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Abstract
Time-to-event prediction has been an important practical task for longitudinal studies in
many fields such asmanufacturing, medicine, and healthcare.While most of the conventional
survival analysis approaches suffer from the presence of censored failures and statistically cir-
cumscribed assumptions, few attempts have beenmade to develop survival learningmachines
that explore the underlying relationship between repeated measures of covariates and failure-
free survival probability. This requires a purely dynamic-data-drivenprediction approach, free
of survival models or statistical assumptions. To this end, we propose two real-time survival
networks: a time-dependent survival neural network (TSNN) with a feed-forward architec-
ture and a recurrent survival neural network (RSNN) incorporating long short-term memory
units. The TSNN additively estimates a latent failure risk arising from the repeated measures
and performs multiple binary classifications to generate prognostics of survival probabil-
ity, while the RSNN with time-dependent input covariates implicitly estimates the relation
between these covariates and the survival probability. We propose a novel survival learning
criterion to train the neural networks by minimizing the censoring Kullback–Leibler diver-
gence, which guarantees monotonicity of the resulting probability. Besides the failure-event
AUC, C-index, and censoring Brier score, we redefine a survival time estimate to evaluate the
performance of the competing models. Experiments on four datasets demonstrate the great
promise of our approach in real applications.

Keywords Time-to-event prediction · Longitudinal study · Survival neural network ·
Classification probability · Time-dependent covariate

1 Introduction

Longitudinal study is an observational research method in which quantitative and/or qual-
itative data are collected by repeated measures (i.e., at several time points) of the same
covariates, following particular individuals over a prolonged period of time—e.g., years or
decades [7]. Longitudinal studies involve a great deal of effort but offer several benefits.
The main goal is to investigate how changes in the variables impact outcomes over different
periods of time [47]. For example, the Canadian Longitudinal Study on Aging (CLSA) was
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designed to follow more than 50,000 participants between the ages of 45 and 85 until 2033
or their death.1 The CLSA gathers information on biological, medical, psychological, social,
lifestyle and economic factors. Researchers working on CLSA data try to gain knowledge
about the effect of these factors, both separately and in combination, on the development of
disease and disability as people age.

In longitudinal studies, time-to-event data arise when interest is focused on the time
(years, months, weeks, or days) elapsing from the beginning of the study (i.e., baseline) until
an event occurs. In real applications, the event of interest may be any failure experience:
in manufacturing, for instance, it could be equipment failure or device fault; in healthcare,
disease recurrence, hospital readmission or death; in finance, regime change in a stockmarket.
This paper is about predicting non-recurring, single, adverse events. For instance, think about
all the in-service machines we use daily, an engine-propelled vehicle on the way to work
or a lift going up and down; or consider an in-patient in the early stages of breast cancer.
Imagine that one of these should fail (e.g., equipment should break down, or a patient should
worsen or die) one day from now. What impact would that have? The truth is that some
failure events are merely an inconvenience or a financial loss, while others could mean life
or death. For this reason, predicting the time of a failure event (failure event time) has long
been of practical interest. With predicted event time, clinicians can answer patients’ queries
on probable outcomes in a timely fashion, and decision makers can obtain information about
when a mechanical fault that can lead to complete system failure might take place.

Predicting event time actually involves answering questions like How many days are left
before the failure event?. In the observational world, the outcome (i.e., response variable)
is not only whether or not an event occurred, but also when that event occurred. However,
naïve regression models are not able to include both the event and time aspects as the out-
come in the model. Predicting event time accurately is very challenging and indeed almost
impossible in most practical situations. Instead, we propose to turn our attention to the easier
and more meaningful problem how long, with what probability, will failure-free survival be
maintained?. This question has been addressed by a considerable number of survival analysis
models developed to utilize the partial information on individuals with censored events (due
to incomplete follow-up, or dropout of study participants) and provide unbiased estimates.
With predicted outcomes, onemay estimate that an 80-year-old female patient diagnosedwith
breast cancer has a 50% probability of surviving one year and a 20% probability of surviving
3 years; this prognostic can be crucial in the choice of treatments, lifestyle modifications and,
sometimes, end-of-life care measures. The predicted probability of fault-free steering up to
50,000 km in a 15-year-old vehicle engine is 80%, but for 80,000 km the probability drops to
10%; this knowledge will allow for preventive maintenance (before 50,000 km), which may
prolong engine usage and holds out the promise of considerable cost savings.

In survival analysis, observations in terms of specific covariates are generally collected
at a single point in time at the beginning of the study (baseline), and participants are then
followed for a period of time subsequent to this baseline time point to examine associations of
these covariates with outcomes (i.e., event times). However, data collection for longitudinal
studies usually involves a vast number of repeated measures that make the related covariates
time-dependent. For example, HIV patients may be followed over time and undergo monthly
measures such as CD4 counts; or aging studies investigating cognitive change repeatedly col-
lect information about participants’ cognitive function anddate of death or dementia diagnosis
(e.g., repeatedmeasures in healthy aging records for Canadians in 2010; see Table 1), in terms
of time-dependent covariates such as Sports, Mental, Fall-caused injury, and Smoking.

1 https://www.clsa-elcv.ca/about-us/about-clsa-research-platform.
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Table 1 An example of repeated measures: healthy aging records for Canadians in 2010

ID Age Province Time (in past) Sports Mental health Fall-caused injury Smoking

1 45 Québec 12 months Seldom Excellent No Yes

6 months Sometimes Fair Yes Yes

1 month Often Poor No No

2 54 Ontario 12 months Often Excellent No Yes

6 months Often Excellent No Yes

1 month Sometimes Fair No Yes

Repeated measures require special techniques for valid analysis and inference. One may
use methods such as time-varying covariate analysis [9,44,52,56], in which the single mea-
suresmay be updated over time and replacedwith subsequentmeasures to examine short-term
associations, or time-averaged analysis [38,55], in which a participant’s baseline measure is
represented only by the values of covariates at a certain moment or a single estimate derived
from the average of measures over a specified period. It is worth noting that historical mea-
sures have been proven in the literature [34,54] to latently affect the survival probability.
For example, in an observational study of the effects of a drug on specific health indicators,
a patient’s current health status may influence the drug exposure or dosage received in the
future. It is thus highly desirable to establish a model that can automatically account for
time-dependent covariates.

Overall, current methods have serious limitations with respect to longitudinal studies and
practical use. Most survival analysis models suffer from the implausibility of the survival
study hypothesis and the need for prior knowledge, e.g., the distributional assumption regard-
ing event times widely postulated in parametric approaches [20]. In addition, the relation
between the time-dependent covariates and the event time is assumed to be linear, possibly
with some interaction terms; this limits the kinds of relationship that may be discovered.
Interestingly, neural networks have achieved significant advances in nonlinear modeling and
state-of-the-art performance in survival analysis studies [16,17,22,25,49]. We believe that a
neural network classifier is a potential candidate for performing survival prediction, without
any statistical assumptions. In our recent work [53], a time-dependent survival neural net-
work (TSNN) was developed to account for time-dependent covariates and their nonlinear
relation, achieving high performances in survival prediction.

In light of the discussion above, we extend our previous work [53] and propose to predict
time-to-event in longitudinal studies by means of our TSNN and the specifically developed
recurrent survival neural network (RSNN). These two real-time survival networks yield
multiple classification outcomes over time, performing prognostics of event-free survival
probability:

• TSNN additively estimates a latent risk of event based on the repeated measures of
time-dependent covariate, characterized by amulti-output one-hidden-layer feed-forward
network architecture.

• Given a set of time-dependent input covariates, RSNN implicitly estimates the relation
between these covariates and survival probability, using a network of long short-term
memory (LSTM) units.

The designated censoringKullback–Leibler (KL) divergence for quantifying the dissimilarity
between the binary classification probabilities and the actual survival statuses. A generalized
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survival learning approach is then used to minimize the censoring KL divergence, running
under a constraint that guarantees monotonicity of the resulting probability. We tested TSNN
and RSNN on four real-world datasets from the fields of engineering, medicine and aging
studies, in comparison with the baseline competitors considered by the previous work [53]
and, additionally, the Cox regressionmodel [10], the Coxmodel using the average of repeated
measures (CoxAvg) [51], and theRNNfor survival analysis (RNN-SURV) [16]. Experimental
results demonstrate the promise of real-time survival networks in real applications. The paper
makes the following primary contributions:

• A purely dynamic-data-driven prediction approach, free of any existing survival model
or statistical assumptions, is developed for survival prediction.

• Time-to-event prediction via survival regression analysis is transformed into multiple
nonlinear classifications via feed-forward neural networks and recurrent neural networks.

• Repeated measures in longitudinal studies are analyzed, while the underlying relations
between the time-dependent covariates and the event time are considered.

• A survival criterion is proposed to allow neural networks to learn from time-to-event data
with censored response variables (i.e., survival times).

• An estimate of survival time and corresponding survival error metric used to evaluate the
absolute error of survival prediction.

2 Related work

This paper is about longitudinal and time-to-event data analysis, so we will review the
work related to survival models for time-to-event data analysis. Broadly speaking, survival
analysis methods can be classified into twomain categories: statistical methods andmachine-
learning-basedmethods, which share the common goal of predicting time of event. Statistical
methods focus more on event time distributions and the properties of the parameter estima-
tion. Machine learning methods are usually applied to complex problems such as massive
high-dimensional data and nonlinear data fitting.

2.1 Statistical survival models

Statistical models can be grouped into parametric, nonparametric, and semi-parametric
approaches, developed primarily for retrospective cohort studies, each of which has their
inherent disadvantages.

• In nonparametric approaches, an empirical estimate of the survival function typically
uses the Nelson–Aalen estimator [1], the Kaplan–Meier estimator [21] or the life-table
method [11]. These approaches are intended to generate unbiased descriptive statistics,
but generally cannot be used to assess the effect of multiple covariates on the response
variable (i.e., survival probability).

• Parametric approaches commonly assume that the event time is drawn from an expo-
nential, Weibull, Gompertz–Makeham, (log-)normal, logistic, (log-)logistic, or gamma
distribution. Typical examples include the accelerated failure time (AFT) model [45],
the Buckley–James model [6], and penalized regression [40]. These approaches suffer
from a critical weakness, relying as they do on the assumption that the underlying failure
distribution (i.e., how the probability of failure changes over time) has been correctly
specified. If the distribution does not correspond to the inferences, these approaches can
be grossly invalid.
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• Most researchers in the survival analysis field have been more inclined to use the semi-
parametric Cox proportional-hazards model [10], because of its ease of use, proven
effectiveness and interpretability of results. The extensive models are constrained by
regularized coefficients [29,42] or trained by a gradient-boosting algorithm [5]. However,
semi-parametric approachesmake an assumption on how the covariates influence the risk
of failure, which is often violated in practical use.

2.2 Machine learning for survival analysis

The increasing availability of a wide variety of data (e.g., time-dependent covariates) poses
more challenges to the statistical approaches and is stimulating numerous research efforts
that use machine learning methods in conjunction with survival models.

2.2.1 Neural network-based methods

• Feed-forward neural networks Liestbl et al. [30] subdivided time into multiple intervals,
assumed the hazard of event to be constant in each interval and proposed a feed-forward
neural network with a single hidden layer that outputs the conditional event probabilities
for each patient. This work was then expanded in [4], but even in this later work the value
of the estimate for a given patient is not utilized in computing the estimate for the same
patient. In order to generalize the Cox model, Faraggi and Simon [13] utilized nonlinear
functions instead of the traditional linear combinations of covariates, by modeling the
relationship between the input covariates and the corresponding riskwith a single-hidden-
layer feed-forward neural network.

• Deep learning Although the feed-forward network can preserve most of the advantages
of a typical Cox proportional-hazards hypothesis, it was still not the optimal way tomodel
the baseline variations. This was the rationale for another study [22], which described
the interactions between a patient’s covariates and treatment effectiveness in order to
provide personalized treatment recommendations. A deep neural network was used in
[25] to learn the distribution of survival times directly and to allow the possibility of
assessing the relationship between covariates and risk over time, without assumptions
about the underlying stochastic process.

• Recurrent neural networks Giunchiglia et al. [16] proposed a recurrent neural network
model that computes the survival function by considering a series of binary classification
problems, each leading to the estimation of the survival probability in a given interval of
time. For check-in time prediction, Yang et al. [49] built a recurrent-censored regression
model to capture the spatiotemporal nature of check-in data, where a gated recurrent units
(GRUs) structure was designed to learn a latent representation of historical check-ins by
a user. Another application is to predict user return time: Grob et al. [17] constructed an
RNN-based survival model based on user sessions and their associated covariates.

2.2.2 Other machine learningmethods

Besides neural networks, typical examples include multi-task learning, Gaussian process,
Bayesian inference, active learning, transfer learning, feature engineering, etc.

• Multi-task learning The Cox regression model was used by Wang et al. [43], in con-
junction with multi-task learning, encoding relatedness between tasks via coefficient
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regularization. A multi-task logistic regression (MTLR) model was first established by
Lin et al. [31] to learn patient-specific survival distributions, directly modulating survival
probability via a combination of multiple local logistic regression models in a dependent
manner. In the critical phase of handling censored data, Li et al. [27] reformulated the
survival problem as a multi-task learning problem. Later on, they succeeded in predicting
talent career paths through multi-task learning—formulating the prediction of survival
status at a sequence of time intervals [26]. Bellot and van der Schaar [3] leveraged an
interpretation of boosting algorithms in a multi-task learning framework, while making
each task-specific time-to-event distribution a component of a multi-output function.

• Gaussian process and Bayesian inference Kim and Pavlovic [24] developed scalable
variational inference algorithms for a Gaussian process survival analysis model and
uncertainty in the hazard function modeling. Furthermore, Fernández et al. [14] provided
a semi-parametric Bayesian model for survival analysis by a Gaussian process, which
modulates the hazard function by the multiplication of a parametric baseline hazard and a
nonparametric part. Similarly, in [2] a nonparametric Bayesian model was developed by
deep (multi-task)Gaussian processes. Thismethod is Bayesian since the authors assigned
a prior distribution over a space of vector-valued functions of the patients’ covariates,
and updated the posterior distribution given a time-to-event dataset.

• Active learning and transfer learningl Vinzamuri et al. [41] presented an active regu-
larized Cox regression framework which effectively integrates active learning and the
Cox regression using a model discriminative gradient sampling strategy and robust reg-
ularization. The transfer-learning-based Cox model [28] uses auxiliary data to augment
learning when there is an insufficient number of training samples. This model uses the
1,2-norm penalty to encourage multiple covariates to share similar sparsity patterns, thus
learning a shared representation across source and target domains, potentially improving
the model’s performance on time-to-event data.

• Feature engineering Li et al. [29] proposed a unified model for regularized parametric
survival regression for an arbitrary survival distribution, using the elastic net [57] as a
sparsity-inducing penalty to effectively deal with high-dimensional data. Yu et al. [50]
performed a feature selection via affine projections in the Cox model to achieve privacy
preservation when different clinical institutes share clinical data with each other.

• Decision trees Ishwaran et al. [19] proposed the random survival forestsmodel, an ensem-
ble tree method for analytics of right-censored survival data. It utilizes a nonparametric
Nelson–Aalen estimator to predict the time to censored failures for establishing terminal
nodes of the forest.

2.3 Time-varying analysis

The association between repeated measures and the outcome has been modeled in various
ways. In practice, the covariates’ effects (e.g., the effect of a treatment) may change over
time with longer follow-up [15]. To accommodate such situations, there has been a surge
of interest in learning time-varying coefficients instead of time-invariant ones. The varying
coefficient models are a very important tool to explore the dynamic pattern. They are a natural
extension of classical parametric models, with good interpretability, and are becoming more
and more popular in data analysis [12].

• For the Cox model, Tian et al. [39] estimated time-varying coefficients by maximizing a
kernel-weighted partial likelihood,while Sun et al. [37] employed a local empirical partial
likelihood smoothing. Time-varying coefficients were also used in [32] to describe the
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potential time-varying effects of covariates on breast cancer (in the New York University
women’s health cohort study).

• The proportionality assumption may not hold in practice when covariate effects change
over time. The semi-proportional hazards model (SPH) [52] uses locally time-varying
coefficients, thereby relaxing the proportional hazards assumption for the sake of prac-
ticality, while retaining that model’s simplicity.

• Rather than theCox regression, [31] utilize a logistic regression inwhich the time-varying
coefficients are regularized and smoothed.

3 Proposed approach

In this section, we first introduce the motivation of using multiple survival classifications and
then provide the two real-time survival networks and evaluate the survival probability, finally
the learning phrase.

3.1 Motivation of usingmultiple survival classifications

Using a similar presentation to that employed in longitudinal studies, we denote by T a
continuous nonnegative random variable representing the time of event. Supposing that an
event occurs in a specific time period, say [0, t], then we have a cumulative distribution
function in closed form F(t) = Pr(T ≤ t) for time of event, which is particularly useful
for analyzing time-to-event data with censoring. A binary classification performed to predict
failure of a machine in a given t-day time windowwould allow us to answer the questionWill
the machine remain failure-free over the next t days?. Thus, we can transform the original
time-to-event prediction problem into a series of binary classification problems, as long as
each has an output probability that the actual survival time is not earlier than t , denoted
Pr(T > t). Hence, we think of a classifier that can output multiple binary classification
probabilities over disjoint time snapshots τ1 < τ2 < · · · < τK , each depicting the probability
of remaining event-free at time τk , answering questions likeHowdoes the risk of event change
over time?.

Each classification can be performed by means of a nonparametric logistic sigmoid func-
tion σ , in the general form S(t) = σ(−q ln(αt)) = (1+(αt)q)−1, where the random variable
α allows us to differentiate between the classes—“failure event” and “failure-event-free (sur-
vival).” To analyze the simultaneous effects of covariates x = (x1, x2, . . . , xV ) ∈ R

V on an
event, in a general case, one usually introduces those variables that affect α but not q by over-
writing ln α with a link function of x, that is, ψ(x) = ln α and therefore S(t |x) = σ(ψ(x)).
Given V covariates for N individuals, X = (x1, x2, . . . , xN ) ∈ R

N×V , the classifier is
designed to generate an outcome vector of survival probabilities at τk for these individuals.
Survival probability curves can be plotted as long as the classifier yields K outcomes over
the disjoint time points.

3.2 Real-time survival networks

Basically, generalized linear models (GLMs) postulate the link function ψ(x) in linear form.
In most practical applications, however, the functional relationship between covariates and
the output is not linear. For this reason, instead of replacing the linear function by the net-
work output, we resort to artificial neural networks capable of performing a probabilistic
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Fig. 1 Baseline survival neural network in a feed-forward architecture

classification and automatically identifying the nonlinear relationship between covariates
and our desired survival probability. In this section, we introduce the feed-forward neural
network applicable for survival prediction and propose two survival neural networks that
allow dynamic data (time-dependent covariates) to drive the survival learning inference, i.e.,
free of survival models or statistical assumptions, to perform the binary classifications. In
principle, these survival networks are combinations of multiple classifiers, each performing
a binary classification on every individual that may or may not be event-free.

3.2.1 Time-dependent survival neural network

Weconcentrate our attention on a one-hidden-layer feed-forward neural network, i.e., a three-
layer network with V input neurons, K output neurons and D hidden neurons, as shown in
Fig. 1. The input layer’s role is solely to distribute the inputs to the hidden layer, where the
neuron v = 1, 2, . . . , V takes value xv and the hidden neuron d = 1, 2, . . . , D computes
a sum of all the inputs weighted by whide

d ∈ R
V , adds a bias bhided , and applies an activation

function to obtain its output. The outputs of the hidden layer subsequently become the inputs
of the output layer, in which the output neuron k = 1, 2, . . . , K computes a sum of these
inputs weighted by wout

k ∈ R
D , adds a bias boutk , and then applies the activation function to

obtain survival probabilities. Given the individuals X, with the weights Whide ∈ R
D×V and

Wout ∈ R
K×D and the biases bhide ∈ R

D and bout ∈ R
K for computing the hidden and

output layers, respectively, we scale the N outputs of our baseline survival neural network
(SNN) at τk to the range of the logistic sigmoid function σ applied component-wise to the
vector, i.e.,

SSNN(τk |X,W) = σ
(
wout
k · σ

(
WhideX + bhide

) + boutk

)
(1)

Note that the exponential component in Eq. 1 can serve as the risk of event, like the
conventional cumulative risk found in the Cox [10] and AFT models [45]. Obviously, such
an event risk is supposed to be totally independent of any historical covariate values. To
address this issue, we propose the form γ (t ′, t) to stand for the decay ratio of the event
risk. By such decay, we can model the amount of the latent risk produced by the values
at time t ′ remaining at time t(≥ t ′). This can be an exponential function of time in the
form γ (t ′, t) = exp{ξ(t ′ − t)}. Simply, we make the decay coefficient ξ take a positive
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Fig. 2 Time-dependent survival neural network

value and thus 0 < γ ≤ 1. Note that such a positive decay ratio indicates that the risk
will shrink over time but not vanish. Given the observations for individuals at time t , say
Xt = (xt1, x

t
2, . . . , x

t
N ), and all historical values observed at time points j ∈ �(t) before t ,

we estimate the event risk in an additive manner and compute the TSNN’s N outcomes at
τk , as follows:

STSNN(τk |X,W) =
⎛

⎝1 + 1

|�(τk)|
∑

j∈�(τk )

exp {ξ( j − τk)} exp
{
−wout

k φ(X j ) − boutk

}
⎞

⎠

−1

φ(X j ) =
⎛

⎝1 + 1

|�( j)|
∑

u∈�( j)

exp {ξ(u − j)} exp {−WhideXu − bhide
}
⎞

⎠

−1

.

As shown in Fig. 2, the survival probability at time τk is estimated according to the time-
dependent input covariates which are repeatedly measured at time τ1, τ2, . . . , τk′(≤ τk). This
is the reason why we can call this neural network time-dependent.

3.2.2 Recurrent survival neural network

Unlike feed-forward neural networks, recurrent neural networks (RNNs) can use their internal
state (memory) to process time-dependent inputs,with the output of a hiddenunit at the current
timestep being fed back into the hidden unit so that it forms part of the input for the preceding
timesteps. This allows the exhibition of temporal dynamic behavior by feeding neural outputs
of the activations of the preceding step back into the network. Hence, RNNs are extremely
expressive and flexible. Long short-term memory (LSTM) units [18] were developed to
overcome the practical issues associated with long-term dependencies in traditional RNNs by
learningwhat information they should keep from the previous time step andwhat information
they should forget.

The schematic of our RSNN includes LSTM units, as shown in Fig. 3. Every unit features
an input, three gates (input, forget, and output), and an output activation function. The output
of the unit is recurrently connected back to the unit input and all of the gates, given by

Hτk = Oτk � tanh(Cτk ),
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Fig. 3 The recurrent survival neural network (RSNN) consists of long short-term memory units

where� is aHadamard (element-wise) product and the output gateOτk modulates the amount
of memory content exposure. Unlike the recurrent unit which simply computes a weighted
sum of the input covariates and applies a nonlinear function, each LSTM unit maintains a
memory Cτk at time τk . This memory cell is updated by partially forgetting the previous
memory Cτk−1 and adding new (candidate) memory content such as

Cτk = �τk � Cτk−1 + Iτk � C̃τk .

The input weights in terms of input gate, forget gate, output gate, and cell unit in hid-
den layer are denoted by wi,wf,wo,wc ∈ R

D×V , respectively, the recurrent weights by
ωi,ωf,ωo,ωc ∈ R

D×D , and the bias as bi,bf,bo,bc ∈ R
D . The input gate Iτk , forget gate

�τk , output gate Oτk , and candidate cell C̃τk are computed by
⎛

⎜⎜
⎝

Iτk

�τk

Oτk

C̃τk

⎞

⎟⎟
⎠ =

⎛

⎜⎜
⎝

σ

σ

σ

tanh

⎞

⎟⎟
⎠

⎛

⎜⎜
⎝

[
wi ωi

]
[
wf ωf

]
[
wo ωo

]
[
wc ωc

]

⎞

⎟⎟
⎠

[
Xτk

Hτk−1

]
+

⎛

⎜⎜
⎝

bi

bf

bo

bc

⎞

⎟⎟
⎠ ,

where [Xτk Hτk−1 ]� is the concatenation of the two vectors: input covariates Xτk and Hτk−1 .
With input X at τk , the recurrent survival neural network can yield N survival probabilities:

SRSNN(τk |X,W) = σ
(
wout
k Hτk + boutk

)
.

In particular, the presence of the hidden neurons provides a nonlinear dependence of the
outputs on the input covariates. The weights describe the nonlinearity in how the survival
probability varies in response to these covariates. Our approach can be thought of as a gener-
alization of multi-task classification, which enables flexible modeling of survival probability
in parallel. Each task executes on all training individuals but has an individual covariate input.
As was discussed in [27], such multi-task transformation will further reduce the prediction
error on each task and hence provide a more accurate estimate than models which aim at
modeling the probabilities at once.

3.3 Survival probability evaluation

In the observational world, one needs to know whether event, dropout, or study cutoff comes
first when building a model to capture information regarding covariates leading to an event.
Survival (i.e., event-free) for individual i means that i is still at risk of the event: that is,
the event has not yet occurred. Censoring means that i dropped out of the study or has not
experienced the event by the end of the study. Hence, for all (right-)censored samples, the
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Fig. 4 An example of failures and censored individuals in time-to-event data

unobserved exact survival times are longer than the censoring times. For example, as shown
in Fig. 4, the failure event times of the second and seventh individuals are right-censored,
since the second dropped out study before the study cutoff and the seventh was still failure-
free by the study cutoff. All the others are neither failures nor right-censored due to their
unknown start times of follow-up.

We denote the time-to-event response variables by (T , ζ ), where T is the observed time,
i.e., the minimum of time of event T and time of (right-)censoring C , i.e.,

T = min{T ,C} =
{
T , if ζ = 1

C, otherwise (ζ = 0)

The other response variable ζ = 1{T ≤ C} equals 1 if the event happened and 0 otherwise.
That is, ζ ∈ {0, 1} indicates either censorship or event occurrence. We shall assume without
loss of generality that the individuals are ascendingly sorted according to observation, and
T and C are conditionally independent given covariates.

3.3.1 Survival process

Given Ntr training individuals, the actual survival process for individual i can be represented
as εi (τ1) εi (τ2) · · · εi (τK ). Each survival status εi (τk) indicates whether or not the event
occurs by time τk , taking a value of 1 up to τk , 0 thereafter, and −1 for unknown cases.
Once εi (t) becomes “0,” it will not turnover to “1.” There are thus K + 1 legally possible
sequences of the form (1, 1, . . . , 0, 0, . . .), including the sequences composed of all “1”s
and all “0”s. Supposing Kε

i = {k : εi (τk) = εi }, the observed statuses are greater than or
equal to unknown statues if the failure is (right-)censored, i.e., εi (τk) ≥ εi (τk′), ∀k ∈ K1

i

and ∀k′ ∈ K−1
i . For an uncensored case, the survival statuses during the follow-up period

are strictly greater than those after the event, i.e., εi (τk) > εi (τk′), ∀k ∈ K1
i and ∀k′ ∈ K0

i .
Table 2 shows an example of a survival process. For the uncensored individuals 1 and 3,

the cells of the corresponding rows are labeled as “1” until the scale time and “0” for the
remaining cells; for the censored individuals 2 and 4, the cells are labeled as “1” until the
censoring time and “−1” thereafter the remaining cells.

3.3.2 Censoring Kullback–Leibler divergence

Survival networks cannot be effective prediction models unless they achieve the objective
that the predicted event-free probabilities approach the actual survival process. In order
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Table 2 An example of generating survival process from time-to-event (TTE) data

i TTE Survival process (time in month)

Ti ζi εi (1) εi (2) εi (3) εi (4) εi (5) εi (6) εi (7) εi (8) εi (9)

1 2 1 1 1 0 0 0 0 0 0 0

2 6 1 1 1 1 1 1 1 −1 −1 −1

3 4 1 1 1 1 1 0 0 0 0 0

4 9 0 1 1 1 1 1 1 1 1 1

to quantify such approachability, for every individual i we define the censoring Kullback–
Leibler (KL) divergence (an alternative to the relative error [36]) between the distributions
of i’s survival probability Si (τk |X,W) and survival status εi (τk) ∈ {0, 1}, as follows:

Di (τk,W) = εi (τk) ln
εi (τk)

Si (τk |X,W)
+ (1 − εi (τk)) ln

1 − εi (τk)

1 − Si (τk |X,W)
. (2)

The optimal weights make Si (τk |X,W) as close as possible to 1 if i remains failure-free
by τk , and to 0 otherwise, while outputs of 1 and 0 are definitely true and definitely false
predictions, respectively. Our learning criterion, then, is to minimize Di (τk,W) over time
snapshots ofK0

i andK
1
i at which survival statuses are known, for all Ntr training individuals.

3.4 Survival learning

3.4.1 Learning objective

It is worth mentioning the known fact that Sk descends from 1 to 0, as time goes by, from
the beginning to the end of life. Hence, the minimization should be constrained by this
monotonicity. The proven penaltymethod converts the constrained optimization problem into
a series of unconstrained optimization problems. Accordingly, we utilize the static penalty
[33] incurred for violating the inequality constraints andminimize the average error computed
by

E(W∗) = min
W

1

Ntr

Ntr∑

i=1

⎛

⎜
⎝

1
∣∣K0

i

⋃
K1
i

∣∣
∑

k∈K0
i ∪K1

i

Di (τk,W)

⎞

⎟
⎠

s. t. Si (τk |X,W) − Si (τk+1|X,W)> 0∀k = 1, 2 . . . , K − 1, i = 1, 2, . . . , Ntr.

The penalty method, which converts a given constrained minimization problem into a series
of unconstrained optimization problems, turns out to be an effective approach. The solution
of the unconstrained optimization problem converges to the solution of the original problem.
Accordingly, we benefit from the advantages of the exterior-point method (EPM) [48] and
establish the following objective function which is incurred for violating the constraints on
survival probabilities:

E(W∗) = min
W

E(W) + 1

Ntr(K − 1)

Ntr∑

i=1

K−1∑

k=1

(max {0, Si (τk |X,W) − Si (τk+1|X,W)})2
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3.4.2 Training

Wetrain theTSNNusing the forward-onlyLevenberg–Marquardt algorithmpresented in [46],
which inherits the speed advantage of the Gauss–Newton algorithm and the stability of the
steepest descent method. The Levenberg–Marquardt algorithm blends these two approaches
by updating the weights (whide and wout) ∈ R

(V+D) at the (m + 1)th iteration according to
the weights at the mth iteration, i.e., w(m+1) = w(m) − (J · J+ μI)−1Je, where I ∈ R

(V+D)

is the identity matrix and J ∈ R
(Ntr×K )×(V+D) stands for the Jacobian matrix that can be

calculated according to the method introduced byWilamowski and Yu [46]. Each element eik
of e ∈ R

Ntr×K is the error at τk with input xi . When the positive damping parameterμ is very
small (near zero), the Levenberg–Marquardt is replaced by the Gauss–Newton algorithm.
Conversely, when μ becomes very large, the steepest descent method is used to obtain the
updatew(m+1) = w(m) − 1

μ
∂E

∂w(m) . The Levenberg–Marquardt performs a training process for

the kth output at τk , as follows: first, we initialize E with the initial weights w(0) (randomly
generated). Then, the loop starts, by updating the weights and E . If the current E is increased
as a result of the update, the weights are reset to the previous values and μ is increased
by a factor of 10, after which the weights are updated again. If the current E is decreased,
the new weights are retained as the current ones and μ is decreased by a factor of 10. The
algorithm repeats this updating loop until E no longer changes. For training the RSNN, the
back-propagation through time (BPTT) algorithm [35] is used. In each training iteration, the
model updates its parameters according to the KL divergence. It attempts to reach the optimal
parameter using the mini-batch gradient descent until it achieves convergence, with the batch
size set to 32.

4 Experiments

4.1 Data and pre-processing

Four time-to-event datasets were drawn from the Prognostics Data Repository provided by
the PCoE at NASAAmes; the Surveillance, Epidemiology, and EndResults (SEER) statistics
database; and the Canadian Community Health Survey (CCHS) statistical surveys.

• In the Engine dataset, 388 engines’ cycles were considered unobserved, for a 27.4%
censoring rate. The objective was to predict the number of operational cycles remaining
until compressor and fan degradation.

• The Battery dataset comprises the first 20 cells from the PDR’s Randomized Battery
Usage dataset, each with 42 galvanostatic voltage curves. Failure was censored for 45.8%
of batteries, and 10 covariates were extracted from the time series of temperature and
current (mA) every 30s.

• For the Cancer dataset (drawn from the SEER Breast Cancer data), survival times were
computed by subtracting the date of diagnosis from the date of last contact (the study
cutoff).

• The Aging dataset contains data on healthy aging acquired directly between December
2008 and November 2009 from respondents in a survey, which focused on the health of
Canadians aged 45 and over, examining the various factors that impact healthy aging. A
total of 7611 valid interviews covering the population living in the ten provinces were
used.
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Table 3 Statistics of the four time-to-event datasets

Dataset Size Dimensionality Censoring (%) Missing value (%) Failure event of interest

Engine 1416 21 27.4 11.3 Compressor and fan degradation

Battery 842 10 45.8 5.9 30% Fade in rated battery capacity

Cancer 3390 18 19.3 15.7 Breast cancer caused death

Aging 7611 35 34.5 26.2 Retirement and disability

Table 3 summarizes the statistics, including data size (number of individuals or participants),
dimensionality (number of covariates), censoring rate, missing-value percentage, and failure
event of interest. Categorical covariates were transformed into numerical values by means of
the probabilistic frequency estimator presented in [8]. Afterward, missing values were filled
in via a linear regression provided by [23]. In order to reduce data redundancy and improve
data integrity, all values were normalized.

4.2 Competitors

We compared the proposed survival networks with several state-of-the-art methods.

• Cox [10] extends the Coxmodel to time-dependent covariates and has a survival function
S(t) = Sbase exp(βxt ) with the baseline probability Sbase when xt = (0, 0, . . . , 0) and
the regression coefficients β describing how the survival probability responds to the
covariates.

• CoxAvg [51] uses the average of repeated measures X̄ for every covariate, that is, S(t) =
Sbase exp(βX̄t ).

• CoxNN [13] replaces the linear exponent of the Cox hazard by a nonlinear artificial neural
networks output. The survival probability becomes S(t) = Sbase exp(φ(xt )), where the
φ(xt ) is the outcome of an artificial neural network.

• RNN-SURV [16] computes survival probability in a given interval of time by a recurrent
neural network (with LSTM cells). We set this network to have 2 feed-forward layers
and 2 recurrent layers and used the cross-entropy function as the loss function.

• AFT [45] generates survival probability by S(t) = exp(−(t/ exp(βxt ))
1
η ), where

we assume the survival time T has a Weibull distribution, that is, we have T ∼
W (exp(βxt ), 1

η
).

• EN-BJ [6] extends the least squares estimator to the semi-parametric linear regression
model in which the error distribution is completely unspecified.

• MTLR [31] models survival probabilities for individuals with event and for censored
individuals. The logistic regression coefficients are time-varying.

• RSF [19] estimates conditional cumulative failure hazard by aggregating tree-based
Nelson–Aalen estimators.

We also studied SNN which does not estimate the latent risk but instead predicts the output
probabilities using Eq. 1 with the time-dependent input xt . To investigate the significance of
accounting for censoring in neural networks, we use a Kaplan–Meier (KM) estimator [21]
to fill in the survival probabilities for censored individuals in SNN, TSNN, and RSNN. The
KM estimator for the survival probability at the specified survival time is a product of the
same estimate up to the previous time and the observed survival rate for the specified time,
given as
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S(t) =
∏

∀τk<t

(
1 − |{i |Ti = τk}|

|{i |Ti ≥ τk}|
)

.

For our real-time survival networks, we set the hidden layer to D = 4 neurons. An output
layer with K = 20 was used in analyses of the Engine and Battery datasets, and K = 12
for the Cancer and Aging datasets. The decay coefficient ξ = 1.5 was used in TSNN and
KM-TSNN.

4.3 Evaluationmetrics

Performance on the Nte test individuals Xte = (x1, x2, . . . , xNte) was evaluated in terms of
three independent metrics: the failure-event AUC (FAUC), the concordance index (C-index),
and the censoring Brier score (CBS), redefined as follows (1 is the indicator function)

• FAUC provides a probability measure of classification ability at a pre-specified time
snapshot (e.g., at τK in our case). It quantifies the model’s ability to address the issue Is
i likely to remain event-free by time t?.

FAUC =
∑

i :εi (τK )=0
∑

j :ε j (τK )=1 1
{
Si (τK |Xte,W∗) < S j (τK |Xte,W∗)

}

∣∣{i : εi (τK ) = 0}∣∣ × ∣∣{ j : ε j (τK ) = 1}∣∣ .

• C-index serves as a generalization of the FAUC, giving an estimate of how accurately
the model can answer the questionWhich of i and j is more likely to remain event-free?.

C-index =

∑

i :εi (τK )=0

∑

j :Ti<Tj

1
{
Si

(
τmin{K0

i }|Xte,W∗
)

< S j

(
τmin{K0

i }|Xte,W∗
)}

∣∣{i : εi (τK ) = 0}∣∣ × ∣∣{ j : Ti < Tj }
∣∣ .

• CBSmeasures an ensemble prediction error across the test data, i.e., the power of amodel
to address the question How accurate is the prediction that i will remain event-free?.

CBS = 1

Nte

∑Nte

i=1

(
1 − εi (τK ) − Si

(
τK |Xte,W∗) )2

.

In some scenarios, one might be more concerned about the difference between the pre-
dicted survival time Ti and the true survival time Ti . For example, as the cost of hospital stays
and medication scales linearly with the survival time, the error in the survival time could
be relevant, defined as Æ(Ti , Ti ) = Ti − Ti . Given any of the survival error estimates, we
can make a point prediction of survival time for individual i using the survival probability S
estimated by the models: e.g., for TSNN, we have

T ∗
i = argmin

Ti∈{τ1,τ2,...,τK }

K∑

k=1

σ

(
τK − τ1

2
+ Æ(Ti , τk)

)
Si

(
τk |Xte,W∗)

4.4 Results and discussion

From the tenfold cross-validation results on the test data, shown in Table 4, it is evident
that TSNN outperforms all the other models except MTLR on the Cancer dataset when
FAUC is measured. Either RSNN or SNN performs second-best, with the sole exception
of FAUC on the Cancer dataset. TSNN and RSNN achieve average C-index improvements
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Table 4 Comparison of the tenfold cross-validation FAUC, C-index, and CBS results on the test data, in the
form of mean ± standard deviation

FAUC C-index CBS FAUC C-index CBS

Engine Battery

TSNN .744± .017 .753± .028 .163± .018 .810± .022 .761± .014 .212± .029

KM-TSNN .731± .024 .678± .040 .248± .011 .695± .032 .733± .015 .261± .034

RSNN .741± .013 .726± .018 .188± .014 .775± .020 .748± .023 .226± .015

KM-RSNN .696± .017 .682± .011 .196± .029 .703± .026 .691± .027 .243± .028

SNN .719± .038 .724± .026 .185± .023 .769± .015 .710± .029 .229± .038

KM-SNN .676± .022 .639± .029 .283± .016 .674± .021 .656± .019 .255± .018

CoxNN .686± .036 .613± .028 .404± .025 .664± .049 .718± .013 .332± .026

RNN-SURV .623± .025 .529± .014 .336± .030 .582± .013 .475± .041 .373± .027

Cox .694± .031 .587± .029 .276± .018 .651± .019 .629± .022 .301± .048

CoxAvg .707± .025 .633± .026 .284± .021 .624± .017 .535± .023 .287± .032

AFT .682± .014 .636± .053 .241± .042 .625± .030 .674± .020 .274± .022

EN-BJ .736± .029 .688± .015 .339± .012 .718± .024 .654± .034 .237± .013

MTLR .708± .051 .683± .023 .215± .043 .726± .020 .670± .015 .364± .019

RSF .695± .019 .675± .031 .268± .031 .578± .029 .520± .041 .286± .031

Cancer Aging

TSNN .794± .013 .782± .029 .186± .017 .787± .028 .765± .031 .151± .019

KM-TSNN .694± .041 .681± .024 .226± .047 .730± .016 .736± .022 .166± .027

RSNN .771± .024 .733± .035 .239± .022 .744± .023 .749± .028 .253± .021

KM-RSNN .682± .015 .677± .027 .273± .025 .711± .012 .647± .033 .331± .028

SNN .785± .034 .756± .017 .217± .008 .706± .020 .722± .018 .221± .015

KM-SNN .663± .032 .639± .018 .322± .014 .707± .010 .645± .029 .224± .011

CoxNN .733± .038 .674± .019 .235± .034 .721± .022 .717± .016 .301± .032

RNN-SURV .572± .018 .540± .023 .301± .014 .568± .039 .521± .028 .274± .021

Cox .699± .037 .620± .017 .263± .033 .572± .031 .553± .024 .236± .019

CoxAvg .625± .027 .593± .022 .277± .031 .635± .021 .605± .017 .352± .023

AFT .689± .034 .564± .028 .263± .036 .707± .037 .660± .024 .305± .026

EN-BJ .767± .023 .745± .033 .279± .014 .742± .044 .720± .022 .235± .018

MTLR .818± .022 .739± .025 .243± .017 .716± .017 .734± .026 .324± .030

RSF .732± .017 .673± .037 .272± .053 .722± .035 .684± .025 .336± .027

The best results are in bold, and the second-best performances are underlined

of 11% and 9%, respectively, over the prior state of the art. The superior performance of
the survival networks (TSNN, RSNN, and SNN) relative to the KM-based alternatives (KM-
TSNN, KM-RSNN, andKM-SNN) reveals that our survival learning approach tominimizing
the censoring KL divergence we defined in Eq. 2 can effectively cope with censored data,
compared with the conventional survival statistical estimator. Comparing TSNN with SNN
and KM-TSNN with KM-SNN, we find that TSNN and KM-TSNN perform much better.
This demonstrates the significance and effectiveness of estimating the latent failure risk. It
can be seen from the high FAUC and C-index values achieved by RSNN that LSTM can
be an effective approach for dealing with time-dependent covariates in longitudinal data,
although RSNN may not generate a CBS as low as that of TSNN or SNN. CoxNN yields
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Fig. 5 Comparison on average absolute survival error |Æ| over all individuals having a failure event

even lower accuracies in comparisonwithCox andCoxAvg, demonstrating that use of the risk
nonlinearity property alone does not enhance the Cox model [22]. Although CoxAvg takes
the historical data into account, it does not perform better than the Coxmodel, mainly because
using a single mean value as the representative of all the repeated measures cannot recognize
the underlying relations between time-dependent covariates and the survival probability and
therefore would not enhance the model’s predictive ability. As a recurrent neural network,
RNN-SURV achieves much lower prediction accuracies in terms of FAUC and C-index in
comparison with RSNN. Note that the real-time survival networks take into account potential
relationships between the classifications and therefore achieve a significant performance gain
over the regression method MTLR, which performs each prediction task independently [31].
Note also the extremely low CBS achieved by TSNN on the four datasets, indicating high
accuracy in predicting the absolute survival probability and high confidence in forecasting
failure.

An important indicator of the effectiveness of the censoring-KL-divergence-based sur-
vival learning approach is whether it enables our real-time survival networks to recommend
the right moment for preventive intervention in the form of maintenance or treatment. To
investigate this, we compare the average absolute survival error (|Æ|) of predicting the sur-
vival times for event individuals. As can be seen from Fig. 5, TSNN and RSNN achieve
a very low error less than τ , while the competing models output an over 2τ deviation in
predicting survival time. This in turn demonstrates that our survival learning approaches are
able to provide accurate prognostic information about the time of failure events, especially
in the long-term longitudinal aging study.

We compare the survival probability curves yielded by competing models by means of a
case study on the Engine dataset. All of the engines that failed at any time were divided into
6 groups according to their times to failure. In each sub-figure of Fig. 6, we plotted a survival
curve according to the average failure-free survival probability predicted by each model on
the corresponding group of engine failures. It can be seen from the respective gray areas that
either TSNN or RSNN (plotted by the dashed curve) yields a significantly lower average
probability over all data (i.e., all engine failures) in comparison with other models, mainly
because latent risk estimation can help in amending the relationship between latent risk and
failure-free survival probability. This means that, using our real-time survival networks, the
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Fig. 6 Change in predicted survival probability curve for engines. The 6 sub-figures are plotted for the engines
that failed, at 2-month intervals (see individual rectangles) from the 1st month to the 12th month. Each curve
in the sub-figures is the average predicted probability for a group of engines

Fig. 7 Change in TSNN performance with varying K

equipment crew could be issued a warning much earlier than in the other models, and offered
advice on maintenance intervention in time to stave off potential failure.

123



Survival neural networks for time-to-event prediction in… 3745

Fig. 8 Change in RSNN performance with varying K

To gain a deeper insight into the functionality of TSNN and RSNN, we set a varying K
value of 1, 2, 5, 10, 15, 20, 25, and 30 when they run on Engine (in the 300-cycle follow-up)
and Battery (in the 300,000s observational period), and of 1, 2, 3, 4, 6, 8, 12, and 24 when
they run on the Cancer and Aging datasets (in the 2-year study period), with the output time
interval becoming 24, 12, 8, 6, 4, 3, 2, and 1 month(s), respectively. (Please keep in mind
that K is a user-defined value and the time interval is not required to be equal.) The FAUC,
C-index, and CBS results shown in Fig. 7 change by less than 4%, 6% and 13% on Engine;
9%, 13%, and 14% on Battery; 12%, 11%, and 9% on Cancer; and 8%, 11%, and 9% on
Aging, respectively. In Fig. 8, we can see that RSNN’s FAUC, C-index, and CBS results
change by less than 7%, 6%, and 10% on Engine; 6%, 8%, and 8% on Battery; 9%, 10%,
and 9% on Cancer; and 7%, 7%, and 12% on Aging, respectively. This demonstrates that
users can count on TSNN and RSNN as reliable, as they will not fluctuate enormously with
change in the output layer of neural networks. Figure 9 shows the average results (for the four
datasets) yielded by TSNN with a varying decay ratio ξ , which might lead to an inaccurate
risk estimate and therefore a poor predictive ability when ξ becomes extremely large or small.
It can be seen clearly that TSNN achieves high FAUC and C-index results and maintains a
low CBS when the ratio takes a value in the range [1,2].

5 Conclusion

In this paper, we have provided two dynamic-data-driven survival neural network models
for time-to-event prediction in longitudinal studies. TSNN performs an additive latent failure
risk estimation andmultiple binary classifications for predicting survival probabilities. RSNN
employs a network of long short termmemory units to analyze time-dependent covariates and
generates the survival probabilities within multiple time intervals. The new survival learning
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Fig. 9 Change in TSNN performance (average on the four datasets) with varying decay ratio ξ

approach optimizes the neural networks byminimizing the censoringKL divergence between
the resulting probabilities and the actual survival process. In addition, the learning criterion
constrains the survival probability to decrease as time elapses. TheAUC,C-index,Brier score,
and survival error (based on survival time estimate) are redefined as the evaluation metrics.
Experimental results on four time-to-event datasets confirm that our models outperform
several state-of-the-art models and are therefore good candidates for developing a decision-
making assistance system to help with early prediction and preventive intervention in long-
term follow-up studies.
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