Let (L*, T*) be an optimal solution to the sub-
problem and d* =min{;-5, 2k}, with a corresponding
type-d* up-and-down path. Theorem 3 provides a
theoretical guarantee of the cost of up-and-down
path for the case where C(L, T) is linear.

Theorem 3. If C(L,T) = aL + BT with a, >0 and m >
n > 1% for ¢ € (0,1), a type-d* up-and-down path provides a
(1 + &)-approximation solution for the RC-CPPG.

Proof of Theorem 3. Let (L*, T*) be an optimal solution
to subproblem (13). Then, aL* + BT* is a lower bound
for the optimal function value. Because (L*, T*) satisfies
the trade-off constraint at equality, from Theorem 2, we
know there is a feasible pair (L', T") such that L’ — L* <
3m+2k and I < (1 + &)1 + %72,
From (3) we have 2kL* — ;L

>N-2k% and L* >

A AT-1) =
N2E — mn _ k. Therefore,
L_’ <14 3m + 2k
L~ L
2k
<
1+ 3Bm+ 2k)( 2k2)
<1 +3m7+(since n > 16k/¢)
- 8m/e —k -

5m
< — < -,
_1+7m/€_1+e (14)
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From Theorem 2, we have

T,< 1+ 2 1+4k2
T N —2k? n

2k? &E\2
256k2 /&2 — 2k2) (1 * Z)

s(1+82)(1+8)231+s.

$(1+

127)" 74 15)

Thus, al’ + BT’ is at most (1 + ¢) times the optimal
solution because both £ and L are at most 1 +¢. o

With Theorems 1 and 2, we are able to solve two
special cases where the objective only depends on one
of the two costs; thatis, C(L, T) = C(L)or C(L, T) = C(T).

Corollary 1 (Minimum path length in the RC-CPPG). If
C(L,T) = C(L), the optimal solution is achieved with L* =
2+ O(m).

Let (L, T) be a feasible pair. If z&- < 2k, inequality (3)
implies L > N-22 = Nk 1f

2k 2k
L
T—1 > 2k,
N-2k> N N

We can construct a type-d up-and-down path that
achieves this bound when d — 0 (see Proposition 5).

Corollary 2 (Minimum stop count in the RC-CPPG). If
C(L,T) = C(T), the optimal solution is achieved with T* =
2=+ O(m).

Because f(d) < 2k? for all d>0, we know from the
trade-off constraint that

N — 2k? N — 2k? N
1> +1=

= I T

(16)

We can construct a type-2k up-and-down path that
achieves the bound 25 + O(1m) (see Proposition 5).

The optimal paths to minimize stop count and path
length follow the same up-and-down pattern with
different parameters. Note that we cannot minimize
path length and stop count simultaneously: The path-
length-minimizing path aims to minimize traversals,
which requires more stops, whereas the stop-count-
minimizing path forms a tessellation, which decreases
the separation between traversals (r = 2k — 9), thus in-
creasing path length. The structure of the optimal
paths also coincides with that of the optimal solutions
in Carlsson and Jia (2014) when the access cost is
measured by the /; norm.

In summary, we introduce a trade-off constraint
to quantify the trade-off between path length L and

stop count T in a covering path for the RC-CPPG. We
construct a family of feasible paths that traverse the
rectangle in an up-and-down pattern. For the opti-
mization problem, we show the costs of the up-and-
down paths match the lower bound derived from the
trade-off constraint. The optimal solution can be found
quickly through a simple algorithm based on a convex
relaxation of the optimization problem. This simple
approach used to solve the RC-CPPG is extended in
Sections 5 and 6 to solve the C-CPPG and D-CPPG,
respectively. With Proposition 1, this then gives a
complete solution approach to the CPPG.

5. Analysis of the C-CPPG

In this section, we focus on the C-CPPG where the
coverage radius k is an integer and the rectangle D is
covered by stops selected from Dj,;. The C-CPPG is a
special case of the RC-CPPG, where the stop locations are
chosen from D;,,; rather than D. Therefore, the feasible
region in the C-CPPG is a subset of that in the RC-
CPPG, and the trade-off constraint for the RC-CPPG
is valid for the C-CPPG. We strengthen the trade-off
constraint to provide a tighter lower bound for the
feasible region in the C-CPPG. We then generalize the
up-and-down path by mixing two types of up-and-
down paths. We show that the costs of the generalized
paths match the tighter lower bound within a constant
factor. Finally, we present a constant-factor approxima-
tion algorithm for solving the optimization problem with
a linear objective function. Because the results follow
directly from those in Section 4, we present proofs in the
online appendix and highlight the differences here.

5.1. Stronger Trade-Off Constraint for the C-CPPG
Given that stop locations are restricted to integer
points, the distance between consecutive stops d must
be integer. Hence, we strengthen f(-) with a piecewise-
linear function f;p_c(:) which connects all points on
f(-) with integer input values; that is,

frp—c(d)
t+1-dft)+d-t)ft+1) ifdel[tt+1),
= te[2k—-1];
2k? if d > 2k.
(17)

Essentially, fig-c(-) is the piecewise-linear function
connecting

(Lf(1) = (2f2) = -+ = (2k,f(2k)) — (c0,f(2K)).
(18)

Because fip-c(d) = f(d) when d is integer, fip_c(-) also
represents the maximum area of the region covered
by a stop that is not covered by previous stops. From
(2), f(-) is a concave function. Therefore, fip_c(-) must
be a concave function satisfying fiz_c(-) < f(-). This
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implies that constraint (19) is stronger than the trade-
off constraint for the RC-CPPG.

Theorem 4 (Trade-Off Constraint for the C-CPPG). In the
C-CPPG, if (L, T) is a feasible pair with T >1, then
L
(T = 1)fip—c (T - 1) > N - 2k2. (19)

Moreover, the boundary of (19), (T — 1) fip—c(75) =N —
2k? is a polyline connecting

NN NN (NN
(ﬂn?mﬂj’g&f&)"*"<ovm)*
<= (e ) = [ 7020) @)

in the (L, T) plane, where N* = N — 2k?.

Compared with Theorem 1, we replace the function
f(-) with fip_c(*) to strengthen the trade-off constraint.
The boundary of the feasible region in the C-CPPG,
defined by (20), connects several points on (3). For
both the trade-off constraint and the boundary of the
feasible region, we replace a smooth function with
a piecewise-linear one. Lemma 3 establishes a basic
property of the piecewise-linear function, which is
useful in the study of the boundary of (19).

Lemma 3. Let O0<a;< -+ <a,<da,,1 =00 and 0<b;
< -+ <by = bys1 be nonnegative increasing sequences. Let
Q(:) be a piecewise-linear function defined on [a;, ) cor-
responding to the polyline connecting (a1,b1) — (a2, bp) —
oo = (ay, by) = (@ns1, bpir). If () is a concave function,
for any constant C>0,Y - g(¥) = C is a polyline connecting
the following points

(a1C C) B (azc C) o (a,,c C)

bl ’E bZ ,b2 bn ’bn
an+1c C )

o (At ©) 21
(bn+1 bn+1 ( )

Moreover, Yg(%) is a convex function and (21) corre-
sponds to a convex piecewise-linear function.

For the boundary of (19), note that fig_c(-) is a
piecewise-linear concave function [derived from the
concavity of f(-)]. From Lemma 3 and (18), we know
that (T — 1)fip_c(75) = N — 2k? is equivalent to poly-
line (20).

5.2. Near-Optimal Mixed Up-and-Down Path for
the C-CPPG

When stops are restricted to integer points, the up-
and-down path defined in Section 4 is not sufficient
because the distances between consecutive stops, 4,
and the separation between traversals, 2k — 4, may
not be integers. Having obtained the stronger trade-
off constraint for the C-CPPG in Theorem 4, we now

define mixed up-and-down paths that are then shown

to be close to any feasible parameter pair on the
boundary of (19). The mixed up-and-down path is
conducted with a part of the rectangle covered by a
type-d up-and-down path as in Section 4 and a part of
the rectangle covered by a type-(d + 2) up-and-down
path. Werestrictd to be an even integer in [2k] for each
path that comprises the mixed path scheme.

Definition 4 (Mixed Up-and-Down Path). In the C-CPPG,
for even values of d € [2k — 2] and y € [0, 1), we divide
the m x n rectangle into two rectangles of sizes [ yn| x m
and [(1 —y)n|xm. A type-(d, y) mixed up-and-down
path covers the [yn] xm rectangle with a type-d up-
and-down path and the [(1 — y)n| X m rectangle with a
type-(d + 2) up-and-down path and connects the two
paths at the common boundary of the two rectangles.

For even values of d, both d and 2k — % are integers,
and all stops in the mixed up-and-down path are
located at integer points. The mixed up-and-down path
is always feasible because both parts of the rectangle
are covered by the type-d and type-(d +2) up-and-
down paths, respectively. Proposition 6 computes
the costs of a mixed up-and-down path. In Section 5.3,
we discuss the selection of y.

Proposition 6 (Cost of Mixed Up-and-Down Path). For
any even d € [2k — 2] and y € [0, 1), the path length L of a
type-(d, y) up-and-down path is at most

ymn_ (1—-y)mn
2k —d/2 2k—-(d+2)/2

+ 10m

and the stop count T is at most

ymn

A2k — dj2)

(1= y)mn

(d+2)2k - (d+2)/2) +10m +12.

The mixed up-and-down path can be divided into
three parts: the type-d up-and-down path, the type-
(d+2) up-and-down path, and the segment con-
necting these two paths. We compute the costs of each
part based on Proposition 5.

Based on Proposition 6, Theorem 5 provides an
approximate upper bound for the feasible region in
the C-CPPG.

Theorem 5 (Tightness Result for the C-CPPG). Let fip—c(:)
be the piecewise-linear function defined on [2,c0) that cor-
responds to the polyline connecting

(2,f(2)) — (4,f(4)) — e (2i,f(2i)) — (Zk,f(Zk))
— (oo,f(Zk)).
For any (L, T) satisfying

(T - 1)fu3—c( L

T—l) =N -2k, (22)
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there exists a feasible pair (L', T") derived from a mixed up-
and-down path such that

2

L'-L<

<@Lt 10m, (23)

and
2

T-T<

<5 ogp T +10m+12 (24)

Moreover, (22) is a polyline connecting

N N'\  (AN* N
@J@) - @'@) -
AN N N
e ) = 7t

e )
(20)"£(2i)

(25)

when mand n are sufficiently large, 1 2k2 can be arbitrarily
close to 0. Therefore, (25) serves as an approximate upper
bound of the feasible region in the C-CPPG.

5.3. Optimization Problem for the C-CPPG
Given a convex and increasing function C(L,T), we
solve the following convex subproblem:

minimize C(L,T)

subject to (T — 1)fip—c (TE 1) =N -2i2

T>2,L>0. (26)

Let (L*, T*) be an optimal solution to (26) and d* = L.
We first consider the case where 2 < d* <2k. Denote
S={2,4,---,2i,---,2k} tobe the set of even numbers in
[2k]. Let I be the largest number in S that is no greater
than d*; and let r be the smallest number in S that is
greater than d*. Select y € [0, 1) such thatd* = yI + (1 -

y)r (for example, if d* =3 we have [ =2,r =4 and

Figure 4. Gap Between Lower Bound and Upper Bound for
the C-CPPG

T
T

---------- Upper bound polyline (24)

Lower bound polyline (19)

=1). We use a type-(/, ) mixed up-and-down path
to cover the rectangle. If d* <2, we consider a type-2
up-and-down path; and if d* > 2k we consider a type-
2k up-and-down path. Note that, although d* = L may
not be an even integer, d and d + 2 used to create the
mixed up-and-down path are always even integers.

For the C-CPPG, (20) and (25) provide a lower
bound and an approximate upper bound, respec-
tively, for the feasible region. Unlike the RC-CPPG,
the bounds provided by (20) and (25) are not tight.
A gap exists because the turning points of (20) contain
that of (25), whereas there are turning points of (20)
not contained in those of (25). Figure 4 illustrates the
gap for k = 5. The solid line connecting T1, Ty, -+, T1o
is the lower bound polyline (20); the dashed line
connecting even turning points Ty, Ty, - - -, T1o repre-
sents the upper bound (25). Lemma 4 shows that the
relative gap between (20) and (25) is at most % fork >3
( for k=1and Z for k = 2).

Lemma 4. For any point (L1, T1) on the lower bound
polyline (20), there exists point (Ly, T>) on the upper bound
polylme (25) such that 2 <l for k > 3 § for k = 1 and Z for

=2), <%

For the optimization problem with a linear objec-
tive function, we obtain a lower bound by solving
subproblem (26); that is, minimizing the objective on
the lower bound polyline (25). Because the polyline
(25) characterizes the costs of the mixed up-and-down
paths, minimizing C(L,T) on (25) provides an ap-
proximate upper bound for the optimization prob-
lem. Lemma 4 implies that the lower bound and the
upper bound for the optimization problem have a
gap of at most 3. This gap decreases as k increases.
Theorem 6 formally proves approximation results
for minimizing a linear function C(L, T).

Theorem 6. If C(L,T)=aL+pT with a,f>0 and
m>n > 100 > 10k zppere ¢ € (0,1), the mixed up-and-
down path provzdes a (§ + e)-approximation solution for k >

3@+efork=1andl+e fork=2).
Corollary 3 (Minimum Stop Count in the C-CPPG). If

C(L,T) = C(T), the optimal solution is achieved by T* =
2=+ O(m).

Proof. The result here is the same as in Corollary 2
because the stop count minimizing path in the RC-
CPPG, a type-2k up-and-down path, is a covering path
in the C-CPPG. O

Remark. For the case where C(L,T) = C(L), we only
know that the optimal solution is between 725 7+ O(m)
and 55+ O(m). A type-1 up-and- down path [which
corresponds to the lower bound 2k—1 5+ O(m) in this
setting] is infeasible because not all stops are located
at integer points.
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6. Analysis of the D-CPPG

In this section, we focus on the D-CPPG, where the
coverage radius k is an integer and both coverage
region and stop locations are restricted to integer
points in Dj,;. Detailed proofs are provided in the
online appendix.

6.1. Trade-Off Constraint for the D-CPPG

As in Section 5.1, we provide a piecewise-linear
function f;p-p(-) that represents the maximum num-
ber of integer points covered by a stop but not covered
by previous stops. We define the function value of
fre-p(-) with integer inputs:

d(2k+1—g) +% if d € [2k] is odd;

fg-p(d) = (27)

if d € [2k] is even;

if d=2k+1.

d
d(2k+1—§)
2k2 4+ 2k +1

For d e (t,t + 1), where t € [2k], fip-p(d) = (t+1—d)-
fie-p(H)+(d — t)fip-p(t +1).

Equivalently, fig-p(-) is the piecewise-linear func-
tion connecting

(1 fis-p(1) = (2.fis-p(2) — ---
— (2k +1,fip-p(2k + 1))
— (oo, fip-p(2k + 1)). (28)

Similar to Theorems 1 and 4, we provide a trade-off
constraint for the D-CPPG using function fiz_p(-).
There are two differences in the trade-off constraint
for the D-CPPG, (29).

1. We use a different piecewise-linear function
fra-p(:). The function fip_p(d) counts the maximum
number of integer points covered by stop F;.; but not
F; given that the two stops are at distance d.

2. Ontheright-hand side of the trade-off constraint
(29), we use 2k? + 2k + 1 instead of 2k? in (19) because
the number of integer points covered by one stop is
2k? + 2k + 1 in the D-CPPG.

Theorem 7 (Trade-Off Constraint for the D-CPPG). In the
D-CPPG, if (L, T) is a feasible pair with T >1, then

)z N — (2k* + 2k + 1). (29)

e

Moreover, the boundary of (29), (T - 1)fLB_D(%) =
N — (2k* + 2k + 1), is a piecewise-linear convex function

connecting
N N N N
(fLB—D(l) ,fLB—D(l)) - (fLB—D(z) ,fLB—D(z)) o
( 2k + )N™ N ) . (Oo N )
fie—p(2k +1)" frp-p(2k + 1) "fie-p(2k + 1))’
(30)

where N* = N — (2k* + 2k + 1).

The fact that (30) is the boundary of (29) follows
from Lemma 3 and the fact that fip_p(-) is a concave
piecewise-linear function. The proof of Theorem 7
follows the same structure as Theorem 4; see Online
Appendix B1 for details.

6.2. Near-Optimal Mixed Discrete Up-and-Down
Path for the D-CPPG

Similar to Definition 3, we define the type-d discrete
up-and-down path for the D-CPPG. In Definition 3,
the distance between consecutive stops along a tra-
versal is d, and the separation between traversals is
2k — 4. As with the C-CPPG, we restrict d to even in-
tegers, exceptd = 1. Ford =1,2,4,6,...,2k — 2,2k, the
type-d discrete up-and-down path traverses the cover-
age region D;,; in an up-and-down fashion, but the sep-
aration between traversals changes as described in
Definition 5. For d = 2k + 1, we introduce the zigzag
path, which has a different pattern than the up-and-
down path. We show that the zigzag path minimizes
stop count in Corollary 5 and that a suitable combi-
nation of zigzag path and up-and-down path provides
a high-quality approximation solution in Theorem 9.

Definition 5 (Type-d Discrete Up-and-Down Path). We
define the type-d discrete up-and-down path in the
D-CPPG ford =1,2,4,6,---,2k — 2,2k, 2k + 1.

e In a type-1 discrete up-and-down path, the dis-
tance between consecutive stops is 1 along each tra-
versal, and the separation between traversals is 2k + 1.

e In a type-d discrete up-and-down path where d is
an even number in [2k], the distance between con-
secutive stops along a traversal is d, and the sepa-
ration between traversals is 2k + 1 — 4.

e We create type-(2k + 1) discrete up-and-down paths
(zigzag paths) with a four step process, shown in
Figure 5. As is done in Carlsson and Jia (2014) to
minimize stops, we first form a tessellation. Let A =

{(a,b) € 72|55 ¢ 7} and let By((a,b), k) be the set
of integer points covered by (a, b). Note that U g p)ca Bz-
((a,b),k) = Z? and By((a1, b1), k) N Bz((az, b2), k) = 0 for
any (a1,b1) # (a2, b2) in A. The stops in A along with
their coverage define a tessellation of Z? as shown in
Figure 5(a). We choose all points (a,b) € A such that
Bz((a,b), k) N D # 0. Let A; be the set of chosen stops.
Next, we determine the visit order for the stops in A4
using rotated traversals [Figure 5(b)]. Traversal i is
the line segment connecting all stops (a,b) in A; sat-
isfying g’;;ikz;?f = i. Similar to Definition 3, we first
connect these traversals in an up-and-down fash-
ion, which determines the order of stop connection.
The tessellation may contain stops outside the grid;
therefore, in the third step, we project those stops back
to the grid. For each stop in A; lying outside the
rectangle D, we replace it with its projection onto the
rectangle [Figure 5(c), black dots after projection are
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Figure 5. Stop Location and Path Pattern of Type-(2k+1) Discrete Up-and-Down Path (Zigzag Path)
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Notes. (a) Tessellation. (b) Order of connection. (c) Projection. (d) Resulting zigzag path.

new stop locations]. In the final step, the stops are
connected by using the grid lines according to the
order defined in Step 2 [Figure 5(d)].

We show in Corollaries 4 and 5 that the type-1
discrete up-and-down path and type-(2k + 1) discrete
up-and-down path minimize path length L and stop
count T, respectively.

Propositions 7 and 8 establish the feasibility of dis-
crete up-and-down path and compute its costs,
respectively.

Proposition 7 (Feasibility of Discrete Up-and-Down Path).
For d=1,2,4,---,2k,2k +1, a type-d discrete up-and-
down path covers all integer points in the rectangle D.

Proposition 8 (Cost of Discrete Up-and-Down Path). The
cost of discrete up-and-down path is summarized in Table 2.

Similar to Proposition 5, the costs of type-1 and type-
2t discrete up-and-down paths are calculated based
on the distance between consecutive stops and sep-
aration between traversals. For type-(2k + 1) discrete

up-and-down path, the distance between (almost all)
consecutive stops is 2k + 1 and almost every stop covers
a set of distinct 2k? + 2k + 1 integer points. Thus, the

stop count and path length are 57—+ O(m) and

k .
2(,32:21,31\]1 + O(km), respectively.

Theorem 8 (Tightness of Trade-Off Inequality in the D-CPPG).
Define the following piecewise-linear function fip-p(-) with
turning points defined as

2k +1 ifd=1;
fus—p(d) = d(2k+1—g) ifd=2,4,--,2 (31)
2k +2k+1 ifd>2k+1.

For any point (L, T) satisfying

N = (T = fus o (%) (32)

there exists a feasible pair (L', T') such that L — L' = O(km)
and T — T’ = O(km).
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Table 2. Cost of Discrete Up-and-Down Path

Cost/path type Type-1 Type-2t, t=1,2,...,k Type-(2k + 1)
L 2lﬁ1 +0(m) 2k+1 i+ O0m) z(lfzkrzllzﬁ + Olkm)
oy + O(m) FHH+T=H (2k+1 5+ O(m) sy + O(m)

Moreover, (32) is a polyline connecting
( N N ) . ( 2N N ) .
fu-p(1)” fup-p(1) fup-p(2)’ fup-p(2)

_)([ZiN N )_}_}(/ 2kN N )
uB-p(2i)” fup-p(2i) uB-p(2k)” fus-p(2k)
(f 2k +1)N N

N
up_p(2k + 1) fup_p(2k + 1)) - (°°' Fusp(2k + 1))'
(33)

For each point (L, T) on (33), we construct a feasible
mixed discrete up-and-down path that combines two
different types of discrete up-and-down paths to
cover D;,;. We show that the costs of the mixed dis-
crete up-and-down path are close to that of (L, T).
Therefore, (33) serves as an approximate upper bound
of the feasible region in the D-CPPG.

6.3. Optimization Problem for the D-CPPG

The following lemma shows the relative gap between
polylines (30) and (33), which are the lower bound
and approximate upper bound of the feasible region
of the D-CPPG, respectively.

Lemma 5. In the D-CPPG, for any point (L1, T1) on the
lower bound polyline (30), there exists (La, T) on the ap-

proximate upper bound polyline (33) such that 2 <1,
I 11
T, =10

The following theorem follows from Lemma 5,
providing approximation ratio for optimization prob-
lem with linear objective.

Theorem 9 (Approximation Ratio for the Optimization
Problem). If C(L,T) = aL + BT is a linear function and
m=nz O(’;) where € € (0,1), the mixed discrete up-and-
down path provides a (3 + O(¢))-approximation solution.

Corollary 4 (Minimum Path Length in the D-CPPG). If
C(L T) = C(L), the optimal solution is achieved with L* =
a1 + O(m).

Table 3. Summary of Approximation Results

N-(2Kk?+2k+1) _ N—(2k*+2k+1)
Proof. From (30), L > Fon = 2 for any

covering path. A type-1 discrete up-and-down path
achieves this bound. O

In comparison with Corollary 1, the (2k + 1) in the
denominator is the maximum number of integer
points covered by F; but not by F; given that the two
stops are at distance 1. Locating a stop at each integer
point of a traversal maximizes the separation be-
tween traversals, thus minimizing path length. Un-
like in the C-CPPG, with a separation of 2k + 1 (rather
than 2k) we can derive a feasible path for d = 1.

Corollary 5 (Minimum Stop Count in the D-CPPG). If
C(L,T) = C(T), the optimal solution is achieved with T* =

N
st T O(m).

In Corollary 2, the optimal solution is T* = 25 +
O(m). Here, we replace the denominator 2k* with
(2k? + 2k + 1), which is the number of integer points
covered by a single stop in the D-CPPG.

Proof. From (29) and (27) T—1 > N-@E2D) g any

2k2+2k+1
feasible T; that is, T > 5. A type-(2k + 1) discrete

up-and-down path achieves this bound. o

6.4. Summary of Results

In this subsection, we summarize the approximation
results. Recall that N = mn is the grid size and k is the
coverage radius. CPPG is trivially solvable when k <1
because a stop must be set at every grid vertex. Thus,
we can assume that k > 1. As detailed in Figure 1,
CPPG can be solved by either solving C-CPPG or
D-CPPG based on the value of k. For each of these
settings, we provide a feasible path where the pa-
rameters of the path are determined in polynomial
time by solving a convex relaxation of the original
optimization problem. Table 3 summarizes our re-
sults for the three CPPG variants under different
objective functions.

Objective RC-CPPG C-CPPG D-CPPG
L X+ 0O(m) k 1t O(m) ~ 5= + O(m) S+ O(m)

(1 + €)-approximation (1 + 7s)-approximation (1} for k > 3) (1 + ¢)-approximation
T 2z + O(m) 7z + O(m) g + Om)

(1 + ¢)-approximation (1 + ¢)-approximation (1 + ¢)-approximation
aL + BT (1 + ¢)-approximation (¢ + ¢)-approximation for k > 3 4 + ¢)-approximation
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Observe that the only setting for which we do not
have a1+ ¢ approximation is when minimizing L for
C-CPPG. Our approximation is weakest (3) for k =1
but strengthens as k increases. For k = 3, we obtain
ang-approximation for CPPG for the general objective
function, and the approximation gets even stronger
for larger values of k. As a result, in the worst case, we
have a 3-approximation for CPPG (when k = 1), but
for larger values of k, we are guaranteed much better
results.

7. Conclusion

The core subproblem in school bus routing is to select
bus stops and a bus route connecting the stops such
that no student is too far from a stop and the total bus
route duration, including travel and stopping time, is
minimized. Motivated by the grid road structure of
many American cities, we model the problem as one
of obtaining a minimum cost-covering path, where
the underlying network is a grid and distances are
measured with the /; metric. Although the problem is
known to be NP-hard on general graphs, we exploit
the underlying grid structure to obtain strong ap-
proximations in polynomial time. Our solution ap-
proach is likely to be particularly useful as part of a
decision-support system where decision makers in-
teractively build school bus routes by changing var-
ious input parameters.

We also feel that our results on complete unit grid
graphs can become important building blocks for
solution procedures on general grids. As long as the
general grid can be constructed as the union of a few
rectangular grids, our constructive approach can be
used to find a solution that is unlikely to be too far
from optimal. Our approach can also be used in the
multivehicle setting that accounts for bus capacity. As
long as we can divide the overall region into a union
of rectangular grids (that relate to bus capacity), our
constructive approach can be used to obtain a high-
quality solution for the capacitated multivehicle prob-
lem. In ongoing work, we are exploring ways to
generalize the insights and results of this paper to
address the many additional complications of school
bus routing. We continue to work with the school
district to provide solutions that are robust and easy
to implement, and embed our results into larger
decision-making frameworks for broader questions
of school assignment.
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