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EXTENDED MEAN FIELD CONTROL PROBLEMS: STOCHASTIC
MAXIMUM PRINCIPLE AND TRANSPORT PERSPECTIVE*

BEATRICE ACCIAIOT, JULIO BACKHOFF-VERAGUAS!, AND RENE CARMONAS$

Abstract. We study mean field stochastic control problems where the cost function and the state
dynamics depend upon the joint distribution of the controlled state and the control process. We prove
suitable versions of the Pontryagin stochastic maximum principle, both in necessary and in sufficient
forms, which extend the known conditions to this general framework. We suggest a variational
approach for a weak formulation of these control problems. We show a natural connection between
this weak formulation and optimal transport on path space, which inspires a novel discretization
scheme.
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1. Introduction. The control of stochastic differential equations of mean field
type, also known as McKean—Vlasov control, did not get much attention before the
theory of mean field games became a popular subject of investigation. Indeed the two
topics are intimately related through the asymptotic theory of mean field stochastic
systems known as propagation of chaos. See, for example, [15] for an early discussion
of the similarities and the differences of the two problems. Among the earliest works
on this new form of control problem, relevant to the spirit of the analysis conducted
in this paper, are [10, 9, 3, 28, 8, 13]. Here, we follow the approach introduced
and developed in [13]. The reader is referred to [14, Chapters 3, 4, 6] for a general
overview of these problems and an extensive historical perspective. Still, most of
these contributions are limited to mean field interactions entering the models through
the statistical distribution of the state of the system alone. The goal of the present
article is to investigate the control of stochastic dynamics depending upon the joint
distribution of the controlled state and the control process. We refer to such problems
as extended Mean Field control problems; see [14, section 4.6].

Our first contribution is to prove an appropriate form of the Pontryagin stochastic
maximum principle, in necessary and in sufficient forms, for extended mean field
control problems. The main driver behind this search for an extension of existing
tools is the importance of many practical applications, which naturally fit within
the class of models for which the interactions are not only through the distribution
of the state of the system, but also through the distribution of the controls. The
analysis of extended mean field control problems had been restricted so far to the
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linear quadratic (LQ) case; see, e.g., [35, 24, 6, 33]. To the best of our knowledge, the
recent work [33] is the only one where more general models are considered. In that
article, however, the authors restrict the analysis to closed-loop feedback controls,
leading to a deterministic reformulation of the problem, which is used in order to
derive the Bellman equation associated with the problem; theirs is therefore a PDE
approach. In the present paper, we study the extended mean field control problem
without any restrictions, deriving a version of the Pontryagin maximum principle via
a probabilistic approach.

We apply our optimality conditions for particular classes of models, where our
analysis can be pushed further. In the case of scalar interactions, in which the dy-
namics depend solely upon moments of the marginal distributions, we derive a more
explicit form of the optimality condition. The advantage here is that the analysis
can be conducted with a form of classical differential calculus, without the use of the
notion of L-differentiability. The announced work [23] studies an application of such
a class of models in electricity markets. As a special case of scalar interaction, we
study an optimal liquidation model, which we are able to solve explicitly. Finally, we
consider the case of LQ models for which we easily derive explicit solutions which can
be computed numerically. The results in the LQ setting are compatible with existing
results in the literature.

Another contribution of the present article is the variational study of a weak
formulation of the extended mean field control problem. Weak formulations have
already been studied in the literature, without nonlinear dependence in the law of
the control, as in [14, Chapter 6] and [25]. In this framework, we derive an analogue
of the Pontryagin principle in the form of a martingale optimality condition. Similar
statements have been derived in [18, 27] under the name of stochastic Euler—Lagrange
condition for a different kind of problems. Next, we derive a natural connection
between the extended mean field control problem and an optimal transport problem
on path space. The theory of optimal transport is known to provide a set of tools and
results crucial to the understanding of mean field control and mean field games. We
illustrate the use of this connection by building a discretization scheme for extended
mean field control based on transport-theoretic tools (as in [36, Chapter 3.6] for the
case without mean field terms), and show that this scheme converges monotonically
to the value of the original extended mean field control problem. The explosion in
activity regarding numerical optimal transport gives us reason to believe that such
discretization schemes might be efficiently implemented in the near future; see, e.g.,
[19, 7, 29] for the static setting and [30, 31, 32] for the dynamic one.

The paper is organized as follows. In section 2, we introduce the notations and
basic underpinnings for extended mean field control. Section 3 provides a new form
of the Pontryagin stochastic maximum principle. In section 4, we study classes of
models for which our optimality conditions lead to explicit solutions. In section 5, we
analyze the weak formulation of the problem in connection with optimal transport.
Finally, in the appendix, we collect some technical proofs.

2. Extended mean field control problems. The goal of this short subsection
is to set the stage for the statements and proofs of the stochastic maximum principle
proven in section 3 below.

Let f, b, and ¢ be measurable functions on R? x R¥ x Py(R? x R¥) with val-
ues in R, RY, and R¥*™ respectively, and g be a real valued measurable function
on R% x Py(R?). Here and elsewhere we denote by P(-) (resp., P2(:)) the set of
probability measures (resp., with finite second moments) over an underlying met-
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ric space. Let (Q,F,P) be a probability space, Fg C F be a sub-sigma-algebra,
and F = (F;)o<i<r be the filtration generated by Fy and an m-dimensional Wiener
process W = (Wy)o<i<r. We denote by A the set of progressively measurable pro-
cesses a = (i )o<i<r taking values in a given closed-convex set A C R* and satisfying
the integrability condition E foT || dt < oc.

We consider the problem of minimizing

T
(21) se) 5[ [ (o L0 a)dt+ g (X, £061)]

over the set A of admissible control processes, under the dynamic constraint
(22) dXt = b(Xt, Oy, [,(Xt, Oét)) dt + O’()(t7 O, L(Xt, Olt)) th

with X, a fixed Fp-measurable random variable.

The symbol £ stands for the law of the given random element. We shall add mild
regularity conditions for the coefficients b and o so that a solution to (2.2) always
exists when @ € A. For the sake of simplicity, we chose to use time independent
coefficients, but all the results would be the same should f, b, and o depend upon ¢,
since time can be included as an extra state in the vector X.

The novelty of the above control problem lies in the fact that the cost functional
and the controlled SDE depend on the joint distribution of state and control. For
this reason, we call it the extended mean field control problem. In this generality,
this problem has not been studied before. We mention the works [35, 24, 6, 33] for
particular cases and different approaches.

2.1. Partial L-differentiability of functions of measures. We introduce
here the concept of L-differentiability for functions of joint probability laws (i.e.,
probability measures on product spaces). We refer the reader to [14, Chapter 5] for
more details.

Let u : R x Po(R% x RF) — R. We use the notation ¢ for a generic element of
Pa(RY x R¥), and p € Pa(RY) and v € Po(RF) for its marginals. We denote a generic
element of R? by wv.

Let (Q, F,P) be a probability space and let @ be a lifting of the function u. In
other words,

@:RY x L2(Q, F,P;R? x R¥) 3 (v, X, &) — a(v, X, &) = u(v, L(X, &)).

We say that u is L-differentiable at (v, &) if there exists a pair

(X,a) € L*(Q, F,P;R? x R*) with £(X,a)=¢

such that the lifted function @ is Fréchet differentiable at (v, X, a); cf. [20, Chapter
IL.5, p. 92]. When this is the case, it turns out that the Fréchet derivative depends
only on the law & and not on the specific pair (X,&) having distribution &; see
[11] or [14, Chapter 6] for details. Thanks to self-duality of L? spaces, the Fréchet

derivative [Di](v, X,a) of the lifting function @ at (v, X,a) can be viewed as an
element Di(v, X a) of RY x L2(Q, F,P;R% x R¥) in the sense that
[Di](v, X,a)(Y) = E[Di(v, X,d) - Y] forall Y € R? x L*(Q, F, x RF).

E P;R
Since RY x L2(Q, F,P;R? x R*) = R? x L2(Q, F,P;RY) x L2(Q, F,P;R*), as in [11],
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the random variable Dii(v, X, &) can be represented a.s. via the random vector

wu(v, L(X,@)( X, ), duu(v, L(X,&)(X,a), du(v, £L(X,a))(X,a) )

for measurable functions dyu(-, L(X,&))(-, ), duu(-, L(X, &) (), Sou(-, L(X,&))(,-),
all of them defined on R? x R? x R* and valued, respectively, on R, R?, and R*. We
call these functions the partial L-derivatives of u at (v, L(X,&)).

3. Stochastic maximum principle. Our goal is to prove a necessary and a
sufficient condition for optimality in the extended class of problems considered in the
paper. These are suitable extensions of the Pontryagin stochastic maximum principle
conditions. We define the Hamiltonian H by

(31) H(m,a,f,y,z) = b((I),O@f) Y + 0'(.’17,0{75) cz+ f(x,a,f)

for (z,,&,7,2) € RY x RF x Py(R? x RF) x RY x R¥™, Naturally, the dot notation
for matrices refers to the trace inner product. We let H*™ stand for the collection
of all R™-valued progressively measurable processes on [0,7], and denote by H?"
the collection of processes Z in H%" such that IEfOT |Zs|?ds < oo. We shall also
denote by S?" the space of all continuous processes S = (St)o<i<r in HO" such that
E[supg<;<7 |St|?] < +o0o. Here and in what follows, regularity properties, such as
continuity or Lipschitz character, of functions of measures are always understood in
the sense of the 2-Wasserstein distance of the respective spaces of probability measures
with finite second moments; cf. [34].

Throughout this section, we assume the following;:

(I) The functions b, o, and f are differentiable with respect to (z,«), for £ €

Po(R? x RF) fixed, and the functions

(l’,a,f) = (8I(ba g, f)(x,a,f),@a(lx g, f)(x,a,f))

are continuous. Moreover, the functions b, o, and f are L-differentiable with
respect to the variable &, the mapping

RIx AxL*(Q, F,P;R*xR¥) 3 (2,0, (X, B)) = 0u(b, 0, f)(z, 0, L(X, B))(X, B)

being continuous. Similarly, the function g is differentiable with respect to
x, the mapping (z, u) — 9,g(x, 1) being continuous. The function g is also
L-differentiable with respect to the variable p, and the following map is con-
tinuous:

R? x L2(Q, F,P;R?) > (z, X) = 0,9(x, L(X))(X) € L*(Q, F,P;RY).

(IT) The derivatives 9, (b, o) and 0, (b, o) are uniformly bounded, and the mapping
(@',a') = Ou(b,o)(z,0,&)(a', &) (resp., (',a') — 0,(b,0)(z,,§)(a,a))
has an L?(R?, ;;R? x R¥)-norm (resp., L?(R* v;R¢ x R¥)-norm) which is
uniformly bounded in (x, o, £). There exists a constant L such that, for any
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R >0 and any (z,a, &) such that |x|, |al, ||€]|z < R, it holds that

102 f (2,0, )|V |Ong (@, )| V 0a f (2, 2, §)| < L(1 + R),

and the norms in L?(R? x R¥, &; R x R¥) and L?(R%, &; R x R¥) of (2/, )
Ouf(z,0,8) (2, a)), (2/,a) — O, f(z, 0, §)(2/, ), and 2’ — O, 9(x, u)(2') are
bounded by L(1 + R).
Under these assumptions, for any admissible control a € A, we denote by X =
X the corresponding controlled state process satisfying (2.2). We call adjoint pro-
cesses of X (or of ), the couple (Y, Z) of stochastic processes Y = (Y;)o<i<7 and
Z = (Zt)o<i<r in S%4 x H>9*™ that satisfy

(3.2)
dy; = f[axH(ot,Yt?Zt) +E[auH(ét,ﬁ,Zt)(Xt,at)]] dt + Z,dW;, t€ 0,7,

Yr = arg(XTvﬁ(XT)) + E[a/Lg(XTvﬁ(XTD(XT)]v

where 0; := (Xi, a, L(X¢, ), and the tilde notation refers to an independent copy.
Equation (3.2) is referred to as the adjoint equation. Formally, the adjoint variable
Y; reads as the derivative of the value function of the control problem with respect to
the state variable. In contrast with the deterministic case, in order for the solution to
be adapted to the information flow, the extra term Z;dW; is needed. This is a stan-
dard feature of the extension of the maximum principle from deterministic control
to stochastic control. As expected, it is driven by the derivative of the Hamiltonian
function with respect to the state variable. In addition, since the controlled dynamics
are of the McKean—Vlasov type, the state variable, with respect to which we differ-
entiate the Hamiltonian function, needs to include the probability measure appearing
in the state equation. This is now understood thanks to the early contributions [13]
and [14, Chapter 6]. In the present case of extended mean field control problems, the
above adjoint equation needed to account for the fact that the probability measure
appearing in the state equation is in fact the joint distribution of the state X; and the
control ;. This forces us to involve the derivative of the Hamiltonian with respect
to the first marginal of this joint distribution.

Given a and as a result X, 6; appears as a (random) input in the coefficients
of this equation which, except for the presence of the process copies, is a backward
stochastic differential equation of the McKean—Vlasov type, which is well posed under
the current assumptions. See for example the discussion in [14, Chapter 6, p. 532].

3.1. A necessary condition. The main result of this subsection is based on
the following expression of the Gateaux derivative of the cost function J(a).

LEMMA 3.1. Let a« € A, X be the corresponding controlled state process, and
(Y, Z) its adjoint processes satisfying (3.2). For B € A, the Gdteaux derivative of J
at o in the direction B — o is

%J(a—f—e(ﬁ—a))kzo = ]E/O (0 H (60, e, Z0)+BI0,H (01, Y, 20) (X1, 00)] ) (Bi—a) dt,

where (X, Y.Z, d,f)) is an independent copy of (X,Y, Z, o, 3) on the space (Q, F, If”)

Proof. We follow the lines of the proof of the stochastic maximum principle for
the control of McKean—Vlasov equations given in [14, section 6.3]. Given admissible
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controls o and 3, for each ¢ > 0 we define the admissible control a® = (af)o<i<r
by af = a; + €(f; — ou), and we denote by X = (X )o<i<r the solution of the
state equation (2.2) for af in lieu of . We then consider the variation process
V = (V)o<i<T, defined as the solution of the linear stochastic differential equation,

(3.3) AV = [vVi + pe + me] dt + [%:Ve + pe + 7] AWy
with Vy = 0. The coefficients 7, 4, n¢, and 7); are defined by

Ve =0:b(0), At =020(01), 1 = 0ab(01)(Br — o), M = 0a0(0)(Be — ar),
which are progressively measurable bounded processes with values in the spaces R?*?,
R(@xd)xd Rd and R4 respectively (the parentheses around d x d indicate that ;- u
is seen as an element of R4*¢ whenever u € R?). The coefficients p; and p; are given
by

=E[0,b(0:)(X¢,6:)V;] +E[0, b(0:) (X, ) (B — ay)],
fE[@ U(9t>(Xt,Oét)V;g] +]E[8 U(9t>(Xt,Oét Bt — Ott ],

which are progressively measurable bounded processes with values in R?% and R%*4,
respectively, and where (X, &y, V4, B;) is an independent copy of (X, a, V4, ;) defined
on the separate probability structure (Q, F, ]f”)

We call V = (V})o<t<r the variation process because it is the Gateaux derivative
of the state in the direction 8 — e, since, as detailed in [14, Lemma 6.10], it satisfies
Xi— X 2} —0.

€

limE| sup -

Y Lgth

For this reason, we have:

lin 7 (") — /(@)

T
_E /0 (01 (00)Vi + 0 f(6) (8 — )
+ E[0,, f(0:)(X¢, &) Vi) + E[0, f(0:)(Xe, &) (Br — dt)]) di

(3.4 + E[0,9(Xr, £(Xr) Vi + El0,9(Xr, £(Xr)(Xr) Vi ]|

T
=B [ (0:500Vi+ 050051 — 1)
+ E[auf(et)(f(t, &) Vi) + E[0, (1) (X, ) (Be — dt)]) dt

+E|(9:9(Xr, £(Xr)) + ElD,9(Xr, £(Xr)) (X)) Vi,

where we used Fubini’s theorem to obtain the last equality. Notice that, if we introduce
the adjoint processes (Y, Z) of a € A and the corresponding state process X, by (3.2),
we see that the last expectation above is exactly E[Y7Vr]. This can be computed
by integration by parts, using the It6 differentials of Y and V', which are given,
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respectively, by (3.2) and (3.3). In this way we obtain
T T T
Vve =Yt + [ Yiavit [ viavis [ ayv)
0 0 0

= My + /OT [Yta b(0:)Vi + YeOab(0:) (B — o) + YiE[0,,b(6:)(Xy, 4y V7]
+ YE [5 b(0:) (X, 6) (By — a)]
- V}@mb(ﬂt)Y} - Vtasz(ot)zt - Vtaq:f(et)
- Vt~ [@Lb(ét)(Xtaat)fft]
— ViE[0,,0(0:) (X1, 00) Z4) — VIE[ Mf(ét)(Xt,at)]
+ Zt8 O'( t)V + Zta O'(Gt)(ﬁt — Oét) + Zt [8 0'( )(Xt,dt)‘z]
+ ZiR[0,0(t, 0,)( Xy, ) (By — at)]} at,

where (M})o<i<7 is a mean zero integrable martingale which disappears when we take
expectations of both sides. Applying Fubini’s theorem once more, we have

E[Yr V7]
T
- E/O [m b(0:) Vi + Yi0ab(04) (B — cr) + YE[0,b(0:) (X, 6 (By — )]
= Vi0ab(0)Ys = Video (01) 2 = Vidu f (01) = VIE[9, f (0.) (X, )]
+ Z0:0(0)Vs + Zi0a (00) (B — 1) + ZiE[0,0(t,00) (X1, 61) (B — )] | a.

Plugging this expression into the second equality of (3.4) we get, again by Fubini’s
theorem,

lim 2 [J () — J()]

eNO € .
=B [ (001(00(5 - 00) + BIOS(0) (%1.0) 5 — )
+ Y30ab(0:) (B — ar) + YiE[0,b(8:)(X¢, 6 ) (B — )]
+ Z40a0(0) (B — av) + ZE[0,0(t,00) (X1, G0) (B — )] | at,
which is the desired result, by (3.1). 0

We are now ready to prove the necessary part of the Pontryagin stochastic max-
imum principle. In the present framework of extended mean field control, we obtain
(3.5) below. It is not possible to improve this condition into a pointwise minimization
condition as in more classical versions of the problem, when there is no nonlinear
dependence on the law of the control; see (6.58) in [14]. We give an example of this
phenomenon in Remark 4.2.

THEOREM 3.2. Under assumptions (I)-(II), if the admissible control o =
(a)o<i<r € A is optimal, X = (X;)o<i<r 15 the associated controlled state given
by (2.2), and (Y, Z) = (Y3, Z)o<i<r are the associated adjoint processes satisfying
(3.2), then we have
(3.

5)
0o H (01,1, Z:) + B[O, H (0:,Y1, Z1)(Xy,00)] ) - (0r —a) < 0 Va € A, dt @ dP -a.s.,

C\DC\D@

~

where (X,f’, 2761) is an independent copy of (X,Y,Z,a) on L*(Q, F, ]f”)
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Proof. Given any admissible control 3, we use as before the perturbation af =
ar + €(B; — o). Since «v is optimal, we have the inequality

d
&J(a +e(B— O‘))’e:o > 0.

Using the result of the previous lemma, we get

T ~ ~ ~ ~
]E/ (aaH(et, Yy, Z,) + B8, H(8,, Y, Zt)(Xt,ozt)}) By — a) dt > 0.
0

We now use the same argument as in the classical case (see, e.g., [14, Theorem 6.14]).
For every t and 3 € L%(2, F;,P; A), we can take 3; equal to a; except for the interval
[t,t + €], where it equals 3, obtaining

(3.6)  E[(0uH(60,Ye Z0) + EOH0:, Vi, Z0)(Xe 1) - (8 — )] > 0.
Further, for any a € A we can take 5 to be equal to a on an arbitrary set in F;, and

to coincide with oy otherwise, establishing (3.5). d

Remark 3.3. If the admissible optimal control a takes values in the interior of
A, then we may replace (3.5) with the following condition (see, e.g., [14, Proposition
6.15)):

(3.7) OuH (04,Yy, Zy) + B[, H (0, Yy, Z4)( Xy, o)) = 0 dt @ dP -a.s.
Remark 3.4. A sharpening of (3.5) can be obtained under the convexity condition
H(gjv alv gla Y, Z) > H(I, a, Ea Y, Z) + aOtH(‘Ta a, ga Y, Z) ! (CL/ - a)

3.8 - B
(3:8) FE[0,H(xa,6y.2) (X1, &) - (& — )]

for all z € R%, a,a’ € A, and & a copy on (Q,]:', ]f”) of an admissible control o/,
and where £, € Py(R* x A) with € = L£(X;,a;) and & = L(X,,&,). Indeed,
in the framework of Theorem 3.2, if (3.8) holds, we apply it for 2 = X;(w),a’ =
Blw),y = Yi(w),z = Z(w),a = au(w), and o = f such that(X,Y, Z, &, ) is a copy
of (X,Y,Z, «, ). Passing to expectation and using (3.6), we get

E [H(Xtvﬂv ‘C(Xta 5)’Y;ﬁa Zt)} Z E [H(Xt’ O‘tvﬁ(Xtﬂ at)v Yta Zt)] )
SO
oy = argmin { E[H(Xy,3,L(X,8), Y, Zy)] © B € L*(Q,F, Py A) }.

3.2. A sufficient condition. Guided by the necessary condition proven above,
we derive a sufficient condition for optimality in the same spirit, though under stronger
convexity assumptions. For a given pair (X, &), these conditions read as

(3.9) 9@, ) = gla,p) + Oug(w, 1) - (' — 2) + E[Dug(x, p)(X) - (X' = X)],
and

(3.10)
H(z/’ a/’ 6/7 y7 Z)
Z H(.’E, a7£7 Y, Z) + awH(mvaa§7y7 Z) : (Z‘/ - Z‘) + aOzH(x7 a/7§7y’ Z) : (a’/ - G,)
+ E[@MH(x,a,g,y,z)(X,d) . (X" -X)+ 8,,H($,a,§,y,z)()~(,d) (@ — 64)],
forall z,2’ € R? a,a’ € A,y € R%, 2z € R¥*™, and any X’ (resp., @) copy of a process
in H>¢ (resp., of an admissible control) on (Q, F,P), and where p = L(X), 1/ =

LX), &= E(X,d), and & = L(X',d’); see [14, Chapter 6].
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THEOREM 3.5. Under Assumptions (I)-(II), let o = (ou)o<i<r € A be an ad-
missible control, X = (Xi)o<i<r the corresponding controlled state process, and
(Y,Z) = (Y4, Z)o<i<r the corresponding adjoint processes satisfying (3.2). Let us
assume that

(i) g is convex in the sense of (3.9);

(ii) H is convez in the sense of (3.10).

Then, if (3.5) holds, a is an optimal control, i.e., J(a) = infqrep J(a').

As before, we use the notation 0; = (X;, ay, L(X}, ) throughout the proof.

Proof. We follow the steps of the classical proofs; see, for example, [14, Theorem
6.16] for the case of the control of standard McKean-Vlasov SDEs. Let (X,a) be a
copy of (X, a) on (Q,f-", ]f"), and let @’ € A be any admissible control with X’ = X&'
the corresponding controlled state. By definition of the objective function in (2.1)
and of the Hamiltonian of the control problem in (3.1), we have

(3.11)
J(a) — J(a))

[9(X7, L(X7)) — g(Xf, LXEN] +E [ [£(6:) — £(6})] dt
[9(Xr, L(X7)) — 9(Xp, LX) +E [ [H (00, Ys, Ze) — H(0), e, Z4)] dt
- Efo [[ - b(gl)] Y+ [U(et) —o(0))] Zt] dt

E
E

with 0, = (X{, oy, L(X],})). Being g convex, we have

(3.12)
E[g(Xr, L(X7)) — g(X’T,E(X}))]
<E[0,9(X1, L(X7)) - (X7 — X7) + E[0,9(Xr, £(X7))(X7) - (X1 — X1)]]
= E[(9:9(X7, L(X7)) + E[0,9( X1, L(X1))(X7)]) - (X1 — X7)]
=E[(Xr - X7) YT]

where we used Fubini’s theorem and the fact that the “tilde random variables” are
independent copies of the “nontilde” ones. Using integration by parts and the fact
that Y = (Y3)o<i<r solves the adjoint equation (3.2), we get

(3.13)
E[(Xr — X7) - Y7

=E [foT(Xt—X) av, + [ Y, -d X+ [ o o(0)] - Zy dt]
= —E [ [0.H(6:, Yz, Z;) - (X; — X]) +]E[8HH(0t,Yt, Zt)(Xt,ozt)] (X, - X)) dt
+ E [ [[b(6:) — b(8))] - Yy + [0(8,) — 0(6))] - Z:] dt.
Again by Fubini’s theorem, we get
E [ E[0,H (0, Vi, Z4)(Xes ar)] - (Xi — X{) dt
=E [y B[0,H(0:, Y, Z) (X1, ) - (X, — X)) dt.
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Together with (3.11), (3.12), and (3.13), this gives
J(a) = J(a)
<E [ [H(0:,Ye, Z) — H(0), Yz, Zy))dt
—E [y [0.H (00 Vi, Z0) - (X = X]) + B[0,H (00, Vi, Z0)(Ko,d0) - (K = X)) at
<E fy [0aH(0, Y0 Z0) - (00 = o) + B[, H (01, Vi, Z0)(Ke. ) - (a0 — )] | at

=B J (0aH (60, i, Z0) + B[0,H (B0, Vi, Z0)(Xe, 00)] ) - (0 = o)t
<0

because of the convexity of H, Fubini’s theorem, and (3.5), showing that « is opti-
mal. ]

4. Examples. In this section, we consider models for which the solution strategy
suggested by the stochastic maximum principle proved in the previous section can be
pushed further. In fact, in sections 4.2 and 4.3, we are able to obtain explicit solutions.

4.1. The case of scalar interactions. In this subection, we state explicitly
what the above forms of the Pontryagin stochastic maximum principle become in the
case of scalar interactions. This is a case of particular interest because it does not need
the full generality of the differential calculus on Wasserstein spaces, and can be dealt
with by using standard calculus. An example of scalar interactions will be studied
and explicitly solved in the next subsection; see also [23] for another application of
scalar interactions.

Assume drift and cost functions to be of the form

b(m,a,ﬁ) =bo (x’a7f@d£)a f(sr:,a,f) = fo (95704af¢d€)7 g(m,u) =90 (m7f¢dﬂ)

for some functions by, fo on R¢ x A x R, go on R? x R, ¢, on R? x A, and ¢ on R
In order to simplify the notation, we shall assume that the volatility is independent
of the control and, actually, we take 0 = I;. Under these circumstances, the adjoint
equation becomes

dY; = —(arbo(Xt»ataE[SD(Xta a))Yy + 0y fo(Xe, oy, B[ (X, ay)])
+ ]E[f/t ! aﬁbo(j(t’ dtvE[QO(Xt: Olt)])]ax(P(Xt, at)
+ E[0¢ fo(Xe, d, E[Y0( Xy, a)])] 0000 (X, at))dt + Z1 AWy

with terminal condition Yz = 8,90 (X7, E[p(X7)]) + E[0cgo(X7, E[p(X1)])] 00 (X T).
Accordingly, the necessary condition (3.7) for optimality will be satisfied when

0 = 0abo(X¢, ar, Elp( Xy, a4)]) - Y + Oa fo(Xt, a, E[Y0( Xy, a)])
(4.1) + E[Y; - Ocbo(Xy, e, E[o( Xy, 0)])]0atp(Xe, cur)
+ B0 fo( X, i, B[p(Xe, 00)])]0ath (X, o).
4.2. Optimal liquidation with market impact. In this section we explicitly
solve an example that lies outside the classical LQ framework, in the sense that

convexity fails. This is inspired by an optimal liquidation problem with price impact,
but here it is more of mathematical interest than a financial one.
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Consider a market where a group of investors, indexed by 4, has large positions
qé on the same asset S. Each investor wants to liquidate her position by a fixed time
T > 0, and controls her trading speed ! through time. Her state is then described
by two variables: her inventory Q:, that starts at ¢} and changes according to ai,
and her wealth X}, which is assumed to start at zero for all traders. Investors’ speed
of trading affects prices in two ways. On the one hand, it generates a permanent
market impact, as the dynamics of S are assumed to linearly depend on the average
trading speed of all investors. On the other hand, it produces a temporary impact,
that only affects traders’ own wealth process (as fees or liquidation cost), and which
is assumed to be linear in their respective rate of trading. The optimality criterion
is the minimization of the cost, which is composed of three factors: the wealth at
time 7', the final value of the inventory penalized by a terminal market impact, and a
running penalty which is assumed quadratic in the inventory. The optimal trades will
be a result of the trade-off between trading slowly to reduce the market impact (or
execution/liquidity cost), and trading quickly to reduce the risk of future uncertainty
in prices; see, e.g., [2, 16, 17, 12, 6].

Here we think of a continuum of investors. The initial inventories are distributed
according to a measure mg on R. We formulate the problem for a representative
agent, in the case of cooperative equilibria. The inventory process then evolves as

(4.2) dQ; = aydt, Qo ~ myg,

while the wealth process is given by
dX; = —u (St + kay)dt, Xo =0,

where ka; measures the temporary market impact. The price process is modeled by
dS; = AE[a]dt + odWy, Sy = so,

where E[ay] represents the average trading speed, hence AE[ay] stands for the perma-
nent market impact to which all agents contribute (naturally A > 0). The cost to be
minimized is given by

T
E {—XT —Qr(St — AQr) + (25/ Q?dt} )
0

where X is the terminal profit due to trading in [0, 7], Q7 (ST — AQr) is the liquida-
tion value of the remaining quantity at terminal time (with a liquidation/execution
penalization), and ¢ is an “urgency” parameter on the running cost (the higher ¢ is,
the higher is the liquidation speed at the beginning of the trading period). Using the
dynamics of X, this can be rewritten as

T
E {/ (e Sy + kai + ¢Q7)dt — Q7 (St — AQT)} .
0

This example falls into the framework described in section 2. We have a 2-dimensional
state process (59,Q), a 1-dimensional Wiener process W, and the control process is
the trading speed . The Hamiltonian of the system is

H(x1, 22, 0,891, y2) = Aoy + ayz + ¢a3 + axy + ka?,
where & = [v€(du,dv), and the first order condition (4.1) reads as
(4.3) Y2+ Sy + 2kay + AE[Y}!] = 0
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with adjoint equations

(4.4) Ay} = —oudt + Z}dW, Y} = -Qr,
(4.5) dY? = —2¢Q.dt + Z2dW;, Y7 = —Sr +24Qr.

Remark 4.1. Here the terminal cost function g reads as
9(m1,m2) = —w179 + A3,

which does not satisfy the convexity condition (3.9). However, an inspection of the
proof of Theorem 3.5 reveals that this assumption was only used in order to obtain the
inequality in (3.12). We are now going to show that such an inequality holds in the
present setting when A > X\ (which is satisfied for typical values of the parameters; see
[17, 12]), thus guaranteeing that the first order condition (4.3) is not only necessary
but also sufficient for the optimality of a. For this purpose, let &’ € A be any
admissible control, and (57, Q") the corresponding controlled state. Then

E[g(Sr,Qr) — 9(S7, Q7)]—E[(Sr — S1)YF + (Qr — Q7)YZ]

(5[ [N ] ([ v [ ]

T T 2
(/ adt —/ aédt)
0 0

which is nonpositive for A > A.

An inspection of (4.4) suggests that we have Z} =0 and Y;! = —Qo — fg asds =
—Qy; Y2 will be determined later. Substituting into (4.3), we have

)

<(A—AE

t
YE — 2¢/ Qsds + / Z2AW, + s + /\/ Elas]ds + oW, + 2kay
0 0 0

t
~ AE[Qo] + / Ela.]ds) = 0,
that is,

AE[Qo] — ¢

t
Q ds — / (Z2 + o)dW,.

2k
We now show that Q@ = Q° and « = o, where

QY = E[Q:|Qo), af := Ela;|Qo).

By taking conditional expectation in (4.2) and (4.6), we get

t t
(47) Q=0+ [ als.  al=ar+ ] [ Qs
0 0

Setting F(t) := QY, we note that F'(t) = o and F"(t) = %F(t) Together with the
initial conditions F(0) = Qo and F’(0) = ayp, this gives

o (S ()

where r = /¢ /k. Now, by taking conditional expectation in (4.5), and substituting
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into (4.7), we obtain

924 T A T
oy = W o /0 E[oy]dt — ?/o addt
\E —2A A
(4.9) _ W + 2 (EQr] ~ E[Q0) — £(@% ~ Q0)
A
= [QT] QTv

that is, F'(T) = Q—AICIE[F(T)} - %F(T). Imposing this condition, and using (4.8), we
obtain

dle_TT — dgeTT E[QQ]4)\¢

die=™T +dye™T  (dye~"T 4+ daerT)(cre T + cperT)’

where di = ok — A,ds = ok + A, c1 = 2d; + A, ca = 2dy — . From (4.6), we also

have an exph(nt expression for Y = AE[Qo] — s0 — 2kap.
Now we use the ansatz Z? = —¢, and show that the process

(410) ap = Q()T‘

t
(4.11) Y=Y~ 2¢/ Qsds — oW,
0

does satisfy the equation and terminal condition in (4.5). Only the latter needs to be
shown. First note that, with this ansatz, from (4.6) and (4.2) we have

t t s
ce=ao+ [ Qs Qi=Qurant+ ¥ [ [ Qududs
k Jo kJo Jo
thus both processes « and @ are o(Qq)-measurable, that is,
(412) Qi =E[QQol = Q) = F(t) and ar = Elas|Qo] = af = F(0).
We now check that Y? satisfies the terminal condition in (4.5). By (4.12), (4.11)
implies
T
Y2 = AE[Qo] — so — 2k — 2¢/ QYdt — oWr.
0
On the other hand, by (4.12), (4.9), and (4.7),

—Sr + 24Q7r = —s0 — M(E[Q7] — E[Qo]) — oW + 24Q7
= —809 + )\E[Qo] - 2]604% — O’WT

T
= —s0 + AE[Qo] — 2kag — 2¢/ QVdt — oWr,
0

which yields Y2 = —S7 4+ 2AQ7, as wanted. This shows that the process Z2 in the
ansatz, together with Y2 defined above, does satisfy (4.5). We have seen that this
gives Q; = F(t) and oy = F'(t), by (4.12), thus from (4.8) we have

(8- ) () (B (G5

By (4.10), this gives
dle—r(T—t) +d2er(T—t) +E[Q ] 2/\\/&(_6—% +ert)
die= T 4+ dyer™ 0 (die=T + daeT) (cre"T + coerT)’
d efr(Tft) —d er(Tft) I\D(e~ "t +ert
ar = Qor - T : T E[Qo] =T il T —r; "
die T 4+ dyer (die + doe™)(cre + cemT)

Q¢ = Qo
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4.3. The LQ case. In this subsection, we use the sufficient condition derived
above to solve a simple LQ model. Via different methods, such models have been
already studied in the literature; see, e.g., [35, 24, 6, 33]. For the sake of simplicity,
we give the details of the computations in the scalar case m = d = k = 1 and with
A = R. Also, as before, we assume that the volatility is not controlled and, in fact,
that it is identically equal to 1. In such an LQ model, the drift is of the form

b(l’, Oé,ﬁ) = blfﬂ + bQOé + Z_)lﬂ_f + BQO_Z

for some constants by, by, by, l_)g, where we denote by Z and & the means of the state
and the control, in the sense that z = [ [ z€(dz,da) and @ = [ [ a&(dz,dw). As for
the cost functions, we assume that

f(x7a7£) = % I:qu + Q('r - S‘f)Q +TO¢2 +77(Oé - 507)2] s g(x,u) = %7'12 + g(x - pi‘)z

for some constants q,q,r, T, s, §,7,0, p satisfying ¢,7,7 > 0 and ¢,r,v > 0. Under
these conditions, the Hamiltonian reads

(4.13)

H(z,0,&,y) = (i@ + boa + 1T + bed)y + 1 [q2? + Gz — s2)? + ra® + F(a — 5a)?] .

Accordingly, the adjoint equation reads as

(4.14)  dY;=— (blYt ¥ (q+ D)X, + BE[Y:] + sq(s — 2)E[Xt])dt + Z,dW,.

In the present situation, conditions (i) and (ii) of Theorem 3.5 hold, and condition
(3.7) of the Pontryagin stochastic maximum principle holds if

(4.15) boY; + boE[Y;] + (r 4 7)oy + 75(5 — 2)E[ay] = 0.
Taking expectations, we obtain

by + by
4.1 Eloy] = —————=E[Y;].
( 6) [at} ’I"—|—’I:(§— 1)2 [ t]
Plugging this expression into (4.15), we get

(4.17) a = *ﬁ (ngt + (52 - Fggir_f(i (b_2 ;;252) )ﬁ)

We can rewrite (4.17) and (4.16) as

(4.18) oy = aY; + bE[Y}] and Elay] = cE[Yy]
with
(4.19) B B
1 /.  75(5—
_ bg_7 e _ _(b_rs(s _2)_(b2+b2)>7 and ¢ — — b2_-5_-bz .
r4+T T4 T r+7(5—1)>2 r+7(5—1)2

With this notation, the solution of the mean field optimal control of the McKean—
Vlasov SDE (2.2) reduces to the solution of the following forward-backward SDE
(FBSDE) of McKean—Vlasov type:

X, = (b X; + BE[X,] + (absY; + (bby + d_)g)E[Y;Ddt + AW,

(4.20) i
aY; = = (b1Y; + (a+ @)X, + BEY] + sq(s — 2E[X])dt + Z,dW,
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with terminal condition Yr = (v + %) X1 + 3p(p — 2)E[Xr]. We solve this system
in the usual way. First, we compute the means z; = E[X;] and 3 = E[Y;]. Taking
expectations in (4.20), we obtain

A% = ((by + b1)Ts + (aby + bbs + cég)gt>dt,

4.21 _
421 dy; = *((bl + b1) 0 +(q+q+sq(572))§7t)dt

with terminal condition gr = (v + %+ 3p(p — 2))Zr. The linear system (4.21) can be
solved explicitly. For instance, if we denote

A= /(b +b1)% — (abs + bbs + cho)(q + G + sq(s — 2)),

and assume that the argument of the square root is strictly positive, one can solve
(4.21) via the theory of linear ODE systems in the case of real eigenvalues. We then
obtain that

- (b1 4 b1)? — A2 {_At< (q+q+sq(s—2>)wo)
Ty = — — — e y()+ =
2(q+ g+ sq(s — 2))A b +b1+A
At (Q+Q+8@(S—2))xo>}
€ (y0+ by —l—Bl—A

together with
(b1 + 61)2 — A2
2(g+ g+ sq(s — 2))A
. {—(q+q+ sq(s — 2))e A ( L la+a+sa(s— 2))960)

Yt = —

bi+b—A by +b1+ A
N (q+ 7+ sq(s — 2)e ( N (q+cj+sg(s—2))xo>}
b1 +b1 + A b1 +b; — A

solve (4.21) for any yo, and choosing yo appropriately one can guarantee that gr =
(v+ 7+ 7p(p — 2))zp. This expression for (Z,y:) can be plugged into (4.20) in lieu
of (E[X,],E[Y:]), reducing the latter to a standard affine FBSDE. We then make the
ansatz Y; = Xy + x¢ for two deterministic functions ¢ — 7; and t — x¢, which is
compatible with the terminal condition. Computing the It6 differentials of Y; from the
ansatz and from the system (4.20), and identifying the terms in the drift multiplying
the unknown X;, we find that n; should be a solution of the scalar Riccati equation

n = q+q+n, + abany).

o,
The latter is easily solved, and since necessarily 4 = 1n:Z+ + X&, then x; can also be
explicitly obtained. By Theorem 3.5, the control @ obtained in this way is optimal.
Notice that it takes the form

Qp = (l??tXt + axit —+ bi’t
with a and b given in (4.19).

Remark 4.2. In classical control of mean field type, the pointwise minimization
of the Hamiltonian with respect to the control is a necessary optimality condition.
Let us illustrate with the LQ example how this need not be the case in our extended
framework. If we impose pointwise minimization of (4.13) with respect to a, we get
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boY; + ray + 7(ay — 5a;) = 0. Integrating it, we obtain boE[Y;] + (r +7 — 758)d; = 0.
On the other hand, the necessary condition (3.5) implies (4.15), so we have byE[Y;] +
75(5 — 1)ay = 0. The right choice of parameters leads to a contradiction between this
and the previous equation.

5. Variational perspective in the weak formulation. The goal of this sec-
tion is to analyze the extended mean field control problem from a purely variational
perspective, that is, by considering its formulation on path space. Given the intrinsic
nature of mean field problems, it is natural to express them in terms of laws rather
than controls. The main reason for exploring this point of view is that of creating
a bridge with the optimal transport theory. This paves the way to the use of differ-
ent sets of tools as, for example, the numerical methods that are fast developing in
transport theory. We start by introducing, in section 5.1, a weak formulation of the
extended mean field control problem, especially well-suited for variational analysis.
In such a formulation, the probability space is not specified a priori. We remark that
a weak formulation of the mean field control problem has been considered in [14,
section 6.6] and in [25], the latter rigorously proving convergence of large systems of
interacting control problems to the corresponding mean field control problem. How-
ever, in these works there is no nonlinear dependence on the law of the control; cf.
our problem (5.1) below.

We proceed in section 5.2 to obtain what we call a martingale optimality condition.
Such a condition can serve as a verification tool, in order to evaluate whether a given
control can be optimal. It is therefore the weak-formulation analogue of the necessary
Pontryagin maximum principle. This forms a bridge between the previous sections of
this work, and the ensuing ones. Whenever the Pontryagin maximum principle can be
used (or the martingale optimality condition in the weak formulation), it is a powerful
tool to identify optimal controls and the trajectories of the state at the optimum.
However, it does not say much about the optimal value of the problem. In fact, at
the optimum, the adjoint process gives formally the value of the gradient of the value
function when computed along the optimal trajectories. In order to study the value
function of the control problem (in a situation in which PDE techniques are highly
nontrivial) we recast in section 5.3 our weak formulation in transport-theoretic terms.

Numerical optimal transport has spectacularly grown in strength over the last
few years; see, e.g., [19, 7, 29] and the references therein. Our connection between
transport and mean field control is meant to lay ground for efficient numerical methods
in the future. In section 5.4 we provide, at a theorerical level, a first discretization
scheme of this kind. To be specific, the optimal transport problem we obtain in
the discretization has an additional causality constraint (see, e.g., [26, 1, 4, 5]); the
numerical analysis of such problems is also having a burst of activity (e.g., [30, 31, 32]).

5.1. The weak formulation. We present a weak formulation of the extended
mean field control problem formulated in section 2, in the sense that the probability
space is not specified here. We restrict our attention to the case where the state
dynamics have uncontrolled volatility, actually assuming ¢ = I;, m = d, that the
drift does not depend on the law of the control, and that the initial condition X is a
constant xg. We thus consider the minimization problem

(5.1) Po
subject to  dX; = b(Xy, oy, Lp(Xy)) dt + dWy, Xo = o,

T
inf ¥ {/0 J(Xe, an, Lp(Xe, o)) dt + g( X, Lp(X7))
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where the infimum is taken over filtered probability spaces (€2, F,P) supporting some
d-dimensional Wiener process W, and over control processes @ which are progres-
sively measurable on (Q,F,P) and R¥-valued. We use Lp to denote the law of the
given random element under P. Again, we choose time independent coefficients for
simplicity, but all the results would be the same should f and b depend upon t.

We say that (Q,F,P,W, X, «) is a feasible tuple if it participates in the above
optimization problem yielding a finite cost.

5.2. Martingale optimality condition. In this section, we obtain a necessary
Pontryagin principle for the weak formulation (5.1). We call this the martingale
optimality condition. Since our aim is to illustrate the method, we assume only in
this part that we are dealing with a drift-control problem

blx,a,p) =, m=d.

We start by expressing the objective function of (5.1) in canonical space, as a func-
tion of semimartingale laws. We denote by C,, the space of R%valued continuous
paths started at xg, and by S the canonical process on it. We consider the set of
semimartingale laws

(5.2) P:={p € P(Cy,) : dS; = a*(8)dt + AW} p-as.},

where W# is a u-Brownian motion and a* is a progressively measurable process w.r.t.
the canonical filtration, denoted by F. It is then easy to see that (5.1) is equivalent
to

T
(5.3) inf EH {/ F(Ses ot Lu(Sp, 0f!))dt + g(St, pr)
neP 0

In what follows we consider perturbation of measures in P via push-forwards along
absolutely continuous shifts which preserve the filtration; see the work of Cruzeiro
and Lassalle [18] and the references therein. Using push-forwards instead of pertur-
bations directly on the SDE is the main difference between the weak and the strong
perspective. The main idea is to find the first order conditions for problem (5.3) by
considering perturbations of the form pu¥ := (Id + €K).p around a putative opti-
mizer p. For this matter it is important to identify the Doob—Meyer decomposition
of the canonical process under p®, which forces an assumption on K as we now
explain.

Remark 5.1. Let u € P. We say that an adapted process U : Cy, — Cy, is
p-invertible if there exists V' : C;, — Cy, adapted such that U oV = Ide, holds
U(p)—as., and V o U = Ide, holds p—a.s. Now let K. = [ kidt be adapted. We
say that K preserves the filtration under p if for every U which is p-invertible we
also have that U + K is p-invertible. It follows that the set of those K = fo ky dt
that preserve the filtration under p, is a linear space. It also follows that for such K
we have u¥ := (Id 4 ¢K).p € P with afE’K(S +eK(S)) = a'(S) + €ki(S); see
[18, Proposition 2.1, Lemma 3.1]. A typical case when the filtration is preserved is
when K is a piecewise linear and adapted process, while an example when K does not
preserve the filtration is given by Tsirelson’s drift; see, respectively, [18, Proposition
2.4, Remark 2.1.1].

In analogy to [18, Theorem 5.1], we then obtain the following necessary condition
for an optimizer in (5.3). We use here the notation 64 = (S, of', £,,(St, of')).
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PROPOSITION 5.2. Let p be an optimizer for (5.3). Then the process N* given
by

(5:4) NE' = 0,1 (08) + B0, 10F) (S0 )] = [ (0.5(02)+ B0, 102)(S.02)) ds

is a p-martingale, with terminal value equal to
(5.5)

N = =8,9(Sr. pr) — E[0,9(Sr, pr) (S1)] — /O (027 (62) + B[0,, £(62)(Ss, a)]) ds.

Proof. We use the notation p“* introduced in Remark 5.1, and call C(u) the

cost function appearing in problem (5.3). We have lim._,¢ w >0 for all K.
Now if K preserves the filtration under p, then the same is true for —K. Therefore
lim,_q w = 0. To conclude the proof, we use a“eYK(S—i—eK(S)) =al'(S)+
€k (S) and similar arguments as in [18, Theorem 5.1]. O

When (5.4)—(5.5) hold, we say that u satisfies the martingale optimality condition.
The interest of this condition is that it is a clear stochastic counterpart to the classical
Euler—Lagrange condition in the calculus of variations, except for the fact that “being
equal to zero” is here replaced by “being a martingale”; see [18, 27].

Ezxample 5.3. The martingale optimality condition is the analogue of the Pon-
tryagin principle in the weak formulation. To wit, we verify this in a simple ex-
ample. Suppose f(Xy, ap, L(X¢,00)) = L(ar — E[oy])? and g(Xr, L(X7)) = 1 X3Z.
The martingale optimality condition then asserts that for an optimizer p the process
Nf' = of' —E[a}"] is a martingale with N&* = —Sp. On the other hand the Pontryagin
FBSDE states that

dY; = Z, dWy , Yr = Xop,

as well as ay — E[ay] + Yy, by Remark 3.3. We see the compatibility of the two
statements, as well as the equality in law N}* = —Y;, in this particular case.

Remark 5.4. The above arguments can be adapted to the case when b(z, a, p) =
b(x,a). This is the case, for example, when b is a C!-diffeomorphism and b(x, R¥) is
convex for each z. Indeed, in this case one may redefine the drift in the dynamics of
S via B (S) := b(S;, at'(S)), which is associated with the cost

f( Stv bil(Stv Bf(‘s))7 LH(St’ bil(Sta /8#(‘5‘))) )’
where with some abuse of notation b=1(z,-) denotes the inverse of b(x,-). Using this
time the notation 6} = (S, B, £,,(St, B)) one then replaces the right-hand side
(r.hs.) of (5.4) with
(5.6)  af(01)0a(b~")(Se, BE') + EDf (6)0a (b~ ") (S, Bo)]

¢

— [ (0.50) + BI0 S0 (5. 52+ 0,500,071 (S, o)) s,

0
and the r.h.s. of (5.5) with
(5.7) = 8ug(St, ur) — E[0,9(St, ) (S7)]

T
= [ (0es0) + BlOLSO1) (1) + 0, F(02)0u(7) (S )] .
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5.3. Optimal transport reformulation. In this section we formulate a vari-
ational transport problem on C = C([0,7];R?), the space of R%valued continuous
paths, which is equivalent to finding the weak solutions of the extended mean field
problem (5.1). This variational formulation is a particular type of transport problem
under the so-called causality constraint; see [26, 1, 4, 5]. Here we recall this concept
with respect to the filtrations F' and F?, generated by the first and by the second
coordinate process on C X C.

DEFINITION 5.5. Given {1,(2 € P(C), a probability measure m € P(CxC) is called
a causal transport plan between €1 and o if its marginals are {1 and {2 and, for any
t € [0,T] and any set A € F2, the map C > x — w°(A) is F}-measurable, where
7*(dy) := w({z} x dy) is a regular conditional kernel of m w.r.t. the first coordinate,
and FY is the completion of F* w.r.t. {1. The set of causal transport plans between ¢
and €2 is denoted by 11.(¢1,¢a).

The only transport plans that contribute to the variational formulation of the
problem are those under which the difference of the the coordinate processes on the
product space C x C is a.s. absolutely continuous with respect to Lebesgue measure.

We denote by (w,w) the generic element on C x C, and we use (w — w) to indicate the
density of the process w — w with respect to Lebesgue measure, when it exists, i.e.,

t .
wt—wt:wo—wo—i—/ (W—w)sds, t €[0,T].
0

In such a case, we write w — w < L. Moreover, we set
~ := Wiener measure on C started at 0

and IIS (5, ) == {mr € P(C xC) : m(dw x C) = 4(dw), and @ —w < L, T-a.s.}.
We present the connection between extended mean field control and causal trans-
port.

LEMMA 5.6. Assume that b(x, ., 1) is injective, and set

—

u(w, @, p1) 1= b (@, ., 1) (@ — w)e).

Then problem (5.1) is equivalent to

T
(5.8) infE™ {/ f(wt,ut(w,w, wy )y L (@, ug(w, @, u?))) dt + g(@r, ul) |,
0

where the infimum is taken over transport plans m € IS (4, +) such that dt @ dr -a.s.
(@ —w); € b(wy, RY, uT), and p™ denotes the second marginal of .

Proof. Fix (Q,F,P,W, X, «a) a feasible tuple for (5.1), if it exists, and note
that a; = u, (W, X, Lp(X;)) is FX'W-adapted. Then 7 := Lp(W, X) belongs to
IIS(, Lp(X)) and generates the same cost in (5.8). Conversely, given a transport
plan 7 participating in (5.8), the following tuple (Q,F,P, W, X, «) is feasible for
(5.1): Q = C x C, F canonical filtration on C x C, P = 7, W = w, X = @, and
ap = ug(w,w, ul). d

The connection presented in the above lemma will be used in the next proposition,

in order to reduce the optimization problem in (5.1) to a minimization over weak closed
loop tuples, in the following sense.
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DEFINITION 5.7. We say that a feasible tuple for (5.1) is a weak closed loop if the
control is adapted to the state (i.e., o is FX -measurable).

We will further need the following concepts of monotonicity: a function f :
PRYN) — R is called <,,-monotone (resp., <.-monotone) if f(m1) < f(msa) when-
ever my =<em Ma (resp., my <. mz). With the latter order of measures, we mean
Jhdmq < [ hdms for all functions h which are convex and increasing w.r.t. the
usual componentwise order in RY (resp., all convex functions h) such that the inte-
grals exist.

PROPOSITION 5.8. Assume
(A1) b(x,., ) is injective, b(z,R¥ 1) is a convex set, and b= (x,., 1) is convex;
(A2) f(z,b=(x,., 1), &) is convex and grows at least like ko + k1| - [P with kK >
0,p>1;

(A3) f(z,q,.) is <em-monotone.
Then the minimization in the extended mean field problem (5.1) can be taken over
weak closed loop tuples. Moreover, if the infimum is attained, then the optimal control
«a is of weak closed loop form.

The proof follows the projection arguments used in [1], which requires the above
convexity assumptions. On the other hand, no regularity conditions are required here,
unlike in the classical PDE or probabilistic approaches (see assumptions (I)—(II) in
section 3). We refer to [25] for a similar statement, in a general framework, but under
no nonlinear dependence on the control law. This proof is postponed to Appendix A.

Remark 5.9. If b is linear with positive coefficient for «, then assumption (A3) in
Proposition 5.8 can be weakened:
(A3) f(z,q,.)is <.,-monotone,
as can be seen from the proof. For example, conditions (A1), (A2), (A3') are satisfied
if
b(i[,’, Q, /u’) =car+co+ C3ﬂ and f(xv Q, 'f) = dlx + ngé + dSl'2 + d40[2 + J(glv gZ)a

where J is a measurable function,

p= [anta)& = [ [aear.da). = [ [ag(as.ao,

and ¢;,d; are constants such that cg # 0, dg/co > 0.

5.4. A transport-theoretic discretization scheme. In this part we specialize
the analysis to the following particular case of (5.1):

1
(5.9) 1%}nf {/ f(Lp(oy))dt + g(Lp( X)) : dXi = apdt +dW,, X = xo} ,
' 0
where for simplicity we took T"= 1. Throughout this section we assume
(i) g is bounded from below and lower semicontinuous w.r.t. weak convergence;
(ii) f is increasing with respect to convex order, lower semicontinuous w.r.t. weak

convergence, and such that for all A € [0,1] and R*-valued random variables
4,2,

(5.10) FILAZ + (1= N)2)) < M(L(2) + (1= N F(L(Z));

(iii) f satisfies the growth condition f(p) > a + b [ |z[Pp(dz) for some a € R, b >
0,p>1.
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Lemma 5.6 shows the equivalence of (5.9) with the variational problem

. ! — _
inf ) {/0 f(ﬁﬂ(w 7w)t) dt+g(£ﬂ(w1))} .

TENE (v,

Under the convention that fol f(Lr(@—w);)dt = +o0 if W —w < L fails under =, the
latter can be expressed in the equivalent form

1 g
(P) inf inf {/0 f(ﬁ‘n'(wiw)t) dt+g(£ﬂ(w1))} )

peP mellc(v,p)

where P was defined in (5.2). In the same spirit as [36, Chapter 3.6], we introduce a
family of causal transport problems in finite dimension increasing to (P). For n € N,
let T, :={i27™ : 0 <4 < 2", i € N} be the nth generation dyadic grid. For measures
m € P(C) and m € P(C x C), we write
My = Ly ({wiier,) € PRETDY)
and 7, := Lo({(ws,@¢) }eer, ) € PRE TV 5 R+

for the projections of m and 7 on the grid T,,. We denote by

(15871'?,. o 7‘rgn7y(7)luy;lu e 7:(/371)
a typical element of R(2"+Dd x R"+1d and let A"z; := 27, — 27, and similarly for
We consider the auxiliary transport problems

(P())
ot [ (e (S225)) e
=0

pEPRE+1)d) well? (yn,1)

where, in analogy to Definition 5.5, we called
11 (1) € P(REZTHDE o RETHDY)

the set of causal couplings in P(R?"+D4 x RZ"+1d) with marginals v, and p; see
[5].

THEOREM 5.10. Suppose problem (P) is finite, and that (i), (i), (iii) hold. Then
the value of the auziliary problems (P(n)) increases to the value of the original problem
(P), and the latter admits an optimizer.

Remark 5.11. An example of a function satisfying conditions (ii)—(iii) of The-
orem 5.10 is f(p) = R (fhdp) for R convex and increasing, and h convex with
p-power growth (p > 1). It also covers the case of functions of the form f(p) =
J ¢(w, z) dp(w) dp(z) + [ |z|P dp(z), with ¢ jointly convex and bounded from below,
and f(p) = Var(p) + [ |z|P dp(z), where in both cases p > 1. For p = 2 the latter falls
into the LQ case of section 4.3.

Proof. Step 1 (lower bound): Let p € P and 7 € II.(, ) with finite cost for
problem (P). Fix n € N, and denote by 7, the projection of = onto the grid T,,. We
first observe that
(5.11)

2m-1

[ steE ) at+ gten@) = 2 3 (2, (BUZE) e, 5)
=0
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Indeed, for i € {0,...,2" — 1} we have

(i+1)2™" . (i+1)2™" . dt

_gng (ﬁ7r <w(i+1)2*" — Wig—n — (Wiit1)2—n — wiQ*")))

9—n
=2 ¢ <£7rn (w» ,

where for the inequality we used the convexity condition (5.10). Noticing that the
first marginal of 7, is equal to -, the r.h.s. of (5.11) is bounded from below by the
value of (P(n)). Because w, 7 have been chosen having finite cost for problem (P),
but otherwise arbitrary, we conclude that

(P) > (P(n)) VneN.
Step 2 (monotonicity): For n € N and i € {0,...,2" — 1}, take k such that
27" = (k —1)27 ) < k2= () < (k4 1)2- () = (5 4 1)27™,

Let Hni1 € P(R(2n+l+1)d) and Tnt1 € HZL+1(’7TL+1)I‘I’TL+1)' By (51()) we get

ALy — ALy Aty — Aty
—(n+1) Yk—1 k—1 Yk k
2 n {f (ETF,L+1 < 27(n+1) )) + f (£Trn+1 ( 27(1’7,4»1) ))}

+1 +1 +1 +1
>y (E,T (yZH i xZ—l)))
el nt1

2—7L

e (B2

where 7, is the projection of 7,1 on the grid T,. Analogously to the previous step,
this gives

(P(n+1)) > (P(n)) VneN.
Step 3 (discrete to continuous): We introduce auxiliary problems in path-space:
— ArG — Aw
()t e {2" > (e (350)) +g<cﬁ<w1>>},
where Af'w 1= w(;j11)2-n — wiz-» and likewise for A'w. We now prove that
(5.12) (P**(n)) = (P(n)) VneN.

First we observe that the left-hand side of (5.12) is larger than the r.h.s. Indeed,
projecting a coupling from II.(7,-) onto a discretization grid gives again a causal
coupling; see [36, Lemma 3.5.1]. For the converse inequality, note that Remark 5.12
implies that, for any v € P(RZ"+D4) and 7 € 117 (~y,,, ) with finite cost in (P(n)),
there exist g € P and P € (v, p) that give the same cost in (P%“*(n)).
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Step 4 (convergence): Let us denote

2" —1

e(m) == /01 f(/lﬂ(w/;\w)t) dt and (7)) :=27" Z f (L",r (W)) ,
i=0

the cost functionals defining the optimization problems (P) and (P*“*(n)). Notice
that Step 1 implies ¢ > ¢”, and Step 2 shows that ¢” is increasing. We now show that
c"™ converges to ¢ whenever the latter is finite. For this it suffices to show that

(5.13) limninf c"(m) > e(n).

We start by representing ¢” in an alternative manner, namely,

1 (2" +1)27" . ds
c(m) = / fl Lx / (@—w)s5— dt.
0 Lt2n |2-n 2

By the Lebesgue differentiation theorem [21, Theorem 6, Appendix E.4], for each pair
(W, w) such that @ — w is absolutely continuous, there exists a d¢-full set of times such
that

([e2n]+1)27" . ds .
(5.14) A(t,n) ::/ (E D = (G- )
L

thJ 2—n

If ¢(m) < oo, the set of such pairs (w,w) is m-full. This shows that (5.14) holds
7(dw, dw)dt-a.s. By Fubini’s theorem, there is a d¢-full set of times I C [0, 1] such
that, for ¢t € I, the limit (5.14) holds in the m-almost sure sense (the m-null set depends
on t a priori). By dominated convergence, this proves that

Viel: L. (A(t,n)) = EW((m)t%

namely, in the sense of weak convergence of measures. By lower boundedness and
lower semicontinuity of f, together with Fatou’s lemma, we obtain

1 1 .
liminf ¢"(7) > / liminf f (L (A(t,n))) dt = / F(Lr((@—w)))dt,
" 0 " 0
establishing (5.13) and so that ¢" *ec.

By Steps 2 and 3, we know that the values of (P%“*(n)) are increasing and
bounded from above by the value of (P). We take 7™ which is 1/n-optimal for

(P*“*(n)). Tt follows then by assumptions (i)-(iii) that [ fol (@ — w)]Pdtdrm <
a+ b(P), for some a,b € R. By [36, Lemma 3.6.2], we obtain the tightness of {7"},.
We may thus assume that m, = 7 weakly. By [1, Lemma 5.5], the measure 7 is causal
(and it obviously has first marginal «). For k < n we have

(") < (@) < /n+ (P (n)) < 1/n+ (P),

so, sending n — oo, we get c¥(7) < lim, (P®*(n)) < (P), as clearly c* is lower
semicontinuous. By letting k — oo, and using the fact that ¢* ¢, we conclude that
7 is optimal for (P), and that the value of (P) is the limit of the increasing values of
(P%“*(n)), which in turn equals the limit of the increasing values of (P(n)). d
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We complete the argument used in Step 3 with the following remark. This also
shows how, from an (approximate) optimizer of the discrete-time problem (P(n)), an
approximate optimizer of the continuous-time problem (5.9) can be built.

Remark 5.12. In Lemma B.3 we show how, given v € P(R??) and 7 € I1%(~y, v),
there exists a weak solution (W, X) of an SDE such that £p(Wy, W1, Xo, X1) = 7.
The argument used to prove Lemma B.3 can be iterated in order to get an SDE whose
unique weak solution fits any joint distribution over finitely many time points: For
any given v € P(RZ"tV4) and 7 € 17 (v, V), there exist p € Pand Pell (v, 1)
such that

£P(W0, Wo—n,Wo—n+1, ... ,(,U17wo,52—n,62—n+1, e ,LU1) =T
with P being the joint law of (W, X), the unique weak solution of an SDE of the form
dX; = fedt + dWs.

Lemma B.3 covers the case n = 0. We now show the case n = 1, the general case
following similarly. Fix v € P(R3?) and 7 € IIL(5y,v). As in Lemma B.3, if U; is a
d-dimensional uniform distribution, independent of Xy and of the Brownian motion
W, then there exists W; such that (0, W9, Xo, V1 (U1, W12, Xo)) ~ 71, where m;
is the projection of 7 into the first 4 coordinates. Introducing U, an independent
copy of Uy, we can apply Lemma B.1 in the appendix, obtaining the existence of a
measurable function ¥, such that

(0,W1/27W1,X0,‘I’1(U1, W12, X0), Wa( Uz, Wy 2, Wi, Xo, W1 (Uy, Wy/2, Xo) ) ) ~ T

Now we define the following SDE with initial condition Xj:

1 Wy, — X Wy (Uz,W1 /2, W,X0,X1/2)—Xt
dX; = (‘If (Ur 1V}/2_)§o) X71[0,1/2)(t) + 2(U2, Wiz Ve 0,X1/2) 1[1/2’1)(t)) dt + dW;.

This admits a unique solution in [0, 1), which is given by

Xy = Xo(1 = 2t)1p0,1/2)(t) + X1 (2 = 2)112,1) (%)

+(—tad) tW?MdH

2 (U, W 0, We, X0, X1 /2)
(1/2 )2 = 021/2) ds

ft/\1/2 (1—s)2
dWs.

t/\1/2

+(*_t/\2) ft/\1/21 s

Noting X, = \Ill(Ulawl/QvXO) and X;_ = Wy(Us, Wy /9, W1, Xo, X1 /2), we con-
clude.

Appendix A. Proof of Proposition 5.8.

Proof. Fix (Q,F,P,W X, a) a feasible tuple for (5.1), if it exists, and set 7 :=
Lp(W,X) € IIX(y,-) and p := p™. Under 7 we have w; — wy = xg + fot Bs ds for
some progressive 3. By (A2), the optional projection of 3 w.r.t. (7r, {0,C} x IFQ),
which we call 3, is well defined. As in [1], one can prove that the process M; :=
Wy — xo — fot Bs(w)ds is a (u,F?)-martingale. Indeed, taking 0 < s < t < T and
hs € L>(F?), we have

—

E*[(My — M)hy(@)] = E[(wr — ws)hs (@)] + E7 [ (@) [} (@ — )y — B,@)) dr]
— E [h@) [T B [(F =), — B @))[F2] dr] = 0,
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where the second equality follows since w, which is a (v, F!)-martingale, is conse-
quently by causality a (7, F! ® F?)-martingale. Therefore M is a (u,F?)-martingale,
as claimed.

Since (M); = (w); = t under w, then M is actually a (u, F?)-Brownian motion,
by Lévy’s theorem. This implies 7 := £,,(M,w) € I (v, ). We are next going to
show that the expectation in (5.8) is smaller when considering # instead of =, i.e.,

when replacing 8 = @ — w with B. Then, by taking Q = C,P = u,F = F%2, X = @,
and a = b~ (wy, ., s ) (B¢), we have a feasible tuple, which concludes the proof of the
proposition.

Let us show our claim. Set @ (@, ) := b~ (@, ., ) (B¢) and note that, by (A2)
and Jensen’s inequality,

f (wtaat(wa N)aﬁw(wt,at(wa FL))) S Eﬂ— [f (wtvut(wvwv Mt)v ﬁw(wtaat(wv /’l’))) ‘]F?] .

By taking expectation under 7 on both sides, integrating, and using Fubini’s theorem,
we then get

T
(A1) E* UO f(wt,ut(w,u)iﬂ(wt,ut(ww)))dt}

(A.2) <E"

T
/(; f(wt,ut(w,w, ,ut),ﬁﬂ(wt,ﬂt(w,u)))dt} .

We now establish some ordering between measures. For any measurable function
F : CxC — R and sigma-field o, set F' := E™[F|o], and note that for any con-
vex function ¢ : R — R, Jensen’s inequality gives [q(z)d(L.(F))(z) = E™[q(F)] <
E™[q(F)] = [q(z)d(L(F))(z), i.e., Lo(F) <c Lr(F). Analogously, for any convex

function H : R — R, we have that L, (H(F)) <¢m L (H(F)). By (Al) and (A3) this
implies

ETF |:A f(wt,ut(w7w,ut)7Ew(wt,ﬂt(%u)))dt}

<E"

T
/0 f(wt,ut(w,w,,ut),ﬁﬂ(wt,ut(w,w,ut)))dt} .

Together with (A.1), this concludes our claim, and so the proof of the proposition. 0O

Appendix B. Measurable selection of push-forwarding maps. The next
result is obvious in dimension one. In higher dimensions it could follow easily from
Brenier’s theorem in optimal transport, under assumptions relating to the finiteness
of second moments. We do not assume this and, therefore, need to be more careful.
For the meaning of concepts such as c-cyclical monotonicity, we refer to [34].

LEMMA B.1. Let Q be a probability measure on R™ x RY, and denote by q the
(joint) distribution of the first r coordinates of Q. Then there exists a Borel measurable
function F : R"x[0,1]° — R such that (I, F)(¢®L) = Q, where L is the (-dimensional
Lebesgue measure on [0,1]°, and I : R” x[0, 1] — R" is the projection map I(x,y) = x.

Proof. Let R" 5 x — Q% be a regular conditional kernel of @) with respect to the
first 7 coordinates. Consider the Borel function = — (L, Q%) € (P(R))2. All assump-
tions of [34, Corollary 10.44] are satisfied. Thus we have, ¢(dx)-a.s., the existence of a
unique Borel mapping F,(-) : R — R’ such that F,(L) = Q® and such that its graph
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is cyclically monotone (i.e., c-cyclically monotone for ¢ = ||-||). By Lemma B.2 below,
there exists a Borel function F : R” x R — R’ such that F(z, L) = Q%, q(dz)-a.s.
We finally verify that F'(¢ ® L) = @, which concludes the proof:

[ [wewmagear= [ ([ e ) o
- [([ e ) aa
- [([rew@ @) = [no. o

LEMMA B.2. Let (E,X,m) be a o-finite measure space. Consider a measurable
function E 3 X — (ux,vy) € P(RY) x P(RY), and a function ¢ : R® x R — R
continuous and bounded from below. Assume that for m-a.e. \, there exists a unique
mapping Fy : R — R* satisfying Fy is Borel measurable with Fy\(uy) = vy, and the
graph of Fy is c-cyclically monotone. Then there exists a measurable F : E x R — R?
such that m(d\)-a.s: F(\,y) = Fa(y), px(dy)-a.s.

Proof. Let T(p,v) := {m € (i, v) : supp(w) is c-cyclically monotone}. We first
note that the set-valued map (u,v) — II(u,v) is measurable. To wit, II(u,v) is
closed and the preimage of closed sets by ﬁ(~, -) are closed. The argument for the
first fact is contained in the proof of Theorem 5.20 in [34, p. 77]. As for the second
fact, let ¥ C P(R’ x RY) be closed, and (1, vp) = (11, ) with (pn,vn) € ITH(E).
The latter means that there exists 7, € II(u, v) NS with supp(m,) being c-cyclically
monotone. By Prokhorov’s theorem, up to selection of a subsequence, we may assume
that 7, — 7 € II(i, ¥)NY, and again reasoning as in the proof of Theorem 5.20 in [34]
we also get that 7 has c-cyclically monotone support. This implies (p,v) € II-1(%),
and all in all we get the measurability of II(-,-). We also remark that II(u,v) # 0, by
the argument in the first paragraph of the proof of Theorem 10.42 in [34, p. 251]. We
now closely follow the arguments in the proof of Theorem 1.1 in [22]. First remark
that the set-valued mapping

(1, v) = (1, v) 3= U, g1, SUPP(T) C R* x R*

is measurable. This easily follows, similarly to [22, Theorem 2.1}, by the measurability
of (u,v) — II(u,v). Now [22, Corollary 2.3] is valid for our ® without any changes.
Finally, the proof of Theorem 1.1 in [22] can be fully translated into our terms. ]

We provide the missing argument for Step 3 in the proof of Theorem 5.10, which
is used in Remark 5.12. We use the notation adopted in that part of the article.

LeEMMA B.3. Given v € P(R?*?) and 7 € T1(~o,v), there exist u € P(C) and
P € Il .(v,u) such that Lp(wo,w1,W0,w1) = ©. This measure P is the joint law
of the unique weak solution of an SDE of the form dX; = [idt + dWy, namely,
P=L(W,X).

Proof. Recall that 4o(dzg,dz1) = do(d29)N (dz1), where N is the standard Gauss-
ian in R%. We consider a probability space supporting a random variable U uniformly
distributed in [0, 1]¢, a random variable X, distributed according to the first marginal
of v, and a standard Brownian motion W, such that U, Xy, W are independent. We
first observe that, by Lemma B.1, there exists a Borel function ¥ : R? x R¢ x R — R¢
such that

(Oa Wl; XO? \Ij(Ua Wla XO) ) ~ .
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Second, we define the following SDE, with initial condition Xj:

U(U, Wy, Xo) —

X
dt + dw,.
1—¢ + AW

dXt =

Note that there is at most one solution to this SDE on every interval [0,7] with
T < 1, by the theory of Lipschitz SDEs with random coefficients. This proves that
the solution is unique on [0,1). Third, we observe that a solution of the above SDE
is given by

LU, wy, X, b1
0 ( s) 0 S

and therefore this is the unique solution on [0,1). Finally, we observe that sending
t — 1 (by L’Hépital’s rule) we have X; := X;_ = U(U, Wy, Xy). We now observe
that £(Wy, W1, X0, X1) = 7 as desired, and notice that P := L(W,X) is causal
(Definition 5.5), since X is adapted to the filtration G; := {(U, Xo, W) : s < t} and
W is a G-Brownian motion. 0
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