Proceedings of the 52nd Hawaii International Conference on System Sciences | 2019

The Hatchery: An Agile and Effective Curricular Innovation for
Transforming Undergraduate Education

Tim Andersen Amit Jain Noah Salzman Don Winiecki Carl Siebert
Boise State University ~ Boise State University ~ Boise State University = Boise State University ~ Boise State University
tandersen(@ ajain@ noahsalzman@ donwiniecki(@ carlsiebert@

boisestate.ediu boisestate.edu

Abstract

The Computer Science Professionals Hatchery
utilizes strong partnerships with industry and a
vertically integrated curriculum structure, embedding
principles of ethics and social justice and diversity, to
create a nurturing, software company environment for
students that also provides tools to allow them to take
on the challenges of real-life company environment.
The goal is to produce graduates who are well-
rounded, who have a shorter pathway to full
productivity after graduation, who can be leaders, and
who can operate as agents of positive change in the
companies where they work.

1. The CS Professionals Hatchery

The Computer Science Professionals (CSP)

Hatchery seeks to transform undergraduate education
in Computer Science by replicating the best elements
of a software company environment, layering in moral,
ethical, and social threads with entrepreneurship and
professional skills. The goal is to create a curriculum
and environment that produces graduates with the
experience, training, and skills necessary to swiftly
integrate into software company workflow and
influence culture, shortening the path from graduation
to being productive and beneficial. While this paper
focuses on Computer Science Education, we believe
that the Hatchery structure can be adapted to improve
student outcomes in any subject area.
Computer science curriculum often focuses on
technical aspects while relegating ethics to a single
course. Issues of inclusivity and teamwork aren’t
integrated into the curriculum so cultural problems in
the profession continue to be propagated. Industry
complains about a lack of responsiveness to rapidly
changing technologies, and a corresponding lack of
real-world relevance in the curriculum — i.e. students
may learn the theory but current technologies and
practice are not sufficiently integrated into the
curriculum. The CSP Hatchery is an attempt to address
all of these problems.

URL: https://hdl.handle.net/10125/60216
ISBN: 978-0-9981331-2-6
(CC BY-NC-ND 4.0)

boisestate.edu

HYCSS

boisestate.edu boisestate.edu

The CSP Hatchery utilizes a progressive academic
curriculum structure where students at all grade levels
work with each other. This structure focuses on three
curricular innovations: (1) Infusion of ETHICS AND
SOCIAL JUSTICE principles, starting at the first
course taken by Freshmen CS majors and continuing
throughout the curriculum. Our goal is to inseparably
infuse ethical/moral elements into the practice of
software engineering for our students, to empower our
students to be agents of revolutionary change in
reshaping the practice of computer science to be a
more just and inclusive profession. (2) Short, narrowly
focused, agile courses, which we call HATCHERY
UNITS, are threaded with regular course work and are
used to infuse foundational concepts and skills at key
points into the curriculum. Industry involvement in the
design and delivery of hatchery courses ensures that
they focus on the skills and capabilities most useful to
students in the work that they will actually perform in
an industry setting. (3) Vertically Integrated Teaching
and Learning (VITaL) curriculum. Instead of being in
siloes, students at all grade levels work with and learn
from each other on industry-sponsored projects,
fostering a strong sense of community amongst
students, faculty, and industry.

The CSP Hatchery project is currently in the third
year of its implementation, with two years remaining.
Since the start of the project in Fall 2016, five required
and three elective Hatchery courses have been
designed and offered. Infusion of ethics and morality
and vertical integration is also in the process of
implementation.

2. Related Work

Over time, there have been efforts to address matters of
ethics and social-justice in techno-scientific fields.
Historically, most of these have focused on the former
through the post-hoc analysis of engineering failures
from a mostly technical perspective ([30]). More
recently there has been considerable effort to develop
more nuanced, philosophically-oriented approaches, or
behavioral-psychology approaches to ethics in a
society all-but built around techno-science ([23], [30],
[31], [32], [33])), and even more focus on trying to

Page 7779

mailto:tandersen@boisestate.ediu
mailto:tandersen@boisestate.ediu
mailto:ajain@boisestate.edu
mailto:ajain@boisestate.edu
mailto:noahsalzman@boisestate.edu
mailto:noahsalzman@boisestate.edu
mailto:donwiniecki@boisestate.edu
mailto:donwiniecki@boisestate.edu

understand how to understand the problem itself in a
world increasingly dependent on full-time access to
technologies that themselves reflect ethical dilemmas
in our society ([34], [35], [36], [37], [38]).

However, it is worth noting that efforts to actually
introduce these issues into curricula appear to have
usually accepted the traditional approach of
concentrating all such content into one course. While
this may be easier to accommodate from an
administrative angle (and one cannot deny the
substantive pressure against innovation in the
structuring of components in a degree plan in the very
bureaucratic world of higher education), the result is
that while students may be required to complete an
‘ethics course’ as part of their education and degree
completion, they have not been provided with
examples or strategies for actually incorporating this
content into their day to day practice as computer
scientists and engineers. This is the case even if the
content of that course went beyond the usual issues of
professional and legal responsibility, copyright,
contract considerations, etc.

With this in mind, and following the idiom of
‘regular practice, distributed practice,” and the use of
the methodology of cognitive apprenticeships from
educational psychology ([24], [39], [40]), the CSP-
Hatchery aims to incorporate content related to ethics,
professional morality and social justice across the
undergraduate curriculum through both 1-credit
‘hatchery unit’ courses, and by partnering with
technical faculty to develop instructional modules that
fit professional ethics into otherwise ‘purely technical’
courses. In this process, students will have many
opportunities to puzzle with and apply structured
processes for addressing ethical and social justice
issues within the context of computer science practice
and product development, and thus graduate better
prepared for addressing these issues in their real-world
practice.

The idea of short, agile Hatchery courses is novel.
Several programs do offer 1-credit supplementary
courses but we are not aware of any program using
them in a foundational way like we are doing.

Vertical integration isn’t a new concept in
curriculum reform. See [25], [26], and [27] for
examples in computer science programs. However,
vertical integration of technical, social and ethical
issues is a novel application. Instead of being
concentrated in one or two courses, we are threading
these concepts through the curriculum using multiple
courses at various academic levels.

3. Hatchery Units

Hatchery Unit (HU) courses are envisioned as
light-weight (generally 1 credit hour or less), industry
inspired, focused courses addressing key skills and
core concepts, such as foundational values (like
teamwork, inclusivity, ethical frameworks), navigating
computer systems (expert navigation in a system,
systems administration, scripting to automate tasks,
etc.), security, version control, agile development, and
intro to databases, which are important for students to
know in order to be successful both in our program and
in their internships/jobs. In some cases, HUs help to
‘level the playing field’ by providing students without
extensive CS experience integrate more readily into the
undergraduate curriculum and become more
competitive for professional internships. HUs are
delivered over a short time-frame, such as 5 weeks or 7
weeks, enabling students to take multiple HUs back-to-
back in a single 15-week semester if they so desire.

HUs prime students with the core knowledge they
need in focused skill areas at specific, key points in the
curriculum. The focused content delivered in the HU is
then woven through the regular full-semester courses
in the curriculum from the point of the Hatchery Unit
onward, with subsequent courses incorporating and
continuing to exercise HU skill sets through additional
course content, activities, and assignments. Students in
HU courses work with and learn from faculty, industry
professionals, senior capstone teams, and from each
other. Industry professionals are brought in to assist
with HU content delivery as appropriate.

The requirements were gathered via a group of 17
industry representatives who responded to an inquiry
as to the Knowledge, Skills, and Abilities (KSA) their
company looks for when hiring. These KSA were
collected from the individuals (or groups within a
company) and collated into unique KSAs. The KSAs
were then grouped into 6 unique categories which
emerged as the KSAs were collected and analyzed -
these include (Technical, Professional, Collaboration &
Teams, Research & Development, Entrepreneurship,
and Business). The industry representatives were then
pulled together in a meeting in which they voted for
the two KSAs in each group that were most important
to them. The votes were tallied, reviewed, and used as
the basis for the creation of new 1-credit Hatchery Unit
courses, enhancements to existing CS course content,
and threading the content into additional CS courses.

3.1. HU Integration into Current Curriculum

Five required HU courses have been integrated into
the current Boise State Computer Science curriculum
along with several elective HUs as well. Figure 1
shows how these required HUs (orange shaded
rectangles) integrate with regular course work. The

Page 7780

course catalog descriptions for these courses can be
found at the CS-HU website [29].

The Foundational Values HU (see Section 3.1.1 for
details) and subsequent team activities in follow-on
courses sensitize students and give them the social and
professional-skills they need to be more effective and
inclusive members of software development teams.
The Agile Development, Navigating Computer
Systems, Intro to Database System Usage, and Version
Control HUs add valuable technical knowledge and
skills that students previously did not have until later in
the curriculum (or often as a side topic in other
courses) and that help students hit the ground running
in their internships with our industry partners.

Typically, software/tech companies have required
students to take data structures (CS 321) before they
will consider hiring them for internships.

cs121

CS-HU 130
Computer Science |

Foundational Values

CS-HU 153
Navigating Computer
Gy

CS-HU 250
Intro to Version Control

Y Y

CS 230 €S 221
Ethical Issues in Computer Science |l
Computing —

CS-HU 271
Agile Development

CS-HU 310
Intro to Database
System Usage

\
N 4
N /

Ay ’ |
4 VY E A A 4

CS 321 CS 253
Data Structures Intro to Systems

Programming

Figure 1. HU curriculum integration.

With the addition of the five HU courses, students
who have taken the data structures course now have
several additional professional and technical skills that
make them much more capable and able to integrate
into company projects and workflow as interns. The
HU structure makes it possible to introduce these
important concepts into the curriculum with minimal
overhead and maximum benefit for the students.

Table 1 gives the number of students who have
taken each of these required courses so far.

Table 1. HU student enrollments.

HU Course Start #Students
Foundational Values Fa’17 232
Agile Development Fa’17 52

Navigating Computer Systems Sp’18 182
Intro to Database System Usage Sp’18 42
Version Control Su’18 15

We have also added several elective 1 credit HU
courses that allow students to explore other relevant
topics. These elective HU courses, shown in Figure 2,
include courses focused on Human Computer
Interaction; Software Testing; Secure Programming;
and Technical Interviews, Jobs and Careers.

cs121
Computer Science |

CS-HU 1563
Navigating Computer
Systems

CS-HU 250
Intra to Version Control
1 T

CS-HU 130
Foundational Values

csHu2ea |
A Brief Intro to Human
Computer Interactions |

CS-HU 274]
Software Testing

CS-HU 375
Secure Programming

€S 230 1
Ethical Issues in Computer Science ||

Computing /

CS-HU 271
Agile Development
L

€S-HU 310
Intro to Database:
System Usage |

- L4

\
/
A /’
'R N .
cs 321 cs 253]
Data Structures Intra to Systems
. PFrogramming I

Legend
1) —> FPrereg ——-p Coreq
CS-HU 390 r 2]
Technical Interviews,
Jobs, and Careers

Required

Core CS HUs

[cshuss |
Current Topics in CS

Figure 2. Selected HU electives

Elective
Hus

CS-HU 390 Technical Interviews, Jobs and
Careers provides an example of how hatchery units
can help students level the playing field and increase
their readiness for computing careers. This course
teaches students the technical interview process to start
with but then leads them to investigate what their first
job and then their career can be like. Fifteen industry
professionals participated in the first offering of the
course, helping with invited lectures, mock interviews
and panel discussions. A significant part of the course
is to encourage and support underrepresented students
by demystifying the interview process.

3.2. Ethics and Social Justice

One need look no further than the headlines of
major newspapers and online reporting to find breaches
of social justice that adversely affect underrepresented
groups in CS professions and in the commercial use of
CS produets ([1], [2], [3], [4], [15], [16]). Academic
research has long focused on issues of bias in society.
With new focus on STEM industries and even
academic practice, we now know more clearly than
ever how widespread and deeply rooted are these

Page 7781

biases ([7], [8], [9], [10], [11], [12], [13], [14], [20].
We can no longer assume that computer science is
simply meritocratic and that those who do not succeed
are somehow inherently incapable. Rather we have to
face the fact that embedded bias prevents inclusion and
diversity in the field, limiting the available talent pool.

It is with this backdrop that we saw it necessary to
institute a new beginning course for computer science
students. The first course in our curriculum is CS-HU
130 Foundational Values. CS-HU 130 takes a path
different from most courses in ‘computer science and
engineering ethics’ that review well known disasters of
poor design or poor planning, and ask students to apply
formal ethical theories to an academic (i.e., abstracted
and detached) analysis of their conditions. CS-HU 130
is designed as a problem-based learning experience in
which students (a) review case studies in which bias is
reflected in the context of actual computer-science
related work ([16], [3], [5]), and in the design and
application of computer-science products that reinforce
that bias and loss of social justice ([1], [2]), and then
(b) in teams, work to apply a problem-analysis and
problem-solving rubric based on Rawls’ Theory of
Justice ([17]) and principles of organizational
performance improvement to draft proposed solutions
that can be enacted both within computer science and
more broadly in organizations and in society itself.

Additionally, these problem-based learning teams
use a research- and practice-based rubric for scoring
their teammates’ contributions ([6], [21]), to assess
teammates’ contributions to the team product, and their
own motivation to contribute to the team’s interactions.
The curriculum of CS-HU 130 is designed to guide
students to assess what happens ‘out there’ in
problematic case studies, what is happening in their
own problem-based learning teams, and if problems
are identified to propose actionable solutions.

Some students are excited by this curriculum,
providing feedback that it has altered their
perspectives, and in some cases even increased their
interest in computer science as a field in which they
can contribute lasting positive change. One student
said, “...my parents were surprised when I talked about
[bias toward underrepresented groups in CS] when I
went home for Thanksgiving. My Dad suggested that I
should talk to my high-school CS teacher and ask if he
would be interested in learning more about these
things.” Another student who was debating whether he
should major in computer science or philosophy and
chose CS because of future job prospects, said, “...I'm
really glad I chose CS, because now I know I can do
both CS and ethics!” A third student described how
one of the topics in CS-HU 130 convinced her she
should focus on artificial intelligence and machine
learning: “...when I saw that software biased against

minorities in things like facial recognition and voice
recognition, it convinced me that I had to focus on that.
I am mixed race and speak English as a second
language.” A female student from one section of the
course asked for extra readings and research articles on
the topic of the equality of women and men in math
and science knowledge and skill. She said, “...when
you told us about research that said women were as
good as men in math, it made me feel, like, “Yeah!” —
now I know that I’m not weird just because I like math
and I’m good at it.”

Additionally, over the eight sections of CS-HU 130
offered in the 2017-18 academic year, student teams
generally improved the depth and breadth of their
solutions to problem-based learning cases through the
five-week course, showing an improvement in
curriculum-related knowledge and skill. As reflected in
the quotes included above, in interviews with students
following CS-HU 130 they sometimes reference case
examples used in that class before describing episodes
from personal experience in which circumstances may
expose bias against others. This suggests the CS-HU
130 curriculum serves as the basis for a new
understanding of factors related to inclusion, diversity
and social justice, especially how it relates to
professional computer science contexts and how they
are already realizing new possibilities and new
potentials for themselves. Regular interviews with
these students starting from CS-HU 130 though their
subsequent years in the CS curriculum aims to track
such things in detail, to identify places where (or if)
students are applying what they have learned in in CS-
HU 130 in other courses or other areas of their lives.

We acknowledge that one course, taken in the first
semester of a student’s career is only a small step, and
that is why the Hatchery concept requires follow-on
courses to incorporate learning experiences that focus
on similar issues specific to the technical focus of those
courses. For example, the CS-HU 153 (Navigating
Computer Systems) course has a module where the
students have to apply foundational concepts to
challenging social and ethical issues related to systems.
They are provided with two scenarios involving ethical
dilemmas concerning systems that were drawn from
actual industry events. Their assignment is to identify
the stakeholders, their interests, concerns and risks, and
then apply one of the five ethical theories (Utility,
Rights, Justice, Common Good, and Virtue, See [22]
for more information on these theories) to analyze the
situation.

This is one out of the six total modules in a
technical course but it ties technical concepts with the
social and ethical dilemmas that they can lead to.
These concepts are also being integrated into other HU
courses and core CS courses. In this way, the Hatchery

Page 7782

Unit concept aims to reinforce issues and practices
countering bias and breeches in social justice
throughout the computer science curriculum.

Additionally, other faculty have begun to express
interest in adapting their curricula to incorporate these
topics with the assistance of faculty from CS-HU
courses. These include instructors for the Senior
Capstone course, who will be incorporating some of
the instructional content and evaluation tools
introduced in CS-HU 130 in order to put emphasis on
professional skills within project teams, and instructors
in data science and machine learning courses are now
including case studies of unintended bias in the
products of these technologies. We are investigating
ways of allowing students in CS-HU 130 to participate
as ‘consultants’ to project teams in other courses.

These outgrowths serve to further embed Hatchery
concepts across the curriculum, deepen the
implementation of VITaL across courses, and expose
another avenue through which to realize the overall
goals of this project.

3.3. Advantages of Hatchery Units for Faculty
Development

HU courses are intentionally lean, enabling these
courses to be quickly designed and incorporated into
the curriculum. They are intended to foster a much
more agile and adaptable curriculum that is more
aligned with industry needs and that can keep pace
with the rapidly changing software engineering
landscape. While not required, for HU courses it is
encouraged that at least some of the course content be
online (and for some HUs almost all of the course
content is delivered online). The idea is to identify core
knowledge areas within the curriculum and use HU
style courses that are easy to pick up and teach in order
to deliver that core knowledge to students. This makes
it easier for both faculty and industry professionals to
create these courses and deliver them.

Offering HUs partially or entirely online also
increases flexibility for offering courses — allowing
more courses to be offered than would otherwise be
allowed by physical classroom space. This also
benefits transfer students by providing added flexibility
for them to complete courses they could not have
gotten in previous institutions.

HUs have other advantages from a faculty
development perspective. For required HUs we
generally teach multiple sections of the HU in a single
15-week semester. These sections can be taught back-
to-back in two or three 5-week sessions, or
concurrently in the same 5-week session.

Research-active faculty are required to teach at
least 3 credit hours” worth of courses per semester, and

to fulfill this requirement they may choose to teach
either three 1 credit hour HUs, or one 3 credit hour
regular course. For new faculty, teaching the same HU
course back-to-back allows them to receive course
feedback and implement course improvements up to
two times in a single semester, a significant reduction
in the performance/feedback loop that approximates an
agile development process, and which should lead to
faster teaching performance improvement. Also,
teaching a HU course back-to-back three times in a
single semester is much easier than teaching a single 3
credit hour course due to the reduced course prep time,
which frees faculty time for their research and other
responsibilities. Additionally, faculty may choose to
teach all three sections of a HU concurrently, leaving
them completely free to do research during the
remaining 7-10 weeks of the semester.

We have also created other incentives to increase
HU participation. Faculty designing a new HU course
get extra summer salary or release time. To encourage
faculty to rotate through multiple HU courses, the
departmental workload policy counts two HU courses
the same as three HU courses when a faculty teaches a
new HU course.

3.4. Assessing the Impact of the CSP Hatchery

As we are still relatively early in the implementation of
the CSP Hatchery Project, we currently have limited
data establishing the effectiveness of this approach.
Moving forward, we will utilize several key
performance indicators (KPI) to assess the success and
impact of the CSP Hatchery approach. Primary among
these KPIs are the assignments that we have tied to
assessment of ABET outcomes, which we have
consistently collected as part of the accreditation
process. These include assessments in Data Structures
(CS 321) and Intro to Systems Programming (CS 253)
as well as other courses down the pipeline. Four of the
new HU courses are pre/co-requisites for existing
courses and we will be compare the historical data to
new data after students have gone through the HU
courses. In particular, we anticipate that the increased
focus on teamwork and project management infused
through the Hatchery Units will improve student
performance on assessments designed to measure these
outcomes.

We are also using student records and enrollment
data to measure the effects of changes. These include
number of HUs offered and number of students
enrolled (Figure 3), along with tracking retention rates
and other enrollment data with a particular focus on
women and underrepresented minorities.

Page 7783

2
Lh

600
20 500
400
300
200
100
0

o

Number of Courses
Offered
w o
A

Total Enrollment

—
-

—Courses Enrollment

Figure 3. HU Offerings and Enroliment.

Feedback from industry 1is another important
component as the new students interview and are
placed. We have already received positive feedback
from industry about students who are going through
the CSP Hatchery.

Other more novel approaches to assessing the impact
of the CSP Hatchery project will include interviews
and focus groups with students and faculty, and
utilizing sociograms and social network analysis to
explore how students and faculty build connections and
community within the undergraduate CS program at
Boise State University.

4. Importance of Industry Involvement

Developing and maintaining strong industry
partnerships is critically important for the development
of the software company environment that is
envisioned for the CSP Hatchery. Without strong
industry relationships, it is difficult to know about the
issues that industry faces, and the current trends in
industry in terms of tool usage and desired skill sets,
and it is difficult to get the real-world feedback on
graduate performance that is a necessity for
maintaining a relevant and targeted curriculum.

Good industry relationships are also required to be
aware of the best practices amongst industry partners,
and in order to design customized methods for
identifying and addressing moral and ethical issues
relative to professionals in the workplace in computer
science.

Having a mutually beneficial relationship with
industry partners requires academic departments to
create, foster, and disseminate a value-proposition that
is enticing to them. This value proposition can
certainly appeal to altruistic desires to be a “good
citizen” and give back by providing benefit to the
program and students, but could also appeal to industry
needs, such as having a talent pool that is well-trained

and fits industry’s desired skills and abilities, as well as
giving those industry partners who are actively
benefiting and participating in program improvement
an inside track to this talent pool. The key is to
understand what motivates each industry partner and
speak to that motivation if feasible. In cultivating these
relationships, it is extremely important that industry
feels that their feedback and concerns are being heard
and actively addressed.

Well before we applied for the RED program, we
began cultivating industry relationships and feedback
through one-on-one contacts and relationships, and
through invited membership of high-level industry
representatives on our industry advisory board, which
meets twice a year. For several years, feedback from
our industry partners has been actively incorporated
into curriculum changes and design, and progress
reports have been duly reported to industry on a regular
basis.

In 2014 we also established a scholarship/internship
program, called Expand.CS, funded by industry
donations, which to date has generated over $534,000
in industry funded scholarships for 60 students who
have also participated in over 40 internships at
different companies. Industry partners who donate
money to the Expand.CS program meet with faculty to
assist in reviewing student application materials and
awarding scholarships, and are given an inside track to
hiring these students as interns. Through these and
other activities we have developed a reputation for
responsiveness to industry needs, and quality
graduates, which made it much easier to ask for and
receive their input and help on our NSF funded CSP
Hatchery project.

In conceptualizing the CSP Hatchery, we wanted to
ensure and ease industry participation in both the
design and the offering of curriculum elements, and
this was one of the factors considered, and advantages
of, the Hatchery structure. It is much easier for industry
partners to commit to helping in an accelerated
(shorter) course vs. assisting in a regular 3 credit hour
course for an entire semester. It is also easier and more
motivating for them to take on the task of assisting in
the design of a focused topic course that directly
matches a clear need for them. The HU course concept
lowers the bar for the participation of industry
professionals.

Upon receiving word that the grant would likely be
funded, we contacted industry partners and asked them
to brainstorm on the skills and abilities that are
important for success but that are typically lacking in
CS graduates. Each industry partner independently put
together a team to do this, and we collected and
summarized the results of this effort to reduce overlap.
We then met with the industry partners together to

Page 7784

discuss and prioritize their feedback. This was then
taken to the faculty, and over the course of six months
faculty worked on how to address the prioritized
industry feedback, and curriculum changes were
proposed and designed. Another meeting was called
with industry partners and the new courses and
curriculum design was presented and enthusiastically
approved.

A total of forty industry professionals ranging from
junior engineers to senior executives from twelve
different companies have participated in the CSP
Hatchery project so far. The companies range from
large multinational technology companies to smaller,
local software companies. It also includes non-
technology companies from other areas that have a
strong interest in software solutions to their problems.
Their ongoing participation in the project allows us to
incrementally refine and steer our efforts toward
providing a curriculum that meets the technical and
social needs of the industry.

5. Vertical Integration

The Vertically Integrated Teaching and Learning
(VITaL) curriculum is vertically integrated in two
ways:

1) Vertical threading of HU course concepts
through HU and regular courses. HU courses introduce
students to core knowledge areas and give students
preliminary exposure and experience in these areas.
The students are then required to exercise the
principles/skills that they have learned in the HU
course in follow-on courses. This requires a high level
of coordination between courses (and the faculty
teaching them) to ensure that students are given
multiple opportunities to learn and apply core
concepts.

2) Vertical integration of student teams on capstone
projects. The core skill formation activity in VITaL
HU curriculum design involves HU student teams
working with senior capstone teams on their capstone
projects. Specifically, the knowledge taught in HU
courses will be leveraged to create HU student teams
that work with the senior capstone teams on some
aspect of their capstone project related to the skill that
the HU is delivering. In effect, students in HU courses
act as a sort of subject-matter consultant to the senior
capstone teams.

At the same time, since capstone teams are formed
of senior level students who have already gone through
this process, they are prepared to perform as mentors
for the HU students they are working with, to help HU
students deepen their knowledge of the systems in
which particular skills are applied. In their

performance in the mentoring role, the core concepts
will be reinforced for these senior level students, and
they will form beneficial relationships with juniors,
sophomores, and freshman.

6. Building Community

Building community to create a more welcoming
environment for students, especially those historically
underrepresented in undergraduate computer science
programs, is another overarching goal of this project.
Grounded in Wenger’s ([19]) theory of Communities
of Practice, we are exploring changes to the curriculum
and structure of our program that will build community
among students, faculty, and industry partners. This
goal is embedded across multiple elements of the
Hatchery curriculum, including the focus on ethics and
social justice, the development of Hatchery Units, and
building the VITaL curriculum. As described in the
previous section on Ethics and Social Justice, computer
science and software development environments can
often be hostile to women and underrepresented
minority students, making it difficult for members of
these groups to develop a sense of community or
belonging in their computer science degree program.
By helping all students to become more aware of these
issues, we hope to reduce bias, which should in turn
help to build a more welcoming community for all
students.

The nature of the Hatchery Units also promotes
building community among faculty, students, and
industry. Faculty design and implement all Hatchery
Units as part of an instructional team, strengthening the
faculty community and creating opportunities for
faculty to learn from each other regarding their
teaching practices. VITaL curriculum design that
involves threading of HUs with other HUs and normal
courses also promotes faculty community as they have
to work more closely together. Many Hatchery Units
were developed in response to industry needs and
input, and often involve an industry partner as part of
the course development team. This creates
opportunities for further collaboration with industry
partners, and helps to integrate faculty and students in
the local software development community. Hatchery
Units also allow faculty members an efficient way to
develop a new course related to their research
programs, creating an opportunity for training and
recruiting students to work in their research groups,
which creates another entry point for building
community within the department.

Implementing the VITaL curriculum also
represents a novel way of building community in an
undergraduate computer science program. Most
students tend to take classes with the same group of

Page 7785

peers progressing through the curriculum at the same
time. While this does create a sense of community
within a given class year, it minimizes students’
opportunities to interact and build community across
grade levels. The VITaL curriculum transforms this
paradigm by having students across all grades working
together on shared design projects, allowing students to
work with and get to know peers at different points in
the curriculum. Through these interactions, students
will both build community across grade levels and
learn more about the experiences of students further
along in the curriculum, which may better prepare
them for their future classes and help students to persist
in their degree program. Overall, the Hatchery
structure is designed to create a more nurturing
environment for students, and building community is
an important and intentionally designed aspect of this
transformative approach to undergraduate education.

7. Industry Impacts

The industry partner involvement in the CSP
Hatchery project, explained earlier, shows a
comprehensive approach to engagement. Even though
the project is only starting year three of the five-year
commitment, evidence of positive benefits to the
software and information technology industry are
already recognized. As part of the Outside Evaluator’s
oversight of project activities and effects, the Outside
Evaluator interviewed eleven industry partners on their
beliefs and perceptions on the CSP Hatchery project,
the preparation of students for employment, and social
skills/diversity in the work environment as well as in
their organization. Interviews lasted between 30 to 45
minutes and followed a protocol that directed the
recorded discussions. An outside firm transcribed the
recordings to avoid any transcription bias.

An analysis of the interview data show that
industry partners view the CSP Hatchery project as a
commendable effort on the part of the Boise State CS
Department. For example, one partner stated “I think
the Hatchery approach is probably one of the biggest
strengths ... ‘we’ hope it stays,” Partners do recognize
that the project is early in the effort to graduate a more
well-rounded student, but proclaim that the project is
well on its way to achieving this goal. In addition, the
industry partners believe the CS Department does an
excellent job with encouraging and facilitating industry
engagement in curriculum activities and with providing
early access to students who will enter the workforce.
The Outside Evaluation will seek feedback from
industry partners two additional times in the coming
years to fully identify the impact of the CSP Hatchery
project through the eyes of the industry partners.

8. Challenges

Complexity of the curriculum changes requires
careful attention to details such as the timing of the
introduction of HU courses, making sure options exist
for students “caught in the middle of the
transformation,” scheduling of courses, and proper
communication to the students. For example, we had
originally planned on updating the requirement of new
Hatchery Unit prerequisites for the Data Structures
course (CS 321) for Spring’18 but we pushed it back to
Fall’18 to allow students caught in the middle one
more semester to complete the old version of the
course, extending the original one year notice to one
and half years, which was sufficient to resolve almost
all of the concerns.

Advising complexity needs to be addressed as well.
We worked closely with the college advisors so they
are aware of the changes and can advise students on
what they can take advantage of and how. For
example, many juniors and seniors don’t need HU
courses as they are on the older catalog, but we are
allowing them to take HU courses in place of one
upper-division elective. We have held a special
workshop for the advisors and we pay attention to the
“word on the street” that we get from them. We have
created a website especially for students (also used by
advisors and faculty) that acts as a reference.

VITal curriculum has serious logistics challenges.
How do we get freshmen and sophomores to work
together with juniors and senior in a meaningful way
without having scheduling nightmares? We are
reviewing several possible approaches to make this
feasible. These approaches will be shared at large so
others who want to implement a VITal curriculum can
benefit from our solutions.

Scheduling Hatchery Unit courses such that they
can be taken consecutively rather than concurrently is
important in keeping a balanced workload for the
students. However, scheduling them in first/second
five (or seven weeks) is also important as standard 3
credit courses tend to ramp up towards the end.

Finding instructors from industry has been
relatively easy due to the strong relationships and
connections that we have developed over time. We also
incentivize industry involvement by paying industry
partners for their part in both the development and
delivery of HU-courses, and we always pair the
industry partners with faculty coordinators so they
have proper support. Currently, grant funds are used to
supplement industry pay. So, when the grant is over a
challenge will be to find money in the department
budget to continue this model.

Another challenge is getting faculty buy in.
Initially, the grant is being used to provide summer

Page 7786

salary or release time to faculty that wrote proposals to
create HU courses. This has been successful in getting
the courses off the ground. The next challenge was
how to update the workload policy to ensure that the
HU courses count as appropriate amount of workload.
Faculty were very concerned about this issue, which
we resolved with an updated workload policy. Two 1-
credit HU courses count the same as one 3-credit
traditional course when a faculty teaches the HU
course for the first time. This creates an incentive for
faculty rotate through multiple HU courses. The
rotation through HUs also helps faculty develop a more
comprehensive understanding of the curriculum. Once
the workload policy was updated, that resolved most of
the concerns faculty had about the effect of the HU
courses on their workload.

9. Conclusions

In this paper, we have described the design and
initial implementation of the Hatchery: an agile and
novel curricular innovation that has the potential to
transform undergraduate curriculum not only in
computer science but other areas as well.

The starting premise of the Hatchery is to introduce
short accelerated courses and vertically integrated
opportunities to develop professional skills in students.
Close collaboration with motivated industry partners in
the design and delivery ensures the relevance of the
Hatchery. This also increases the motivation and
interest from the students.

By introducing students to social, moral, and
ethical foundational values from the start and threading
them through technical courses, we can create agents
of change that can go out into industry and create
lasting improvement in the culture of the companies
and beyond.

The Hatchery model can also benefit faculty
development due to the requirement for more threading
between courses. The scheduling structure has the
potential to help faculty more quickly improve their
teaching performance, while simultaneously giving
them more time to perform research.

The Hatchery curriculum is structured to enable
industry participation, and to enable adaptability to
rapidly changing industry needs. The focus on job
skills motivates students and naturally leads to better
student engagement and performance. Being
responsive to and producing a product that is more
aligned with industry needs also leads to more engaged
industry partners. The CSP Hatchery thus fosters a
mutually beneficial and self-reinforcing relationship
between industry, faculty, and students. We believe
that the general model of the CS Professionals

Hatchery represents a revolutionary approach to
undergraduate education with potential to be adopted at
other institutions and adapted to other disciplines.

10. Acknowledgements

We would like to acknowledge Ernie Covelli and
Dianxiang Xu for their help with this paper. This
material is based upon work supported by the National
Science Foundation under Grant 1623189.

10. References

[1] Angwin, J., Larson, J., Mattu, S., & Kirchner, L. (2016,
May 23). Machine Bias: There’s software used across
the country to predict future criminals. And it’s biased
against blacks. [ProPublica]. Retrieved May 24, 2016,
from https://www.propublica.org/article/machine-bias-
risk-assessments-in-criminal-sentencing

[2] Buolamwini, J. (2017). Gender Shades: Intersectional
Phenotypic and Demographic FEvaluation of Face
Datasets and Gender Classifiers (Master of Science).
Massachusetts Institute of Technology, Cambridge, MA.
Retrieved from
https://www.media.mit.edu/publications/full-gender-
shades-thesis-17/

[3] Fowler, S. (2017, February 19). Reflecting on one very,
very strange year at Uber. Retrieved February from
https://www.susanjfowler.com/blog/2017/2/19/reflectin
g-on-one-very-strange-year-at-uber

[4] Lohr, S. (2018, February 9). Facial Recognition is
Accurate, if You’re a White Guy. New York Times.
Retrieved from
https://www.nytimes.com/2018/02/09/technology/facial-
recognition-race-artificial-intelligence.html

[S] Mims, C. (2017, August 13). What the Google
Controversy Misses: The Business Case for Diversity.
Wall Street Journal.

[6] Strauss, V. (2017, December 20). The surprising thing
Google learned about its employees -- and what it
means for today’s students. The Washington Post.
Retrieved from
https://www.washingtonpost.com/news/answer-
sheet/wp/2017/12/20/the-surprising-thing-google-
learned-about-its-employees-and-what-it-means-for-
todays-students/

[71 Bazerman, M., & Tenbrunsel, A. (2012). Blind Spots:
Why we fail to do what’s right and what to do about it.
Princeton, NJ: Princeton University Press.

[8] Ceci, S., Williams, W., & Barnett, S. (2009). Women’s
Underrepresentation in Science: Sociocultural and
Biological Considerations. Psychological Bulletin,
135(2), 218-261. https://doi.org/10.1037/a0014412

[9] Ceyer, S., Chisholm, S., Friedman, J., Hewitt, J.,
Hodges, K., Hopkins, N., ..., Stubbe, J. (1999). 4 Study
on the Status of Women Faculty in Science at MIT
(Manuscript). Cambridge, MA: Massachusetts Institute
of Technology. Retrieved from
http://web.mit.edu/fnl/women/women.pdf

Page 7787

https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.media.mit.edu/publications/full-gender-shades-thesis-17/
https://www.media.mit.edu/publications/full-gender-shades-thesis-17/
https://www.susanjfowler.com/blog/2017/2/19/reflecting-on-one-very-strange-year-at-uber
https://www.susanjfowler.com/blog/2017/2/19/reflecting-on-one-very-strange-year-at-uber
https://www.susanjfowler.com/blog/2017/2/19/reflecting-on-one-very-strange-year-at-uber
https://www.susanjfowler.com/blog/2017/2/19/reflecting-on-one-very-strange-year-at-uber
https://www.susanjfowler.com/blog/2017/2/19/reflecting-on-one-very-strange-year-at-uber
https://www.susanjfowler.com/blog/2017/2/19/reflecting-on-one-very-strange-year-at-uber
https://www.susanjfowler.com/blog/2017/2/19/reflecting-on-one-very-strange-year-at-uber
https://www.susanjfowler.com/blog/2017/2/19/reflecting-on-one-very-strange-year-at-uber
https://www.susanjfowler.com/blog/2017/2/19/reflecting-on-one-very-strange-year-at-uber
https://www.nytimes.com/2018/02/09/technology/facial-recognition-race-artificial-intelligence.html
https://www.nytimes.com/2018/02/09/technology/facial-recognition-race-artificial-intelligence.html
https://www.nytimes.com/2018/02/09/technology/facial-recognition-race-artificial-intelligence.html
https://www.nytimes.com/2018/02/09/technology/facial-recognition-race-artificial-intelligence.html
https://www.washingtonpost.com/news/answer-sheet/wp/2017/12/20/the-surprising-thing-google-learned-about-its-employees-and-what-it-means-for-todays-students/
https://www.washingtonpost.com/news/answer-sheet/wp/2017/12/20/the-surprising-thing-google-learned-about-its-employees-and-what-it-means-for-todays-students/
https://www.washingtonpost.com/news/answer-sheet/wp/2017/12/20/the-surprising-thing-google-learned-about-its-employees-and-what-it-means-for-todays-students/
https://www.washingtonpost.com/news/answer-sheet/wp/2017/12/20/the-surprising-thing-google-learned-about-its-employees-and-what-it-means-for-todays-students/
https://doi.org/10.1037/a0014412
http://web.mit.edu/fnl/women/women.pdf

[10] Crowston, K., & Howison, J. (2005). The Social
Structure of Free and Open Source Software
Development. First Monday, 10(2). Retrieved from
http://www.uic.edu/htbin/cgiwrap/bin/ojs/index.php/fm/
article/view/1207/1127

[11] Hill, C., Corbett, C., & St. Rose, A. (2010). Why So
Few? Women in Science, Technology, Engineering, and
Mathematics. Washington, D. C.: American Association
of University Women (AAUW). Retrieved from
http://www.aauw.org/files/2013/02/Why-So-Few-
Women-in-Science-Technology-Engineering-and-
Mathematics.pdf

[12] Natanson, H. (2017, October 20). "A Sort of Everyday
Struggle’. The Harvard Crimson. Retrieved from
https://www.thecrimson.com/article/2017/10/20/everyda
y-struggle-women-math/

[13] Rattan, A., Steele, J., & Ambady, N. (2017). Identical
applicant but different outcomes: The impact of gender
versus race salience in hiring. Group Processes &
Intergroup Relations, OnlineFirst.
https://doi.org/10.1177/1368430217722035

[14] Tonso, K. (2007). On the Outskirts of Engineering:
Learning Identity, Gender, and Power via Engineering
Practice. The Netherlands: Sense Publishers.

[15] Angwin, J., Larson, J., Mattu, S., & Kirchner, L. (2016,
May 23). Machine Bias: There’s software used across
the country to predict future criminals. And it’s biased
against blacks. [ProPublica]. Retrieved May 24, 2016,
from https://www.propublica.org/article/machine-bias-
risk-assessments-in-criminal-sentencing

[16] Damore, J. (2017, August 4). Google’s Ideological Echo
Chamber: How bias clouds our thinking about diversity
and inclusion. Retrieved from
https://assets.documentcloud.org/documents/3914586/G
oogles-Ideological-Echo-Chamber.pdf

[17] Rawls, J. (1999). A Theory of Justice (Revised edition).
Belknap Press of Harvard University Press.

[18] Gilbert, T. (2007). Human Competence: Engineering
Worthy Performance. Washington, D.C. Pfeiffer.

[19] Wenger, E. (1998). Communities of practice: learning,
meaning, and identity. Cambridge, UK.; New York,
N.Y: Cambridge University Press.

[20] Hyde, J., Lindberg, S., Linn, M., & Williams, C. (2008).
Gender Similarities Characterize Math Performance.
Science, 321(5888), 494-495.
https://doi.org/10.1126/science.1160364

[21] Frenkel, S., Korczynski, M., Shire, K., & Tam, M.
(1999). On the Front Line: Organization of Work in the
Information Economy. Cornell University Press.

[22] Vallor, S. (2016). Technology and the Virtues: A
Philosophical Guide to a Future Worth Wanting.
Cambridge: Oxford University Press.

[23] Adams, C., & van Manen, M. (2017). Teaching
Phenomenological Research and Writing. Qualitative
Health Research, 27(6), 780-791.
https://doi.org/10.1177/1049732317698960

[24] Bergamin, J. (2017). Being-in-the-flow: expert coping
as beyond both thought and automaticity.
Phenomenology and Cognitive Science, 16, 403—424.
https://doi.org/10.1007/s11097-016-9463-1

[25] Abler R., Coyle E., DeMillo R., Hunter M., Ivey E.
(2012) Team-Based Software/System Development in
the Vertically-Integrated Projects (VIP) Program. In:
Thaung K. (eds) Advanced Information Technology in
Education. Advances in Intelligent and Soft Computing,
vol 126. Springer, Berlin, Heidelberg.

[26] R. D. Parslow, Vertical integration in group learning,
Proc. of the Eleventh SIGCSE Technical Symposium on
Computer Science Education (SIGCSE’80), page 130

[27] M. Baxter, B. Byun, E.J. Coyle, T. Dang, T. Dwyer, L.
Kim, C.-H. Lee, R. Llewallyn, and N. Sephus, “On
Project-Based Learning through the Vertically
Integrated Projects Program”, Proceedings of the 41st
Annual ASEE/IEEE Frontiers in Education Conference,
Rapid City, SD, Oct. 12-15, 2011.

[28] CS Hatchery Unit website (2018). Retrieved from
http://coen.boisestate.edu/cs/cs-hu/#HUDescription

[29] Jasanoft, S. (2016). The Ethics of Invention: Technology
and the Human Future. W. W. Norton & Company.

[30] Bielby, J. (2015). Comparative Philosophies in
Intercultural Information Ethics. Confluence: Journal of
World Philosophies, 5,233-253.

[31] Brewis, D. (2017). Social Justice ‘Lite’? Using Emotion
for Moral Reasoning in Diversity Practice. Gender,
Work & Organization, 24(5), 519-532.
https://doi.org/doi:10.1111/gwao.12171

[32] Etzioni, A., & Etzioni, O. (2017). Incorporating Ethics
into Artificial Intelligence. The Journal of Ethics.
https://doi.org/10.1007/s10892-017-9252-2

[33] Gintis, H. (2011). Behavioral Ethics. In E. Slingerland
& E. Collard (Eds.), Creating Consilience: Integrating
the Sciences and the Humanities. Oxford University
Press.

[34] Floridi, L. (2013). Distributed Morality in an
Information Society. Science and Engineering Ethics,
19, 727-743. https://doi.org/10.1007/s11948-012-9413-
4

[35] Haraway, D. (1993). Situated Knowledges: The Science
Question in Feminism and the Privilege of Partial
Perspective. In E. Keller & H. Longino (Eds.),
Feminism and Science. Oxford University Press.

[36] Heersmink, R. (2017). Distributed Cognition and
Distributed Morality: Agency, Artifacts and Systems.
Science and Engineering Ethics, 23, 431-448.
https://doi.org/10.1007/s11948-016-9802-1

[37] Henslee, A., Murray, S., Olbricht, G., Ludlow, D., Hays,
M., & Nelson, H. (2017). Assessing Freshman
Engineering Students’ Understanding of Ethical
Behavior. Science and Engineering Ethics, 23, 287-304.
https://doi.org/10.1007/s11948-016-9749-2

[38] Pennock, R., & O’Rourke, M. (2017). Developing a
Scientific Virtue-Based Approach to Science Ethics
Teaching. Science and Engineering Ethics, 23, 243-262.
https://doi.org/10.1007/s11948-016-9757-2

[39] Adams, C., & van Manen, M. (2017). Teaching
Phenomenological Research and Writing. Qualitative
Health Research, 27(6), 780-791.
https://doi.org/10.1177/1049732317698960

[40] Schon, D. (1987). Educating the Reflective Practitioner.
San Francisco: Jossey-Bass.

Page 7788

http://www.uic.edu/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/1207/1127
https://doi.org/10.1177/1368430217722035
https://doi.org/10.1177/1368430217722035
https://doi.org/10.1177/1368430217722035
https://assets.documentcloud.org/documents/3914586/Googles-Ideological-Echo-Chamber.pdf
https://assets.documentcloud.org/documents/3914586/Googles-Ideological-Echo-Chamber.pdf
https://doi.org/10.1126/science.1160364
https://doi.org/10.1177/1049732317698960
https://doi.org/10.1007/s11097-016-9463-1
http://coen.boisestate.edu/cs/cs-hu/#HUDescription

