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Abstract

We introduce a new logarithmic epiperimetric inequality for the 2m-Weiss’ en-
ergy in any dimension and we recover with a simple direct approach the usual
epiperimetric inequality for the 3/2-Weiss’ energy. In particular, even in the latter
case, at difference from the classical statements, we do not assume any a-priori
closeness to a special class of homogeneous function. In dimension 2, we also
prove for the first time the classical epiperimetric inequality for the (2m —1/2)-
Weiss’ energy, thus covering all the admissible energies.

As a first application, we classify the global A-homogeneous minimizers of
the thin obstacle problem, with A € [3/2,2+c]UU,,en(2m —c;,, 2m+c}fy), show-
ing as a consequence that the frequencies 3/2 and 2m are isolated and thus im-
proving on the previously known results. Moreover, we give an example of a
new family of (2m — !/2)-homogeneous minimizers in dimension higher than 2.

Secondly, we give a short and self-contained proof of the regularity of the free
boundary of the thin obstacle problem, previously obtained by Athanasopoulos-
Caffarelli-Salsa [2] for regular points and Garofalo-Petrosyan [11] for singular
points. In particular we improve the C! regularity of the singular set with fre-
quency 2m by an explicit logarithmic modulus of continuity.

© 2000 Wiley Periodicals, Inc.

1 Introduction

In this paper we study the regular and singular parts of the free-boundary for
solutions of the thin-obstacle problem, that is the minimizers of the Dirichlet en-

ergy
&(u) = / Vu2dx
B,
in the class of admissible functions

o :={ueH"(By) :u>0o0nB}, ux,x;) = u(x',—x,) for every (x',x;) € B } ,
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with Dirichlet boundary conditions u = w on dB;. Here and in the rest of the
paper d > 2 is the dimension of the space, B; C R? denotes the unit ball, and
B} := B1N{xy = 0}; for any x = (x1,...,xs) € R we denote by x’ the vector of
the first (d — 1) coordinates, X' = (xy,...,x4_1), and w € &7 is a given boundary
datum.

Given a minimizer u € ./ of & with Dirichlet boundary conditions, the coinci-
dence set A(u) C B is defined as A(u) := {(x,0) € B} : u(x’,0) = 0} and the free
boundary I'(u) of u is the topological boundary of the coincidence set in the relative
topology of B).

1.1 State of the art

Athanasopoulos and Caffarelli [1] proved that the optimal regularity of any
local minimizer u is C"'/? (B}). Athanasopoulos, Caffarelli and Salsa pioneered
the study of the regularity of the free boundary I'(#) in [2]. They showed in [2,
Lemma 1] that for every xo € I'(u) the Almgren’s frequency function

" Ji, ) [Vl dx
(0,1—|xo]) > r+— N"(r,u) := : —
faBr(Xo) l/l2 d%d 1

is monotone nondecreasing in r. Thus, the limit

N*(0,u) := im N (r,u)

r—0

exists for every point xo € I'(«) and the free boundary can be decomposed accord-
ing to the value of the frequency function in zero. We denote the set of points of
frequency A € R by

S (u) == {xeT(u) : N(0,u) = A}.
Using the frequency function one can split the free-boundary into the following
three disjoint sets:

o the regular free boundary which consists of the points with the lowest pos-
sible frequency
Reg(u) := . (u);
e the points with even integer frequency .#>" (1), whose union by definition
constitutes the set of singular points Sing(u)

Sing(u) := U S (u);
meN
e the remaining part, I'(u) \ (Reg(u) U Sing(u)), denoted in the literature by
Other(u).

The first result on the regularity of the free boundary for the thin-obstacle prob-
lem is due to Athanasopoulos, Caffarelli and Salsa. In [2] they give a complete
description of the blow-up limits at the points of frequency 3/2 and prove that the
regular free boundary Reg(u) is locally a (d — 2)-dimensional C** hypersurface
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in R9~!. Later the regular part of the free boundary has been shown to be C* in
[6] and analytic in [17] (see also [16, 18]) and analogous results were extended to
more general fractional laplacian (see [4]), of which the thin-obstacle is a particular
example.

Garofalo and Petrosyan (cp. [11, Theorem 2.6.2]) showed that Sing(u) is pre-
cisely the set of points where the coincidence set is asymptotically negligible, that
is

d—1 u / X
(1.1) Sing(u) = {xo €I(u) : lim %%flﬁ(mir)() 0) _ 0} '

With the help of new monotonicity formulas of Weiss and Monneau type, Garofalo
and Petrosyan showed that each set .#’>" is contained in a countable union of C'
manifolds in R,

In general the set Other(u) is not empty nor small compared to the free bound-
ary I'(u). Indeed, in dimension two the function A(r,8) = r*"~'7sin (#9) is a
global solution with frequency 2m — !/2 in zero. Using this example one can eas-
ily construct global solutions in any dimension d > 2 whose entire free-boundary
is a (d — 2)-dimensional plane consisting only of points with frequency 2m —1/2.
Recently, Focardi and Spadaro [10, 9] proved the .7#¢~2-rectifiability of the set
Other(u) and that it consists of points of frequency 2m — 1/2 up to a set of zero
%~% measure, but nothing is known up to now regarding its regularity in dimen-
sion d > 2. We notice that in some special cases, the set Other(x) might be empty.
Indeed, Barrios, Figalli and Ros-Oton proved in [3] that this is precisely the case
when the constraint u(x’,0) > 0 is replaced by u(x’,0) > @ ('), for any x' € R¢!,
where @ is a non-zero superharmonic obstacle.

A different approach for the regularity of the free boundary was proposed by
Garofalo-Petrosyan-Vega-Garcia [13] and Focardi-Spadaro [8], following the re-
sult of Weiss [22] for the classical obstacle problem (see also [12, 14, 15] for ap-
plication to more general operator or powers of the laplacian). For points of the
regular free boundary xo € Reg(u) = . ”, they prove an epiperimetric inequality
for the Weiss’ boundary adjusted energy

X . 1 2 A’ 2 d—1
%O(F,u) = M/Br(xo) |Vl/l| dx— M/aBr(xo)u d% 5

which allows to quantify the convergence of “//lx"(r, u) as r — 0 to be of Holder
type and provides an alternative proof of the C1'* regularity of the free bound-
ary. The epiperimetric inequality approach was first introduced by Reifenberg [19],
White [23] and Taylor [21] in the context of minimal surfaces, later brought to the
classical obstacle problem by Weiss [22] and recently developed in [20] with new
contributions in the framework of free boundaries.
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1.2 Main results

In this paper we show that the epiperimetric inequality is not as a property of the
Weiss’ thin-obstacle energy and its homogeneous minimizers, but it is a property of
the family of Weiss’ energies #), A = 3/2,2m only. Indeed our approach does not
require any a-priori knowledge of the admissible blow-ups (which in the previous
results [13, 8] for regular points was assumed by requiring a suitable closeness
to the already-known blow up), and actually yields their classification. Moreover,
as usual, it gives a short, self-contained proof of the known regularity of Reg(u)
and, thanks to the direct arguments at the basis of the epiperimetric inequality,
allows to obtain a new logarithmic modulus of continuity for the singular set, which
improves the results of [8, 13].

Moreover, this time assuming closeness to the blow-ups, we show a new di-
rect epiperimetric inequality for the (2m — 1/2)-Weiss’ energy in dimension 2, thus
proving it at every free-boundary point. Furthermore we give an example of a new
family of (2m —1/2)-homogeneous minimizer, which show why the generalization
of our 2-dimensional proof to higher dimensions is not possible.

Epiperimetric inequalities for /), A = 3/2,2m, in any dimension

In this section we present our epiperimetric inequalities. Notice that, at differ-
ence from the existing literature, they hold for any trace ¢ without any closeness
assumption to the admissible blow ups. For the energy #5, we give a short and

self-contained proof of the following statement.

Theorem 1.1 (Epiperimetric inequality for #5,,). Letd > 2 and By C RY. Then for
every ¢ € H'(dB)) such that its 3/2-homogeneous extension z(r,0) := r*/>c(0)
belongs to <7, there exists v € & such that v = c on dB| and

1
(12) #ip) < (1= 57005 ) #3000

A similar statement was obtained in [13, 8], even though in these papers a further
assumption is required (the closeness of the boundary datum c to the set of admis-
sible blow ups of frequency 3/2) and it is based on a contradiction argument. The
proof of Theorem 1.1 exhibits instead an explicit energy competitor v, by choos-
ing suitable homogeneous extensions for the different modes on the sphere; thus
greatly simplifying the existing proofs. This approach pushes forward the one of
[20], for the Alt-Caffarelli functional in dimension 2.

Our direct approach allows then to obtain a new logarithmic epiperimetric in-
equality for the family of energies #5,,, m € N, in any dimension. This, together
with [5], is the first instance in the literature (even in the context of minimal sur-
faces) of an epiperimetric inequality of logarithmic type, and the first instance in
the context of the lower dimensional obstacle problems where an epiperimetric in-
equality for singular points has a direct proof. This result allows us to prove a
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complete and self-contained regularity result for Sing(«) and improve the known
results by giving an explicit modulus of continuity.

Theorem 1.2 (Logarithmic epiperimetric inequality for #5,,). Letd > 2, m € N.
For every function ¢ € H'(dBy) such that its 2m-homogeneous extension z(r,0) =
r*"c(0) is in </ and

(1.3) /ac%z%d*lgl and | Wam(2)| <1,
By

there are a constant € = €(d,m) > 0 and a function h € <f, with h = ¢ on dB;,
satisfying
d—2

(1.4) Wom(h) < %m(Z)(l —8\%m(z)\y), where Y= —

We notice that with our method the power 0 < ¥ < 1 in (1.4) cannot be avoided,
see for instance [5, Example 1]. This is essentially due to the possible conver-
gence of polynomial of fixed degree 2m with low symmetry to ones with higher
symmetry.

Complete analysis of the free boundary points in dimension two

In dimension d = 2, it is known that the only admissible values of the frequency
at points of the free boundary are 3/2,2m and 2m —1/2, for m € N. Theorem 1.1 and
Theorem 1.2 already provide the classical epiperimetric inequalty for the points
3/2 and 2m; indeed, in the case d = 2, we have ¥ = 0 in (1.4). We complete the
analysis in dimension two by proving an epiperimetric inequality also at the points
of density 2m — 1/2. Before we state the theorem, we recall that in this case the
admissible blow up is (up to a constant and a change of orientation) of the form

w1 . (1—4m
hoy—1p(r,0) =712 sm( 5 9).

Assuming this time a closeness condition to 4,1, we can prove the following.

Theorem 1.3 (Epiperimetric inequality for points of frequency 2m —1/2 in dimen-
sion two). Let d = 2 and m € N. There exist constants & > 0 and Kk > 0 such that
the following claim holds. For every function ¢ € H'(dBy) such that its 2m —1/2
homogeneous extension z € </ and satisfying

(1.5) e =ham—1pll208,) < 6,
there exists h € </ such that h|yg, = c and
(1.6) %m—l/z(h) < (1 - K)%m—l/z(z)'

In dimension d = 2, the regularity of the free boundary (namely, the fact that they
are isolated in the line) can be obtained also with softer arguments than our epiperi-
metric inequality; however, the previous result allows for instance to show the C!*
decay of u on the unique blow up at each free boundary point and also provides an
alternative, self-contained approach.
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Application of the epiperimetric inequalities I: homogeneous minimizers and
admissible frequencies

A very important and not yet well-understood question in the contest of the
thin-obstacle problem is the study of the admissible frequencies at free-boundary
points. Indeed nothing is known, except for the gap between 3/2 and 2 (see [2]) and
the recent result of Focardi and Spadaro [10, 9], where they establish that the col-
lection of free-boundary points with frequency different than 3/2, 2m and 2m — 1/,
is a set of 7?2 measure zero. It is conjectured that these are the only admissible
frequencies, but not even the gap between 2 and the subsequent admissible fre-
quency was known. Indeed, thanks to Theorem 1.4 below, we are able to recover
the gap 3/2— 2 and to prove the new result that the frequencies 2m are isolated for
every m € N, where the gap is given by explicit constants.

We say that A € R is an admissible frequency if there is a solution u € H'(By)
of the thin-obstacle problem and a point xo € I'(«) such that N*(0) = A. For
a minimizer u and an admissible frequency A = N*(0), the monotonicity of the
frequency function implies that, up to a subsequence, ||u,.y, szl( oB,)lrx, CONVerges,

as r — 0, weakly in H' (B ) and strongly in L?(B;) NL?(dB1) to a A-homogeneous
global solution p : R? — R such that || p|| 12(a,) = 1. In particular, if we denote by

5, = {u € H'(By) : u is a nonzero A-homogeneous minimizer of & in .o/}
we have that

.7 if A is an admissible frequency, then %) # 0.

A complete description of the spaces .#; and the admissible frequencies is
known only in dimension two, where the only possible values of A are 3/2, 2m, and
2m —1/> for m € N ;. However, as a consequence of our logarithmic epiperimetric
inequality we can describe the set %), for values of A close to 2m.

Theorem 1.4 (A-homogeneous minimizers). Let d > 2. Then for every m € N
there exist constants ¢, > 0, depending only on d and m, such that

(1.8) =0  forevery € (3/2,2)U | ((2m—c,,,2m)U(2m,2m+c}\)).

meN
Moreover, setting
(1.9)
he(x) := (2(x"e) - \/(x"e)2+xfl> \/\/(x’-e)z—i-xf,—l—x‘e—Re(x“e%-i\xd)3/2 :
we have
(1.10) Hsp={Ch, : e€S""" and C>0},
(1.11)

Hom ={C pom : pam is a 2m-homogeneous harmonic polynomial,
Pam > 0on B, |p2mlli298) =1 and C>0}.
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Remark 1.5. Theorem 1.4 and (1.7) imply that the frequencies 3/2 and 2m, for
every m € N, are isolated, and in particular N* ¢ (3/2,2) UU,en ((2m — ¢,y 2m) U
(2m+c;})) for every xo € I'(u), where u is a minimizer of the obstacle problem for
general obstacle ¢.

At difference with respect to other results where gaps of this kind are estab-
lished, the arguments leading to the constants ¢, are never by contradiction, hence
the constants ¢, can be tracked in the proofs (see Remark 6.2 for an explicit exam-

ple).

We wish to stress that the classes #5,, and 75 ), were already characterized (see
[2, 11]) and that typically this characterization is needed to prove an epiperimetric
inequality. However our epiperimetric inequalities are a property of the energies
#,,, and not of a class of blow-ups, and as such allow us to characterize the %), as
a corollary.

Remark 1.6. Finally we notice that (1.1) follows immediately from Theorem 1.4,
the classification, thus giving an alternative proof to the one of [11].

The characterization of the class %3, 1), in dimension higher than 2 remains a
major open problem. The main difficulty is in the fact that it combines the char-
acteristics of % /2 and %,,. Indeed, on the one hand its elements with maximal
symmetry must be 0 on half the hyperplane {x; = 0}, as the elements of %3 ,, thus
suggesting that they should appear as blow-ups at flat points. On the other hand
we can show that, as in the case of %, there is a continuous family of differ-
ent elements of %5, 1), which are 0 on half of {x; = 0}, thus showing that they
are not isolated. We give an example of such a family in dimension three in the
following example. Examples in any dimensions can be constructed by extend-
ing the three-dimensional solutions invariantly with respect to the remaining d — 3
coordinates.

Example 1. Letd =3 and m > 1. Then for every ¢ € [0, 1] the function
h(r,0,9) = —r"~"/sin>" =~ g [sin? Osin ((2m —1/2) @)
+ 1 ((4m—2)cos® 0 — 1) sin((2m —5/2) @)] ,
is in #5,,_1),, where the coordinates r > 0, ¢ € (0,27) and 6 € (0, 7r) are such that
x1 =rsinBcos¢p, x,=rcosf, x3=rsinfBsing,
is a smooth parametrization of R3\ ({x3 =0} N {x; > 0}).

The proof is a straightforward computation. The function /4, is harmonic on the set
R3\ ({x3 =0}N{x; >0}), 7, =00n {¢ =0} = {x3 =0}N{x; >0} and i, >0
on{@ =n}={x3=0}N{x; <0}. Moreover, % < 0 on the set {¢ = 0}. Thus,
g—f; < 0 on the set {x; >0} N {x3 =0}, i is superharmonic on B; and so, it is a
minimizer of & in 7.
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Application of the epiperimetric inequalities II: regularity of the free bound-
ary in any dimension

Using the epiperimetric inequalities Theorem 1.1 and Theorem 1.2 we prove
the following regularity result, valid in any dimension.

Theorem 1.7 (Regularity of the Regular and Singular set). Let u € 27, be a mini-
mizer of the thin-obstacle energy &.

(i) There exists a dimensional constant & > 0 such that Reg(u) is in B} a C1*
regular open submanifold of dimension (d —2).

(ii) For everym € Nand k=0,...,d —2, S,%’" (u) is contained in the union of
countably many submanifolds of dimension k and class C''°8. In partic-
ular Sing(u) is contained in the union of countably many submanifolds of
dimension (d —2) and class C''8,

Remark 1.8. If we consider minimizers u € H'(B[) with Dirichlet boundary con-
ditions of the more general thin-obstacle problem, where we minimize the energy
& in the class of admissible functions

A :={ucH (B]) :u>¢ on B}, u(x',xq) = u(x', —x,) for every (x',x4) €B1},
with ¢ € C"P(B/,R+), then an analogous statement holds, that is

(i) there exists a dimensional constant 0 < ¢ < f3 such that Reg(u) is in B a
C!* regular submanifold of dimension (d —2),

(i) for every 2m <[ and k=0,...,d —2, $?"(u) is contained in the union of
countably many submanifolds of dimension k and class C'4°¢.

This result can be proved as a standard application of our various epiperimet-
ric inequalities and the almost minimality of the blow-ups at a point of the free-
boundary, which follows from the regularity of the obstacle (see for instance [5]).
In particular it provides an improvement in the regularity of .#>", 2m < I, from C!
to C11°2 of the results of [11, 3].

1.3 Organization of the paper

The paper is organized as follows. We introduce notation and classical results in
Section 2, while Sections 3, 4, and 5 are devoted to the proofs of the epiperimetric
inequalities from Theorems 1.1, 1.2 and 1.3, respectively. Section 6 contains the
proof of Theorem 1.4, which is new and follows from our direct approach to the
epiperimetric inequality. Section 7 is dedicated to the proof of Theorem 1.7 which
is based on arguments of classical flavor and which is adapted to the logarithmic
case.

2 Preliminaries

In this section we recall some properties of the solutions of the thin-obstacle
problem, the frequency function, the Weiss’ boundary adjusted functional and we
deal with some preliminary computations.
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2.1 Regularity of minimizers

The optimal regularity of the solutions of the thin obstacle problem was proved
in [1]. We recall the precise estimate in the following theorem.

Theorem 2.1 (Optimal regularity of minimizers [1]). Let u € o7 be a minimizer
of & with Dirichlet boundary conditions. Then u € C 1,1/2(3172) and there exists a
dimensional constant C; > 0 such that

“””cl=‘/Z(B;2) <G H”HLZ(B])-

2.2 Properties of the frequency function

Let u € H'(B;) be a minimizer of the thin-obstacle energy and xo € I'(«). Then
we introduce the quantities
_rD"(r)
~ HY(r)

D™(r) ::/ |Vul|? dx, H’CO(r)::/ wWd! and NY(r):
By(xo) 9B, (xp)

where 0 < r < 1 — |xo|. Furthermore in this notation we have

X 1 A’
W30 (rhu) = 5 D) — ot

H*(r) :=#;"°(r).

In the following we will need the monotonicity of N, which can be found in [2],
and of %, which can be found in [13, 8, 14] in the case of frequency 3/2. For the
sake of completeness we give here a proof in the general case.

Lemma 2.2 (Properties of the frequency function). Let u € H'(B) be a minimizer
of & and xo € I'(u), then the following properties hold.

e The functions N*(r) and #;°(r), for any A > 0, are monotone nonde-
creasing and in particular

2.1)

d . . d—2+2A 1 -

Do) =C2 W ) )+ L[ ey,
where u,(x) 1= ulxo +rx) and z,(x) = |x* u, (/).

)
HY(r)

e For every N“(0) > A, the function d—142

is monotone nondecreasing

and in particular

22) d ( H>(r) > :z%f%).

dr \ pd—1+224 r
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Proof. For the monotonicity of 7, dropping the index xg, we recall the identities

(2.3) D' (r)=(d-2) D(r )+2 (Ayu)?d.#?!
r dB,
(2.4) H(r)=(d—-1)—=> H(r) +2 udyud !
r dB,
(2.5) D(r) :/ udyud 4",
dB,
Then, similarly to [8], we compute
(2.6)
D'(r) D(r) H'(r) H(r)
Wy(r) = pd—2+22 —(d-2+24) pd—1+22 —4A pd—1+22 +A(d-1+24) pd—1+22
2.7)
4 (d—2+2A
W 2202 () - aa—2420) )
D'(r) 2 H(r) D(r)
T Fd—2+22 +2A pd+22 —21 pd—1421
=:(r)

Next a simple computation shows that

1
I(r) = ;/E)B (Vi = 22, Dy + 222 2) d !
1
1
:7/ [(yavu,\—/xu,)lﬂv@u,yzmzuz] A
r JoB;
1
:;/ (|8vur|—lu,)2d,%”d_l+(d—2+27L)/ IV,
0B B
which, together with (2.6), implies
(d—2+22)

1
(W5, (zr) — Wi, (uy)) + = (Vity-V—Aup)* d®" .
r r JoB,

In particular, if ¥ minimizes &, then the monotonicity of %) follows.
For the second bullet, we can compute

d( H(r) )Z Hr) 1402y 2O

#3(r) =

dr \ pd—1+22 d—1+22 Fd+21

2.4) (r) 2 d H(r)
= (d=1)— z+u+,d—1+u/a udyud A" —(d 1+27L)rdm

@3, D(r) H(r)
=2 1122 —(24) A+ 20 *%( )-
Notice that %) (r) = rfl(:)u(N(r) — 1), so that if N(0) > A, then #} (r) is posi-

tive, by monotonicity of N(r), and the claim follows. O
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2.3 Blow-up sequences, blow-up limits and admissible frequencies

Given a function u € &/ minimizing the energy & and a point xo € %, we de-
fine the blow-up sequence of u at xo by uy, ,(x) := W Using the monotonicity

of N* and H™ it is easy to see that

2 1 2 X0 on(l") X0 X0
5, |VMxO’r| dx:m Br(x0)|VM’ dx=N (F)mSN (I)H (1)

It follows that there exists a subsequence (uy, », )x and a function u,,, which depends
on the subsequence, such that uy, , converges weakly in H (By) and strongly in
L?(B))NL*(dB)) to some function py, € 7. Furthermore by Theorem 2.1 we have
that the convergence is Cllo’g (B1), for every o < !/2, and by the minimality of u, it
is also strong in H!(By). A standard argument using the monotonicity of 7//{‘0 then
shows that py, is a A-homogeneous global minimizer of &. We say that p,, is a
blow-up limit of u at xo and we denote by £ (u) the set of all possible blow-up
limits of u at xg.

2.4 Fourier expansion of the Weiss’ energy

On the (d — 1)-dimensional sphere dB; C R? we consider the Laplace-Beltrami
operator Ayp,. Recall that the spectrum of Ajp, is discrete and is given by the
decreasing sequence of eigenvalues (counted with the multiplicity)

0=A4 <A< <Ah<..

The corresponding normalized eigenfunctions ¢y : dB; — R are the solutions of
the PDEs

—Aop, O =M on  IBy, . ¢pdn 't =1.
1

For every u € R we will use the notation
(2.8) Ap) =p(p+d—2),

and we will denote by o the unique positive real number such that A (o) = A.
It is easy to check that the homogeneous function uy(r,0) = r®¢(60) is harmonic
in R? if and only if its trace ¢ is an eigenfunction on the sphere corresponding
to the eigenvalue A;. Moreover, it is well known that in any dimension the homo-
geneities oy are natural numbers and the functions i are harmonic polynomials of
homogeneity oy. Furthermore for every A > 0 eigenvalue of the Laplace-Beltrami
operator on the sphere, we define

EQ):={0 € H'(9B1) : ~App,0 =26 and [|6]l2(0m) 70} .

that is E(A) is the eigenspace of Ayp, associated to the eigenvalue A4 intersected
with the unit sphere. We write the energy of a homogeneous function in terms of
its Fourier coefficients; a similar lemma can be found in [5, Lemma 2.1], but we
report the short proof for completeness.
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Lemma 2.3. Letd > 2, oo > u > 0 and
a—U

@ K o td—2

With the notations above, let y =Y7_ c;; € H'(9By), and let 9y (r,0) := r*y(6)
be the o.-homogeneous extension of ¥ in B1. Then we have

3 DO 2w

T 2pu+d—2!

(2.10) Y (Pu)

oo

QLD Hiulu) = (1= Kap) Viul9u) = T2 Y (<2 A(e0))e].
j=1

Proof. Since @] ;2(55,) = 1 and \|V9(pj||i2(331) = A; for every j € N, we have

o 1
ACAEDNS (/O rldr aBd‘%ﬂH [0?r2% 297 (0) + 2 *|V,[*(0)]

j=1
u [ B¢}<9>d%d—l>

=Y (4 1)
~ I \d+2a-2
jf
where in the above identity d@ stands for the Hausdorff measure .7#?~! on the
sphere dB;. Setting o = u, we get (2.10). We now notice that for every A we have

a’+A pr+A Kot
<d+2oc—2 _“> — (1= Kay) <d+2u—2 _“> = dv2a 2t M)
which shows (2.11). [l

2.5 Energy of homogeneous minimizers

In this subsection we prove a lemma about the energy of homogeneous mini-
mizers which will be useful in their classification.

Lemma 2.4. Let u > 0 and t € R. If the trace ¢ € H'(dBy) is such that the
(U +1)-homogeneous extension r**'c(0) € & and is a solution of the thin-obstacle

problem, then
(2.12)

t
Sl =l and A0 = (14

pt
21 +d—2> Vulrte).

Proof. Since the Weiss energy vanishes for minimizers with the corresponding ho-
mogeneity, #,1.(r**c(0)) = 0, by (2.10) we get that

”VGCHiZ(gBI) = 7L(,LL +I)HCHiZ(aBI)‘
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Hence, we have
2 2
W) = Waaa (P 10) Ftllel 2 om,) = 1l am,)

and by Lemma 2.3 (2.10)

1
Pulrte) = g g IV oclioom) = A Wlelizgn,)

— l(/.t +t) —QL(,LL) ”C”%2 .
2u+d-2 (9B1)

_ 4 2 _ ! u+t
= <1+2u+d—2>tHCHL2(‘931) - (1+2,u—|—d—2> Wu(rtc).

g

3 Epiperimetric inequality for 7;,: Proof of Theorem 1.1.

In this section, after some preliminary considerations about 3/2-homogeneous
minimizers of &, we prove the epiperimetric inequality at regular points Theorem
1.1.

3.1 The function /s,

In [2] Athanasopoulos, Caffarelli and Salsa show that there are no point of
frequency smaller than 3/2. On the other hand, one can easily construct global
3/>-homogeneous solution for which the point 0 is on the free boundary. In di-
mension two, one such a solution expressed in polar coordinates is /s, (r,0) =

rPcos(360/2), for r > 0 and 6 € (—7, 7). In RY, it is sufficient to consider the
two-dimensional solution /s, extended invariantly in the remaining d — 2 coordi-
nates. More generally, for a given direction ¢ € dB; N {x; = 0} we consider the
function A, in (1.9), which is a 3/2-homogeneous global solution of the thin obstacle
problem. With a slight abuse of the notation, in polar coordinates, we will some-
times write /. (r, 0) = r'*h.(8). We notice that /, has the following properties:

(i) The L*(dB)-projection of &, (8) on the space of linear functions is non-zero.
We may suppose that it is given by the trace of the function x — Cx - e, for
some constant C > 0. Notice that the space of linear functions coincides
with the eigenspace of the spherical laplacian corresponding to the multiple
eigenvalue A, = --- = A; = d — 1. Thus, A, has a non-zero (d — 1)-mode on
the sphere.

(ii) h, is harmonic on By \ ({x; =0} N{x-e > 0}). Thus, an integration by parts
gives that, for every w € H!(B;) such that v =0 on {x; =0} N {x-e < 0}
we have

Vh, - Vydx— 3/ howd A4 = 0.
B 2 JaB,
In particular, #3(h.) = 0.
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% has a jump across the set {x; =0} N{x-e < 0}. The

distributional laplacian of &, on By, applied to the test function v € H'(By),
is given by

(iii)) The derivative

3
V2

oh,

N g
I (x"-e)dx .

WAh, dx =2
B B N{x-e<0}

wdr =2 [ y.0)
B)

3.2 Proof of Theorem 1.1

Since the trace c¢ is even with respect to the plane {x; = 0}, its projection on
the eigenspace of linear functions E(A,) C H'(B)) is of the form c; x - e for some
constant ¢; > 0 and some e € dB; N {x; = 0}. Let C > 0 be such that the L?(9B)-
projections of Ch, and ¢ on the eigenspace of linear functions E(A,) are the same.

Consider the function ug : By — R given by ug(x) := |x4|”>. Since uo(8) is even,
it is orthogonal to the eigenspace E(A,). Let the constant ¢y € R be such that the
projections of ¢ — Ch, and coug on the eigenspace E(A;) are the same.

We can now deduce that ¢ : dB; — R can be decomposed in a unique way as
Ch, + coup, which has the same low modes of ¢, and of ¢, which contains only
higher modes on dB;

¢ = Ch,+coup + ¢, ¢0)= Y c;0;(6).
{j:A;>2d}
The competitor v : By — R is then given by
3.1 v(r,0) :CrB/zhe(G)+c0r3/2u0(9)+r2¢(9).

We notice that v € <. Indeed, since ¢ > 0 on the equator {x; =0} N dB; and since
C > 0, assures that v(r,8) > r’c(0) is non-negative on the (d — 1)-dimensional
ball B} := {x; = 0} N B;. We now compute the energies of r*c and v. For any
¢ € H'(dB)) we claim that

3¢k 1

(3.2) %/z(Che-FCoMo-HPa):—T . lxa|dx+W5,(y) +
1

where @y (r,0) := r*¢(0) denotes the a-homogeneous extension of ¢ and

. —§C (])(9) — 2 / /.e 1/2 _ ’
Bo)=—3e [ \/@d%" 1(9)+ﬂc an‘P(e)(e )\ 2ant2(0)).

Indeed, expanding %5, and integrating by parts we get

%/Q(Che + coug + (Pa) = CZ%/Z(he) + 7/3/2(60140 + (Pa)

3
+2C( th'V(CMO‘f‘(Pa)_*/ he(C0u0+(Pa))
B] 2 aBI

= %/Q(COMO + (pa) _2C 5 (paAhedx’
1
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3
Wip(couo + o) = g #p (o) + Wip(@ar) +2¢0 (/B Vit Vo — 3 . M0<Pa)
1 1
(3.3) = c%%/z(uo) + W (Pa) — ZCO/B Qo Augdx.
1
An integration by parts and the fact that Aug(x) = %|xd\_l/2 give that

3
(3.4) Wi, (uo) :—/ upAugdx = —f/ |xq|dx < 0.
B 4 B,

The homogeneity of @, and the precise expressions of Augy and Ak, give that
(3.5)

3, 1 3, _
Ad:/ >z Pdx= —— 0)=16,|" 2 ds4(0),
5, QP Augpdx Bl(Poc4’xd| X d+oc—f 28, o( )4| | C))
QoA dx:—2/ O (X O)i(x’-e)l/zdx’
Bl o e B’l o ) \/5 —
1 6 1
3.6 - 0')(6'-e) 2 d 4 2(0') .
(3.6) i1V a3/¢( )(0-e) C

Finally, by (3.3), (3.4), (3.5) and (3.6) we get (3.2). Applying (3.2) to o =3/2 and
o =2 we get

1 3c2
4 N < _ 70
61 )= (1= 573 ) 156l <~y | el s+ 7o)
1
-(1- 2d+3>W/2("”/2)
3c2

3.8 <—— 0 d
( ) = 4(2d+3) B, |‘xd| X,
where the last inequality is due to Lemma 2.3 with p = 3/2 and o = 2. O

Remark 3.1. In this remark we are interested in the equality case of the epiperi-
metric inequality (1.2). Indeed, if there was an equality in (1.2), then by (3.7) we
should have that ¢y = 0 and also

1ip(200) = (1 3715 ) #u70(0) =0
By Lemma 2.3, we get that ¢ is an eigenfunction on the sphere dB; corresponding
to the eigenvalue A (2) = 2d, that is the restriction of a 2-homogeneous harmonic
polynomial. Moreover, since the trace is ¢ is non-negative on dB) and h, = 0 on
B N{x-e <0} we get that ¢ >0 on B} N{x-e <0} and by the fact that ¢ is even,
we get ¢ > 0 on B).
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4 Logarithmic epiperimetric inequality for %#5,,: Proof of Theorem 1.2

If #2m(z) <0, the conclusion is trivial, taking 7 = z. Thus in the proof we
assume #5,,(z) > 0.

Using the notations from Subsection 2.4 we may decompose the trace c in
Fourier series on the sphere as ¢(6) =Y7_; c;¢;(0) = P(6) + ¢(0), where

4.1) P(O) := Z cj9;(0) and 0(0) := Z cj0;(0).
{j:o;j<2m} {j:oj>2m}
Let
M := —min {min{P(6),0} : 6 € 9B, 6; =0},
and let Ay, be an eigenfunction, corresponding to the homogeneity 2m, such that
hom = 1 on the hyperplane {x; = 0} N dB;.

Remark 4.1 (Construction of hy,,). In order to construct such an eigenfuction we
first notice that the eigenspace corresponding to the homogeneity 2m consists of
the restrictions to the sphere of 2m-homogeneous harmonic polynomials in R¢.
Thus it is sufficient to construct a 2m-homogeneous harmonic polynomial whose
restriction to the space {x; = 0} is precisely (x% +--- —|—x§_] )m We define

2 —
h2m X], <X Z n'xd xl+“.+'xd71)m nv

where Cy = 1 and, for every n > 1, C, is given by the formula
2(m—n+1)(d—142m—2n)

2n(2n—1) b
which assures that h,,, is harmonic. It is immediate to check that C, is explicitely
given by

C,i=—

(=2)"m! L .
=————|[(d—14+2m—-2)),
" (2n)! (m—n)! jl;ll
which concludes the construction of /5.

The 2m-homogeneous extension z of ¢ can be written as
2(r,0) = *"P(0) + M 1" hy(0) — M 1" ho (0) + " $(6).

Our competitor 4 is given by
(4.2) h(r,0) = r*"P(0) +Mr*"hyu(0) — Mr®hy, (0) +r*9(6).
for some & > 2m to be chosen later. Notice that / is non-negative on the set {x; =
O} NdB.

The homogeneity o > 2m depends on the trace and is determined through the
inequality

a—2m

43 = =g||V
(4.3) Ko, 2m a+2m+d—2 ” 9¢||L2 9By)
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where we will choose € > 0 to be small enough, but yet depending only on the
dimension.
We now prove the epiperimetric inequality (1.4). We proceed in three steps.

Step 1. There are explicit (given in (4.8)) constants C| and C,, depending only on
d and m, such that for every a € (2m,2m+1/2) the following inequality does hold:

(44) %m(h) - (1 - Ka,Zm)%m(Z) S Cl K02£72mM2 - C2 Ka,ZmHVQ(PHiZ(aBI)-

We set for simplicity

y(r,0) = Z cjr2m¢j(9),
{J, aj<2m}

Hzm(r,e) = Mrzmhzm(9)+ Z erzm(bj(e),

U aj=2m}
(4.5)

o(r,0) = —Mr"hy,(0)+ Z cjrzm(])j(e),
{J, aj>2m}

¢(r,0) = —Mrhu(0)+ ) c;ir*9;(6).
{7, aj>2m}

Thus, & and z are given by
=Y +Hy,+ @ and h=vwy+H,+ Q.
We first notice that the harmonicity and 2m-homogeneity of Hy,, imply
Wom(@) =Wom(W+@)  and  Wou(h) = Wom(¥ + ).

Moreover, by definition y is orthogonal in L?(B;) and H'(B)) to both ¢ and @.
Thus, we get

We now notice that, since y contains only lower frequencies, we have #4,,(y) < 0.
Thus,

%m(h) - (1 - Ka,Zm)%m(Z) - Ka72mW(lI/) + %m((p) - (1 - Ka,Zm)%m(‘P)
< Wom(@) — (1 — Kaom) Wom(9).
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By Lemma 2.3 we have that

~ Ko, 2m
Won(®) = (1= Kx2n) #an(9) = M2 2 3, T ma— (=A.(2m) + 2(c0)

oo

Ko, 2m 2
fo—e Y (<A M)
d+20—2 (s ago2m)

(2m+o+d—2)?
2 d 200 -2

Ko 2m — 2
(4.6) +—"— Y (—A+A(a))c
d+200=2; G Zom)

2 2 2
= M~[|hom|| 7255, Ka

We now estimate the last term in the right-hand side of (4.7).

Y (A —A(a)d =Y A2~ Zc"‘»
AQ2m+1)—A(a
7 >Z%? 2 +1 T LA = m(z )+1>( 190910,

where all the sums are over {j, &; > 2m}. If we assume that o € (2m,2m+1/2),
then (4.7), together with (4.6), gives (4.4) with the constants

AQ2m+1)— A2m+1))
A(2m+1) ‘

In order to conclude the proof of Step 1 we now show that we can choose € small
enough (depending only on the dimension and m) such that the bounds (1.3) on
the trace ¢ imply that @ < 2m+ /2. Indeed, by (4.7) with oo = 2m and Lemma 2.3
(2.10), we get

4.9)

A(2m+1)
2 2 om
Voo ll2(am,) < mtd—2,, agm}(lj—/l(zm))cj = A2m+1)#2u(r""0(8)).

48) C1 = (4m+d)|homl25,) and G =

Using that ¢ = P+ ¢, the orthogonality of P and ¢ on the sphere and Lemma 2.3,
we get that

A(2m)

Wan (P 9(0)) = Wam(2) — Waom (PP P(0)) < #am(2) + m” I22a8:)

< Wom(2) +2mllc|723p,) < 1+2m,
where the last inequality is due to (1.3). Together with (4.9) this gives the estimate
”VO(PH%z(aBI) <@2m+1)*Q2m+d—1).

Thus, choosing € < (27L (2m+ 1)) _2, we finally obtain

N =

a—2m=(o+2m+d— 2)eHVe¢HLzaB <202m+1)?(2m+d—1)%¢

IN
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Step 2. There is a constant C3 > 0, depending on d and m, such that
2(1—-
(4.10) M? < G5 VodlTom)

We start by noticing that there is a constant L,, depending only on d and m,
such that the eigenfunctions corresponding to the low frequencies are globally L,,-
Lipschitz continuous, that is

IVedilli=(a8,) < Lm, forevery j€N suchthat a;<2m.

Now, since by hypothesis (1.3) the trace ¢(0) is such that HPH%Z(()B1 < HcHL2 (@81) < <
1, we have that all the constants c; in the Fourier expansion of P are bounded by
1. Thus, the function P : dB; — R is L-Lipschitz continuous for some L > 0,
depending only on d and m. Denoting by P_ the negative part of P, P_(6) =
min{P(60),0}, we get that

d-2
M C
@.11) / P2d#?? > cyM> <> =M,
Sd—2 L Ld
for some dimensional constant C,;. On the other hand, since P+ ¢ is non-negative
on S92 = {x; = 0} N IB; we get that

(4.12) / ¢2d%d_22/ P2 di2,
sd-2 Sd-2

Now, by the trace inequality on the sphere dBj, there is a dimensional constant C,
such that

| e2ar 2 <ci( [ VepPar+ | ¢2d%dl>
Sd—2 Sd—1 Sd-1

1 2 d—1
< -
<c 1+M2m))/gd1v9¢ 4,

where the last inequality is due to the fact that in the Fourier expansion of ¢ there
are only frequencies A; > A(2m). Combining (4.11), (4.12) and (4.13), we get
(4.10).

Notice that in this step we used the non-negativity of the trace ¢ (in the in-
equality (4.12)) and also the condition that ¢ is bounded in L?(dB;) (when we give
the Lipschitz bound on P). More precisely, the constant C3 depends on the norm
1Pl12(a8,)> Which in turn is bounded by one.

(4.13)

Step 3. Conclusion of the proof of Theorem 1.2. By Step 1 (4.4) and Step 2 (4.10)
we get

%m(h) - (1 - Ka,Zm)%m( ) <G Kz 2mM2 — Ky, ZmHVG(P”iz (9B))
sz1C3HV9¢HLz aB —CoKaom[Ve9ll2 (o5,

(4.14) =£(eC1C3—C) vaujj%
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C
where the last equality is due to the definition (4.3) of Ky 2. Choosing € < c é
1C3
we get that
(4.15) W (h) — (1 —l|Vodl1}Y o, )%m(z,) <0

Using again Lemma 2.3, we have

1 oo oo
< (A — A(2m))c2 < Aics =V |l; 2(9
4m+d 2{1.72;2,"} ’ ! {j,q,gz oy

which together with (4.15) gives

Wan(h) < (1= 1V09 17 o5, ) #on(2) < (1= #50,(2)) #am(2),

which is precisely (1.4). 0
We conclude this section with the following Remark, which will be useful for
the characterization of the possible blow-up limits.

Remark 4.2. In the hypotheses of Theorem 1.2, we have the following, slightly
stronger version of the logarithmic epiperimetric inequality:

Ce
4.16)  Wan(h) < Won(2) (1 —€|#5u(2)]") — iuwuiiggl

for which it is sufficient to choose 0 < € < 2
defined in (4.1) containing the higher modes of the trace ¢ on the sphere dB.

5 Epiperimetric inequality for %5,,_./, in dimension two: Proof of
Theorem 1.3

We prove the theorem in several steps.
Step 1. Sectorial decomposition of hy,,_1/,. We notice that the function hy,, 1/, has
4m — 1 half-lines from the origin along which it vanishes. These lines correspond
to the angles
2i

am—1"
and they individuate 4m — 1 circular sectors in B; corresponding to the nodal do-
mains of fy,, _1,. We consider the following 2m sets, which are invariant under the
transformation 6 — —0

Sj = {(I’,Q) r e [0,1], 0 G]ijl,Sj[U]ZﬂT—Sj,27T—Sj,1[},

S 1= fori=1,...,4m—1,
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where j = 1,...,2m. Notice that Sy,...,S2,,—1 are unions of two sectors of angle
4;—’11, while S5, is the sector {(r,G) :refo,1], 6 E]szm_l,szm[}. We define the
restrictions of ;1 to these sectors for j =1,...,2m

fj(r7 9) = 115}. (}’, 6)h2m71/2(r7 6) = (J]-]Sj,l,Sj[(e) + 11]277:—&_,-,271:—3'1-,1[(9))h2m71/2(ra 9)

We notice that, since /,,,_1;, vanishes on B; N dS, the fuctions f; are in H 1(By).
Moreover, they are (2m — 1/2)-homogeneous even functions, namely fj(r,0) =
=2 £(8) and f;(r,0) = f;(r,—8). We claim that for any by, ..., by, € R

(5.1) %m_lﬁ(ib,-fi) —0.

Indeed, since the energy #5,,_1), is quadratic in its argument and for every i #
J the supports of f; and f; have negligible intersection, the energy of the linear
combination is given by

2m 2m
Wom—1)s ( ; b,’ﬁ) = ; biz%m—l/z(fi)'

Moreover the functions f; are harmonic in each §; and vanish on the rays delimit-
ing their support, that is on dS; N By. Thus %5, 1, (f;) =0 forevery i = 1,...,2m,
so that the previous inequality implies (5.1).

Step 2. Decomposition of the datum c. We claim that we can write ¢ in a unique
way as

2m
c(0) =Y aifi(6)+&6) on 9B,
i=1

where

® ai,....,ay, € Rand ay, >0
e ¢ c H'(dB)iseven and itis orthogonal in L?(9By) to 1,cos(H), ...,cos((2m —
1)6).

To prove this claim, we call L the span of 1, cos(0)...., cos((2m — 1)), which is
a linear subspace of L>(dB;) of dimension 2m. We set P (c) to be the projection
of c onto L. To show the existence of ay,...,az, € R, it is enough to prove that the
2m functions P(f1),..., P.(fam) are linearly independent, so that their span gives
the whole L. Hence, we take any linear combination b; f; + ... + by fom, such
that its projection on L is 0, aiming to prove that by = ... = by,, = 0. By (5.1), the
energy of by fi + ...+ boy fom is 0. On the other hand, since the function by f; +... +
bom fam is assumed to have only modes higher than 2m —1/2 on dBy, its (2m — 1 /2)-
homogenous extension has nonnegative energy thanks to (2.10), and its energy is 0
if and only if by f1 + ... + b fom = 0. Hence, this must be the case. Hence we can
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write in a unique way P (c) as a linear combination of P(f1),..., P(fam)

2m

C) = ;aiPL(ﬁ).

Since c is assumed to be close to hy,, 1/, by (1.5), and since hy,, 1), is strictly posi-
tive on the support of f,,, we can assume without loss of generality that ay, > 0.
Finally, we set ¢ = ¢ — Zizfl aif;.

Step 3. Choice of an energy competitor and computation of the energy. We let
o > 2m—1/2 to be chosen later and we define an energy competitor for ¢ as

2m
)= Y aifi(,0) +r(8) = % (e =) 1%
j=1

The energy of & can be written as

4m—

%mfl/z(h) :%mfl/z( N (C_C))+%m 1/2(r C)
+2 V(r 7 (c—c)) v(r* E)d%ﬂz—(4m—l)/ (c—@&)edsn".

B dB

By the deinition of ¢ and Step 1 we have that the first term in the right-hand side
vanishes:

(5.2)

2m
%m,l/z(h) :%m,l/z(}’af) +2 Z aj (/ ij ‘V(r“cN) d%z — (4171— 1) fjfdc%l) .
j=1 By

dB

We rewrite the middle term integrating by parts, and using that Af; =0 on {f; # 0}

/BIij-V(rO‘E)d,%”Z—/S r%e( Afj+/ 9 r%¢

_ l o 1 ‘ fj Foe 1
_2/8 rE(0)d A + /{ &(0)dH

Bfns; Or o=s;) T 89

laf] oc 1
_2/{9 el &0)dn",
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Now since f; is (2m — 1/2)-homogeneous we can write f;(r,8) = r?"~1/2£;(8) and
we get that

2f Sy =2 [ 0 e)e(e)dn
aBTﬂS‘,‘

B NS; ar
:(4m—1)/ fiedA#",

19f; L9f
2/ ]OC d%l ]OC d%l
{6=s;} 7 06 €0 {gs“}rae €(6)

2/ ra+#(89fj(sj) c(sj) — o fi(sj—1)é(sj—1)) dr
0
2

:m(aefj(sj) &(s;) — Ao fj(sj-1)é(sj-1))-

Hence we can rewrite (5.2) as
(5.3)
2 2m

%m—l/z(h) :%m—l/z(’”aﬁ)+m;aj(aefj(sj) (s ) a@f}(sj 1)¢ (SJ 1))
Since the previous two equalities hold also when a = 2m — 1/2, we see that
5.4)

4m—
%mfl/z(z) = %mf]/z (I" 2

2m

15)+4m% ;aj(aefj(sj) &(sj) = o fi(sj-1)e(sj-1))-

Step 4. Conclusion. Setting Ky 5, 1/2 according to (2.9), a suitable linear combi-
nation between the last terms in (5.3) and (5.4) is 0, because by the defintion of
Ka,2m—1/2 We have

2 2

5.5 S — - s
Putting together (5.3), (5.4) and (5.5), we find

WZm—‘h(h) - (1 - Ka,Zm—l/Z)%m—‘/z(Z)
4m—
= %mfl/z (raé:) - (1 - Ka,mel/Z)%mfl/z (I’ 2 15)~

Thanks to Lemma 2.3, in particular to (2.11), we obtain that

4771

%mfl/z (raé) - (1 - Ka,lmfl/Z)%mJ/z(

because by definition ¢ is orthogonal to 1,cos(),...,cos((2m — 1)0) (which, in
dimension 2, are the only eigenfunctions with corresponding homogeneity less
than or equal to 2m — 12). O

)<0
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6 Admissible frequencies for the thin-obstacle problem

We first prove an easy version of the epiperimetric inequality useful for negative
energies. Then we use this result, together with Lemma 2.4 and Theorems 1.1 and
1.2 to conclude the proof of Theorem 1.4.

6.1 Epiperimetric inequality for negative energies

The following proposition gives an epiperimetric inequality for negative ener-
gies.

Proposition 6.1 (Epiperimetric inequality for negative energies). Let d > 2, ¢ €

H'(9B)) be a function such that its 2m-homogeneous extension z(r,0) :=r*"c(8) €

o and |[c||;298,) = 1.
Then there exist a constant € = €(d,m) > 0 and a function h € o/ with h = ¢
on 0B and

©.1) Wom(h) < (1+€)Wom(2).

Proof. For j € N, let ¢; be the eigenfunctions of the Laplacian on dBj, A; and
o; the corresponding eigenvalues and homogeneities (see Subsection 2.4). We
decompose ¢ in Fourier as

CZZCJ-(PJ-: Z ciQ;+ Z cif;+ Z cjpj=1cctc—+cs
=1 {j:aj<2m} {j:aj=2m} {j:a;>2m}
We consider the maximum of the negative part of c
M := —min {min{c(0),0} : 6 € 9B, 6; =0}.

Since Q contains only low Fourier frequencies, M is controlled by [|Ql|2(95,),
namely, there is a constant C; := C;(d,m) > 0 such that

2

6.2) M2§< y |c‘,~|) <a Y A=al0l2m)
{jraj<2m} {jraj<2m}
Let ot := ot(d,m) € (2m— 1,2m) to be chosen later and let
e 2m—a -
T a42m+d-2
Let Ay, be the eigenfunction built in Remark 4.1, corresponding to the homogene-
ity 2m, such that h,,, = 1 on the hyperplane {x; = 0} N dB;. We set for simplicity
he j(r,0) == (c<(0) +Mhyy(0))r for u =2m,

h(r,0) := (c=(0) — Mhy,(0))r*™,  h=(r,0) :=c=r™"¢;(8).
We notice that z can be written as a sum of these objects and we introduce the en-
ergy competitor £, obtaining by extending the lower modes of ¢ with homogeneity
a and leaving the rest unchanged

(6.4) =heom+h_+hs and  h=h_g+h_+h-.

(6.3) 0.
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Since 0 < h. o > h< 2, on B}, we have that A > z > 0 in B/; moreover, & =z on
dB;.

Next, we compute the energy of z and h. Since h— is harmonic and 2m-
homogenous, and since A is orthogonal in L*(By) and H'(By) to h< , for p =
2m, o0 we have

%m(h<,u +h:+h>) :%m(h<,u +h:+h>) :%m(h<,,u)+%m(h>)'

Thus, we rewrite the quantity in (6.1) and we observe that #5,,(h~) > 0 by Lemma
2.3

Wom(h) — (1 + &) Wom(2) = Wam(h< o) — (1 + &) Wam(h< 2m) — EWam(h)
(65) S %m(h<,a) - (1 +£>W2m(h<,2m)-

Denoting by A the function in (2.8) by Lemma 2.3 we rewrite the right-hand
side as

Wom(he o) — (1 + &) Wam(he om)

6.6)
—A(2m)+A(a)) € -
M2y - & - A+ A(a))eR
Mhanllzzom) =4 50 =2 d+2a—2{j’ajz<2m}( it A(@)e]

Since 2m —1/2 < a < 2m, then setting C> ;== A(2m —1/2) —A(2m—1) > 0, such
that
C
(6.7) Y (A@-A)c=C Y =G0l > FZMZ’
{J,0j<2m} {J,a;j<2m} 1

where in the last inequality we used (6.2). Since —A (2m)+A (&) =e(2m+ o +d —2),
combining (6.5), (6.7) and (6.6) we get

e02m+a+d-—2)? eC,M?
m — (1 m <M2 h m 2 -
Vom(l) = (14 &)W on(2) < Mllh2nlli20m) =556 =3 Ci(d+20—2)
MZE 2 2 CZ
(68) S m (”h2m||L2(aBl)(4m+d) € — a)

Choosing € := g(d,m) small enough, namely « sufficiently close to 2m by the
choice of € in (6.3), we find that the right-hand side in (6.8) is less than or equal to
0, that is (6.1). g

6.2 Proof of Theorem 1.4

We divide the proof in two steps.
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Frequencies % and 2m

We first prove (1.10). Let ¢ : dB; — R be the trace of a 3/2-homogeneous non-
trivial global solution z € ), of the thin-obstacle problem. Let v be the competitor
defined in (3.1). By the optimality of z and the epiperimetric inequality (1.2) we
get that

1
=" < W < - 3 =
0=Hi5(e) < #5500 < (1= 5705 ) #n) =0,

and in particular both the inequalities are in fact equalities. By Remark 3.1 we get
that z = Ch, +r3/%¢, where C > 0, e € dB} and ¢ : dB; — R is an eigenfunction of
the sperical Laplacian, corresponding to the eigenvalue A(2) = 2d, and such that
¢ > 0 on dB). Thus, we have

0= H3s(e) = #ip(h) + #3507 0) + 26 ( | The ¥ F0(0) -3 [ o)
2 %/2(}’) +%/2(r3/2¢) > %/2("3/2(?) >0,

where, by Lemma 2.3 the last inequality is an equality if and only if ¢ = 0. Thus,
z = Ch, for some e € dB| and C > 0. Since 0 # Js), we get that C > 0, which
concludes the proof of (1.10).

We now prove (1.11). Suppose that c € H' (9B ) is the trace of 2m-homogeneous
non-trivial global solution of the thin-obstacle problem. Let & be the competitor
from (4.2). By the optimality of 72"c(8) and the improved version of the logarith-
mic epiperimetric inequality (4.16) we have

0= Wan(") < Wan(h) < Wan(P") (1~ € Wan(P"O)7) — €xl| VoI,

242
= _82HV9¢HL2 37;3

Thus, necessarily [|[Vo@||;2(55,) = 0, that is the Fourier expansion of ¢ on the sphere

dB contains only low frequencies: ¢(6) = Z cj$;(0). Now by Lemma 2.3
{J,0<2m}

we get

1

0= Wom(r’"c) = ———
(™) = a2

Y & —?L(2m))c3 <0,

{J,a;<2m}

and so all coefficients, corresponding to frequencies with o; < 2m, must vanish.
Thus c is a non-zero eigenfunction on the sphere corresponding to the eigenvalue
A(2m) =2m(2m+d —2).

Frequency gap
Let us first prove that
5, =0 forevery A € (3/2,2).
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Let A =3/2+t € (3/2,2) be an admissible frequency and ¢ € H'(9B;) a non-trivial
function whose (3/2+ t)-homogeneous extension r/**¢(8) € 514 18 @ solution
of the thin-obstacle problem. Let v be the competitor from (3.1). By the minimality
of r**'¢(@), Theorem 1.1 and Lemma 2.4, applied with y = 3/2, we have that

Wi o (P e) < Wap(v) < (1 - ) Wi o)

t
_ s B 32+t
(1 2d+3> <1+d+1>%/2(r <)

1 t
l——— ) (1+—= ] >1
( 2d+3>< +d+1>— ’

which implies that 7 > 1/2 and concludes the proof of the claim.
We now fix m € N;.. We will show that there are constants c¢;;, > 0 and ¢;, > 0,
depending only on d and m, such that
5 =0forevery A € 2m—C_,2m+C)\ {2m}.
Let A = 2m +t be an admissible frequency and ¢ € H'(dB;), lellzsy =1, a
trace whose (2m +t)-homogeneous extension 7>"*'¢(8) is a minimizer of the thin-
obstacle problem.

Suppose first that ¢ > 0. Let & be the competitor from (4.2). By the minimality
of r*"*'¢, Theorem 1.2 and Lemma 2.4, applied with u = 2m, we have that

Wom (") < Wa(h) < (1 —&t?) Wam(r*"c)
! 3
= (1—¢et” o b
(1 8t><1+4m+d—2)%/2(r C),

where for the first inequality we used that #5,,(r?"c) > #au(r*"*'c) =t > 0. By
the positivity of #5,,(r*"*c), we get

t
l—et")(1+—-+—= | >1
( )< +4m+d—2>_ ’

which provides us with the constant ¢}/
Let now ¢ < 0. Let & be the competitor from (6.4). By the minimality of 72" ¢,
Proposition 6.1 and Lemma 2.4, applied with 1 = 2m, we have

%m(rz’"”c) < Wom(h) < (1+¢€) %m(rzmc) =(1+¢) <1 + “//3/2(r3/2+’c).

t
dm+d — 2>
Now since #5,,(r*"*c) =t < 0 we get that

N
4m+d2> -

which gives us ¢,, = €(4m+d —2)/(1+ €), where € is the constant from Proposi-
tion 6.1. U

(6.9) (1+¢) <1+
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Remark 6.2. Taking for instance d = 3, m = 2, we show how the constants in
Theorem 1.4 can be made explicit. The polynomial /4 of Remark 4.1 is given by
24— 1003 (x} +x3) + (x] +x3)? (and 174|258,y ~ 9-6), the constant C1 = 16 in
(6.2) is the number of eigenfunctions with homogeneity less than 4, the constant
C, in (6.7) is 15/4. Hence, the optimal € in (6.8) and the corresponding ¢, deduced
from (6.9) are given by

&= i
Cil|hall72 5,112

9¢

7 Regularity of the regular and singular parts of the free-boundary

The first part of Theorem 1.7 was first proved in [2]. Once we have the epiperi-
metric inequality (1.2), it follows by a standard argument that can be found for
example in [8, 13]. So we proceed with the proof of (ii). We start with the follow-
ing proposition.

7.1 Rate of convergence of the blow-up sequences

Before starting the proof we remark that, by a simple scaling argument, if in
Theorem 1.2 we replace the condition (1.3) with

/a dA'<®  and |Wom(z)| < O,
By

for some ® > 0, then the epiperimetric inequality (1.4) still holds, with € replaced
by € ®7. We will use this in the first step of the proof of the following

Proposition 7.1 (Decay of the Weiss’ energy). Let u € H'(By) be a minimizer
of &. Then for every m € N and every compact set K € Bj N.% 2 there is a
constant C := C(m,d, K, ||ul| g1 (p,)) > O such that for every free boundary point
xo € .7*"NK, the following decay holds

(7.1)

ity — tts 2103 < C(—log(t)) ™% forall 0<s<t<dist(K,dB).

In particular the blow-up limit of u at xg is unique.

Proof. We divide the proof in three steps.

Step 1. Applicability of epiperimetric inequality at every scale. Let |, B, u?dx =

®¢. Then, by the monotonicity of ﬂ(?&, for every A (see Lemma 2.2), we deduce

A1+
that

. im HO(RS)
Q) 2/ wdx > onrerdeHui,
02 " (r) (Rf2) 7
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where R := dist(xp,dB)). In particular we have, using again the monotonicity of
H(r

o 2\ d-1+22
ogr‘]_]grrz)lg(R) O, forevery 0 < r <R/2and xo € By .

For what concerns 7/{“0 notice that
WO(R) < RITETA /B |Vul?dx, for every xo € By .
1

Taking A = 2m, it follows that for every 0 < ro < 1 and for every xo € Bi_,,, we
can apply (1.4) for every 0 < r < ro and every rescaling uy, (x) = w with
r m

© depending on ro, d, m and |[u|| ;1 (p,)-

Step 2. Closeness of the blow ups for a given point x¢. Let ro > 0 and xo € B1—,
and let r € (0,79]. Then by Step 1 we can apply (1.4) to uy, , for every 0 < r < ry.
We claim that

1—
litros — gl o) < C(—log(t/ro))™ 7 forall 0<s<t<ry.

We assume xg = 0 without loss of generality, we fix m € N and write 7/ (r) =
W50 (ru). By (2.1)

(7.2)
d. . (d—2+4m) 1 o
57/(1’) = (H (zr) =W (r))+ 7 s (Vu,-v—2mu,)" d

=:f(r)

and the epiperimetric inequality of Theorem 1.2, there exists a radius rp > 0 such
that for every r < ry

d—2+4+4m
r

d
1.3 ()= (W @) =W () + £() = S (1) +2£(r)
where c = €@ ¥(d —2+4m) and y € (0, 1) is a dimensional constant. In particular
we obtain that

d

(7.4) E(

1 d c 1
—;ZWJC(”)ZO

~1
4K — clogr) = WEW(H

and this in turn implies that —%# (r)~7 — cylogr is an increasing function of r,
namely that % (r) decays as

(15 W) < (W (r) " +eylogro—cylogn) T < (—cylog(r/r)) 7.
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For any 0 < s < t < ry we estimate the L' distance between the blow-up at scales s
and ¢ through the Cauchy-Schwarz inequality and the monotonicity formula (7.2)

71
/ |y — ug| d 74! §/ / —|x- Vu, —2u,| drd "
dB; dByJs T

12 (1 _ip (1 2 12
< (dog) /r* /2</3 ot Vit, — 2uy | d%dl) dr
N Bl

r

< (220)" tog(1) ~tog(s)) (7 (1)~ (5)) .

Let 0 <s <1< ry/2and 0 < j<ibesuch that s/ro € 272" ,27%) and t/ro €

[2_21+1 ,2_2j). Applying the previous estimate (7.5) to the exponentially dyadic
decomposition, we obtain

/ |y — | d! §/
(931 aBl

+

Uy — u2,2j+1r0‘ d?=!
i—1
an's Y |
k=j+179Bi
i

<cy (log(27) ~1og(27")) v (722 r) =7 (2 ")) v

k=]

d%d_l

_MS

U, i Uy ok+1 . — U, ok
831) 2 40 2 ro 2 o

<C zl" 2k/27/(2—2’fr0) 1/2 <C ZI: 2(1=1/7)k/2
k=j k=j

(1.7) < 2012 < o log(t/re)) T

where C is a constant, depending on d, m, ro and ||u|;1g,), that may vary from
line to line.

Step 3. Conclusion. We notice that for r < r(z), we have log(t/ry) < %logt, SO

that
e )
llthxg,e — txg sl 198,y < C(—log(z)) 2 forevery 0<s<t<r.
Since u,,, is bounded in L2(dB)) for every t < ry, by possibly enlarging the con-

stant C, the above inequality holds for 0 < s <t < ry. U

7.2 Non-degeneracy of the blow-up

We now use the previous Proposition to prove that the blow-up limits are non-
trivial. This is the only part of the proof of Theorem 1.7 where the frequency of
the point plays a role.
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Lemma 7.2 (Non-degeneracy). Let u € H'(By) be a minimizer of & and let xy €
S, where A € {3/2yU{2m : m € N}. Then the following strict lower bound holds

H>
Ho ;= lim (r) >0.

r—0 pd— 1424

In particular, since by the strong L*(dB1) convergence of Uy, r to the unique blow
up px, we have Hy := || px, leﬁ(aBl)’ it follows that py, is non-trivial.

Proof. Without loss of generality we can suppose that xo = 0. We give the proof
for A :=2m = N(0) for some m € N, the case A = 3/2 being analogous. Assume

by contradiction that
1/2
H(r
h(l’) = (rd(—])> :0(”&)

u(rx)
h(r)
r, and so, by the monotonicity of the frequency function

and consider the sequence u,(x) :=

- It follows that ||u,[|;2(95,) = 1 for every

19 as= D) < N(1) i H) < N(1),

so that, up to a not relabeled subsequence, u, converges weakly in H'(B;) and
strongly in L*(dB;) to some function p, € H'(B;) such that ||pa|;2(9m,) = 1.
Moreover, since N(0) = A, p, is a A-homogeneous function. Notice also that
due to Theorem 2.1 the convergence is locally uniform in B;. Next, for every
u, consider its blow-up sequence [u,|p(x) 1= p*u.(px). By Proposition 7.1, we
know that, for every r > 0, there exists a unique blow-up limit p; , = lim,_,0[u,],.
Moreover, since all the functions u, are uniformly bounded in H' (By), ) <

N(1)+ 1, there is a constant C depending on the dimension, A and N(1) such that

_ =Y
(7.8) urle = parllz o,y < C(—log(t))™ 7 forall 0<t<1,

where we used the regularity of u to replace the L'-norm from Proposition 7.1 with
the L2-norm. Using our contradiction assumption and the strong convergence of
[u]p to py, in L?(dBy), we have

. 1 2 d—1
N = hmi/ u.dit’
1Parllr20m,) p 00 pd- TR Jop U

FA—1422 1 2 i
1 d* " =
faB w2 d.d—1 (rp)d 1424 /aB
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for every r > 0. It follows that, for fixed p > 0 (that we will choose small enough),
we have

1 2 d—1

1= pd—1+21 /aBppld%
<2 [ ppewPartt s 2 [ 2awt
= pd 12k Jop Py — Ur pd—IH2L Jop M
_ 2 2 5 apd—1 2 d—1
_pd%/%p\pl_m d +2/aBl[ur]pdif

2 . i
= pi /aB [P —ur?d A+ C (= log(p))” 7,
P

where the first equality follows from the A-homogeneity of p; and the last inequal-
ity from the rate of decay of [u,], to p; , = 0 in (7.8). Choosing first p > 0 and
then r = r(p) > 0 we reach a contradiction. O

7.3 Proof of Theorem 1.7

Let m € N be fixed and letbe x,x; € . m 1 et Dx, and p,, be the unique blow-
ups of u at x; and x; respectively. Then we can write py, = A1 p1 and p,, = A2 pa,
where p; and p, are normalized such that p;, p» € 7%, \ {0}. Notice that

A9 P pallm) <eld) [ 191060 =pa(9)]d ().
1
since [|p1ll12(98,) = 1 = ||P2ll12(98,) and they are 2m-homogeneous.
Next notice by the triangular inequality
[P, —sz||L1(aBI) < oty = P, ||L1(aBI) + ||Mx17r—“xz7r||u(931) + H”Xzf_pszLl(aBl)

Recalling that u € C"'/* and that Vu(x;) = 0, we estimate the term in the middle
with
(7.10)

UVu(xy +rx+1(xa —x1))||x2 — x1| B
Huxl-,"_uxz,rHL'(aB]) < /&B /O drd ! 1()6)
1

r2m

(r+ 2 —x1) " ey — i | i
< Cllullcrep, ) “am < Clay —xo| M,

where we have set r := |x] —xz\l/“’". Moreover, if we assume that r satisfies the
1—

inequality |rp|(—1log |r0|)727y < dist({x;,x2},dB), then by Proposition 7.1 we see

that

(7.11)

-y

_ly _ Ly
ity = P 120 08y) + s = Prollz1 95,y < C(=log(r)) ™7 =C(—loglxi —xa]) ¥
Putting together this inequality with (7.10) and (7.11), we find

_lr
(7.12) 1Px = Puollerom,) < C(=loglxi —xaf) 7.
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Next, using (2.2) and (7.5) we can estimate
() I

dr \ rd=tein T (—ylog(r/n))7

)

which integrated gives

H*i(t) Ly

2 .
(7.13) T —A; <C(—logt) 7 for all 0 < r < dist(x;,dBy).

Notice that in the previous integration we have used the fact that, by definition of
pi and by the strong convergence in L?(dB;) of the blow ups we have

. HY(r) 2
}E)%rd*1+4m HPx,HLz (9B)) = Ay

Using (7.10) together with (7.13), we get

HY (r) H"' (r) H*(r) H*(r)
2 2 2
Ay — A" <C AXI © d—1+4m +C 'rd1+4m © d—1+4m +C lxz  d—1+4m
iy _
<C(~log(r)) 7 4C [ fud, i, !
(7.10) 1oy

Ly _
(7.14) < C(=log(r)) 7 +Cllux,r ”)Cz,rHil(aBI) < C(=loglxi—xf) 7,

where the choice of r is the same as above.
Finally, using (7.9), (7.12) and (7.14) we easily conclude that
(7.15)
1-y

IP1 = p2lli=(8,) < C(—loglx1 —xa|) 7 for every x1,x; € KN.”*" € By

where the constant C depends on m,d,dist(K,dB).

Now consider the collection of points %{2’", forsomemeNand 0 <k <d—-2
and notice that, for every K € B; N 5’,(2’”, we can apply the Whitney extension
theorem [7, Whitney extension theorem] to extend the function (py)xex C #m,
where A,p, = p, is the unique blow up at x to get a function F € C?"10¢8(R?),
such that 9%F (x) = 9% p(0). Since x € /" and the blow-ups are non-degenerate

(see Lemma 7.2), there are d — 1 — k linearly independent vectors ¢; € RI-1 =
1,...,d —1—k, such that

Vepy #0 onRY .
It follows that there are multi-indexes B; of order |B;| = 2m — 1, such that 9,05 F (x) =
d,,0P 5,(0) # 0. On the other hand
d—1—k
sMmnK=Kc () {9FF=0}
i=1

so that an application of the implicit function theorem in a neighborhood of each
point x € K combined with the arbitrary choice of K yields that for every x € .#>"
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there exists r = r(x) > 0 such that

2" B,(x) is contained in a k-dimensional C!'°¢ submanifold.

From here the conclusion follows. O
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