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EXTENDED MEAN FIELD CONTROL PROBLEMS: STOCHASTIC
MAXIMUM PRINCIPLE AND TRANSPORT PERSPECTIVE\ast 

BEATRICE ACCIAIO\dagger , JULIO BACKHOFF-VERAGUAS\ddagger , AND REN\'E CARMONA\S 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . We study mean field stochastic control problems where the cost function and the state
dynamics depend upon the joint distribution of the controlled state and the control process. We prove
suitable versions of the Pontryagin stochastic maximum principle, both in necessary and in sufficient
forms, which extend the known conditions to this general framework. We suggest a variational
approach for a weak formulation of these control problems. We show a natural connection between
this weak formulation and optimal transport on path space, which inspires a novel discretization
scheme.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . controlled McKean--Vlasov SDEs, Pontryagin principle, mean-field interaction,
casual transport plans

\bfA \bfM \bfS \bfs \bfu \bfb \bfj \bfe \bfc \bft \bfc \bfl \bfa \bfs \bfs \bfi fi\bfc \bfa \bft \bfi \bfo \bfn \bfs . 93E20, 90C08, 60H30, 60K35

\bfD \bfO \bfI . 10.1137/18M1196479

1. Introduction. The control of stochastic differential equations of mean field
type, also known as McKean--Vlasov control, did not get much attention before the
theory of mean field games became a popular subject of investigation. Indeed the two
topics are intimately related through the asymptotic theory of mean field stochastic
systems known as propagation of chaos. See, for example, [15] for an early discussion
of the similarities and the differences of the two problems. Among the earliest works
on this new form of control problem, relevant to the spirit of the analysis conducted
in this paper, are [10, 9, 3, 28, 8, 13]. Here, we follow the approach introduced
and developed in [13]. The reader is referred to [14, Chapters 3, 4, 6] for a general
overview of these problems and an extensive historical perspective. Still, most of
these contributions are limited to mean field interactions entering the models through
the statistical distribution of the state of the system alone. The goal of the present
article is to investigate the control of stochastic dynamics depending upon the joint
distribution of the controlled state and the control process. We refer to such problems
as extended Mean Field control problems; see [14, section 4.6].

Our first contribution is to prove an appropriate form of the Pontryagin stochastic
maximum principle, in necessary and in sufficient forms, for extended mean field
control problems. The main driver behind this search for an extension of existing
tools is the importance of many practical applications, which naturally fit within
the class of models for which the interactions are not only through the distribution
of the state of the system, but also through the distribution of the controls. The
analysis of extended mean field control problems had been restricted so far to the
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linear quadratic (LQ) case; see, e.g., [35, 24, 6, 33]. To the best of our knowledge, the
recent work [33] is the only one where more general models are considered. In that
article, however, the authors restrict the analysis to closed-loop feedback controls,
leading to a deterministic reformulation of the problem, which is used in order to
derive the Bellman equation associated with the problem; theirs is therefore a PDE
approach. In the present paper, we study the extended mean field control problem
without any restrictions, deriving a version of the Pontryagin maximum principle via
a probabilistic approach.

We apply our optimality conditions for particular classes of models, where our
analysis can be pushed further. In the case of scalar interactions, in which the dy-
namics depend solely upon moments of the marginal distributions, we derive a more
explicit form of the optimality condition. The advantage here is that the analysis
can be conducted with a form of classical differential calculus, without the use of the
notion of L-differentiability. The announced work [23] studies an application of such
a class of models in electricity markets. As a special case of scalar interaction, we
study an optimal liquidation model, which we are able to solve explicitly. Finally, we
consider the case of LQ models for which we easily derive explicit solutions which can
be computed numerically. The results in the LQ setting are compatible with existing
results in the literature.

Another contribution of the present article is the variational study of a weak
formulation of the extended mean field control problem. Weak formulations have
already been studied in the literature, without nonlinear dependence in the law of
the control, as in [14, Chapter 6] and [25]. In this framework, we derive an analogue
of the Pontryagin principle in the form of a martingale optimality condition. Similar
statements have been derived in [18, 27] under the name of stochastic Euler--Lagrange
condition for a different kind of problems. Next, we derive a natural connection
between the extended mean field control problem and an optimal transport problem
on path space. The theory of optimal transport is known to provide a set of tools and
results crucial to the understanding of mean field control and mean field games. We
illustrate the use of this connection by building a discretization scheme for extended
mean field control based on transport-theoretic tools (as in [36, Chapter 3.6] for the
case without mean field terms), and show that this scheme converges monotonically
to the value of the original extended mean field control problem. The explosion in
activity regarding numerical optimal transport gives us reason to believe that such
discretization schemes might be efficiently implemented in the near future; see, e.g.,
[19, 7, 29] for the static setting and [30, 31, 32] for the dynamic one.

The paper is organized as follows. In section 2, we introduce the notations and
basic underpinnings for extended mean field control. Section 3 provides a new form
of the Pontryagin stochastic maximum principle. In section 4, we study classes of
models for which our optimality conditions lead to explicit solutions. In section 5, we
analyze the weak formulation of the problem in connection with optimal transport.
Finally, in the appendix, we collect some technical proofs.

2. Extended mean field control problems. The goal of this short subsection
is to set the stage for the statements and proofs of the stochastic maximum principle
proven in section 3 below.

Let f , b, and \sigma be measurable functions on \BbbR d \times \BbbR k \times \scrP 2(\BbbR d \times \BbbR k) with val-
ues in \BbbR , \BbbR d, and \BbbR d\times m, respectively, and g be a real valued measurable function
on \BbbR d \times \scrP 2(\BbbR d). Here and elsewhere we denote by \scrP (\cdot ) (resp., \scrP 2(\cdot )) the set of
probability measures (resp., with finite second moments) over an underlying met-
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ric space. Let (\Omega ,\scrF ,\BbbP ) be a probability space, \scrF 0 \subset \scrF be a sub-sigma-algebra,
and \BbbF = (\scrF t)0\leq t\leq T be the filtration generated by \scrF 0 and an m-dimensional Wiener
process \bfitW = (Wt)0\leq t\leq T . We denote by \BbbA the set of progressively measurable pro-
cesses \bfitalpha = (\alpha t)0\leq t\leq T taking values in a given closed-convex set A \subset \BbbR k and satisfying

the integrability condition \BbbE 
\int T

0
| \alpha t| 2 dt <\infty .

We consider the problem of minimizing

(2.1) J(\bfitalpha ) = \BbbE 
ï\int T

0

f(Xt, \alpha t,\scrL (Xt, \alpha t)) dt+ g
\bigl( 
XT ,\scrL (XT )

\bigr) ò
over the set \BbbA of admissible control processes, under the dynamic constraint

(2.2) dXt = b(Xt, \alpha t,\scrL (Xt, \alpha t)) dt+ \sigma (Xt, \alpha t,\scrL (Xt, \alpha t)) dWt

with X0 a fixed \scrF 0-measurable random variable.
The symbol \scrL stands for the law of the given random element. We shall add mild

regularity conditions for the coefficients b and \sigma so that a solution to (2.2) always
exists when \bfitalpha \in \BbbA . For the sake of simplicity, we chose to use time independent
coefficients, but all the results would be the same should f , b, and \sigma depend upon t,
since time can be included as an extra state in the vector X.

The novelty of the above control problem lies in the fact that the cost functional
and the controlled SDE depend on the joint distribution of state and control. For
this reason, we call it the extended mean field control problem. In this generality,
this problem has not been studied before. We mention the works [35, 24, 6, 33] for
particular cases and different approaches.

2.1. Partial L-differentiability of functions of measures. We introduce
here the concept of L-differentiability for functions of joint probability laws (i.e.,
probability measures on product spaces). We refer the reader to [14, Chapter 5] for
more details.

Let u : \BbbR q \times \scrP 2(\BbbR d \times \BbbR k) \rightarrow \BbbR . We use the notation \xi for a generic element of
\scrP 2(\BbbR d \times \BbbR k), and \mu \in \scrP 2(\BbbR d) and \nu \in \scrP 2(\BbbR k) for its marginals. We denote a generic
element of \BbbR q by v.

Let (\~\Omega , \~\scrF , \~\BbbP ) be a probability space and let \~u be a lifting of the function u. In
other words,

\~u : \BbbR q \times L2(\~\Omega , \~\scrF , \~\BbbP ;\BbbR d \times \BbbR k) \ni (v, \~X, \~\alpha ) \mapsto \rightarrow \~u(v, \~X, \~\alpha ) = u(v,\scrL ( \~X, \~\alpha )).

We say that u is L-differentiable at (v, \xi ) if there exists a pair

( \~X, \~\alpha ) \in L2(\~\Omega , \~\scrF , \~\BbbP ;\BbbR d \times \BbbR k) with \scrL ( \~X, \~\alpha ) = \xi 

such that the lifted function \~u is Fr\'echet differentiable at (v, \~X, \~\alpha ); cf. [20, Chapter
II.5, p. 92]. When this is the case, it turns out that the Fr\'echet derivative depends
only on the law \xi and not on the specific pair ( \~X, \~\alpha ) having distribution \xi ; see
[11] or [14, Chapter 6] for details. Thanks to self-duality of L2 spaces, the Fr\'echet
derivative [D\~u](v, \~X, \~\alpha ) of the lifting function \~u at (v, \~X, \~\alpha ) can be viewed as an
element D\~u(v, \~X, \~\alpha ) of \BbbR q \times L2(\~\Omega , \~\scrF , \~\BbbP ;\BbbR d \times \BbbR k) in the sense that

[D\~u](v, \~X, \~\alpha )( \~Y ) = \~\BbbE [D\~u(v, \~X, \~\alpha ) \cdot \~Y ] for all \~Y \in \BbbR q \times L2(\~\Omega , \~\scrF , \~\BbbP ;\BbbR d \times \BbbR k).

Since \BbbR q \times L2(\~\Omega , \~\scrF , \~\BbbP ;\BbbR d \times \BbbR k) \sim = \BbbR q \times L2(\~\Omega , \~\scrF , \~\BbbP ;\BbbR d)\times L2(\~\Omega , \~\scrF , \~\BbbP ;\BbbR k), as in [11],
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the random variable D\~u(v, \~X, \~\alpha ) can be represented a.s. via the random vector

D\~u(v, \~X, \~\alpha )

=
Ä
\partial vu(v,\scrL ( \~X, \~\alpha ))( \~X, \~\alpha ) , \partial \mu u(v,\scrL ( \~X, \~\alpha ))( \~X, \~\alpha ) , \partial \nu u(v,\scrL ( \~X, \~\alpha ))( \~X, \~\alpha )

ä
for measurable functions \partial vu(\cdot ,\scrL ( \~X, \~\alpha ))(\cdot , \cdot ), \partial \mu u(\cdot ,\scrL ( \~X, \~\alpha ))(\cdot , \cdot ), \partial \nu u(\cdot ,\scrL ( \~X, \~\alpha ))(\cdot , \cdot ),
all of them defined on \BbbR q \times \BbbR d \times \BbbR k and valued, respectively, on \BbbR q, \BbbR d, and \BbbR k. We
call these functions the partial L-derivatives of u at (v,\scrL ( \~X, \~\alpha )).

3. Stochastic maximum principle. Our goal is to prove a necessary and a
sufficient condition for optimality in the extended class of problems considered in the
paper. These are suitable extensions of the Pontryagin stochastic maximum principle
conditions. We define the Hamiltonian H by

H(x, \alpha , \xi , y, z) = b(x, \alpha , \xi ) \cdot y + \sigma (x, \alpha , \xi ) \cdot z + f(x, \alpha , \xi )(3.1)

for (x, \alpha , \xi , y, z) \in \BbbR d \times \BbbR k \times \scrP 2(\BbbR d \times \BbbR k)\times \BbbR d \times \BbbR d\times m. Naturally, the dot notation
for matrices refers to the trace inner product. We let \BbbH 0,n stand for the collection
of all \BbbR n-valued progressively measurable processes on [0, T ], and denote by \BbbH 2,n

the collection of processes Z in \BbbH 0,n such that \BbbE 
\int T

0
| Zs| 2 ds < \infty . We shall also

denote by \BbbS 2,n the space of all continuous processes \bfitS = (St)0\leq t\leq T in \BbbH 0,n such that
\BbbE [sup0\leq t\leq T | St| 2] < +\infty . Here and in what follows, regularity properties, such as
continuity or Lipschitz character, of functions of measures are always understood in
the sense of the 2-Wasserstein distance of the respective spaces of probability measures
with finite second moments; cf. [34].

Throughout this section, we assume the following:
(I) The functions b, \sigma , and f are differentiable with respect to (x, \alpha ), for \xi \in 

\scrP 2(\BbbR d \times \BbbR k) fixed, and the functions

(x, \alpha , \xi ) \mapsto \rightarrow ( \partial x(b, \sigma , f)(x, \alpha , \xi ), \partial \alpha (b, \sigma , f)(x, \alpha , \xi ) )

are continuous. Moreover, the functions b, \sigma , and f are L-differentiable with
respect to the variable \xi , the mapping

\BbbR d\times A\times L2(\Omega ,\scrF ,\BbbP ;\BbbR d\times \BbbR k) \ni (x, \alpha , (X,\beta )) \mapsto \rightarrow \partial \mu (b, \sigma , f)(x, \alpha ,\scrL (X,\beta ))(X,\beta )

being continuous. Similarly, the function g is differentiable with respect to
x, the mapping (x, \mu ) \mapsto \rightarrow \partial xg(x, \mu ) being continuous. The function g is also
L-differentiable with respect to the variable \mu , and the following map is con-
tinuous:

\BbbR d \times L2(\Omega ,\scrF ,\BbbP ;\BbbR d) \ni (x,X) \mapsto \rightarrow \partial \mu g(x,\scrL (X))(X) \in L2(\Omega ,\scrF ,\BbbP ;\BbbR d).

(II) The derivatives \partial x(b, \sigma ) and \partial \alpha (b, \sigma ) are uniformly bounded, and the mapping
(x\prime , \alpha \prime ) \mapsto \rightarrow \partial \mu (b, \sigma )(x, \alpha , \xi )(x

\prime , \alpha \prime ) (resp., (x\prime , \alpha \prime ) \mapsto \rightarrow \partial \nu (b, \sigma )(x, \alpha , \xi )(x
\prime , \alpha \prime ))

has an L2(\BbbR d, \mu ;\BbbR d \times \BbbR k)-norm (resp., L2(\BbbR k, \nu ;\BbbR d \times \BbbR k)-norm) which is
uniformly bounded in (x, \alpha , \xi ). There exists a constant L such that, for any
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R \geq 0 and any (x, \alpha , \xi ) such that | x| , | \alpha | , \| \xi \| L2 \leq R, it holds that

| \partial xf(x, \alpha , \xi )| \vee | \partial xg(x, \mu )| \vee | \partial \alpha f(x, \alpha , \xi )| \leq L(1 +R),

and the norms in L2(\BbbR d\times \BbbR k, \xi ;\BbbR d\times \BbbR k) and L2(\BbbR d, \xi ;\BbbR d\times \BbbR k) of (x\prime , \alpha \prime ) \mapsto \rightarrow 
\partial \mu f(x, \alpha , \xi )(x

\prime , \alpha \prime ), (x\prime , \alpha \prime ) \mapsto \rightarrow \partial \nu f(x, \alpha , \xi )(x
\prime , \alpha \prime ), and x\prime \mapsto \rightarrow \partial \mu g(x, \mu )(x

\prime ) are
bounded by L(1 +R).

Under these assumptions, for any admissible control \bfitalpha \in \BbbA , we denote by \bfitX =
\bfitX \alpha the corresponding controlled state process satisfying (2.2). We call adjoint pro-
cesses of \bfitX (or of \bfitalpha ), the couple (\bfitY ,\bfitZ ) of stochastic processes \bfitY = (Yt)0\leq t\leq T and
\bfitZ = (Zt)0\leq t\leq T in \BbbS 2,d \times \BbbH 2,d\times m that satisfy

(3.2)\left\{   dYt =  - 
\Bigl[ 
\partial xH

\bigl( 
\theta t, Yt, Zt

\bigr) 
+ \~\BbbE 

\bigl[ 
\partial \mu H

\bigl( 
\~\theta t, \~Yt, \~Zt)(Xt, \alpha t)

\bigr] \Bigr] 
dt+ Zt dWt, t \in [0, T ],

YT = \partial xg
\bigl( 
XT ,\scrL (XT )

\bigr) 
+ \~\BbbE 

\bigl[ 
\partial \mu g
\bigl( 
\~XT ,\scrL (XT )

\bigr) 
(XT )

\bigr] 
,

where \theta t := (Xt, \alpha t,\scrL (Xt, \alpha t)), and the tilde notation refers to an independent copy.
Equation (3.2) is referred to as the adjoint equation. Formally, the adjoint variable
Yt reads as the derivative of the value function of the control problem with respect to
the state variable. In contrast with the deterministic case, in order for the solution to
be adapted to the information flow, the extra term ZtdWt is needed. This is a stan-
dard feature of the extension of the maximum principle from deterministic control
to stochastic control. As expected, it is driven by the derivative of the Hamiltonian
function with respect to the state variable. In addition, since the controlled dynamics
are of the McKean--Vlasov type, the state variable, with respect to which we differ-
entiate the Hamiltonian function, needs to include the probability measure appearing
in the state equation. This is now understood thanks to the early contributions [13]
and [14, Chapter 6]. In the present case of extended mean field control problems, the
above adjoint equation needed to account for the fact that the probability measure
appearing in the state equation is in fact the joint distribution of the state Xt and the
control \alpha t. This forces us to involve the derivative of the Hamiltonian with respect
to the first marginal of this joint distribution.

Given \bfitalpha and as a result \bfitX , \theta t appears as a (random) input in the coefficients
of this equation which, except for the presence of the process copies, is a backward
stochastic differential equation of the McKean--Vlasov type, which is well posed under
the current assumptions. See for example the discussion in [14, Chapter 6, p. 532].

3.1. A necessary condition. The main result of this subsection is based on
the following expression of the G\^ateaux derivative of the cost function J(\bfitalpha ).

Lemma 3.1. Let \bfitalpha \in \BbbA , \bfitX be the corresponding controlled state process, and
(\bfitY ,\bfitZ ) its adjoint processes satisfying (3.2). For \bfitbeta \in \BbbA , the G\^ateaux derivative of J
at \bfitalpha in the direction \bfitbeta  - \bfitalpha is

d

d\epsilon 
J(\bfitalpha +\epsilon (\bfitbeta  - \bfitalpha ))

\bigm| \bigm| 
\epsilon =0

= \BbbE 
\int T

0

\Bigl( 
\partial \alpha H(\theta t, Yt, Zt)+\~\BbbE [\partial \nu H(\~\theta t, \~Yt, \~Zt)(Xt, \alpha t)]

\Bigr) 
\cdot (\beta t - \alpha t) dt,

where ( \~\bfitX , \~\bfitY , \~\bfitZ , \~\bfitalpha , \~\bfitbeta ) is an independent copy of (\bfitX ,\bfitY ,\bfitZ ,\bfitalpha ,\bfitbeta ) on the space (\~\Omega , \~\scrF , \~\BbbP ).
Proof. We follow the lines of the proof of the stochastic maximum principle for

the control of McKean--Vlasov equations given in [14, section 6.3]. Given admissible
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controls \bfitalpha and \bfitbeta , for each \epsilon > 0 we define the admissible control \bfitalpha \epsilon = (\alpha \epsilon 
t)0\leq t\leq T

by \alpha \epsilon 
t = \alpha t + \epsilon (\beta t  - \alpha t), and we denote by \bfitX \epsilon = (X\epsilon 

t )0\leq t\leq T the solution of the
state equation (2.2) for \bfitalpha \epsilon in lieu of \bfitalpha . We then consider the variation process
\bfitV = (Vt)0\leq t\leq T , defined as the solution of the linear stochastic differential equation,

(3.3) dVt =
\bigl[ 
\gamma tVt + \rho t + \eta t

\bigr] 
dt+

\bigl[ 
\^\gamma tVt + \^\rho t + \^\eta t

\bigr] 
dWt

with V0 = 0. The coefficients \gamma t, \^\gamma t, \eta t, and \^\eta t are defined by

\gamma t = \partial xb(\theta t), \^\gamma t = \partial x\sigma (\theta t), \eta t = \partial \alpha b(\theta t)(\beta t  - \alpha t), \^\eta t = \partial \alpha \sigma (\theta t)(\beta t  - \alpha t),

which are progressively measurable bounded processes with values in the spaces \BbbR d\times d,
\BbbR (d\times d)\times d, \BbbR d, and \BbbR d\times d, respectively (the parentheses around d\times d indicate that \^\gamma t \cdot u
is seen as an element of \BbbR d\times d whenever u \in \BbbR d). The coefficients \rho t and \^\rho t are given
by

\rho t = \~\BbbE 
\bigl[ 
\partial \mu b(\theta t)( \~Xt, \~\alpha t) \~Vt

\bigr] 
+ \~\BbbE 

\bigl[ 
\partial \nu b(\theta t)( \~Xt, \~\alpha t)( \~\beta t  - \~\alpha t)

\bigr] 
,

\^\rho t = \~\BbbE 
\bigl[ 
\partial \mu \sigma (\theta t)( \~Xt, \~\alpha t) \~Vt

\bigr] 
+ \~\BbbE 

\bigl[ 
\partial \nu \sigma (\theta t)( \~Xt, \~\alpha t)( \~\beta t  - \~\alpha t)

\bigr] 
,

which are progressively measurable bounded processes with values in \BbbR d and \BbbR d\times d,
respectively, and where ( \~Xt, \~\alpha t, \~Vt, \~\beta t) is an independent copy of (Xt, \alpha t, Vt, \beta t) defined
on the separate probability structure (\~\Omega , \~\scrF , \~\BbbP ).

We call \bfitV = (Vt)0\leq t\leq T the variation process because it is the G\^ateaux derivative
of the state in the direction \bfitbeta  - \bfitalpha , since, as detailed in [14, Lemma 6.10], it satisfies

lim
\epsilon \searrow 0

\BbbE 
ï

sup
0\leq t\leq T

\bigm| \bigm| \bigm| \bigm| X\epsilon 
t  - Xt

\epsilon 
 - Vt

\bigm| \bigm| \bigm| \bigm| 2ò = 0.

For this reason, we have:

lim
\epsilon \searrow 0

1

\epsilon 
[J(\bfitalpha \epsilon ) - J(\bfitalpha )]

= \BbbE 
\int T

0

\Bigl( 
\partial xf(\theta t)Vt + \partial \alpha f(\theta t)(\beta t  - \alpha t)

+ \~\BbbE [\partial \mu f(\theta t)( \~Xt, \~\alpha t) \~Vt] + \~\BbbE [\partial \nu f(\theta t)( \~Xt, \~\alpha t)( \~\beta t  - \~\alpha t)]
\Bigr) 
dt

+ \BbbE 
\Bigl[ 
\partial xg(XT ,\scrL (XT ))VT + \~\BbbE [\partial \mu g(XT ,\scrL (XT ))( \~XT ) \~VT ]

\Bigr] 
= \BbbE 

\int T

0

\Bigl( 
\partial xf(\theta t)Vt + \partial \alpha f(\theta t)(\beta t  - \alpha t)

+ \~\BbbE [\partial \mu f(\theta t)( \~Xt, \~\alpha t) \~Vt] + \~\BbbE [\partial \nu f(\theta t)( \~Xt, \~\alpha t)( \~\beta t  - \~\alpha t)]
\Bigr) 
dt

+ \BbbE 
\Bigl[ \bigl( 
\partial xg(XT ,\scrL (XT )) + \~\BbbE [\partial \mu g( \~XT ,\scrL (XT ))(XT )

\bigr) 
VT ]
\Bigr] 
,

(3.4)

where we used Fubini's theorem to obtain the last equality. Notice that, if we introduce
the adjoint processes (\bfitY ,\bfitZ ) of \bfitalpha \in \BbbA and the corresponding state process\bfitX , by (3.2),
we see that the last expectation above is exactly \BbbE [YTVT ]. This can be computed
by integration by parts, using the It\^o differentials of \bfitY and \bfitV , which are given,
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respectively, by (3.2) and (3.3). In this way we obtain

YTVT = Y0V0 +

\int T

0

Yt dVt +

\int T

0

Vt dYt +

\int T

0

d[Y, V ]t

=MT +

\int T

0

\Bigl[ 
Yt\partial xb(\theta t)Vt + Yt\partial \alpha b(\theta t)(\beta t  - \alpha t) + Yt\~\BbbE 

\bigl[ 
\partial \mu b(\theta t)( \~Xt, \~\alpha t) \~Vt

\bigr] 
+ Yt\~\BbbE 

\bigl[ 
\partial \nu b(\theta t)( \~Xt, \~\alpha t)( \~\beta t  - \~\alpha t)

\bigr] 
 - Vt\partial xb(\theta t)Yt  - Vt\partial x\sigma (\theta t)Zt  - Vt\partial xf(\theta t)

 - Vt\~\BbbE 
\bigl[ 
\partial \mu b(\~\theta t)(Xt, \alpha t) \~Yt

\bigr] 
 - Vt\~\BbbE 

\bigl[ 
\partial \mu \sigma (\~\theta t)(Xt, \alpha t) \~Zt

\bigr] 
 - Vt\~\BbbE 

\bigl[ 
\partial \mu f(\~\theta t)(Xt, \alpha t)

\bigr] 
+ Zt\partial x\sigma (\theta t)Vt + Zt\partial \alpha \sigma (\theta t)(\beta t  - \alpha t) + Zt

\~\BbbE 
\bigl[ 
\partial \mu \sigma (\theta t)( \~Xt, \~\alpha t) \~Vt

\bigr] 
+ Zt

\~\BbbE 
\bigl[ 
\partial \nu \sigma (t, \theta t)( \~Xt, \~\alpha t)( \~\beta t  - \~\alpha t)

\bigr] \Bigr] 
dt,

where (Mt)0\leq t\leq T is a mean zero integrable martingale which disappears when we take
expectations of both sides. Applying Fubini's theorem once more, we have

\BbbE [YTVT ]

= \BbbE 
\int T

0

\Bigl[ 
Yt\partial xb(\theta t)Vt + Yt\partial \alpha b(\theta t)(\beta t  - \alpha t) + Yt\~\BbbE 

\bigl[ 
\partial \nu b(\theta t)( \~Xt, \~\alpha t)( \~\beta t  - \~\alpha t)

\bigr] 
 - Vt\partial xb(\theta t)Yt  - Vt\partial x\sigma (\theta t)Zt  - Vt\partial xf(\theta t) - Vt\~\BbbE 

\bigl[ 
\partial \mu f(\~\theta t)(Xt, \alpha t)

\bigr] 
+ Zt\partial x\sigma (\theta t)Vt + Zt\partial \alpha \sigma (\theta t)(\beta t  - \alpha t) + Zt

\~\BbbE 
\bigl[ 
\partial \nu \sigma (t, \theta t)( \~Xt, \~\alpha t)( \~\beta t  - \~\alpha t)

\bigr] \Bigr] 
dt.

Plugging this expression into the second equality of (3.4) we get, again by Fubini's
theorem,

lim
\epsilon \searrow 0

1

\epsilon 
[J(\bfitalpha \epsilon ) - J(\bfitalpha )]

= \BbbE 
\int T

0

\Bigl( 
\partial \alpha f(\theta t)(\beta t  - \alpha t) + \~\BbbE [\partial \nu f(\theta t)( \~Xt, \~\alpha t)( \~\beta t  - \~\alpha t)]

+ Yt\partial \alpha b(\theta t)(\beta t  - \alpha t) + Yt\~\BbbE 
\bigl[ 
\partial \nu b(\theta t)( \~Xt, \~\alpha t)( \~\beta t  - \~\alpha t)

\bigr] 
+ Zt\partial \alpha \sigma (\theta t)(\beta t  - \alpha t) + Zt

\~\BbbE 
\bigl[ 
\partial \nu \sigma (t, \theta t)( \~Xt, \~\alpha t)( \~\beta t  - \~\alpha t)

\bigr] \Bigr] 
dt,

which is the desired result, by (3.1).

We are now ready to prove the necessary part of the Pontryagin stochastic max-
imum principle. In the present framework of extended mean field control, we obtain
(3.5) below. It is not possible to improve this condition into a pointwise minimization
condition as in more classical versions of the problem, when there is no nonlinear
dependence on the law of the control; see (6.58) in [14]. We give an example of this
phenomenon in Remark 4.2.

Theorem 3.2. Under assumptions (I)--(II), if the admissible control \bfitalpha =
(\alpha t)0\leq t\leq T \in \BbbA is optimal, \bfitX = (Xt)0\leq t\leq T is the associated controlled state given
by (2.2), and (\bfitY ,\bfitZ ) = (Yt, Zt)0\leq t\leq T are the associated adjoint processes satisfying
(3.2), then we have
(3.5)Ä
\partial \alpha H(\theta t, Yt, Zt) + \~\BbbE 

\bigl[ 
\partial \nu H(\~\theta t, \~Yt, \~Zt)(Xt, \alpha t)

\bigr] ä
\cdot (\alpha t  - a) \leq 0 \forall a \in A, dt\otimes d\BbbP -a.s.,

where ( \~\bfitX , \~\bfitY , \~\bfitZ , \~\bfitalpha ) is an independent copy of (\bfitX ,\bfitY ,\bfitZ ,\bfitalpha ) on L2(\~\Omega , \~\scrF , \~\BbbP ).
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Proof. Given any admissible control \bfitbeta , we use as before the perturbation \alpha \epsilon 
t =

\alpha t + \epsilon (\beta t  - \alpha t). Since \bfitalpha is optimal, we have the inequality

d

d\epsilon 
J(\bfitalpha + \epsilon (\bfitbeta  - \bfitalpha ))

\bigm| \bigm| 
\epsilon =0

\geq 0.

Using the result of the previous lemma, we get

\BbbE 
\int T

0

\Bigl( 
\partial \alpha H(\theta t, Yt, Zt) + \~\BbbE [\partial \nu H(\~\theta t, \~Yt, \~Zt)(Xt, \alpha t)]

\Bigr) 
\cdot (\beta t  - \alpha t) dt \geq 0.

We now use the same argument as in the classical case (see, e.g., [14, Theorem 6.14]).
For every t and \beta \in L2(\Omega ,\scrF t,\BbbP ;A), we can take \beta t equal to \alpha t except for the interval
[t, t+ \varepsilon ], where it equals \beta , obtaining

(3.6) \BbbE 
\Bigl[ Ä
\partial \alpha H(\theta t, Yt, Zt) + \~\BbbE [\partial \nu H(\~\theta t, \~Yt, \~Zt)(Xt, \alpha t)]

ä
\cdot (\beta  - \alpha t)

\Bigr] 
\geq 0.

Further, for any a \in A we can take \beta to be equal to a on an arbitrary set in \scrF t, and
to coincide with \alpha t otherwise, establishing (3.5).

Remark 3.3. If the admissible optimal control \bfitalpha takes values in the interior of
A, then we may replace (3.5) with the following condition (see, e.g., [14, Proposition
6.15]):

(3.7) \partial \alpha H(\theta t, Yt, Zt) + \~\BbbE [\partial \nu H(\~\theta t, \~Yt, \~Zt)(Xt, \alpha t)] = 0 dt\otimes d\BbbP -a.s.

Remark 3.4. A sharpening of (3.5) can be obtained under the convexity condition

H(x, a\prime , \xi \prime , y, z) \geq H(x, a, \xi , y, z) + \partial \alpha H(x, a, \xi , y, z) \cdot (a\prime  - a)

+ \~\BbbE 
\bigl[ 
\partial \nu H(x, a, \xi , y, z)( \~Xt, \~\alpha t) \cdot (\~\alpha \prime 

t  - \~\alpha t)
\bigr] (3.8)

for all x \in \BbbR d, a, a\prime \in A, and \~\alpha \prime a copy on (\~\Omega , \~\scrF , \~\BbbP ) of an admissible control \alpha \prime ,
and where \xi , \xi \prime \in \scrP 2(\BbbR d \times A) with \xi = \scrL ( \~Xt, \~\alpha t) and \xi \prime = \scrL ( \~Xt, \~\alpha 

\prime 
t). Indeed,

in the framework of Theorem 3.2, if (3.8) holds, we apply it for x = Xt(\omega ), a
\prime =

\beta (\omega ), y = Yt(\omega ), z = Zt(\omega ), a = \alpha t(\omega ), and \alpha 
\prime = \beta such that( \~X, \~Y , \~Z, \~\alpha , \~\beta ) is a copy

of (X,Y, Z, \alpha , \beta ). Passing to expectation and using (3.6), we get

\BbbE [H(Xt, \beta ,\scrL (Xt, \beta ), Yt, Zt)] \geq \BbbE [H(Xt, \alpha t,\scrL (Xt, \alpha t), Yt, Zt)] ,

so

\alpha t = argmin
\bigl\{ 
\BbbE [H(Xt, \beta ,\scrL (Xt, \beta ), Yt, Zt)] : \beta \in L2(\Omega ,\scrF t,\BbbP ;A)

\bigr\} 
.

3.2. A sufficient condition. Guided by the necessary condition proven above,
we derive a sufficient condition for optimality in the same spirit, though under stronger
convexity assumptions. For a given pair ( \~X, \~\alpha ), these conditions read as

(3.9) g(x\prime , \mu \prime ) \geq g(x, \mu ) + \partial xg(x, \mu ) \cdot (x\prime  - x) + \~\BbbE 
\bigl[ 
\partial \mu g(x, \mu )( \~X) \cdot ( \~X \prime  - \~X)

\bigr] 
,

and

H(x\prime , a\prime , \xi \prime , y, z)

\geq H(x, a, \xi , y, z) + \partial xH(x, a, \xi , y, z) \cdot (x\prime  - x) + \partial \alpha H(x, a, \xi , y, z) \cdot (a\prime  - a)

+ \~\BbbE 
\bigl[ 
\partial \mu H(x, a, \xi , y, z)( \~X, \~\alpha ) \cdot ( \~X \prime  - \~X) + \partial \nu H(x, a, \xi , y, z)( \~X, \~\alpha ) \cdot (\~\alpha \prime  - \~\alpha )

\bigr] 
,

(3.10)

for all x, x\prime \in \BbbR d, a, a\prime \in A, y \in \BbbR d, z \in \BbbR d\times m, and any \~X \prime (resp., \~\alpha \prime ) copy of a process
in \BbbH 2,d (resp., of an admissible control) on (\~\Omega , \~\scrF , \~\BbbP ), and where \mu = \scrL ( \~X), \mu \prime =
\scrL ( \~X \prime ), \xi = \scrL ( \~X, \~\alpha ), and \xi \prime = \scrL ( \~X \prime , \~\alpha \prime ); see [14, Chapter 6].
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Theorem 3.5. Under Assumptions (I)--(II), let \bfitalpha = (\alpha t)0\leq t\leq T \in \BbbA be an ad-
missible control, \bfitX = (Xt)0\leq t\leq T the corresponding controlled state process, and
(\bfitY ,\bfitZ ) = (Yt, Zt)0\leq t\leq T the corresponding adjoint processes satisfying (3.2). Let us
assume that

(i) g is convex in the sense of (3.9);
(ii) H is convex in the sense of (3.10).

Then, if (3.5) holds, \bfitalpha is an optimal control, i.e., J(\bfitalpha ) = inf\bfitalpha \prime \in \BbbA J(\bfitalpha 
\prime ).

As before, we use the notation \theta t = (Xt, \alpha t,\scrL (Xt, \alpha t)) throughout the proof.

Proof. We follow the steps of the classical proofs; see, for example, [14, Theorem
6.16] for the case of the control of standard McKean--Vlasov SDEs. Let ( \~X, \~\alpha ) be a
copy of (X,\alpha ) on (\~\Omega , \~\scrF , \~\BbbP ), and let \bfitalpha \prime \in \BbbA be any admissible control with \bfitX \prime = \bfitX \bfitalpha \prime 

the corresponding controlled state. By definition of the objective function in (2.1)
and of the Hamiltonian of the control problem in (3.1), we have

J(\bfitalpha ) - J(\bfitalpha \prime )

= \BbbE 
\bigl[ 
g(XT ,\scrL (XT )) - g(X \prime 

T ,\scrL (X \prime 
T ))
\bigr] 
+ \BbbE 

\int T

0

\bigl[ 
f(\theta t) - f(\theta \prime t)

\bigr] 
dt

= \BbbE 
\bigl[ 
g(XT ,\scrL (XT )) - g(X \prime 

T ,\scrL (X \prime 
T ))
\bigr] 
+ \BbbE 

\int T

0

\bigl[ 
H(\theta t, Yt, Zt) - H(\theta \prime t, Yt, Zt)

\bigr] 
dt

 - \BbbE 
\int T

0

\bigl[ \bigl[ 
b(\theta t) - b(\theta \prime t)

\bigr] 
\cdot Yt +

\bigl[ 
\sigma (\theta t) - \sigma (\theta \prime t)] \cdot Zt

\bigr] 
dt

(3.11)

with \theta \prime t = (X \prime 
t, \alpha 

\prime 
t,\scrL (X \prime 

t, \alpha 
\prime 
t)). Being g convex, we have

\BbbE 
\bigl[ 
g
\bigl( 
XT ,\scrL (XT )

\bigr) 
 - g
\bigl( 
X \prime 

T ,\scrL (X \prime 
T )
\bigr) \bigr] 

\leq \BbbE 
\bigl[ 
\partial xg(XT ,\scrL (XT )) \cdot (XT  - X \prime 

T ) +
\~\BbbE 
\bigl[ 
\partial \mu g(XT ,\scrL (XT ))( \~XT ) \cdot ( \~XT  - \~X \prime 

T )
\bigr] \bigr] 

= \BbbE 
\bigl[ \bigl( 
\partial xg(XT ,\scrL (XT )) + \~\BbbE [\partial \mu g( \~XT ,\scrL (XT ))(XT )]

\bigr) 
\cdot (XT  - X \prime 

T )
\bigr] 

= \BbbE 
\bigl[ 
(XT  - X \prime 

T ) \cdot YT
\bigr] 
,

(3.12)

where we used Fubini's theorem and the fact that the ``tilde random variables"" are
independent copies of the ``nontilde"" ones. Using integration by parts and the fact
that \bfitY = (Yt)0\leq t\leq T solves the adjoint equation (3.2), we get

\BbbE [(XT  - X \prime 
T ) \cdot YT ]

= \BbbE 
î\int T

0
(Xt  - X \prime 

t) \cdot dYt +
\int T

0
Yt \cdot d[Xt  - X \prime 

t] +
\int T

0
[\sigma (\theta t) - \sigma (\theta \prime t)] \cdot Zt dt

ó
=  - \BbbE 

\int T

0

\bigl[ 
\partial xH(\theta t, Yt, Zt) \cdot (Xt  - X \prime 

t) +
\~\BbbE 
\bigl[ 
\partial \mu H(\~\theta t, \~Yt, \~Zt)(Xt, \alpha t)

\bigr] 
\cdot (Xt  - X \prime 

t)
\bigr] 
dt

+ \BbbE 
\int T

0

\bigl[ 
[b(\theta t) - b(\theta \prime t)] \cdot Yt + [\sigma (\theta t) - \sigma (\theta \prime t)] \cdot Zt

\bigr] 
dt.

(3.13)

Again by Fubini's theorem, we get

\BbbE 
\int T

0
\~\BbbE 
\bigl[ 
\partial \mu H(\~\theta t, \~Yt, \~Zt)(Xt, \alpha t)

\bigr] 
\cdot (Xt  - X \prime 

t) dt

= \BbbE 
\int T

0
\~\BbbE 
\bigl[ 
\partial \mu H(\theta t, Yt, Zt)( \~Xt, \~\alpha t) \cdot ( \~Xt  - \~X \prime 

t)
\bigr] 
dt.
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Together with (3.11), (3.12), and (3.13), this gives

J(\bfitalpha ) - J(\bfitalpha \prime )

\leq \BbbE 
\int T

0
[H(\theta t, Yt, Zt) - H(\theta \prime t, Yt, Zt)]dt

 - \BbbE 
\int T

0

\Bigl[ 
\partial xH(\theta t, Yt, Zt) \cdot (Xt  - X \prime 

t) +
\~\BbbE 
\bigl[ 
\partial \mu H(\theta t, Yt, Zt)( \~Xt, \~\alpha t) \cdot ( \~Xt  - \~X \prime 

t)
\bigr] \Bigr] 
dt

\leq \BbbE 
\int T

0

\Bigl[ 
\partial \alpha H(\theta t, Yt, Zt) \cdot (\alpha t  - \alpha \prime 

t) +
\~\BbbE 
\bigl[ 
\partial \nu H(\theta t, Yt, Zt)( \~Xt, \~\alpha t) \cdot (\~\alpha t  - \~\alpha \prime 

t)
\bigr] \Bigr] 
dt

= \BbbE 
\int T

0

\Bigl( 
\partial \alpha H(\theta t, Yt, Zt) + \~\BbbE 

\bigl[ 
\partial \nu H(\~\theta t, \~Yt, \~Zt)(Xt, \alpha t)

\bigr] \Bigr) 
\cdot (\alpha t  - \alpha \prime 

t)dt

\leq 0

because of the convexity of H, Fubini's theorem, and (3.5), showing that \bfitalpha is opti-
mal.

4. Examples. In this section, we consider models for which the solution strategy
suggested by the stochastic maximum principle proved in the previous section can be
pushed further. In fact, in sections 4.2 and 4.3, we are able to obtain explicit solutions.

4.1. The case of scalar interactions. In this subection, we state explicitly
what the above forms of the Pontryagin stochastic maximum principle become in the
case of scalar interactions. This is a case of particular interest because it does not need
the full generality of the differential calculus on Wasserstein spaces, and can be dealt
with by using standard calculus. An example of scalar interactions will be studied
and explicitly solved in the next subsection; see also [23] for another application of
scalar interactions.

Assume drift and cost functions to be of the form

b(x, \alpha , \xi ) = b0
\bigl( 
x, \alpha ,

\int 
\varphi d\xi 

\bigr) 
, f(x, \alpha , \xi ) = f0

\bigl( 
x, \alpha ,

\int 
\psi d\xi 

\bigr) 
, g(x, \mu ) = g0

\bigl( 
x,
\int 
\phi d\mu 

\bigr) 
for some functions b0, f0 on \BbbR d \times A\times \BbbR , g0 on \BbbR d \times \BbbR , \varphi ,\psi on \BbbR d \times A, and \phi on \BbbR d.
In order to simplify the notation, we shall assume that the volatility is independent
of the control and, actually, we take \sigma \equiv Id. Under these circumstances, the adjoint
equation becomes

dYt =  - 
\Bigl( 
\partial xb0(Xt, \alpha t,\BbbE [\varphi (Xt, \alpha t)])Yt + \partial xf0(Xt, \alpha t,\BbbE [\psi (Xt, \alpha t)])

+ \~\BbbE [ \~Yt \cdot \partial \zeta b0( \~Xt, \~\alpha t,\BbbE [\varphi (Xt, \alpha t)])]\partial x\varphi (Xt, \alpha t)

+ \~\BbbE [\partial \zeta f0( \~Xt, \~\alpha t,\BbbE [\psi (Xt, \alpha t)])]\partial x\psi (Xt, \alpha t)
\Bigr) 
dt+ ZtdWt

with terminal condition YT = \partial xg0 (XT ,\BbbE [\phi (XT )])+ \~\BbbE [\partial \zeta g0( \~XT ,\BbbE [\phi (XT )])]\partial x\phi (XT ).
Accordingly, the necessary condition (3.7) for optimality will be satisfied when

0 = \partial \alpha b0(Xt, \alpha t,\BbbE [\varphi (Xt, \alpha t)]) \cdot Yt + \partial \alpha f0(Xt, \alpha t,\BbbE [\psi (Xt, \alpha t)])

+ \~\BbbE [ \~Yt \cdot \partial \zeta b0( \~Xt, \~\alpha t,\BbbE [\varphi (Xt, \alpha t)])]\partial \alpha \varphi (Xt, \alpha t)

+ \~\BbbE [\partial \zeta f0( \~Xt, \~\alpha t,\BbbE [\psi (Xt, \alpha t)])]\partial \alpha \psi (Xt, \alpha t).

(4.1)

4.2. Optimal liquidation with market impact. In this section we explicitly
solve an example that lies outside the classical LQ framework, in the sense that
convexity fails. This is inspired by an optimal liquidation problem with price impact,
but here it is more of mathematical interest than a financial one.
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Consider a market where a group of investors, indexed by i, has large positions
qi0 on the same asset S. Each investor wants to liquidate her position by a fixed time
T > 0, and controls her trading speed \alpha i

t through time. Her state is then described
by two variables: her inventory Qi

t, that starts at qi0 and changes according to \alpha i
t,

and her wealth Xi
t , which is assumed to start at zero for all traders. Investors' speed

of trading affects prices in two ways. On the one hand, it generates a permanent
market impact, as the dynamics of S are assumed to linearly depend on the average
trading speed of all investors. On the other hand, it produces a temporary impact,
that only affects traders' own wealth process (as fees or liquidation cost), and which
is assumed to be linear in their respective rate of trading. The optimality criterion
is the minimization of the cost, which is composed of three factors: the wealth at
time T , the final value of the inventory penalized by a terminal market impact, and a
running penalty which is assumed quadratic in the inventory. The optimal trades will
be a result of the trade-off between trading slowly to reduce the market impact (or
execution/liquidity cost), and trading quickly to reduce the risk of future uncertainty
in prices; see, e.g., [2, 16, 17, 12, 6].

Here we think of a continuum of investors. The initial inventories are distributed
according to a measure m0 on \BbbR . We formulate the problem for a representative
agent, in the case of cooperative equilibria. The inventory process then evolves as

(4.2) dQt = \alpha tdt, Q0 \sim m0,

while the wealth process is given by

dXt =  - \alpha t(St + k\alpha t)dt, X0 = 0,

where k\alpha t measures the temporary market impact. The price process is modeled by

dSt = \lambda \BbbE [\alpha t]dt+ \sigma dWt, S0 = s0,

where \BbbE [\alpha t] represents the average trading speed, hence \lambda \BbbE [\alpha t] stands for the perma-
nent market impact to which all agents contribute (naturally \lambda \geq 0). The cost to be
minimized is given by

\BbbE 
ñ
 - XT  - QT (ST  - AQT ) + \phi 

\int T

0

Q2
tdt

ô
,

whereXT is the terminal profit due to trading in [0, T ], QT (ST  - AQT ) is the liquida-
tion value of the remaining quantity at terminal time (with a liquidation/execution
penalization), and \phi is an ``urgency"" parameter on the running cost (the higher \phi is,
the higher is the liquidation speed at the beginning of the trading period). Using the
dynamics of X, this can be rewritten as

\BbbE 
ñ\int T

0

(\alpha tSt + k\alpha 2
t + \phi Q2

t )dt - QT (ST  - AQT )

ô
.

This example falls into the framework described in section 2. We have a 2-dimensional
state process (S,Q), a 1-dimensional Wiener process W , and the control process is
the trading speed \alpha . The Hamiltonian of the system is

H(x1, x2, a, \xi , y1, y2) = \lambda \=\xi 2y1 + ay2 + \phi x22 + ax1 + ka2,

where \=\xi 2 =
\int 
v\xi (du,dv), and the first order condition (4.1) reads as

(4.3) Y 2
t + St + 2k\alpha t + \lambda \BbbE [Y 1

t ] = 0
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with adjoint equations

dY 1
t =  - \alpha tdt+ Z1

t dWt, Y 1
T =  - QT ,(4.4)

dY 2
t =  - 2\phi Qtdt+ Z2

t dWt, Y 2
T =  - ST + 2AQT .(4.5)

Remark 4.1. Here the terminal cost function g reads as

g(x1, x2) =  - x1x2 +Ax22,

which does not satisfy the convexity condition (3.9). However, an inspection of the
proof of Theorem 3.5 reveals that this assumption was only used in order to obtain the
inequality in (3.12). We are now going to show that such an inequality holds in the
present setting when A \geq \lambda (which is satisfied for typical values of the parameters; see
[17, 12]), thus guaranteeing that the first order condition (4.3) is not only necessary
but also sufficient for the optimality of \alpha . For this purpose, let \bfitalpha \prime \in \BbbA be any
admissible control, and (S\prime , Q\prime ) the corresponding controlled state. Then

\BbbE 
\bigl[ 
g(ST , QT ) - g(S\prime 

T , Q
\prime 
T )
\bigr] 
 - \BbbE 
\bigl[ 
(ST  - S\prime 

T )Y
1
T + (QT  - Q\prime 

T )Y
2
T

\bigr] 
= \lambda 

Ç
\BbbE 
ñ\int T

0

\alpha \prime 
tdt - 

\int T

0

\alpha tdt

ôå2

 - A\BbbE 

\Biggl[ Ç\int T

0

\alpha tdt - 
\int T

0

\alpha \prime 
tdt

å2
\Biggr] 

\leq (\lambda  - A)\BbbE 

\Biggl[ Ç\int T

0

\alpha tdt - 
\int T

0

\alpha \prime 
tdt

å2
\Biggr] 
,

which is nonpositive for A \geq \lambda .

An inspection of (4.4) suggests that we have Z1
t = 0 and Y 1

t =  - Q0  - 
\int t

0
\alpha sds =

 - Qt; Y
2
t will be determined later. Substituting into (4.3), we have

Y 2
0  - 2\phi 

\int t

0

Qsds+

\int t

0

Z2
sdWs + s0 + \lambda 

\int t

0

\BbbE [\alpha s]ds+ \sigma Wt + 2k\alpha t

 - \lambda (\BbbE [Q0] +

\int t

0

\BbbE [\alpha s]ds) = 0,

that is,

(4.6) \alpha t =
\lambda \BbbE [Q0] - Y 2

0  - s0
2k

+
\phi 

k

\int t

0

Qsds - 
1

2k

\int t

0

(Z2
s + \sigma )dWs.

We now show that Q \equiv Q0 and \alpha \equiv \alpha 0, where

Q0
t := \BbbE [Qt| Q0], \alpha 0

t := \BbbE [\alpha t| Q0].

By taking conditional expectation in (4.2) and (4.6), we get

(4.7) Q0
t = Q0 +

\int t

0

\alpha 0
sds, \alpha 0

t = \alpha 0 +
\phi 

k

\int t

0

Q0
sds.

Setting F (t) := Q0
t , we note that F \prime (t) = \alpha 0

t and F \prime \prime (t) = \phi 
kF (t). Together with the

initial conditions F (0) = Q0 and F \prime (0) = \alpha 0, this gives

(4.8) F (t) =

Å
Q0

2
 - \alpha 0

2r

ã
e - rt +

Å
Q0

2
+
\alpha 0

2r

ã
ert,

where r =
\sqrt{} 
\phi /k. Now, by taking conditional expectation in (4.5), and substituting
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into (4.7), we obtain

\alpha 0
T =

\lambda \BbbE [Q0] - 2AQ0

2k
+

\lambda 

2k

\int T

0

\BbbE [\alpha t]dt - 
A

k

\int T

0

\alpha 0
tdt

=
\lambda \BbbE [Q0] - 2AQ0

2k
+

\lambda 

2k
(\BbbE [QT ] - \BbbE [Q0]) - 

A

k
(Q0

T  - Q0)(4.9)

=
\lambda 

2k
\BbbE [QT ] - 

A

k
Q0

T ,

that is, F \prime (T ) = \lambda 
2k\BbbE [F (T )]  - 

A
k F (T ). Imposing this condition, and using (4.8), we

obtain

(4.10) \alpha 0 = Q0r
d1e

 - rT  - d2e
rT

d1e - rT + d2erT
+

\BbbE [Q0]4\lambda \phi 

(d1e - rT + d2erT )(c1e - rT + c2erT )
,

where d1 =
\surd 
\phi k  - A, d2 =

\surd 
\phi k + A, c1 = 2d1 + \lambda , c2 = 2d2  - \lambda . From (4.6), we also

have an explicit expression for Y 2
0 = \lambda \BbbE [Q0] - s0  - 2k\alpha 0.

Now we use the ansatz Z2 \equiv  - \sigma , and show that the process

(4.11) Y 2
t = Y 2

0  - 2\phi 

\int t

0

Qsds - \sigma Wt

does satisfy the equation and terminal condition in (4.5). Only the latter needs to be
shown. First note that, with this ansatz, from (4.6) and (4.2) we have

\alpha t = \alpha 0 +
\phi 

k

\int t

0

Qsds, Qt = Q0 + \alpha 0t+
\phi 

k

\int t

0

\int s

0

Qudu ds;

thus both processes \alpha and Q are \sigma (Q0)-measurable, that is,

(4.12) Qt = \BbbE [Qt| Q0] = Q0
t = F (t) and \alpha t = \BbbE [\alpha t| Q0] = \alpha 0

t = F \prime (t).

We now check that Y 2 satisfies the terminal condition in (4.5). By (4.12), (4.11)
implies

Y 2
T = \lambda \BbbE [Q0] - s0  - 2k\alpha 0  - 2\phi 

\int T

0

Q0
tdt - \sigma WT .

On the other hand, by (4.12), (4.9), and (4.7),

 - ST + 2AQT =  - s0  - \lambda (\BbbE [QT ] - \BbbE [Q0]) - \sigma WT + 2AQ0
T

=  - s0 + \lambda \BbbE [Q0] - 2k\alpha 0
T  - \sigma WT

=  - s0 + \lambda \BbbE [Q0] - 2k\alpha 0  - 2\phi 

\int T

0

Q0
tdt - \sigma WT ,

which yields Y 2
T =  - ST + 2AQT , as wanted. This shows that the process Z2 in the

ansatz, together with Y 2 defined above, does satisfy (4.5). We have seen that this
gives Qt = F (t) and \alpha t = F \prime (t), by (4.12), thus from (4.8) we have

Qt =

Å
Q0

2
 - \alpha 0

2r

ã
e - rt+

Å
Q0

2
+
\alpha 0

2r

ã
ert, \alpha t =

Å
 - Q0r

2
+
\alpha 0

2

ã
e - rt +

Å
Q0r

2
+
\alpha 0

2

ã
ert.

By (4.10), this gives

Qt = Q0
d1e

 - r(T - t) + d2e
r(T - t)

d1e - rT + d2erT
+ \BbbE [Q0]

2\lambda 
\surd 
\phi k( - e - rt + ert)

(d1e - rT + d2erT )(c1e - rT + c2erT )
,

\alpha t = Q0r
d1e

 - r(T - t)  - d2e
r(T - t)

d1e - rT + d2erT
+ \BbbE [Q0]

2\lambda \phi (e - rt + ert)

(d1e - rT + d2erT )(c1e - rT + c2erT )
.
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4.3. The LQ case. In this subsection, we use the sufficient condition derived
above to solve a simple LQ model. Via different methods, such models have been
already studied in the literature; see, e.g., [35, 24, 6, 33]. For the sake of simplicity,
we give the details of the computations in the scalar case m = d = k = 1 and with
A = \BbbR . Also, as before, we assume that the volatility is not controlled and, in fact,
that it is identically equal to 1. In such an LQ model, the drift is of the form

b(x, \alpha , \xi ) = b1x+ b2\alpha +\=b1\=x+\=b2\=\alpha 

for some constants b1, b2,\=b1,\=b2, where we denote by \=x and \=\alpha the means of the state
and the control, in the sense that \=x =

\int \int 
x\xi (dx,d\alpha ) and \=\alpha =

\int \int 
\alpha \xi (dx,d\alpha ). As for

the cost functions, we assume that

f(x, \alpha , \xi ) = 1
2

\bigl[ 
qx2 + \=q(x - s\=x)2 + r\alpha 2 + \=r(\alpha  - \=s\=\alpha )2

\bigr] 
, g(x, \mu ) = 1

2\gamma x
2 + \=\gamma 

2 (x - \rho \=x)2

for some constants q, \=q, r, \=r, s, \=s, \gamma , \delta , \rho satisfying \=q, \=r, \=\gamma \geq 0 and q, r, \gamma > 0. Under
these conditions, the Hamiltonian reads
(4.13)
H(x, \alpha , \xi , y) = (b1x+ b2\alpha +\=b1\=x+\=b2\=\alpha )y +

1
2

\bigl[ 
qx2 + \=q(x - s\=x)2 + r\alpha 2 + \=r(\alpha  - \=s\=\alpha )2

\bigr] 
.

Accordingly, the adjoint equation reads as

(4.14) dYt =  - 
\Bigl( 
b1Yt + (q + \=q)Xt +\=b1\BbbE [Yt] + s\=q(s - 2)\BbbE [Xt]

\Bigr) 
dt+ ZtdWt.

In the present situation, conditions (i) and (ii) of Theorem 3.5 hold, and condition
(3.7) of the Pontryagin stochastic maximum principle holds if

(4.15) b2Yt +\=b2\BbbE [Yt] + (r + \=r)\alpha t + \=r\=s(\=s - 2)\BbbE [\alpha t] = 0.

Taking expectations, we obtain

(4.16) \BbbE [\alpha t] =  - b2 +\=b2
r + \=r(\=s - 1)2

\BbbE [Yt].

Plugging this expression into (4.15), we get

(4.17) \alpha t =  - 1

r + \=r

\Bigl( 
b2Yt +

\Bigl( 
\=b2  - 

\=r\=s(\=s - 2)(b2 +\=b2)

r + \=r(\=s - 1)2

\Bigr) 
\=Yt

\Bigr) 
.

We can rewrite (4.17) and (4.16) as

(4.18) \alpha t = aYt + b\BbbE [Yt] and \BbbE [\alpha t] = c\BbbE [Yt]

with
(4.19)

a =  - b2
r + \=r

, b =  - 1

r + \=r

\Bigl( 
\=b2  - 

\=r\=s(\=s - 2)(b2 +\=b2)

r + \=r(\=s - 1)2

\Bigr) 
, and c =  - b2 +\=b2

r + \=r(\=s - 1)2
.

With this notation, the solution of the mean field optimal control of the McKean--
Vlasov SDE (2.2) reduces to the solution of the following forward-backward SDE
(FBSDE) of McKean--Vlasov type:

(4.20)

\left\{   dXt =
\bigl( 
b1Xt +\=b1\BbbE [Xt] + (ab2Yt + (bb2 + c\=b2)\BbbE [Yt]

\Bigr) 
dt+ dWt,

dYt =  - 
\Bigl( 
b1Yt + (q + \=q)Xt +\=b1\BbbE [Yt] + s\=q(s - 2)\BbbE [Xt]

\Bigr) 
dt+ ZtdWt
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with terminal condition YT = (\gamma + \=\gamma )XT + \=\gamma \rho (\rho  - 2)\BbbE [XT ]. We solve this system
in the usual way. First, we compute the means \=xt = \BbbE [Xt] and \=yt = \BbbE [Yt]. Taking
expectations in (4.20), we obtain

(4.21)

\left\{   d\=xt =
\bigl( 
(b1 +\=b1)\=xt + (ab2 + bb2 + c\=b2)\=yt

\Bigr) 
dt,

d\=yt =  - 
\Bigl( 
(b1 +\=b1)\=yt + (q + \=q + s\=q(s - 2))\=xt

\Bigr) 
dt

with terminal condition \=yT = (\gamma + \=\gamma + \=\gamma \rho (\rho  - 2))\=xT . The linear system (4.21) can be
solved explicitly. For instance, if we denote

\Delta :=
»
(b1 +\=b1)2  - (ab2 + bb2 + c\=b2)(q + \=q + s\=q(s - 2)),

and assume that the argument of the square root is strictly positive, one can solve
(4.21) via the theory of linear ODE systems in the case of real eigenvalues. We then
obtain that

\=xt =  - (b1 +\=b1)
2  - \Delta 2

2(q + \=q + s\=q(s - 2))\Delta 

ß
e - \Delta t

Å
y0 +

(q + \=q + s\=q(s - 2))x0
b1 +\=b1 +\Delta 

ã
 - e\Delta t

Å
y0 +

(q + \=q + s\=q(s - 2))x0
b1 +\=b1  - \Delta 

ã™
together with

\=yt =  - (b1 +\=b1)
2  - \Delta 2

2(q + \=q + s\=q(s - 2))\Delta 

\cdot 
ß - (q + \=q + s\=q(s - 2))e - \Delta t

b1 +\=b1  - \Delta 

Å
y0 +

(q + \=q + s\=q(s - 2))x0
b1 +\=b1 +\Delta 

ã
+

(q + \=q + s\=q(s - 2))e\Delta t

b1 +\=b1 +\Delta 

Å
y0 +

(q + \=q + s\=q(s - 2))x0
b1 +\=b1  - \Delta 

ã™
solve (4.21) for any y0, and choosing y0 appropriately one can guarantee that \=yT =
(\gamma + \=\gamma + \=\gamma \rho (\rho  - 2))\=xT . This expression for (\=xt, \=yt) can be plugged into (4.20) in lieu
of (\BbbE [Xt],\BbbE [Yt]), reducing the latter to a standard affine FBSDE. We then make the
ansatz Yt = \eta tXt + \chi t for two deterministic functions t \mapsto \rightarrow \eta t and t \mapsto \rightarrow \chi t, which is
compatible with the terminal condition. Computing the It\^o differentials of Yt from the
ansatz and from the system (4.20), and identifying the terms in the drift multiplying
the unknown Xt, we find that \eta t should be a solution of the scalar Riccati equation

\eta t =  - 1

2b1
(q + \=q + \eta \prime t + ab2\eta 

2
t ).

The latter is easily solved, and since necessarily \=yt = \eta t\=xt + \chi t, then \chi t can also be
explicitly obtained. By Theorem 3.5, the control \bfitalpha obtained in this way is optimal.
Notice that it takes the form

\alpha t = a\eta tXt + a\chi t + b\=xt

with a and b given in (4.19).

Remark 4.2. In classical control of mean field type, the pointwise minimization
of the Hamiltonian with respect to the control is a necessary optimality condition.
Let us illustrate with the LQ example how this need not be the case in our extended
framework. If we impose pointwise minimization of (4.13) with respect to \alpha , we get
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b2Yt + r\alpha t + \=r(\alpha t  - \=s\=\alpha t) = 0. Integrating it, we obtain b2\BbbE [Yt] + (r + \=r  - \=r\=s) \=\alpha t = 0.
On the other hand, the necessary condition (3.5) implies (4.15), so we have \=b2\BbbE [Yt] +
\=r\=s(\=s - 1)\=\alpha t = 0. The right choice of parameters leads to a contradiction between this
and the previous equation.

5. Variational perspective in the weak formulation. The goal of this sec-
tion is to analyze the extended mean field control problem from a purely variational
perspective, that is, by considering its formulation on path space. Given the intrinsic
nature of mean field problems, it is natural to express them in terms of laws rather
than controls. The main reason for exploring this point of view is that of creating
a bridge with the optimal transport theory. This paves the way to the use of differ-
ent sets of tools as, for example, the numerical methods that are fast developing in
transport theory. We start by introducing, in section 5.1, a weak formulation of the
extended mean field control problem, especially well-suited for variational analysis.
In such a formulation, the probability space is not specified a priori. We remark that
a weak formulation of the mean field control problem has been considered in [14,
section 6.6] and in [25], the latter rigorously proving convergence of large systems of
interacting control problems to the corresponding mean field control problem. How-
ever, in these works there is no nonlinear dependence on the law of the control; cf.
our problem (5.1) below.

We proceed in section 5.2 to obtain what we call amartingale optimality condition.
Such a condition can serve as a verification tool, in order to evaluate whether a given
control can be optimal. It is therefore the weak-formulation analogue of the necessary
Pontryagin maximum principle. This forms a bridge between the previous sections of
this work, and the ensuing ones. Whenever the Pontryagin maximum principle can be
used (or the martingale optimality condition in the weak formulation), it is a powerful
tool to identify optimal controls and the trajectories of the state at the optimum.
However, it does not say much about the optimal value of the problem. In fact, at
the optimum, the adjoint process gives formally the value of the gradient of the value
function when computed along the optimal trajectories. In order to study the value
function of the control problem (in a situation in which PDE techniques are highly
nontrivial) we recast in section 5.3 our weak formulation in transport-theoretic terms.

Numerical optimal transport has spectacularly grown in strength over the last
few years; see, e.g., [19, 7, 29] and the references therein. Our connection between
transport and mean field control is meant to lay ground for efficient numerical methods
in the future. In section 5.4 we provide, at a theorerical level, a first discretization
scheme of this kind. To be specific, the optimal transport problem we obtain in
the discretization has an additional causality constraint (see, e.g., [26, 1, 4, 5]); the
numerical analysis of such problems is also having a burst of activity (e.g., [30, 31, 32]).

5.1. The weak formulation. We present a weak formulation of the extended
mean field control problem formulated in section 2, in the sense that the probability
space is not specified here. We restrict our attention to the case where the state
dynamics have uncontrolled volatility, actually assuming \sigma \equiv Id, m = d, that the
drift does not depend on the law of the control, and that the initial condition X0 is a
constant x0. We thus consider the minimization problem

inf
\BbbP ,\bfitalpha 

\BbbE \BbbP 
ñ\int T

0

f(Xt, \alpha t,\scrL \BbbP (Xt, \alpha t)) dt+ g(XT ,\scrL \BbbP (XT ))

ô
subject to dXt = b (Xt, \alpha t,\scrL \BbbP (Xt)) dt+ dWt, X0 = x0,

(5.1)
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where the infimum is taken over filtered probability spaces (\Omega ,\BbbF ,\BbbP ) supporting some
d-dimensional Wiener process \bfitW , and over control processes \bfitalpha which are progres-
sively measurable on (\Omega ,\BbbF ,\BbbP ) and \BbbR k-valued. We use \scrL \BbbP to denote the law of the
given random element under \BbbP . Again, we choose time independent coefficients for
simplicity, but all the results would be the same should f and b depend upon t.

We say that (\Omega ,\BbbF ,\BbbP ,\bfitW ,\bfitX ,\bfitalpha ) is a feasible tuple if it participates in the above
optimization problem yielding a finite cost.

5.2. Martingale optimality condition. In this section, we obtain a necessary
Pontryagin principle for the weak formulation (5.1). We call this the martingale
optimality condition. Since our aim is to illustrate the method, we assume only in
this part that we are dealing with a drift-control problem

b(x, \alpha , \mu ) = \alpha , m = d.

We start by expressing the objective function of (5.1) in canonical space, as a func-
tion of semimartingale laws. We denote by \scrC x0 the space of \BbbR d-valued continuous
paths started at x0, and by \bfitS the canonical process on it. We consider the set of
semimartingale laws

(5.2) \~\scrP := \{ \bfitmu \in \scrP (\scrC x0
) : dSt = \alpha \bfitmu 

t (\bfitS )dt+ dW\bfitmu 
t \mu -a.s.\} ,

where\bfitW \bfitmu is a \bfitmu -Brownian motion and \bfitalpha \bfitmu is a progressively measurable process w.r.t.
the canonical filtration, denoted by \scrF . It is then easy to see that (5.1) is equivalent
to

(5.3) inf
\bfitmu \in \~\scrP 

\BbbE \bfitmu 

ñ\int T

0

f
\bigl( 
St, \alpha 

\bfitmu 
t ,\scrL \bfitmu (St, \alpha 

\bfitmu 
t )
\bigr) 
dt+ g(ST , \mu T )

ô
.

In what follows we consider perturbation of measures in \~\scrP via push-forwards along
absolutely continuous shifts which preserve the filtration; see the work of Cruzeiro
and Lassalle [18] and the references therein. Using push-forwards instead of pertur-
bations directly on the SDE is the main difference between the weak and the strong
perspective. The main idea is to find the first order conditions for problem (5.3) by
considering perturbations of the form \bfitmu \epsilon ,K := (Id + \epsilon K)\ast \bfitmu around a putative opti-
mizer \bfitmu . For this matter it is important to identify the Doob--Meyer decomposition
of the canonical process under \bfitmu \epsilon ,K , which forces an assumption on K as we now
explain.

Remark 5.1. Let \bfitmu \in \~\scrP . We say that an adapted process U : \scrC x0 \rightarrow \scrC x0 is
\bfitmu -invertible if there exists V : \scrC x0 \rightarrow \scrC x0 adapted such that U \circ V = Id\scrC x0

holds

U(\bfitmu ) - a.s., and V \circ U = Id\scrC x0
holds \bfitmu  - a.s. Now let K\cdot =

\int .

0
ktdt be adapted. We

say that K preserves the filtration under \bfitmu if for every U which is \bfitmu -invertible we
also have that U + K is \bfitmu -invertible. It follows that the set of those K =

\int .

0
kt dt

that preserve the filtration under \bfitmu , is a linear space. It also follows that for such K

we have \bfitmu \epsilon ,K := (Id + \epsilon K)\ast \bfitmu \in \~\scrP with \alpha \bfitmu \epsilon ,K

t (\bfitS + \epsilon K(\bfitS )) = \alpha \bfitmu 
t (\bfitS ) + \epsilon kt(\bfitS ); see

[18, Proposition 2.1, Lemma 3.1]. A typical case when the filtration is preserved is
when K is a piecewise linear and adapted process, while an example when K does not
preserve the filtration is given by Tsirelson's drift; see, respectively, [18, Proposition
2.4, Remark 2.1.1].

In analogy to [18, Theorem 5.1], we then obtain the following necessary condition
for an optimizer in (5.3). We use here the notation \theta \bfitmu t = (St, \alpha 

\bfitmu 
t ,\scrL \bfitmu (St, \alpha 

\bfitmu 
t )).
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Proposition 5.2. Let \bfitmu be an optimizer for (5.3). Then the process N\bfitmu given
by

(5.4) N\bfitmu 
t := \partial af(\theta 

\bfitmu 
t ) +

\~\BbbE [\partial \nu f(\~\theta \bfitmu t )(St, \alpha 
\bfitmu 
t )] - 

\int t

0

\Bigl( 
\partial xf(\theta 

\bfitmu 
s ) +

\~\BbbE [\partial \mu f(\~\theta \bfitmu s )(Ss, \alpha 
\bfitmu 
s )]
\Bigr) 
ds

is a \bfitmu -martingale, with terminal value equal to
(5.5)

N\bfitmu 
T =  - \partial xg(ST , \mu T ) - \~\BbbE [\partial \mu g( \~ST , \mu T )(ST )] - 

\int T

0

\Bigl( 
\partial xf(\theta 

\bfitmu 
s )+

\~\BbbE [\partial \mu f(\~\theta \bfitmu s )(Ss, \alpha 
\bfitmu 
s )]
\Bigr) 
ds.

Proof. We use the notation \mu \epsilon ,K introduced in Remark 5.1, and call C(\mu ) the

cost function appearing in problem (5.3). We have lim\epsilon \rightarrow 0
C(\mu \epsilon ,K) - C(\mu )

\epsilon \geq 0 for all K.
Now if K preserves the filtration under \bfitmu , then the same is true for  - K. Therefore

lim\epsilon \rightarrow 0
C(\mu \epsilon ,K) - C(\mu )

\epsilon = 0. To conclude the proof, we use \alpha \bfitmu \epsilon ,K

t (\bfitS +\epsilon K(\bfitS )) = \alpha \bfitmu 
t (\bfitS )+

\epsilon kt(\bfitS ) and similar arguments as in [18, Theorem 5.1].

When (5.4)--(5.5) hold, we say that \mu satisfies the martingale optimality condition.
The interest of this condition is that it is a clear stochastic counterpart to the classical
Euler--Lagrange condition in the calculus of variations, except for the fact that ``being
equal to zero"" is here replaced by ``being a martingale""; see [18, 27].

Example 5.3. The martingale optimality condition is the analogue of the Pon-
tryagin principle in the weak formulation. To wit, we verify this in a simple ex-
ample. Suppose f(Xt, \alpha t,\scrL (Xt, \alpha t)) = 1

2 (\alpha t  - \BbbE [\alpha t])
2 and g(XT ,\scrL (XT )) = 1

2X
2
T .

The martingale optimality condition then asserts that for an optimizer \bfitmu the process
N\bfitmu 

t := \alpha \bfitmu 
t  - \BbbE [\alpha \bfitmu 

t ] is a martingale with N\bfitmu 
T =  - ST . On the other hand the Pontryagin

FBSDE states that
dYt = ZtdWt , YT = XT ,

as well as \alpha t  - \BbbE [\alpha t] + Yt, by Remark 3.3. We see the compatibility of the two
statements, as well as the equality in law N\bfitmu 

t =  - Yt, in this particular case.

Remark 5.4. The above arguments can be adapted to the case when b(x, \alpha , \mu ) =
b(x, \alpha ). This is the case, for example, when b is a C1-diffeomorphism and b(x,\BbbR k) is
convex for each x. Indeed, in this case one may redefine the drift in the dynamics of
S via \beta \bfitmu 

t (\bfitS ) := b(St, \alpha 
\bfitmu 
t (\bfitS )), which is associated with the cost

f(St, b
 - 1(St, \beta 

\bfitmu 
t (\bfitS )),\scrL \bfitmu (St, b

 - 1(St, \beta 
\bfitmu 
t (\bfitS ))) ),

where with some abuse of notation b - 1(x, \cdot ) denotes the inverse of b(x, \cdot ). Using this
time the notation \theta \bfitmu t = (St, \beta 

\bfitmu 
t ,\scrL \bfitmu (St, \beta 

\bfitmu 
t )) one then replaces the right-hand side

(r.h.s.) of (5.4) with

(5.6) \partial af(\theta 
\bfitmu 
t )\partial a(b

 - 1)(St, \beta 
\bfitmu 
t ) +

\~\BbbE [\partial \nu f(\theta \bfitmu t )\partial a(b - 1)( \~St, \~\beta t)]

 - 
\int t

0

\Bigl( 
\partial xf(\theta 

\bfitmu 
s ) +

\~\BbbE [\partial \mu f(\theta \bfitmu s )( \~Ss, \~\beta s) + \partial \nu f(\theta 
\bfitmu 
s )\partial x(b

 - 1)( \~Ss, \~\beta s)]
\Bigr) 
ds,

and the r.h.s. of (5.5) with

(5.7)  - \partial xg(ST , \mu T ) - \~\BbbE [\partial \mu g(ST , \mu T )( \~ST )]

 - 
\int T

0

\Bigl( 
\partial xf(\theta 

\bfitmu 
s ) +

\~\BbbE [\partial \mu f(\theta \bfitmu s )( \~Ss, \~\beta s) + \partial \nu f(\theta 
\bfitmu 
s )\partial x(b

 - 1)( \~Ss, \~\beta s)]
\Bigr) 
ds.
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5.3. Optimal transport reformulation. In this section we formulate a vari-
ational transport problem on \scrC = \scrC ([0, T ];\BbbR d), the space of \BbbR d-valued continuous
paths, which is equivalent to finding the weak solutions of the extended mean field
problem (5.1). This variational formulation is a particular type of transport problem
under the so-called causality constraint; see [26, 1, 4, 5]. Here we recall this concept
with respect to the filtrations \BbbF 1 and \BbbF 2, generated by the first and by the second
coordinate process on \scrC \times \scrC .

Definition 5.5. Given \bfitzeta 1, \bfitzeta 2 \in \scrP (\scrC ), a probability measure \pi \in \scrP (\scrC \times \scrC ) is called
a causal transport plan between \bfitzeta 1 and \bfitzeta 2 if its marginals are \bfitzeta 1 and \bfitzeta 2 and, for any
t \in [0, T ] and any set A \in \scrF 2

t , the map \scrC \ni x \mapsto \rightarrow \pi x(A) is \~\scrF 1
t -measurable, where

\pi x(dy) := \pi (\{ x\} \times dy) is a regular conditional kernel of \pi w.r.t. the first coordinate,
and \~\BbbF 1 is the completion of \BbbF 1 w.r.t. \bfitzeta 1. The set of causal transport plans between \bfitzeta 1
and \bfitzeta 2 is denoted by \Pi c(\bfitzeta 1, \bfitzeta 2).

The only transport plans that contribute to the variational formulation of the
problem are those under which the difference of the the coordinate processes on the
product space \scrC \times \scrC is a.s. absolutely continuous with respect to Lebesgue measure.

We denote by (\omega , \omega ) the generic element on \scrC \times \scrC , and we use (
\̆.

\omega  - \omega ) to indicate the
density of the process \omega  - \omega with respect to Lebesgue measure, when it exists, i.e.,

\omega t  - \omega t = \omega 0  - \omega 0 +

\int t

0

(
\̆.

\omega  - \omega )s ds, t \in [0, T ].

In such a case, we write \omega  - \omega \ll \scrL . Moreover, we set

\bfitgamma := Wiener measure on \scrC started at 0

and \Pi \ll 
c (\bfitgamma , \cdot ) := \{ \pi \in \scrP (\scrC \times \scrC ) : \pi (d\omega \times \scrC ) = \bfitgamma (d\omega ), and \omega  - \omega \ll \scrL , \pi -a.s.\} .

We present the connection between extended mean field control and causal trans-
port.

Lemma 5.6. Assume that b(x, ., \mu ) is injective, and set

ut(\omega , \omega , \mu ) := b - 1(\omega t, ., \mu )
\bigl( 
(

\̆.
\omega  - \omega )t

\bigr) 
.

Then problem (5.1) is equivalent to

inf \BbbE \pi 

ñ\int T

0

f
\bigl( 
\omega t, ut(\omega , \omega , \mu 

\pi 
t ),\scrL \pi (\omega t, ut(\omega , \omega , \mu 

\pi 
t ))
\bigr) 
dt+ g(\omega T , \mu 

\pi 
T )

ô
,(5.8)

where the infimum is taken over transport plans \pi \in \Pi \ll 
c (\bfitgamma , \cdot ) such that dt\otimes d\pi -a.s.

(
\̆.

\omega  - \omega )t \in b(\omega t,\BbbR d, \mu \pi 
t ), and \mu 

\pi denotes the second marginal of \pi .

Proof. Fix (\Omega ,\BbbF ,\BbbP ,\bfitW ,\bfitX ,\bfitalpha ) a feasible tuple for (5.1), if it exists, and note
that \alpha t = ut(\bfitW ,\bfitX ,\scrL \BbbP (Xt)) is \BbbF \bfitX ,\bfitW -adapted. Then \pi := \scrL \BbbP (\bfitW ,\bfitX ) belongs to
\Pi \ll 

c (\bfitgamma ,\scrL \BbbP (\bfitX )) and generates the same cost in (5.8). Conversely, given a transport
plan \pi participating in (5.8), the following tuple (\Omega ,\BbbF ,\BbbP ,\bfitW ,\bfitX ,\bfitalpha ) is feasible for
(5.1): \Omega = \scrC \times \scrC , \BbbF canonical filtration on \scrC \times \scrC , \BbbP = \pi , \bfitW = \omega , \bfitX = \omega , and
\alpha t = ut(\omega , \omega , \mu 

\pi 
t ).

The connection presented in the above lemma will be used in the next proposition,
in order to reduce the optimization problem in (5.1) to a minimization over weak closed
loop tuples, in the following sense.
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Definition 5.7. We say that a feasible tuple for (5.1) is a weak closed loop if the
control is adapted to the state (i.e., \bfitalpha is \BbbF \bfitX -measurable).

We will further need the following concepts of monotonicity: a function f :
\scrP (\BbbR N ) \rightarrow \BbbR is called \prec cm-monotone (resp., \prec c-monotone) if f(m1) \leq f(m2) when-
ever m1 \prec cm m2 (resp., m1 \prec c m2). With the latter order of measures, we mean\int 
hdm1 \leq 

\int 
hdm2 for all functions h which are convex and increasing w.r.t. the

usual componentwise order in \BbbR N (resp., all convex functions h) such that the inte-
grals exist.

Proposition 5.8. Assume
(A1) b(x, ., \mu ) is injective, b(x,\BbbR k, \mu ) is a convex set, and b - 1(x, ., \mu ) is convex;
(A2) f(x, b - 1(x, ., \mu ), \xi ) is convex and grows at least like \kappa 0 + \kappa 1| \cdot | p with \kappa 1 >

0, p \geq 1;
(A3) f(x, \alpha , .) is \prec cm-monotone.

Then the minimization in the extended mean field problem (5.1) can be taken over
weak closed loop tuples. Moreover, if the infimum is attained, then the optimal control
\bfitalpha is of weak closed loop form.

The proof follows the projection arguments used in [1], which requires the above
convexity assumptions. On the other hand, no regularity conditions are required here,
unlike in the classical PDE or probabilistic approaches (see assumptions (I)--(II) in
section 3). We refer to [25] for a similar statement, in a general framework, but under
no nonlinear dependence on the control law. This proof is postponed to Appendix A.

Remark 5.9. If b is linear with positive coefficient for \alpha , then assumption (A3) in
Proposition 5.8 can be weakened:
(A3\prime ) f(x, \alpha , .) is \prec c-monotone,

as can be seen from the proof. For example, conditions (A1), (A2), (A3\prime ) are satisfied
if

b(x, \alpha , \mu ) = c1x+ c2\alpha + c3\=\mu and f(x, \alpha , \xi ) = d1x+ d2\alpha + d3x
2 + d4\alpha 

2 + J(\=\xi 1, \=\xi 2),

where J is a measurable function,

\=\mu =

\int 
x\mu (dx), \=\xi 1 =

\int \int 
x\xi (dx,d\alpha ), \=\xi 2 =

\int \int 
\alpha \xi (dx,d\alpha ),

and ci, di are constants such that c2 \not = 0, d4/c2 > 0.

5.4. A transport-theoretic discretization scheme. In this part we specialize
the analysis to the following particular case of (5.1):

inf
\BbbP ,\bfitalpha 

®\int 1

0

f(\scrL \BbbP (\alpha t))dt+ g(\scrL \BbbP (XT )) : dXt = \alpha tdt+ dWt , X0 = x0

´
,(5.9)

where for simplicity we took T = 1. Throughout this section we assume
(i) g is bounded from below and lower semicontinuous w.r.t. weak convergence;
(ii) f is increasing with respect to convex order, lower semicontinuous w.r.t. weak

convergence, and such that for all \lambda \in [0, 1] and \BbbR k-valued random variables
Z, \=Z,

f(\scrL (\lambda Z + (1 - \lambda ) \=Z)) \leq \lambda f(\scrL (Z)) + (1 - \lambda )f(\scrL ( \=Z));(5.10)

(iii) f satisfies the growth condition f(\rho ) \geq a+ b
\int 
| z| p\rho (dz) for some a \in \BbbR , b >

0, p > 1.
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Lemma 5.6 shows the equivalence of (5.9) with the variational problem

inf
\pi \in \Pi \ll 

c (\bfitgamma ,\cdot )

®\int 1

0

f
\bigl( 
\scrL \pi (

\̆.
\omega  - \omega )t

\bigr) 
dt+ g(\scrL \pi (\omega 1))

´
.

Under the convention that
\int 1

0
f
\bigl( 
\scrL \pi (

\̆.
\omega  - \omega )t

\bigr) 
dt = +\infty if \omega  - \omega \ll \scrL fails under \pi , the

latter can be expressed in the equivalent form

inf
\bfitmu \in \~\scrP 

inf
\pi \in \Pi c(\bfitgamma ,\bfitmu )

®\int 1

0

f
\bigl( 
\scrL \pi (

\̆.
\omega  - \omega )t

\bigr) 
dt+ g(\scrL \pi (\omega 1))

´
,(P )

where \~\scrP was defined in (5.2). In the same spirit as [36, Chapter 3.6], we introduce a
family of causal transport problems in finite dimension increasing to (P ). For n \in \BbbN ,
let \BbbT n := \{ i 2 - n : 0 \leq i \leq 2n, i \in \BbbN \} be the nth generation dyadic grid. For measures
m \in \scrP (\scrC ) and \pi \in \scrP (\scrC \times \scrC ), we write

mn := \scrL m(\{ \omega t\} t\in \BbbT n) \in \scrP (\BbbR (2n+1)d)

and \pi n := \scrL \pi (\{ (\omega t, \omega t)\} t\in \BbbT n) \in \scrP (\BbbR (2n+1)d \times \BbbR (2n+1)d)

for the projections of m and \pi on the grid \BbbT n. We denote by

(xn0 , x
n
1 , . . . , x

n
2n , y

n
0 , y

n
1 , . . . , y

n
2n)

a typical element of \BbbR (2n+1)d\times \BbbR (2n+1)d, and let \Delta nxi := xni+1 - xni , and similarly for
\Delta nyi.

We consider the auxiliary transport problems

inf
\bfitmu \in \scrP (\BbbR (2n+1)d)

inf
\pi \in \Pi n

c (\bfitgamma n,\bfitmu )

\Biggl\{ 
2 - n

2n - 1\sum 
i=0

f

Å
\scrL \pi 

Å
\Delta nyi  - \Delta nxi

2 - n

ãã
+ g(\scrL \pi (y

n
2n))

\Biggr\} 
,

(P (n))

where, in analogy to Definition 5.5, we called

\Pi n
c (\bfitgamma n,\bfitmu ) \subset \scrP (\BbbR (2n+1)d \times \BbbR (2n+1)d)

the set of causal couplings in \scrP (\BbbR (2n+1)d \times \BbbR (2n+1)d) with marginals \bfitgamma n and \bfitmu ; see
[5].

Theorem 5.10. Suppose problem (P ) is finite, and that (i),(ii),(iii) hold. Then
the value of the auxiliary problems (P (n)) increases to the value of the original problem
(P ), and the latter admits an optimizer.

Remark 5.11. An example of a function satisfying conditions (ii)--(iii) of The-
orem 5.10 is f(\rho ) = R

\bigl( \int 
hd\rho 

\bigr) 
for R convex and increasing, and h convex with

p-power growth (p > 1). It also covers the case of functions of the form f(\rho ) =\int 
\phi (w, z) d\rho (w) d\rho (z) +

\int 
| x| p d\rho (x), with \phi jointly convex and bounded from below,

and f(\rho ) = Var(\rho )+
\int 
| x| p d\rho (x), where in both cases p > 1. For p = 2 the latter falls

into the LQ case of section 4.3.

Proof. Step 1 (lower bound): Let \bfitmu \in \~\scrP and \pi \in \Pi c(\bfitgamma ,\bfitmu ) with finite cost for
problem (P ). Fix n \in \BbbN , and denote by \pi n the projection of \pi onto the grid \BbbT n. We
first observe that

\int 1

0

f
\bigl( 
\scrL \pi (

\̆.
\omega  - \omega )t

\bigr) 
dt+ g(\scrL \pi (\omega 1)) \geq 2 - n

2n - 1\sum 
i=0

f

Å
\scrL \pi n

Å
\Delta nyi  - \Delta nxi

2 - n

ãã
+g(\scrL \pi n(y

n
2n)).

(5.11)
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Indeed, for i \in \{ 0, . . . , 2n  - 1\} we have\int (i+1)2 - n

i2 - n

f
\bigl( 
\scrL \pi (

\̆.
\omega  - \omega )t

\bigr) 
dt \geq 2 - nf

\Biggl( 
\scrL \pi 

\Biggl( \int (i+1)2 - n

i2 - n

(
\̆.

\omega  - \omega )t
dt

2 - n

\Biggr) \Biggr) 

= 2 - nf

Å
\scrL \pi 

Å
\omega (i+1)2 - n  - \omega i2 - n  - (\omega (i+1)2 - n  - \omega i2 - n)

2 - n

ãã
= 2 - nf

Å
\scrL \pi n

Å
\Delta nyi  - \Delta nxi

2 - n

ãã
,

where for the inequality we used the convexity condition (5.10). Noticing that the
first marginal of \pi n is equal to \bfitgamma n, the r.h.s. of (5.11) is bounded from below by the
value of (P (n)). Because \bfitmu , \pi have been chosen having finite cost for problem (P ),
but otherwise arbitrary, we conclude that

(P ) \geq (P (n)) \forall n \in \BbbN .

Step 2 (monotonicity): For n \in \BbbN and i \in \{ 0, . . . , 2n  - 1\} , take k such that

i2 - n = (k  - 1)2 - (n+1) < k2 - (n+1) < (k + 1)2 - (n+1) = (i+ 1)2 - n.

Let \bfitmu n+1 \in \scrP (\BbbR (2n+1+1)d) and \pi n+1 \in \Pi n+1
c (\bfitgamma n+1,\bfitmu n+1). By (5.10) we get

2 - (n+1)

ß
f

Å
\scrL \pi n+1

Å
\Delta n+1yk - 1  - \Delta n+1xk - 1

2 - (n+1)

ãã
+ f

Å
\scrL \pi n+1

Å
\Delta n+1yk  - \Delta n+1xk

2 - (n+1)

ãã™
\geq 2 - nf

Ç
\scrL \pi n+1

Ç
yn+1
k+1  - yn+1

k - 1  - (xn+1
k+1  - xn+1

k - 1)

2 - n

åå
= 2 - nf

Å
\scrL \pi n

Å
\Delta nyi  - \Delta nxi

2 - n

ãã
,

where \pi n is the projection of \pi n+1 on the grid \BbbT n. Analogously to the previous step,
this gives

(P (n+ 1)) \geq (P (n)) \forall n \in \BbbN .

Step 3 (discrete to continuous): We introduce auxiliary problems in path-space:

inf
\bfitmu \in \~\scrP 

inf
\pi \in \Pi c(\bfitgamma ,\bfitmu )

\Biggl\{ 
2 - n

2n - 1\sum 
i=0

f

Å
\scrL \pi 

Å
\Delta n

i \omega  - \Delta n
i \omega 

2 - n

ãã
+ g(\scrL \pi (\omega 1))

\Biggr\} 
,(P aux(n))

where \Delta n
i \omega := \omega (i+1)2 - n  - \omega i2 - n and likewise for \Delta n

i \omega . We now prove that

(P aux(n)) = (P (n)) \forall n \in \BbbN .(5.12)

First we observe that the left-hand side of (5.12) is larger than the r.h.s. Indeed,
projecting a coupling from \Pi c(\bfitgamma , \cdot ) onto a discretization grid gives again a causal
coupling; see [36, Lemma 3.5.1]. For the converse inequality, note that Remark 5.12
implies that, for any \bfitnu \in \scrP (\BbbR (2n+1)d) and \pi \in \Pi n

c (\bfitgamma n,\bfitnu ) with finite cost in (P (n)),
there exist \bfitmu \in \~\scrP and P \in \Pi c(\bfitgamma ,\bfitmu ) that give the same cost in (P aux(n)).
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Step 4 (convergence): Let us denote

c(\pi ) :=

\int 1

0

f
\bigl( 
\scrL \pi (

\̆.
\omega  - \omega )t

\bigr) 
dt and cn(\pi ) := 2 - n

2n - 1\sum 
i=0

f

Å
\scrL \pi 

Å
\Delta n

i \omega  - \Delta n
i \omega 

2 - n

ãã
,

the cost functionals defining the optimization problems (P ) and (P aux(n)). Notice
that Step 1 implies c \geq cn, and Step 2 shows that cn is increasing. We now show that
cn converges to c whenever the latter is finite. For this it suffices to show that

lim inf
n

cn(\pi ) \geq c(\pi ).(5.13)

We start by representing cn in an alternative manner, namely,

cn(\pi ) =

\int 1

0

f

\Biggl( 
\scrL \pi 

\Biggl( \int (\lfloor t2n\rfloor +1)2 - n

\lfloor t2n\rfloor 2 - n

(
\̆.

\omega  - \omega )s
ds

2 - n

\Biggr) \Biggr) 
dt.

By the Lebesgue differentiation theorem [21, Theorem 6, Appendix E.4], for each pair
(\omega , \omega ) such that \omega  - \omega is absolutely continuous, there exists a dt-full set of times such
that

A(t, n) :=

\int (\lfloor t2n\rfloor +1)2 - n

\lfloor t2n\rfloor 2 - n

(
\̆.

\omega  - \omega )s
ds

2 - n
\rightarrow (

\̆.
\omega  - \omega )t.(5.14)

If c(\pi ) < \infty , the set of such pairs (\omega , \omega ) is \pi -full. This shows that (5.14) holds
\pi (d\omega ,d\omega )dt-a.s. By Fubini's theorem, there is a dt-full set of times I \subset [0, 1] such
that, for t \in I, the limit (5.14) holds in the \pi -almost sure sense (the \pi -null set depends
on t a priori). By dominated convergence, this proves that

\forall t \in I : \scrL \pi (A(t, n)) \Rightarrow \scrL \pi 

\bigl( 
(

\̆.
\omega  - \omega )t

\bigr) 
,

namely, in the sense of weak convergence of measures. By lower boundedness and
lower semicontinuity of f , together with Fatou's lemma, we obtain

lim inf
n

cn(\pi ) \geq 
\int 1

0

lim inf
n

f (\scrL \pi (A(t, n)) ) dt =

\int 1

0

f
\bigl( 
\scrL \pi 

\bigl( 
(

\̆.
\omega  - \omega )t

\bigr) \bigr) 
dt,

establishing (5.13) and so that cn \nearrow c.
By Steps 2 and 3, we know that the values of (P aux(n)) are increasing and

bounded from above by the value of (P ). We take \pi n which is 1/n-optimal for

(P aux(n)). It follows then by assumptions (i)--(iii) that
\int \int 1

0
[(

\̆.
\omega  - \omega )t]

p dtd\pi n \leq 
\=a+\=b(P ), for some \=a,\=b \in \BbbR . By [36, Lemma 3.6.2], we obtain the tightness of \{ \pi n\} n.
We may thus assume that \pi n \Rightarrow \pi weakly. By [1, Lemma 5.5], the measure \pi is causal
(and it obviously has first marginal \bfitgamma ). For k \leq n we have

ck(\pi n) \leq cn(\pi n) \leq 1/n+ (P aux(n)) \leq 1/n+ (P ),

so, sending n \rightarrow \infty , we get ck(\pi ) \leq limn (P
aux(n)) \leq (P ), as clearly ck is lower

semicontinuous. By letting k \rightarrow \infty , and using the fact that ck \nearrow c, we conclude that
\pi is optimal for (P ), and that the value of (P ) is the limit of the increasing values of
(P aux(n)), which in turn equals the limit of the increasing values of (P (n)).
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We complete the argument used in Step 3 with the following remark. This also
shows how, from an (approximate) optimizer of the discrete-time problem (P (n)), an
approximate optimizer of the continuous-time problem (5.9) can be built.

Remark 5.12. In Lemma B.3 we show how, given \bfitnu \in \scrP (\BbbR 2d) and \pi \in \Pi 0
c(\bfitgamma 0,\bfitnu ),

there exists a weak solution (W,X) of an SDE such that \scrL P (W0,W1, X0, X1) = \pi .
The argument used to prove Lemma B.3 can be iterated in order to get an SDE whose
unique weak solution fits any joint distribution over finitely many time points: For
any given \bfitnu \in \scrP (\BbbR (2n+1)d) and \pi \in \Pi n

c (\bfitgamma n,\bfitnu ), there exist \bfitmu \in \~\scrP and P \in \Pi c(\bfitgamma ,\bfitmu )
such that

\scrL P (\omega 0, \omega 2 - n , \omega 2 - n+1 , . . . , \omega 1, \omega 0, \omega 2 - n , \omega 2 - n+1 , . . . , \omega 1) = \pi 

with P being the joint law of (W,X), the unique weak solution of an SDE of the form

dXt = \beta tdt+ dWt.

Lemma B.3 covers the case n = 0. We now show the case n = 1, the general case
following similarly. Fix \bfitnu \in \scrP (\BbbR 3d) and \pi \in \Pi 1

c(\bfitgamma 1,\bfitnu ). As in Lemma B.3, if U1 is a
d-dimensional uniform distribution, independent of X0 and of the Brownian motion
W , then there exists \Psi 1 such that (0,W1/2, X0,\Psi 1(U1,W1/2, X0)) \sim \pi 1, where \pi 1
is the projection of \pi into the first 4 coordinates. Introducing U2, an independent
copy of U1, we can apply Lemma B.1 in the appendix, obtaining the existence of a
measurable function \Psi 2 such that\Bigl( 
0,W1/2,W1, X0,\Psi 1(U1,W1/2, X0),\Psi 2

\bigl( 
U2,W1/2,W1, X0,\Psi 1(U1,W1/2, X0)

\bigr) \Bigr) 
\sim \pi .

Now we define the following SDE with initial condition X0:

dXt =
Ä
\Psi 1(U1,Wt,X0) - Xt

1/2 - t 1[0,1/2)(t) +
\Psi 2(U2,W1/2,Wt,X0,X1/2) - Xt

1 - t 1[1/2,1)(t)
ä
dt+ dWt.

This admits a unique solution in [0, 1), which is given by

Xt = X0(1 - 2t)1[0,1/2](t) +X 1
2
(2 - 2t)1(1/2,1)(t)

+
\bigl( 
1
2  - t \wedge 1

2

\bigr) \int t\wedge 1/2

0
\Psi 1(U1,Ws,X0)

(1/2 - s)2 ds+ (1 - t)
\int t

t\wedge 1/2

\Psi 2(U2,W1/2,Ws,X0,X1/2)

(1 - s)2 ds

+
\bigl( 
1
2  - t \wedge 1

2

\bigr) \int t\wedge 1/2

0
1

1/2 - s dWs + (1 - t)
\int t

t\wedge 1/2
1

1 - s dWs.

Noting X 1
2 - 

= \Psi 1(U1,W1/2, X0) and X1 - = \Psi 2(U2,W1/2,W1, X0, X1/2), we con-
clude.

Appendix A. Proof of Proposition 5.8.

Proof. Fix (\Omega ,\BbbF ,\BbbP ,\bfitW ,\bfitX ,\bfitalpha ) a feasible tuple for (5.1), if it exists, and set \pi :=

\scrL \BbbP (\bfitW ,\bfitX ) \in \Pi \ll 
c (\bfitgamma , \cdot ) and \bfitmu := \bfitmu \pi . Under \pi we have \omega t  - \omega t = x0 +

\int t

0
\beta s ds for

some progressive \beta . By (A2), the optional projection of \beta w.r.t.
\bigl( 
\pi , \{ \emptyset , \scrC \} \times \BbbF 2

\bigr) 
,

which we call \=\beta , is well defined. As in [1], one can prove that the process Mt :=

\omega t  - x0  - 
\int t

0
\=\beta s(\omega ) ds is a (\bfitmu ,\BbbF 2)-martingale. Indeed, taking 0 \leq s < t \leq T and

hs \in L\infty (\BbbF 2
s), we have

\BbbE \bfitmu [(Mt  - Ms)hs(\omega )] = \BbbE \pi [(\omega t  - \omega s)hs(\omega )] + \BbbE \pi 
\bigl[ 
hs(\omega )

\int t

s

\bigl( 
(

\̆.
\omega  - \omega )r  - \=\beta r(\omega )

\bigr) 
dr
\bigr] 

= \BbbE \pi 
\bigl[ 
hs(\omega )

\int t

s
\BbbE \pi 
\bigl[ \bigl( 
(

\̆.
\omega  - \omega )r  - \=\beta r(\omega )

\bigr) 
| \BbbF 2

r

\bigr] 
dr
\bigr] 
= 0,
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where the second equality follows since \omega , which is a (\bfitgamma ,\BbbF 1)-martingale, is conse-
quently by causality a (\pi ,\BbbF 1 \otimes \BbbF 2)-martingale. Therefore \bfitM is a (\bfitmu ,\BbbF 2)-martingale,
as claimed.

Since \langle \bfitM \rangle t = \langle \omega \rangle t = t under \bfitmu , then \bfitM is actually a (\bfitmu ,\BbbF 2)-Brownian motion,
by L\'evy's theorem. This implies \^\pi := \scrL \bfitmu (\bfitM , \omega ) \in \Pi c(\bfitgamma ,\bfitmu ). We are next going to
show that the expectation in (5.8) is smaller when considering \^\pi instead of \pi , i.e.,

when replacing \beta =
\̆.

\omega  - \omega with \=\beta . Then, by taking \Omega = \scrC ,\BbbP = \bfitmu ,\BbbF = \BbbF 2,\bfitX = \omega ,
and \alpha = b - 1(\omega t, ., \mu t)( \=\beta t), we have a feasible tuple, which concludes the proof of the
proposition.

Let us show our claim. Set \=ut(\omega ,\bfitmu ) := b - 1(\omega t, ., \mu t)( \=\beta t) and note that, by (A2)
and Jensen's inequality,

f (\omega t, \=ut(\omega ,\bfitmu ),\scrL \pi (\omega t, \=ut(\omega ,\bfitmu ))) \leq \BbbE \pi 
\bigl[ 
f (\omega t, ut(\omega , \omega , \mu t),\scrL \pi (\omega t, \=ut(\omega ,\bfitmu ))) | \BbbF 2

t

\bigr] 
.

By taking expectation under \pi on both sides, integrating, and using Fubini's theorem,
we then get

\BbbE \mu 

ñ\int T

0

f (\omega t, \=ut(\omega ,\bfitmu ),\scrL \pi (\omega t, \=ut(\omega ,\bfitmu ))) dt

ô
(A.1)

\leq \BbbE \pi 

ñ\int T

0

f (\omega t, ut(\omega , \omega , \mu t),\scrL \pi (\omega t, \=ut(\omega ,\bfitmu ))) dt

ô
.(A.2)

We now establish some ordering between measures. For any measurable function
F : \scrC \times \scrC \rightarrow \BbbR and sigma-field \sigma , set \=F := \BbbE \pi [F | \sigma ], and note that for any con-
vex function q : \BbbR \rightarrow \BbbR , Jensen's inequality gives

\int 
q(x)d(\scrL \pi ( \=F ))(x) = \BbbE \pi [q( \=F )] \leq 

\BbbE \pi [q(F )] =
\int 
q(x)d(\scrL \pi (F ))(x), i.e., \scrL \pi ( \=F ) \prec c \scrL \pi (F ). Analogously, for any convex

function H : \BbbR \rightarrow \BbbR , we have that \scrL \pi (H( \=F )) \prec cm \scrL \pi (H(F )). By (A1) and (A3) this
implies

\BbbE \pi 

ñ\int T

0

f (\omega t, ut(\omega , \omega , \mu t),\scrL \pi (\omega t, \=ut(\omega ,\bfitmu ))) dt

ô
\leq \BbbE \pi 

ñ\int T

0

f (\omega t, ut(\omega , \omega , \mu t),\scrL \pi (\omega t, ut(\omega , \omega , \mu t))) dt

ô
.

Together with (A.1), this concludes our claim, and so the proof of the proposition.

Appendix B. Measurable selection of push-forwarding maps. The next
result is obvious in dimension one. In higher dimensions it could follow easily from
Brenier's theorem in optimal transport, under assumptions relating to the finiteness
of second moments. We do not assume this and, therefore, need to be more careful.
For the meaning of concepts such as c-cyclical monotonicity, we refer to [34].

Lemma B.1. Let Q be a probability measure on \BbbR r \times \BbbR \ell , and denote by q the
(joint) distribution of the first r coordinates of Q. Then there exists a Borel measurable
function F : \BbbR r\times [0, 1]\ell \rightarrow \BbbR \ell such that (I, F )(q\otimes L) = Q, where L is the \ell -dimensional
Lebesgue measure on [0, 1]\ell , and I : \BbbR r\times [0, 1]\ell \rightarrow \BbbR r is the projection map I(x, y) = x.

Proof. Let \BbbR r \ni x \mapsto \rightarrow Qx be a regular conditional kernel of Q with respect to the
first r coordinates. Consider the Borel function x \mapsto \rightarrow (L,Qx) \in (\scrP (\BbbR \ell ))2. All assump-
tions of [34, Corollary 10.44] are satisfied. Thus we have, q(dx)-a.s., the existence of a
unique Borel mapping Fx(\cdot ) : \BbbR \ell \rightarrow \BbbR \ell such that Fx(L) = Qx and such that its graph
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is cyclically monotone (i.e., c-cyclically monotone for c = \| \cdot \| 2). By Lemma B.2 below,
there exists a Borel function F : \BbbR r \times \BbbR \ell \rightarrow \BbbR \ell such that F (x, L) = Qx, q(dx)-a.s.
We finally verify that F (q \otimes L) = Q, which concludes the proof:\int \int 

(h \circ (I, F )) dq \otimes dL =

\int Å\int 
h(x, F (x, y))L(dy)

ã
q(dx)

=

\int Å\int 
h(x, y)F (x, L)(dy)

ã
q(dx)

=

\int Å\int 
h(x, y)Qx(dy)

ã
q(dx) =

\int 
hdQ.

Lemma B.2. Let (E,\Sigma ,m) be a \sigma -finite measure space. Consider a measurable
function E \ni \lambda \mapsto \rightarrow (\mu \lambda , \nu \lambda ) \in \scrP (\BbbR \ell ) \times \scrP (\BbbR \ell ), and a function c : \BbbR \ell \times \BbbR \ell \rightarrow \BbbR 
continuous and bounded from below. Assume that for m-a.e. \lambda , there exists a unique
mapping F\lambda : \BbbR \ell \rightarrow \BbbR \ell satisfying F\lambda is Borel measurable with F\lambda (\mu \lambda ) = \nu \lambda , and the
graph of F\lambda is c-cyclically monotone. Then there exists a measurable F : E\times \BbbR \ell \rightarrow \BbbR \ell 

such that m(d\lambda )-a.s: F (\lambda , y) = F\lambda (y), \mu \lambda (dy)-a.s.

Proof. Let \~\Pi (\mu , \nu ) := \{ \pi \in \Pi (\mu , \nu ) : supp(\pi ) is c-cyclically monotone\} . We first
note that the set-valued map (\mu , \nu ) \mapsto \rightarrow \~\Pi (\mu , \nu ) is measurable. To wit, \~\Pi (\mu , \nu ) is
closed and the preimage of closed sets by \~\Pi (\cdot , \cdot ) are closed. The argument for the
first fact is contained in the proof of Theorem 5.20 in [34, p. 77]. As for the second
fact, let \Sigma \subset \scrP (\BbbR \ell \times \BbbR \ell ) be closed, and (\mu n, \nu n) \rightarrow (\mu , \nu ) with (\mu n, \nu n) \in \~\Pi  - 1(\Sigma ).
The latter means that there exists \pi n \in \Pi (\mu , \nu ) \cap \Sigma with supp(\pi n) being c-cyclically
monotone. By Prokhorov's theorem, up to selection of a subsequence, we may assume
that \pi n \rightarrow \pi \in \Pi (\mu , \nu )\cap \Sigma , and again reasoning as in the proof of Theorem 5.20 in [34]
we also get that \pi has c-cyclically monotone support. This implies (\mu , \nu ) \in \~\Pi  - 1(\Sigma ),
and all in all we get the measurability of \~\Pi (\cdot , \cdot ). We also remark that \~\Pi (\mu , \nu ) \not = \emptyset , by
the argument in the first paragraph of the proof of Theorem 10.42 in [34, p. 251]. We
now closely follow the arguments in the proof of Theorem 1.1 in [22]. First remark
that the set-valued mapping

(\mu , \nu ) \mapsto \rightarrow \Phi (\mu , \nu ) := \cup \pi \in \~\Pi (\mu ,\nu )supp(\pi ) \subset \BbbR \ell \times \BbbR \ell 

is measurable. This easily follows, similarly to [22, Theorem 2.1], by the measurability
of (\mu , \nu ) \mapsto \rightarrow \~\Pi (\mu , \nu ). Now [22, Corollary 2.3] is valid for our \Phi without any changes.
Finally, the proof of Theorem 1.1 in [22] can be fully translated into our terms.

We provide the missing argument for Step 3 in the proof of Theorem 5.10, which
is used in Remark 5.12. We use the notation adopted in that part of the article.

Lemma B.3. Given \bfitnu \in \scrP (\BbbR 2d) and \pi \in \Pi 0
c(\bfitgamma 0,\bfitnu ), there exist \bfitmu \in \scrP (\scrC ) and

P \in \Pi c(\bfitgamma ,\bfitmu ) such that \scrL P (\omega 0, \omega 1, \omega 0, \omega 1) = \pi . This measure P is the joint law
of the unique weak solution of an SDE of the form dXt = \beta tdt + dWt, namely,
P = \scrL (\bfitW ,\bfitX ).

Proof. Recall that \bfitgamma 0(dz0,dz1) = \delta 0(dz0)\scrN (dz1), where \scrN is the standard Gauss-
ian in \BbbR d. We consider a probability space supporting a random variable U uniformly
distributed in [0, 1]d, a random variable X0 distributed according to the first marginal
of \bfitnu , and a standard Brownian motion \bfitW , such that U,X0,\bfitW are independent. We
first observe that, by Lemma B.1, there exists a Borel function \Psi : \BbbR d\times \BbbR d\times \BbbR d \rightarrow \BbbR d

such that
( 0,W1, X0,\Psi (U,W1, X0) ) \sim \pi .
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Second, we define the following SDE, with initial condition X0:

dXt =
\Psi (U,Wt, X0) - Xt

1 - t
dt+ dWt.

Note that there is at most one solution to this SDE on every interval [0, T ] with
T < 1, by the theory of Lipschitz SDEs with random coefficients. This proves that
the solution is unique on [0, 1). Third, we observe that a solution of the above SDE
is given by

Xt = X0(1 - t) + (1 - t)

\int t

0

\Psi (U,Ws, X0)

(1 - s)2
ds+ (1 - t)

\int t

0

1

1 - s
dWs ,

and therefore this is the unique solution on [0, 1). Finally, we observe that sending
t \rightarrow 1 (by L'H\^opital's rule) we have X1 := X1 - = \Psi (U,W1, X0). We now observe
that \scrL (W0,W1, X0, X1) = \pi as desired, and notice that P := \scrL (\bfitW ,\bfitX ) is causal
(Definition 5.5), since \bfitX is adapted to the filtration \scrG t := \{ (U,X0,Ws) : s \leq t\} and
\bfitW is a \scrG -Brownian motion.
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