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Abstract

We introduce a new logarithmic epiperimetric inequality for the 2m-Weiss’ en-
ergy in any dimension and we recover with a simple direct approach the usual
epiperimetric inequality for the 3/2-Weiss’ energy. In particular, even in the latter
case, at difference from the classical statements, we do not assume any a-priori
closeness to a special class of homogeneous function. In dimension 2, we also
prove for the first time the classical epiperimetric inequality for the (2m− 1/2)-
Weiss’ energy, thus covering all the admissible energies.

As a first application, we classify the global λ -homogeneous minimizers of
the thin obstacle problem, with λ ∈ [3/2,2+c]∪

⋃
m∈N(2m−c−m ,2m+c+m), show-

ing as a consequence that the frequencies 3/2 and 2m are isolated and thus im-
proving on the previously known results. Moreover, we give an example of a
new family of (2m− 1/2)-homogeneous minimizers in dimension higher than 2.

Secondly, we give a short and self-contained proof of the regularity of the free
boundary of the thin obstacle problem, previously obtained by Athanasopoulos-
Caffarelli-Salsa [2] for regular points and Garofalo-Petrosyan [11] for singular
points. In particular we improve the C1 regularity of the singular set with fre-
quency 2m by an explicit logarithmic modulus of continuity.

© 2000 Wiley Periodicals, Inc.

1 Introduction

In this paper we study the regular and singular parts of the free-boundary for
solutions of the thin-obstacle problem, that is the minimizers of the Dirichlet en-
ergy

E (u) :=
∫

B1

|∇u|2 dx

in the class of admissible functions

A :=
{

u ∈ H1(B1) : u≥ 0 on B′1 , u(x′,xd) = u(x′,−xd) for every (x′,xd) ∈ B1
}
,
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with Dirichlet boundary conditions u = w on ∂B1. Here and in the rest of the
paper d ≥ 2 is the dimension of the space, B1 ⊂ Rd denotes the unit ball, and
B′1 := B1 ∩{xd = 0}; for any x = (x1, . . . ,xd) ∈ Rd we denote by x′ the vector of
the first (d− 1) coordinates, x′ = (x1, . . . ,xd−1), and w ∈ A is a given boundary
datum.
Given a minimizer u ∈ A of E with Dirichlet boundary conditions, the coinci-
dence set ∆(u)⊂ B′1 is defined as ∆(u) := {(x′,0) ∈ B′1 : u(x′,0) = 0} and the free
boundary Γ(u) of u is the topological boundary of the coincidence set in the relative
topology of B′1.

1.1 State of the art
Athanasopoulos and Caffarelli [1] proved that the optimal regularity of any

local minimizer u is C1,1/2(B+
1 ). Athanasopoulos, Caffarelli and Salsa pioneered

the study of the regularity of the free boundary Γ(u) in [2]. They showed in [2,
Lemma 1] that for every x0 ∈ Γ(u) the Almgren’s frequency function

(0,1−|x0|) 3 r 7→ Nx0(r,u) :=
r
∫

Br(x0)
|∇u|2 dx∫

∂Br(x0)
u2 dH d−1

is monotone nondecreasing in r. Thus, the limit

Nx0(0,u) := lim
r→0

Nx0(r,u)

exists for every point x0 ∈ Γ(u) and the free boundary can be decomposed accord-
ing to the value of the frequency function in zero. We denote the set of points of
frequency λ ∈ R by

S λ (u) := {x ∈ Γ(u) : Nx(0,u) = λ}.
Using the frequency function one can split the free-boundary into the following
three disjoint sets:

• the regular free boundary which consists of the points with the lowest pos-
sible frequency

Reg(u) := S
3/2(u) ;

• the points with even integer frequency S 2m(u), whose union by definition
constitutes the set of singular points Sing(u)

Sing(u) :=
⋃

m∈N
S 2m(u);

• the remaining part, Γ(u)\
(
Reg(u)∪Sing(u)

)
, denoted in the literature by

Other(u).

The first result on the regularity of the free boundary for the thin-obstacle prob-
lem is due to Athanasopoulos, Caffarelli and Salsa. In [2] they give a complete
description of the blow-up limits at the points of frequency 3/2 and prove that the
regular free boundary Reg(u) is locally a (d− 2)-dimensional C1,α hypersurface
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in Rd−1. Later the regular part of the free boundary has been shown to be C∞ in
[6] and analytic in [17] (see also [16, 18]) and analogous results were extended to
more general fractional laplacian (see [4]), of which the thin-obstacle is a particular
example.

Garofalo and Petrosyan (cp. [11, Theorem 2.6.2]) showed that Sing(u) is pre-
cisely the set of points where the coincidence set is asymptotically negligible, that
is

(1.1) Sing(u) =
{

x0 ∈ Γ(u) : lim
r→0

H d−1(∆(u)∩B′r(x0))

H d−1(B′r(x0))
= 0
}
.

With the help of new monotonicity formulas of Weiss and Monneau type, Garofalo
and Petrosyan showed that each set S 2m is contained in a countable union of C1

manifolds in Rd−1.
In general the set Other(u) is not empty nor small compared to the free bound-

ary Γ(u). Indeed, in dimension two the function h(r,θ) = r2m−1/2 sin
(1−4m

2 θ
)

is a
global solution with frequency 2m− 1/2 in zero. Using this example one can eas-
ily construct global solutions in any dimension d ≥ 2 whose entire free-boundary
is a (d− 2)-dimensional plane consisting only of points with frequency 2m− 1/2.
Recently, Focardi and Spadaro [10, 9] proved the H d−2-rectifiability of the set
Other(u) and that it consists of points of frequency 2m− 1/2 up to a set of zero
H d−2 measure, but nothing is known up to now regarding its regularity in dimen-
sion d > 2. We notice that in some special cases, the set Other(u) might be empty.
Indeed, Barrios, Figalli and Ros-Oton proved in [3] that this is precisely the case
when the constraint u(x′,0)≥ 0 is replaced by u(x′,0)≥ ϕ(x′), for any x′ ∈ Rd−1,
where ϕ is a non-zero superharmonic obstacle.

A different approach for the regularity of the free boundary was proposed by
Garofalo-Petrosyan-Vega-Garcia [13] and Focardi-Spadaro [8], following the re-
sult of Weiss [22] for the classical obstacle problem (see also [12, 14, 15] for ap-
plication to more general operator or powers of the laplacian). For points of the
regular free boundary x0 ∈ Reg(u) = S

3/2, they prove an epiperimetric inequality
for the Weiss’ boundary adjusted energy

W x0
λ
(r,u) :=

1
rd−2+2λ

∫
Br(x0)

|∇u|2 dx− λ

rd−1+2λ

∫
∂Br(x0)

u2 dH d−1 ,

which allows to quantify the convergence of W x0
λ
(r,u) as r→ 0 to be of Hölder

type and provides an alternative proof of the C1,α regularity of the free bound-
ary. The epiperimetric inequality approach was first introduced by Reifenberg [19],
White [23] and Taylor [21] in the context of minimal surfaces, later brought to the
classical obstacle problem by Weiss [22] and recently developed in [20] with new
contributions in the framework of free boundaries.
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1.2 Main results
In this paper we show that the epiperimetric inequality is not as a property of the

Weiss’ thin-obstacle energy and its homogeneous minimizers, but it is a property of
the family of Weiss’ energies Wλ , λ = 3/2,2m only. Indeed our approach does not
require any a-priori knowledge of the admissible blow-ups (which in the previous
results [13, 8] for regular points was assumed by requiring a suitable closeness
to the already-known blow up), and actually yields their classification. Moreover,
as usual, it gives a short, self-contained proof of the known regularity of Reg(u)
and, thanks to the direct arguments at the basis of the epiperimetric inequality,
allows to obtain a new logarithmic modulus of continuity for the singular set, which
improves the results of [8, 13].

Moreover, this time assuming closeness to the blow-ups, we show a new di-
rect epiperimetric inequality for the (2m− 1/2)-Weiss’ energy in dimension 2, thus
proving it at every free-boundary point. Furthermore we give an example of a new
family of (2m− 1/2)-homogeneous minimizer, which show why the generalization
of our 2-dimensional proof to higher dimensions is not possible.

Epiperimetric inequalities for Wλ , λ = 3/2,2m, in any dimension
In this section we present our epiperimetric inequalities. Notice that, at differ-

ence from the existing literature, they hold for any trace c without any closeness
assumption to the admissible blow ups. For the energy W3/2 we give a short and
self-contained proof of the following statement.

Theorem 1.1 (Epiperimetric inequality for W3/2). Let d ≥ 2 and B1 ⊂Rd . Then for
every c ∈ H1(∂B1) such that its 3/2-homogeneous extension z(r,θ) := r3/2c(θ)
belongs to A , there exists v ∈A such that v = c on ∂B1 and

(1.2) W3/2(v)≤
(

1− 1
2d +3

)
W3/2(z).

A similar statement was obtained in [13, 8], even though in these papers a further
assumption is required (the closeness of the boundary datum c to the set of admis-
sible blow ups of frequency 3/2) and it is based on a contradiction argument. The
proof of Theorem 1.1 exhibits instead an explicit energy competitor v, by choos-
ing suitable homogeneous extensions for the different modes on the sphere; thus
greatly simplifying the existing proofs. This approach pushes forward the one of
[20], for the Alt-Caffarelli functional in dimension 2.

Our direct approach allows then to obtain a new logarithmic epiperimetric in-
equality for the family of energies W2m, m ∈ N, in any dimension. This, together
with [5], is the first instance in the literature (even in the context of minimal sur-
faces) of an epiperimetric inequality of logarithmic type, and the first instance in
the context of the lower dimensional obstacle problems where an epiperimetric in-
equality for singular points has a direct proof. This result allows us to prove a
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complete and self-contained regularity result for Sing(u) and improve the known
results by giving an explicit modulus of continuity.

Theorem 1.2 (Logarithmic epiperimetric inequality for W2m). Let d ≥ 2, m ∈ N.
For every function c ∈ H1(∂B1) such that its 2m-homogeneous extension z(r,θ) =
r2mc(θ) is in A and

(1.3)
∫

∂B1

c2 dH d−1 ≤ 1 and |W2m(z)| ≤ 1 ,

there are a constant ε = ε(d,m) > 0 and a function h ∈ A , with h = c on ∂B1,
satisfying

(1.4) W2m(h)≤W2m(z)
(
1− ε |W2m(z)|γ

)
, where γ :=

d−2
d

.

We notice that with our method the power 0 < γ < 1 in (1.4) cannot be avoided,
see for instance [5, Example 1]. This is essentially due to the possible conver-
gence of polynomial of fixed degree 2m with low symmetry to ones with higher
symmetry.

Complete analysis of the free boundary points in dimension two
In dimension d = 2, it is known that the only admissible values of the frequency

at points of the free boundary are 3/2,2m and 2m− 1/2, for m ∈N. Theorem 1.1 and
Theorem 1.2 already provide the classical epiperimetric inequalty for the points
3/2 and 2m; indeed, in the case d = 2, we have γ = 0 in (1.4). We complete the
analysis in dimension two by proving an epiperimetric inequality also at the points
of density 2m− 1/2. Before we state the theorem, we recall that in this case the
admissible blow up is (up to a constant and a change of orientation) of the form

h2m−1/2(r,θ) = r
4m−1

2 sin
(

1−4m
2

θ

)
.

Assuming this time a closeness condition to h2m−1/2 we can prove the following.

Theorem 1.3 (Epiperimetric inequality for points of frequency 2m− 1/2 in dimen-
sion two). Let d = 2 and m ∈ N. There exist constants δ > 0 and κ > 0 such that
the following claim holds. For every function c ∈ H1(∂B1) such that its 2m− 1/2

homogeneous extension z ∈A and satisfying

(1.5) ‖c−h2m−1/2‖L2(∂B1) ≤ δ ,

there exists h ∈A such that h|∂B1 = c and

(1.6) W2m−1/2(h)≤ (1−κ)W2m−1/2(z).

In dimension d = 2, the regularity of the free boundary (namely, the fact that they
are isolated in the line) can be obtained also with softer arguments than our epiperi-
metric inequality; however, the previous result allows for instance to show the C1,α

decay of u on the unique blow up at each free boundary point and also provides an
alternative, self-contained approach.



6 MARIA COLOMBO

Application of the epiperimetric inequalities I: homogeneous minimizers and
admissible frequencies

A very important and not yet well-understood question in the contest of the
thin-obstacle problem is the study of the admissible frequencies at free-boundary
points. Indeed nothing is known, except for the gap between 3/2 and 2 (see [2]) and
the recent result of Focardi and Spadaro [10, 9], where they establish that the col-
lection of free-boundary points with frequency different than 3/2, 2m and 2m− 1/2,
is a set of H d−2 measure zero. It is conjectured that these are the only admissible
frequencies, but not even the gap between 2 and the subsequent admissible fre-
quency was known. Indeed, thanks to Theorem 1.4 below, we are able to recover
the gap 3/2−2 and to prove the new result that the frequencies 2m are isolated for
every m ∈ N, where the gap is given by explicit constants.

We say that λ ∈ R is an admissible frequency if there is a solution u ∈ H1(B1)
of the thin-obstacle problem and a point x0 ∈ Γ(u) such that Nx0(0) = λ . For
a minimizer u and an admissible frequency λ = Nx0(0), the monotonicity of the
frequency function implies that, up to a subsequence, ‖ur,x0‖−1

L2(∂B1)
ur,x0 converges,

as r→ 0, weakly in H1(B1) and strongly in L2(B1)∩L2(∂B1) to a λ -homogeneous
global solution p : Rd → R such that ‖p‖L2(∂B1) = 1. In particular, if we denote by

Kλ := {u ∈ H1(B1) : u is a nonzero λ -homogeneous minimizer of E in A }
we have that

if λ is an admissible frequency, then Kλ 6= /0.(1.7)

A complete description of the spaces Kλ and the admissible frequencies is
known only in dimension two, where the only possible values of λ are 3/2, 2m, and
2m− 1/2 for m ∈ N+. However, as a consequence of our logarithmic epiperimetric
inequality we can describe the set Kλ for values of λ close to 2m.

Theorem 1.4 (λ -homogeneous minimizers). Let d ≥ 2. Then for every m ∈ N
there exist constants c±m > 0, depending only on d and m, such that

(1.8) Kλ = /0 for every λ ∈ (3/2,2)∪
⋃

m∈N

(
(2m− c−m ,2m)∪ (2m,2m+ c+m)

)
.

Moreover, setting
(1.9)

he(x) :=
(

2(x′ · e)−
√

(x′ · e)2 + x2
d

)√√
(x′ · e)2 + x2

d + x · e=Re(x′ ·e+ i|xd |)
3/2 ,

we have

(1.10) K3/2 = {C he : e ∈ Sd−1 and C > 0} ,
(1.11)

K2m = {C p2m : p2m is a 2m-homogeneous harmonic polynomial,
p2m ≥ 0 on B′1, ‖p2m‖L2(∂B1) = 1 and C > 0} .
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Remark 1.5. Theorem 1.4 and (1.7) imply that the frequencies 3/2 and 2m, for
every m ∈N, are isolated, and in particular Nx0 /∈ (3/2,2)∪

⋃
m∈N

(
(2m−c−m ,2m)∪

(2m+c+m)
)

for every x0 ∈ Γ(u), where u is a minimizer of the obstacle problem for
general obstacle φ .

At difference with respect to other results where gaps of this kind are estab-
lished, the arguments leading to the constants cm are never by contradiction, hence
the constants cm can be tracked in the proofs (see Remark 6.2 for an explicit exam-
ple).

We wish to stress that the classes K2m and K3/2 were already characterized (see
[2, 11]) and that typically this characterization is needed to prove an epiperimetric
inequality. However our epiperimetric inequalities are a property of the energies
Wλ , and not of a class of blow-ups, and as such allow us to characterize the Kλ as
a corollary.

Remark 1.6. Finally we notice that (1.1) follows immediately from Theorem 1.4,
the classification, thus giving an alternative proof to the one of [11].

The characterization of the class K2m−1/2 in dimension higher than 2 remains a
major open problem. The main difficulty is in the fact that it combines the char-
acteristics of K3/2 and K2m. Indeed, on the one hand its elements with maximal
symmetry must be 0 on half the hyperplane {xd = 0}, as the elements of K3/2, thus
suggesting that they should appear as blow-ups at flat points. On the other hand
we can show that, as in the case of K2m, there is a continuous family of differ-
ent elements of K2m−1/2 which are 0 on half of {xd = 0}, thus showing that they
are not isolated. We give an example of such a family in dimension three in the
following example. Examples in any dimensions can be constructed by extend-
ing the three-dimensional solutions invariantly with respect to the remaining d−3
coordinates.

Example 1. Let d = 3 and m > 1. Then for every t ∈ [0,1] the function

ht(r,θ ,ϕ) =−r2m−1/2 sin2m−5/2
θ
[
sin2

θ sin((2m− 1/2)ϕ)

+ t
(
(4m−2)cos2

θ −1
)

sin((2m− 5/2)ϕ)
]
,

is in K2m−1/2, where the coordinates r > 0, ϕ ∈ (0,2π) and θ ∈ (0,π) are such that

x1 = r sinθ cosϕ, x2 = r cosθ , x3 = r sinθ sinϕ,

is a smooth parametrization of R3 \ ({x3 = 0}∩{x1 ≥ 0}).

The proof is a straightforward computation. The function ht is harmonic on the set
R3 \ ({x3 = 0}∩{x1 ≥ 0}), ht = 0 on {ϕ = 0} = {x3 = 0}∩{x1 > 0} and ht ≥ 0
on {ϕ = π}= {x3 = 0}∩{x1 < 0}. Moreover, ∂ht

∂ϕ
≤ 0 on the set {ϕ = 0}. Thus,

∂ht
∂x3
≤ 0 on the set {x1 > 0}∩{x3 = 0}, ht is superharmonic on B1 and so, it is a

minimizer of E in A .
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Application of the epiperimetric inequalities II: regularity of the free bound-
ary in any dimension

Using the epiperimetric inequalities Theorem 1.1 and Theorem 1.2 we prove
the following regularity result, valid in any dimension.

Theorem 1.7 (Regularity of the Regular and Singular set). Let u ∈Aw be a mini-
mizer of the thin-obstacle energy E .

(i) There exists a dimensional constant α > 0 such that Reg(u) is in B′1 a C1,α

regular open submanifold of dimension (d−2).
(ii) For every m ∈ N and k = 0, . . . ,d−2, S2m

k (u) is contained in the union of
countably many submanifolds of dimension k and class C1,log. In partic-
ular Sing(u) is contained in the union of countably many submanifolds of
dimension (d−2) and class C1,log.

Remark 1.8. If we consider minimizers u ∈ H1(B+
1 ) with Dirichlet boundary con-

ditions of the more general thin-obstacle problem, where we minimize the energy
E in the class of admissible functions

A φ := {u∈H1(B+
1 ) : u≥ φ on B′1 , u(x′,xd) = u(x′,−xd) for every (x′,xd)∈ B1} ,

with φ ∈Cl,β (B′1,R+), then an analogous statement holds, that is
(i) there exists a dimensional constant 0 < α ≤ β such that Reg(u) is in B′1 a

C1,α regular submanifold of dimension (d−2),
(ii) for every 2m < l and k = 0, . . . ,d− 2, S2m

k (u) is contained in the union of
countably many submanifolds of dimension k and class C1,log.

This result can be proved as a standard application of our various epiperimet-
ric inequalities and the almost minimality of the blow-ups at a point of the free-
boundary, which follows from the regularity of the obstacle (see for instance [5]).
In particular it provides an improvement in the regularity of S 2m, 2m < l, from C1

to C1,log of the results of [11, 3].

1.3 Organization of the paper
The paper is organized as follows. We introduce notation and classical results in

Section 2, while Sections 3, 4, and 5 are devoted to the proofs of the epiperimetric
inequalities from Theorems 1.1, 1.2 and 1.3, respectively. Section 6 contains the
proof of Theorem 1.4, which is new and follows from our direct approach to the
epiperimetric inequality. Section 7 is dedicated to the proof of Theorem 1.7 which
is based on arguments of classical flavor and which is adapted to the logarithmic
case.

2 Preliminaries

In this section we recall some properties of the solutions of the thin-obstacle
problem, the frequency function, the Weiss’ boundary adjusted functional and we
deal with some preliminary computations.
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2.1 Regularity of minimizers
The optimal regularity of the solutions of the thin obstacle problem was proved

in [1]. We recall the precise estimate in the following theorem.

Theorem 2.1 (Optimal regularity of minimizers [1]). Let u ∈ A be a minimizer
of E with Dirichlet boundary conditions. Then u ∈ C1,1/2(B+

1/2
) and there exists a

dimensional constant Cd > 0 such that

‖u‖C1,1/2(B+
1/2
) ≤Cd ‖u‖L2(B1) .

2.2 Properties of the frequency function
Let u ∈H1(B1) be a minimizer of the thin-obstacle energy and x0 ∈ Γ(u). Then

we introduce the quantities

Dx0(r) :=
∫

Br(x0)
|∇u|2 dx, Hx0(r) :=

∫
∂Br(x0)

u2 dH d−1 and Nx0(r) :=
r Dx0(r)
Hx0(r)

,

where 0 < r < 1−|x0|. Furthermore in this notation we have

W x0
λ
(r,u) =

1
rd−2+2λ

Dx0(r)− λ

rd−1+2λ
Hx0(r) := W x0

λ
(r) .

In the following we will need the monotonicity of N, which can be found in [2],
and of Wλ , which can be found in [13, 8, 14] in the case of frequency 3/2. For the
sake of completeness we give here a proof in the general case.

Lemma 2.2 (Properties of the frequency function). Let u ∈H1(B1) be a minimizer
of E and x0 ∈ Γ(u), then the following properties hold.

• The functions Nx0(r) and W x0
λ
(r), for any λ > 0, are monotone nonde-

creasing and in particular
(2.1)
d
dr

W x0
λ
(r) =

(d−2+2λ )

r

(
Wλ (zr)−Wλ (ur)

)
+

1
r

∫
∂B1

(∇ur ·ν−λ ur)
2 dH d−1 ,

where ur(x) :=
u(x0 + rx)

rλ
and zr(x) := |x|λ ur (x/|x|).

• For every Nx0(0) > λ , the function
Hx0(r)

rd−1+2λ
is monotone nondecreasing

and in particular

(2.2)
d
dr

(
Hx0(r)

rd−1+2λ

)
= 2

W x0
λ
(r)

r
.
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Proof. For the monotonicity of Wλ , dropping the index x0, we recall the identities

D′(r) = (d−2)
D(r)

r
+2

∫
∂Br

(∂νu)2 dH d−1(2.3)

H ′(r) = (d−1)
H(r)

r
+2

∫
∂Br

u∂νudH d−1(2.4)

D(r) =
∫

∂Br

u∂νudH d−1 .(2.5)

Then, similarly to [8], we compute

W ′
λ
(r) =

D′(r)
rd−2+2λ

− (d−2+2λ )
D(r)

rd−1+2λ
−λ

H ′(r)
rd−1+2λ

+λ (d−1+2λ )
H(r)

rd−1+2λ

(2.6)

(2.4)
= −(d−2+2λ )

r
Wλ (r)−λ (d−2+2λ )

H(r)
rd+2λ

(2.7)

+
D′(r)

rd−2+2λ
+2λ

2 H(r)
rd+2λ

−2λ
D(r)

rd−1+2λ︸ ︷︷ ︸
=:I(r)

.

Next a simple computation shows that

I(r) =
1
r

∫
∂B1

(
|∇ur|2−2λ ur ∂νur +2λ

2 u2
r
)

dH d−1

=
1
r

∫
∂B1

[
(|∂νur|−λ ur)

2 + |∇θ ur|2 +λ
2 u2

r

]
dH d−1

=
1
r

∫
∂B1

(|∂νur|−λ ur)
2 dH d−1 +(d−2+2λ )

∫
B1

|∇zr|2

which, together with (2.6), implies

W ′
λ
(r) =

(d−2+2λ )

r
(Wλ (zr)−Wλ (ur))+

1
r

∫
∂B1

(∇ur ·ν−λ ur)
2 dH d−1 .

In particular, if u minimizes E , then the monotonicity of Wλ follows.
For the second bullet, we can compute

d
dr

(
H(r)

rd−1+2λ

)
=

H ′(r)
rd−1+2λ

− (d−1+2λ )
H(r)
rd+2λ

(2.4)
= (d−1)

H(r)
rd−2+2λ

+
2

rd−1+2λ

∫
∂Br

u∂νudH d−1− (d−1+2λ )
H(r)
rd+2λ

(2.5)
= 2

D(r)
rd−1+2λ

− (2λ )
H(r)
rd+2λ

=
2
r
Wλ (r) .

Notice that Wλ (r) =
H(r)

rd−1+2λ
(N(r)−λ ), so that if N(0)> λ , then Wλ (r) is posi-

tive, by monotonicity of N(r), and the claim follows. �
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2.3 Blow-up sequences, blow-up limits and admissible frequencies
Given a function u ∈A minimizing the energy E and a point x0 ∈S λ , we de-

fine the blow-up sequence of u at x0 by ux0,r(x) := u(x0+rx)
rλ

. Using the monotonicity
of Nx0 and Hx0 it is easy to see that∫

B1

|∇ux0,r|2 dx =
1

rd−2+2λ

∫
Br(x0)

|∇u|2 dx = Nx0(r)
Hx0(r)

rd−1+2λ
≤ Nx0(1)Hx0(1) .

It follows that there exists a subsequence (ux0,rk)k and a function ux0 , which depends
on the subsequence, such that ux0,rk converges weakly in H1(B1) and strongly in
L2(B1)∩L2(∂B1) to some function px0 ∈A . Furthermore by Theorem 2.1 we have
that the convergence is C1,α

loc (B1), for every α < 1/2, and by the minimality of u, it
is also strong in H1(B1). A standard argument using the monotonicity of W x0

λ
then

shows that px0 is a λ -homogeneous global minimizer of E . We say that px0 is a
blow-up limit of u at x0 and we denote by K x0(u) the set of all possible blow-up
limits of u at x0.

2.4 Fourier expansion of the Weiss’ energy
On the (d−1)-dimensional sphere ∂B1⊂Rd we consider the Laplace-Beltrami

operator ∆∂B1 . Recall that the spectrum of ∆∂B1 is discrete and is given by the
decreasing sequence of eigenvalues (counted with the multiplicity)

0 = λ1 ≤ λ2 ≤ ·· · ≤ λk ≤ . . .

The corresponding normalized eigenfunctions φk : ∂B1 → R are the solutions of
the PDEs

−∆∂B1φk = λkφk on ∂B1,
∫

∂B1

φ
2
k dH d−1 = 1.

For every µ ∈ R we will use the notation

(2.8) λ (µ) = µ(µ +d−2),

and we will denote by αk the unique positive real number such that λ (αk) = λk.
It is easy to check that the homogeneous function uk(r,θ) = rαk φk(θ) is harmonic
in Rd if and only if its trace φk is an eigenfunction on the sphere corresponding
to the eigenvalue λk. Moreover, it is well known that in any dimension the homo-
geneities αk are natural numbers and the functions uk are harmonic polynomials of
homogeneity αk. Furthermore for every λ ≥ 0 eigenvalue of the Laplace-Beltrami
operator on the sphere, we define

E(λ ) :=
{

φ ∈ H1(∂B1) : −∆∂B1φ = λ φ and ‖φ‖L2(∂B1) 6= 0
}
,

that is E(λ ) is the eigenspace of ∆∂B1 associated to the eigenvalue λ intersected
with the unit sphere. We write the energy of a homogeneous function in terms of
its Fourier coefficients; a similar lemma can be found in [5, Lemma 2.1], but we
report the short proof for completeness.
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Lemma 2.3. Let d ≥ 2, α ≥ µ > 0 and

(2.9) κα,µ :=
α−µ

α +µ +d−2
.

With the notations above, let ψ =∑
∞
j=1 c jφ j ∈H1(∂B1), and let ϕα(r,θ) := rαψ(θ)

be the α-homogeneous extension of ψ in B1. Then we have

(2.10) Wµ(ϕµ) =
1

2µ +d−2

∞

∑
j=1

(λ j−λ (µ))c2
j ,

(2.11) Wµ(ϕα)− (1−κα,µ)Wµ(ϕµ) =
κα,µ

d +2α−2

∞

∑
j=1

(−λ j +λ (α))c2
j .

Proof. Since ‖ϕ j‖L2(∂B1) = 1 and ‖∇θ ϕ j‖2
L2(∂B1)

= λ j for every j ∈ N, we have

Wµ(ϕα) =
∞

∑
j=1

c2
j

(∫ 1

0
rd−1 dr

∫
∂B1

dH d−1 [
α

2r2α−2
φ

2
j (θ)+ r2α−2|∇θ φ j|2(θ)

]
−µ

∫
∂B1

φ
2
j (θ)dH d−1

)
=

∞

∑
j=1

c2
j

(
α2 +λ j

d +2α−2
−µ

)
,

where in the above identity dθ stands for the Hausdorff measure H d−1 on the
sphere ∂B1. Setting α = µ , we get (2.10). We now notice that for every λ we have(

α2 +λ

d +2α−2
−µ

)
− (1−κα,µ)

(
µ2 +λ

d +2µ−2
−µ

)
=

κα,µ

d +2α−2
(λα −λ ),

which shows (2.11). �

2.5 Energy of homogeneous minimizers
In this subsection we prove a lemma about the energy of homogeneous mini-

mizers which will be useful in their classification.

Lemma 2.4. Let µ ≥ 0 and t ∈ R. If the trace c ∈ H1(∂B1) is such that the
(µ+t)-homogeneous extension rµ+tc(θ)∈A and is a solution of the thin-obstacle
problem, then
(2.12)

Wµ(rµ+tc) = t‖c‖2
L2(∂B1)

and Wµ(rµc) =
(

1+
t

2µ +d−2

)
Wµ(rµ+tc).

Proof. Since the Weiss energy vanishes for minimizers with the corresponding ho-
mogeneity, Wµ+t(rµ+tc(θ)) = 0, by (2.10) we get that

‖∇θ c‖2
L2(∂B1)

= λ (µ + t)‖c‖2
L2(∂B1)

.
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Hence, we have

Wµ(rµ+tc) = Wµ+t(rµ+tc)+ t‖c‖2
L2(∂B1)

= t‖c‖2
L2(∂B1)

and by Lemma 2.3 (2.10)

Wµ(rµc) =
1

2µ +d−2
(‖∇θ c‖2

L2(∂B1)
−λ (µ)‖c‖2

L2(∂B1)
)

=
λ (µ + t)−λ (µ)

2µ +d−2
‖c‖2

L2(∂B1)

=

(
1+

t
2µ +d−2

)
t‖c‖2

L2(∂B1)
=

(
1+

t
2µ +d−2

)
Wµ(rµ+tc).

�

3 Epiperimetric inequality for W3/2: Proof of Theorem 1.1.

In this section, after some preliminary considerations about 3/2-homogeneous
minimizers of E , we prove the epiperimetric inequality at regular points Theorem
1.1.

3.1 The function h3/2

In [2] Athanasopoulos, Caffarelli and Salsa show that there are no point of
frequency smaller than 3/2. On the other hand, one can easily construct global
3/2-homogeneous solution for which the point 0 is on the free boundary. In di-
mension two, one such a solution expressed in polar coordinates is h3/2(r,θ) =
r3/2 cos(3θ/2), for r > 0 and θ ∈ (−π,π). In Rd , it is sufficient to consider the
two-dimensional solution h3/2 extended invariantly in the remaining d− 2 coordi-
nates. More generally, for a given direction e ∈ ∂B1 ∩{xd = 0} we consider the
function he in (1.9), which is a 3/2-homogeneous global solution of the thin obstacle
problem. With a slight abuse of the notation, in polar coordinates, we will some-
times write he(r,θ) = r3/2he(θ). We notice that he has the following properties:

(i) The L2(∂B1)-projection of he(θ) on the space of linear functions is non-zero.
We may suppose that it is given by the trace of the function x 7→ C x · e, for
some constant C > 0. Notice that the space of linear functions coincides
with the eigenspace of the spherical laplacian corresponding to the multiple
eigenvalue λ2 = · · · = λd = d−1. Thus, he has a non-zero (d−1)-mode on
the sphere.

(ii) he is harmonic on B1 \ ({xd = 0}∩{x · e > 0}). Thus, an integration by parts
gives that, for every ψ ∈ H1(B1) such that ψ = 0 on {xd = 0}∩{x · e < 0}
we have ∫

B1

∇he ·∇ψ dx− 3
2

∫
∂B1

heψ dH d−1 = 0.

In particular, W3/2(he) = 0.



14 MARIA COLOMBO

(iii) The derivative ∂he
∂xd

has a jump across the set {xd = 0} ∩ {x · e < 0}. The
distributional laplacian of he on B1, applied to the test function ψ ∈ H1(B1),
is given by∫

B1

ψ∆he dx = 2
∫

B′1∩{x·e<0}

∣∣∣∣∂he

∂xd

∣∣∣∣ψ dH d−1 = 2
∫

B′1
ψ(x′,0)

3√
2
(x′ · e)

1/2
− dx′ .

3.2 Proof of Theorem 1.1
Since the trace c is even with respect to the plane {xd = 0}, its projection on

the eigenspace of linear functions E(λ2) ⊂ H1(B1) is of the form c1 x · e for some
constant c1 > 0 and some e ∈ ∂B1∩{xd = 0}. Let C > 0 be such that the L2(∂B1)-
projections of C he and c on the eigenspace of linear functions E(λ2) are the same.

Consider the function u0 : B1→R given by u0(x) := |xd |3/2. Since u0(θ) is even,
it is orthogonal to the eigenspace E(λ2). Let the constant c0 ∈ R be such that the
projections of c−Che and c0u0 on the eigenspace E(λ1) are the same.

We can now deduce that c : ∂B1 → R can be decomposed in a unique way as
Che + c0u0, which has the same low modes of c, and of φ , which contains only
higher modes on ∂B1

c =Che + c0u0 +φ , φ(θ) = ∑
{ j :λ j>2d}

c jφ j(θ).

The competitor v : B1→ R is then given by

(3.1) v(r,θ) =Cr3/2he(θ)+ c0r3/2u0(θ)+ r2
φ(θ).

We notice that v ∈A . Indeed, since c > 0 on the equator {xd = 0}∩∂B1 and since
C > 0, assures that v(r,θ) ≥ r2c(θ) is non-negative on the (d− 1)-dimensional
ball B′1 := {xd = 0}∩B1. We now compute the energies of r3/2c and v. For any
φ ∈ H1(∂B1) we claim that

(3.2) W3/2(Che + c0u0 +ϕα) =−
3c2

0
4

∫
B1

|xd |dx+W3/2(ψ)+
1

d +α− 1
2

β (φ),

where ϕα(r,θ) := rαφ(θ) denotes the α-homogeneous extension of φ and

β (φ) :=−3
2

c0

∫
∂B1

φ(θ)√
|θd |

dH d−1(θ)+
12√

2
C
∫

∂B′1
φ(θ ′)(θ ′ · e)1/2

− dH d−2(θ ′).

Indeed, expanding W3/2 and integrating by parts we get

W3/2(Che + c0u0 +ϕα) =C2W3/2(he)+W3/2(c0u0 +ϕα)

+2C
(∫

B1

∇he ·∇(cu0 +ϕα)−
3
2

∫
∂B1

he(c0u0 +ϕα)

)
= W3/2(c0u0 +ϕα)−2C

∫
B1

ϕα∆he dx,
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W3/2(c0u0 +ϕα) = c2
0W3/2(u0)+W3/2(ϕα)+2c0

(∫
B1

∇u0 ·∇ϕα −
3
2

∫
∂B1

u0ϕα

)
= c2

0W3/2(u0)+W3/2(ϕα)−2c0

∫
B1

ϕα∆u0 dx.(3.3)

An integration by parts and the fact that ∆u0(x) = 3
4 |xd |−1/2 give that

(3.4) W3/2(u0) =−
∫

B1

u0∆u0 dx =−3
4

∫
B1

|xd |dx < 0 .

The homogeneity of ϕα and the precise expressions of ∆u0 and ∆he give that
(3.5)∫

B1

ϕα∆u0 dx =
∫

B1

ϕα

3
4
|xd |−

1/2 dx =
1

d +α− 1
2

∫
∂B1

φ(θ)
3
4
|θd |−

1/2 dH d−1(θ),

∫
B1

ϕα∆he dx =−2
∫

B′1
ϕα(x′,0)

3√
2
(x′ · e)

1/2
− dx′

=− 1
d +α− 1

2

6√
2

∫
∂B′1

φ(θ ′)(θ ′ · e)
1/2
− dH d−2(θ ′) .(3.6)

Finally, by (3.3), (3.4), (3.5) and (3.6) we get (3.2). Applying (3.2) to α = 3/2 and
α = 2 we get

W3/2(v)−
(

1− 1
2d +3

)
W3/2(z)≤−

3c2
0

4(2d +3)

∫
B1

|xd |dx+ W3/2(ϕ2)(3.7)

−
(

1− 1
2d +3

)
W3/2(ϕ3/2)

≤−
3c2

0
4(2d +3)

∫
B1

|xd |dx,(3.8)

where the last inequality is due to Lemma 2.3 with µ = 3/2 and α = 2. �

Remark 3.1. In this remark we are interested in the equality case of the epiperi-
metric inequality (1.2). Indeed, if there was an equality in (1.2), then by (3.7) we
should have that c0 = 0 and also

W3/2(r
2
φ(θ))−

(
1− 1

2d +3

)
W3/2(r

3/2
φ(θ)) = 0.

By Lemma 2.3, we get that φ is an eigenfunction on the sphere ∂B1 corresponding
to the eigenvalue λ (2) = 2d, that is the restriction of a 2-homogeneous harmonic
polynomial. Moreover, since the trace is c is non-negative on ∂B′1 and he = 0 on
B′1∩{x ·e < 0} we get that φ ≥ 0 on B′1∩{x ·e < 0} and by the fact that φ is even,
we get φ ≥ 0 on B′1.
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4 Logarithmic epiperimetric inequality for W2m: Proof of Theorem 1.2

If W2m(z) ≤ 0, the conclusion is trivial, taking h ≡ z. Thus in the proof we
assume W2m(z)> 0.

Using the notations from Subsection 2.4 we may decompose the trace c in
Fourier series on the sphere as c(θ) = ∑

∞
j=1 c jφ j(θ) = P(θ)+φ(θ), where

(4.1) P(θ) := ∑
{ j :α j≤2m}

c j φ j(θ) and φ(θ) := ∑
{ j :α j>2m}

c j φ j(θ) .

Let
M :=−min

{
min{P(θ),0} : θ ∈ ∂B1, θd = 0

}
,

and let h2m be an eigenfunction, corresponding to the homogeneity 2m, such that
h2m ≡ 1 on the hyperplane {xd = 0}∩∂B1.

Remark 4.1 (Construction of h2m). In order to construct such an eigenfuction we
first notice that the eigenspace corresponding to the homogeneity 2m consists of
the restrictions to the sphere of 2m-homogeneous harmonic polynomials in Rd .
Thus it is sufficient to construct a 2m-homogeneous harmonic polynomial whose
restriction to the space {xd = 0} is precisely

(
x2

1 + · · ·+ x2
d−1

)m. We define

h2m(x1, . . . ,xd) :=
m

∑
n=0

Cnx2n
d (x2

1 + · · ·+ x2
d−1)

m−n,

where C0 = 1 and, for every n≥ 1, Cn is given by the formula

Cn :=−2(m−n+1)(d−1+2m−2n)
2n(2n−1)

Cn−1,

which assures that h2m is harmonic. It is immediate to check that Cn is explicitely
given by

Cn =
(−2)n m!

(2n)!(m−n)!

n

∏
j=1

(d−1+2m−2 j),

which concludes the construction of h2m.

The 2m-homogeneous extension z of c can be written as

z(r,θ) = r2mP(θ)+M r2mh2m(θ)−M r2mh2m(θ)+ r2m
φ(θ).

Our competitor h is given by

(4.2) h(r,θ) = r2mP(θ)+M r2mh2m(θ)−M rαh2m(θ)+ rα
φ(θ).

for some α > 2m to be chosen later. Notice that h is non-negative on the set {xd =
0}∩∂B1.

The homogeneity α ≥ 2m depends on the trace and is determined through the
inequality

(4.3) κα,2m :=
α−2m

α +2m+d−2
= ε‖∇θ φ‖2γ

L2(∂B1)
,
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where we will choose ε > 0 to be small enough, but yet depending only on the
dimension.
We now prove the epiperimetric inequality (1.4). We proceed in three steps.

Step 1. There are explicit (given in (4.8)) constants C1 and C2, depending only on
d and m, such that for every α ∈ (2m,2m+ 1/2) the following inequality does hold:

W2m(h)− (1−κα,2m)W2m(z)≤C1κ
2
α,2m M2−C2κα,2m‖∇θ φ‖2

L2(∂B1)
.(4.4)

We set for simplicity

(4.5)

ψ(r,θ) := ∑
{ j, α j<2m}

c jr2m
φ j(θ),

H2m(r,θ) := M r2mh2m(θ)+ ∑
{ j, α j=2m}

c jr2m
φ j(θ),

ϕ(r,θ) := −M r2mh2m(θ)+ ∑
{ j, α j>2m}

c jr2m
φ j(θ),

ϕ̃(r,θ) := −M rαh2m(θ)+ ∑
{ j, α j>2m}

c jrα
φ j(θ).

Thus, h and z are given by

z = ψ +H2m +ϕ and h = ψ +H2m + ϕ̃.

We first notice that the harmonicity and 2m-homogeneity of H2m imply

W2m(z) = W2m(ψ +ϕ) and W2m(h) = W2m(ψ + ϕ̃).

Moreover, by definition ψ is orthogonal in L2(B1) and H1(B1) to both ϕ and ϕ̃ .
Thus, we get

W2m(z) = W2m(ψ)+W2m(ϕ) and W2m(h) = W2m(ψ)+W2m(ϕ̃).

We now notice that, since ψ contains only lower frequencies, we have W2m(ψ)< 0.
Thus,

W2m(h)− (1−κα,2m)W2m(z) = κα,2mW (ψ)+W2m(ϕ̃)− (1−κα,2m)W2m(ϕ)

≤W2m(ϕ̃)− (1−κα,2m)W2m(ϕ).
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By Lemma 2.3 we have that

W2m(ϕ̃)− (1−κα,2m)W2m(ϕ) = M2‖h2m‖2
L2(∂B1)

κα,2m

d +2α−2
(−λ (2m)+λ (α))

+
κα,2m

d +2α−2

∞

∑
{ j ,α j>2m}

(−λ j +λ (α))c2
j

= M2‖h2m‖2
L2(∂B1)

κ
2
α,2m

(2m+α +d−2)2

d +2α−2

+
κα,2m

d +2α−2

∞

∑
{ j ,α j>2m}

(−λ j +λ (α))c2
j .(4.6)

We now estimate the last term in the right-hand side of (4.7).

∑(λ j−λ (α))c2
j = ∑λ jc2

j −λ (α)∑c2
j

≥∑λ jc2
j −

λ (α)

λ (2m+1) ∑λ jc2
j =

λ (2m+1)−λ (α)

λ (2m+1)
‖∇θ φ‖2

L2(∂B1)
,(4.7)

where all the sums are over { j , α j > 2m}. If we assume that α ∈ (2m,2m+ 1/2),
then (4.7), together with (4.6), gives (4.4) with the constants

(4.8) C1 = (4m+d)‖h2m‖2
L2(∂B1)

and C2 =
λ (2m+1)−λ (2m+ 1/2)

λ (2m+1)
.

In order to conclude the proof of Step 1 we now show that we can choose ε small
enough (depending only on the dimension and m) such that the bounds (1.3) on
the trace c imply that α < 2m+ 1/2. Indeed, by (4.7) with α = 2m and Lemma 2.3
(2.10), we get
(4.9)

‖∇θ φ‖2
L2(∂B1)

≤ λ (2m+1)
4m+d−2 ∑

{ j ,α j>2m}
(λ j−λ (2m))c2

j = λ (2m+1)W2m(r2m
φ(θ)).

Using that c = P+φ , the orthogonality of P and φ on the sphere and Lemma 2.3,
we get that

W2m(r2m
φ(θ)) = W2m(z)−W2m(r2mP(θ))≤W2m(z)+

λ (2m)

2m+d−2
‖P‖2

L2(∂B1)

≤W2m(z)+2m‖c‖2
L2(∂B1)

≤ 1+2m,

where the last inequality is due to (1.3). Together with (4.9) this gives the estimate

‖∇θ φ‖2
L2(∂B1)

≤ (2m+1)2(2m+d−1).

Thus, choosing ε ≤
(
2λ (2m+1)

)−2, we finally obtain

α−2m = (α +2m+d−2)ε‖∇θ φ‖2γ

L2(∂B1)
≤ 2(2m+1)2(2m+d−1)2

ε ≤ 1
2
.
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Step 2. There is a constant C3 > 0, depending on d and m, such that

(4.10) M2 ≤C3‖∇θ φ‖2(1−γ)

L2(∂B1)
.

We start by noticing that there is a constant Lm, depending only on d and m,
such that the eigenfunctions corresponding to the low frequencies are globally Lm-
Lipschitz continuous, that is

‖∇θ φ j‖L∞(∂B1) ≤ Lm , for every j ∈ N such that α j ≤ 2m.

Now, since by hypothesis (1.3) the trace c(θ) is such that ‖P‖2
L2(∂B1)

≤‖c‖2
L2(∂B1)

≤
1, we have that all the constants c j in the Fourier expansion of P are bounded by
1. Thus, the function P : ∂B1 → R is L-Lipschitz continuous for some L > 0,
depending only on d and m. Denoting by P− the negative part of P, P−(θ) =
min{P(θ),0}, we get that

(4.11)
∫
Sd−2

P2
− dH d−2 ≥CdM2

(
M
L

)d−2

=
Cd

Ld−2 Md ,

for some dimensional constant Cd . On the other hand, since P+φ is non-negative
on Sd−2 = {xd = 0}∩∂B1 we get that

(4.12)
∫
Sd−2

φ
2 dH d−2 ≥

∫
Sd−2

P2
− dH d−2.

Now, by the trace inequality on the sphere ∂B1, there is a dimensional constant Cd
such that

(4.13)

∫
Sd−2

φ
2 dH d−2 ≤Cd

(∫
Sd−1
|∇θ φ |2 dH d−1 +

∫
Sd−1

φ
2 dH d−1

)
≤Cd

(
1+

1
λ (2m)

)∫
Sd−1
|∇θ φ |2 dH d−1,

where the last inequality is due to the fact that in the Fourier expansion of φ there
are only frequencies λ j > λ (2m). Combining (4.11), (4.12) and (4.13), we get
(4.10).

Notice that in this step we used the non-negativity of the trace c (in the in-
equality (4.12)) and also the condition that c is bounded in L2(∂B1) (when we give
the Lipschitz bound on P). More precisely, the constant C3 depends on the norm
‖P‖L2(∂B1), which in turn is bounded by one.

Step 3. Conclusion of the proof of Theorem 1.2. By Step 1 (4.4) and Step 2 (4.10)
we get

W2m(h)− (1−κα,2m)W2m(z)≤C1κ
2
α,2mM2−C2κα,2m‖∇θ φ‖2

L2(∂B1)

≤ κ
2
α,2mC1C3‖∇θ φ‖2(1−γ)

L2(∂B1)
−C2κα,2m‖∇θ φ‖2

L2(∂B1)

= ε (εC1C3−C2)‖∇θ φ‖2+2γ

L2(∂B1)
,(4.14)
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where the last equality is due to the definition (4.3) of κα,2m. Choosing ε ≤ C2

C1C3
,

we get that

(4.15) W2m(h)−
(

1− ε‖∇θ φ‖2γ

L2(∂B1)

)
W2m(z)≤ 0.

Using again Lemma 2.3, we have

W2m(z) =
1

4m+d−2

∞

∑
j=1

(λ j−λ (2m))c2
j

≤ 1
4m+d−2

∞

∑
{ j ,α j>2m}

(λ j−λ (2m))c2
j ≤

∞

∑
{ j ,α j>2m}

λ jc2
j = ‖∇θ φ‖2

L2(∂B1)
.

which together with (4.15) gives

W2m(h)≤
(

1− ε ‖∇θ φ‖2γ

L2(∂B1)

)
W2m(z)≤

(
1− ε W γ

2m(z)
)
W2m(z),

which is precisely (1.4). �
We conclude this section with the following Remark, which will be useful for

the characterization of the possible blow-up limits.

Remark 4.2. In the hypotheses of Theorem 1.2, we have the following, slightly
stronger version of the logarithmic epiperimetric inequality:

(4.16) W2m(h)≤W2m(z)
(
1− ε |W2m(z)|γ

)
−C2ε

2
‖∇θ φ‖2+2γ

L2(∂B1)
,

for which it is sufficient to choose 0 < ε < C2
2C1C3

in (4.14), φ being the function
defined in (4.1) containing the higher modes of the trace c on the sphere ∂B1.

5 Epiperimetric inequality for W2m−1/2 in dimension two: Proof of
Theorem 1.3

We prove the theorem in several steps.
Step 1. Sectorial decomposition of h2m−1/2. We notice that the function h2m−1/2 has
4m−1 half-lines from the origin along which it vanishes. These lines correspond
to the angles

si :=
2i

4m−1
π, for i = 1, ...,4m−1,

and they individuate 4m− 1 circular sectors in B1 corresponding to the nodal do-
mains of h2m−1/2. We consider the following 2m sets, which are invariant under the
transformation θ →−θ

S j =
{
(r,θ) : r ∈ [0,1], θ ∈ ]s j−1,s j[∪ ]2π− s j,2π− s j−1[

}
,
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where j = 1, . . . ,2m. Notice that S1, . . . ,S2m−1 are unions of two sectors of angle
2π

4m−1 , while S2m is the sector
{
(r,θ) : r ∈ [0,1], θ ∈ ]s2m−1,s2m[

}
. We define the

restrictions of h2m−1/2 to these sectors for j = 1, ...,2m

f j(r,θ) :=1S j(r,θ)h2m−1/2(r,θ) =
(
1]s j−1,s j[(θ)+1]2π−s j,2π−s j−1[(θ)

)
h2m−1/2(r,θ).

We notice that, since h2m−1/2 vanishes on B1 ∩ ∂S j, the fuctions f j are in H1(B1).
Moreover, they are (2m− 1/2)-homogeneous even functions, namely f j(r,θ) =
r2m−1/2 f j(θ) and f j(r,θ) = f j(r,−θ). We claim that for any b1, ...,b2m ∈ R

(5.1) W2m−1/2

( 2m

∑
i=1

bi fi

)
= 0.

Indeed, since the energy W2m−1/2 is quadratic in its argument and for every i 6=
j the supports of fi and f j have negligible intersection, the energy of the linear
combination is given by

W2m−1/2

( 2m

∑
i=1

bi fi

)
=

2m

∑
i=1

b2
i W2m−1/2( fi).

Moreover the functions fi are harmonic in each S j and vanish on the rays delimit-
ing their support, that is on ∂S j ∩B1. Thus W2m−1/2( fi) = 0 for every i = 1, ...,2m,
so that the previous inequality implies (5.1).

Step 2. Decomposition of the datum c. We claim that we can write c in a unique
way as

c(θ) =
2m

∑
i=1

ai fi(θ)+ c̃(θ) on ∂B1,

where

• a1, ...,a2m ∈ R and a2m > 0
• c̃∈H1(∂B1) is even and it is orthogonal in L2(∂B1) to 1,cos(θ), ...,cos((2m−

1)θ).

To prove this claim, we call L the span of 1, cos(θ),..., cos((2m− 1)θ), which is
a linear subspace of L2(∂B1) of dimension 2m. We set PL(c) to be the projection
of c onto L. To show the existence of a1, ...,a2m ∈ R, it is enough to prove that the
2m functions PL( f1), ...,PL( f2m) are linearly independent, so that their span gives
the whole L. Hence, we take any linear combination b1 f1 + ...+ b2m f2m, such
that its projection on L is 0, aiming to prove that b1 = ...= b2m = 0. By (5.1), the
energy of b1 f1+ ...+b2m f2m is 0. On the other hand, since the function b1 f1+ ...+
b2m f2m is assumed to have only modes higher than 2m− 1/2 on ∂B1, its (2m− 1/2)-
homogenous extension has nonnegative energy thanks to (2.10), and its energy is 0
if and only if b1 f1 + ...+b2m f2m ≡ 0. Hence, this must be the case. Hence we can
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write in a unique way PL(c) as a linear combination of PL( f1), ...,PL( f2m)

PL(c) =
2m

∑
i=1

aiPL( fi).

Since c is assumed to be close to h2m−1/2 by (1.5), and since h2m−1/2 is strictly posi-
tive on the support of f2m, we can assume without loss of generality that a2m > 0.
Finally, we set c̃ = c−∑

2m
i=1 ai fi.

Step 3. Choice of an energy competitor and computation of the energy. We let
α > 2m−1/2 to be chosen later and we define an energy competitor for c as

h(r,θ) :=
2m

∑
j=1

a j f j(r,θ)+ rα c̃(θ) = r
4m−1

2 (c− c̃)+ rα c̃.

The energy of h can be written as

W2m−1/2(h) =W2m−1/2

(
r

4m−1
2 (c− c̃)

)
+W2m−1/2

(
rα c̃
)

+2
∫

B1

∇
(
r

4m−1
2 (c− c̃)

)
·∇
(
rα c̃
)

dH 2− (4m−1)
∫

∂B1

(c− c̃)c̃ dH 1.

By the deinition of c̃ and Step 1 we have that the first term in the right-hand side
vanishes:

W2m−1/2(h) =W2m−1/2

(
rα c̃
)
+2

2m

∑
j=1

a j

(∫
B1

∇ f j ·∇
(
rα c̃
)

dH 2− (4m−1)
∫

∂B1

f jc̃ dH 1
)
.

(5.2)

We rewrite the middle term integrating by parts, and using that ∆ f j = 0 on { f j 6= 0}

∫
B1

∇ f j ·∇
(
rα c̃
)

dH 2 =
∫

S j

rα c̃(θ)∆ f j +
∫

∂S j

∂ f j

∂n
rα c̃

= 2
∫

∂B+
1 ∩S j

∂ f j

∂ r
rα c̃(θ)dH 1 +2

∫
{θ=s j}

1
r

∂ f j

∂θ
rα c̃(θ)dH 1

−2
∫
{θ=s j−1}

1
r

∂ f j

∂θ
rα c̃(θ)dH 1.
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Now since f j is (2m− 1/2)-homogeneous we can write f j(r,θ) = r2m−1/2 f j(θ) and
we get that

2
∫

∂B+
1 ∩S j

∂ f j

∂ r
rα c̃(θ)dH 1 = 2

∫
∂B+

1 ∩S j

∂r(r2m−1/2 f j(θ))rα c̃(θ)dH 1

= (4m−1)
∫

∂B+
1

f jc̃ dH 1,

2
∫
{θ=s j}

1
r

∂ f j

∂θ
rα c̃(θ)dH 1−2

∫
{θ=s j−1}

1
r

∂ f j

∂θ
rα c̃(θ)dH 1

= 2
∫ 1

0
rα+ 4m−3

2 (∂θ f j(s j)c̃(s j)−∂θ f j(s j−1)c̃(s j−1)) dr

=
2

α +2m−1/2
(
∂θ f j(s j)c̃(s j)−∂θ f j(s j−1)c̃(s j−1)

)
.

Hence we can rewrite (5.2) as
(5.3)

W2m−1/2(h)=W2m−1/2

(
rα c̃
)
+

2
α +2m−1/2

2m

∑
j=1

a j
(
∂θ f j(s j)c̃(s j)−∂θ f j(s j−1)c̃(s j−1)

)
.

Since the previous two equalities hold also when α = 2m−1/2, we see that
(5.4)

W2m−1/2(z)=W2m−1/2

(
r

4m−1
2 c̃
)
+

2
4m−1

2m

∑
j=1

a j
(
∂θ f j(s j)c̃(s j)−∂θ f j(s j−1)c̃(s j−1)

)
.

Step 4. Conclusion. Setting κα,2m−1/2 according to (2.9), a suitable linear combi-
nation between the last terms in (5.3) and (5.4) is 0, because by the defintion of
κα,2m−1/2 we have

(5.5)
2

α +2m−1/2
− (1−κα,2m−1/2)

2
4m−1

= 0.

Putting together (5.3), (5.4) and (5.5), we find

W2m−1/2(h)− (1−κα,2m−1/2)W2m−1/2(z)

= W2m−1/2

(
rα c̃
)
− (1−κα,2m−1/2)W2m−1/2

(
r

4m−1
2 c̃
)
.

Thanks to Lemma 2.3, in particular to (2.11), we obtain that

W2m−1/2

(
rα c̃
)
− (1−κα,2m−1/2)W2m−1/2

(
r

4m−1
2 c̃
)
≤ 0,

because by definition c̃ is orthogonal to 1,cos(θ), ...,cos((2m− 1)θ) (which, in
dimension 2, are the only eigenfunctions with corresponding homogeneity less
than or equal to 2m− 1/2). �
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6 Admissible frequencies for the thin-obstacle problem

We first prove an easy version of the epiperimetric inequality useful for negative
energies. Then we use this result, together with Lemma 2.4 and Theorems 1.1 and
1.2 to conclude the proof of Theorem 1.4.

6.1 Epiperimetric inequality for negative energies
The following proposition gives an epiperimetric inequality for negative ener-

gies.

Proposition 6.1 (Epiperimetric inequality for negative energies). Let d ≥ 2, c ∈
H1(∂B1) be a function such that its 2m-homogeneous extension z(r,θ) := r2mc(θ)∈
A and ‖c‖L2(∂B1) = 1.

Then there exist a constant ε = ε(d,m) > 0 and a function h ∈ A with h = c
on ∂B1 and

(6.1) W2m(h)≤ (1+ ε)W2m(z).

Proof. For j ∈ N, let φ j be the eigenfunctions of the Laplacian on ∂B1, λ j and
α j the corresponding eigenvalues and homogeneities (see Subsection 2.4). We
decompose c in Fourier as

c =
∞

∑
j=1

c jφ j = ∑
{ j :α j<2m}

c j φ j + ∑
{ j :α j=2m}

c j φ j + ∑
{ j :α j>2m}

c j φ j =: c<+ c=+ c>

We consider the maximum of the negative part of c<

M :=−min
{

min{c<(θ),0} : θ ∈ ∂B1, θd = 0
}
.

Since Q contains only low Fourier frequencies, M is controlled by ‖Q‖L2(∂B1),
namely, there is a constant C1 :=C1(d,m)> 0 such that

(6.2) M2 ≤
(

∑
{ j :α j<2m}

|c j|
)2
≤C1 ∑

{ j :α j<2m}
c2

j =C1‖Q‖2
L2(∂B1)

.

Let α := α(d,m) ∈ (2m−1,2m) to be chosen later and let

(6.3) ε :=
2m−α

α +2m+d−2
> 0.

Let h2m be the eigenfunction built in Remark 4.1, corresponding to the homogene-
ity 2m, such that h2m ≡ 1 on the hyperplane {xd = 0}∩∂B1. We set for simplicity

h<,µ(r,θ) := (c<(θ)+Mh2m(θ))rµ for µ = 2m,α,

h=(r,θ) := (c=(θ)−Mh2m(θ))r2m, h>(r,θ) := c>r2m
φ j(θ).

We notice that z can be written as a sum of these objects and we introduce the en-
ergy competitor h, obtaining by extending the lower modes of c with homogeneity
α and leaving the rest unchanged

(6.4) z = h<,2m +h=+h> and h = h<,α +h=+h>.
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Since 0 ≤ h<,α ≥ h<,2m on B′1, we have that h ≥ z ≥ 0 in B′1; moreover, h = z on
∂B1.

Next, we compute the energy of z and h. Since h= is harmonic and 2m-
homogenous, and since h> is orthogonal in L2(B1) and H1(B1) to h<,µ , for µ =
2m,α we have

W2m(h<,µ +h=+h>) = W2m(h<,µ +h=+h>) = W2m(h<,µ)+W2m(h>).

Thus, we rewrite the quantity in (6.1) and we observe that W2m(h>)≥ 0 by Lemma
2.3

W2m(h)− (1+ ε)W2m(z) = W2m(h<,α)− (1+ ε)W2m(h<,2m)− εW2m(h>)

≤W2m(h<,α)− (1+ ε)W2m(h<,2m).(6.5)

Denoting by λ the function in (2.8) by Lemma 2.3 we rewrite the right-hand
side as

W2m(h<,α)− (1+ ε)W2m(h<,2m)

= M2‖h2m‖2
L2(∂B1)

ε(−λ (2m)+λ (α))

d +2α−2
− ε

d +2α−2

∞

∑
{ j ,α j<2m}

(−λ j +λ (α))c2
j .

(6.6)

Since 2m− 1/2 < α < 2m, then setting C2 := λ (2m−1/2)−λ (2m−1)> 0, such
that

∑
{ j ,α j<2m}

(λ (α)−λ j)c2
j ≥C2 ∑

{ j ,α j<2m}
c2

j =C2‖Q‖2
L2(∂B1)

≥ C2

C1
M2,(6.7)

where in the last inequality we used (6.2). Since−λ (2m)+λ (α)= ε(2m+α +d−2)2,
combining (6.5), (6.7) and (6.6) we get

W2m(h)− (1+ ε)W2m(z)≤M2‖h2m‖2
L2(∂B1)

ε2(2m+α +d−2)2

d +2α−2
− εC2M2

C1(d +2α−2)

≤ M2ε

d +2α−2

(
‖h2m‖2

L2(∂B1)
(4m+d)2

ε−C2

C1

)
.(6.8)

Choosing ε := ε(d,m) small enough, namely α sufficiently close to 2m by the
choice of ε in (6.3), we find that the right-hand side in (6.8) is less than or equal to
0, that is (6.1). �

6.2 Proof of Theorem 1.4
We divide the proof in two steps.
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Frequencies 3
2 and 2m

We first prove (1.10). Let c : ∂B1→ R be the trace of a 3/2-homogeneous non-
trivial global solution z∈K3/2 of the thin-obstacle problem. Let v be the competitor
defined in (3.1). By the optimality of z and the epiperimetric inequality (1.2) we
get that

0 = W3/2(z)≤W3/2(v)≤
(

1− 1
2d +3

)
W3/2(z) = 0,

and in particular both the inequalities are in fact equalities. By Remark 3.1 we get
that z =Che+r3/2φ , where C≥ 0, e∈ ∂B′1 and φ : ∂B1→R is an eigenfunction of
the sperical Laplacian, corresponding to the eigenvalue λ (2) = 2d, and such that
φ ≥ 0 on ∂B′1. Thus, we have

0 = W3/2(z) = W3/2(h)+W3/2(r
3/2

φ)+2C
(∫

B1

∇he ·∇(r3/2
φ(θ))− 3

2

∫
∂B1

heφ dH d−1
)

≥W3/2(h)+W3/2(r
3/2

φ)≥W3/2(r
3/2

φ)≥ 0,

where, by Lemma 2.3 the last inequality is an equality if and only if φ ≡ 0. Thus,
z = Che for some e ∈ ∂B′1 and C ≥ 0. Since 0 6= K3/2 we get that C > 0, which
concludes the proof of (1.10).

We now prove (1.11). Suppose that c∈H1(∂B1) is the trace of 2m-homogeneous
non-trivial global solution of the thin-obstacle problem. Let h be the competitor
from (4.2). By the optimality of r2mc(θ) and the improved version of the logarith-
mic epiperimetric inequality (4.16) we have

0 = W2m(r2mc)≤W2m(h)≤W2m(r2mc)
(
1− ε |W2m(r2mc)|γ

)
− ε2‖∇θ φ‖2+2γ

L2(∂B1)

=−ε2‖∇θ φ‖2+2γ

L2(∂B1)
.

Thus, necessarily ‖∇θ φ‖L2(∂B1) = 0, that is the Fourier expansion of c on the sphere
∂B1 contains only low frequencies: c(θ) = ∑

{ j ,α j≤2m}
c jφ j(θ). Now by Lemma 2.3

we get

0 = W2m(r2mc) =
1

4m+d−2 ∑
{ j ,α j≤2m}

(λ j−λ (2m))c2
j ≤ 0,

and so all coefficients, corresponding to frequencies with α j < 2m, must vanish.
Thus c is a non-zero eigenfunction on the sphere corresponding to the eigenvalue
λ (2m) = 2m(2m+d−2).

Frequency gap

Let us first prove that

Kλ = /0 for every λ ∈ (3/2,2).
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Let λ = 3/2+ t ∈ (3/2,2) be an admissible frequency and c ∈H1(∂B1) a non-trivial
function whose (3/2+ t)-homogeneous extension r3/2+tc(θ) ∈K3/2+t is a solution
of the thin-obstacle problem. Let v be the competitor from (3.1). By the minimality
of r3/2+tc(θ), Theorem 1.1 and Lemma 2.4, applied with µ = 3/2, we have that

W3/2(r
3/2+tc)≤W3/2(v)≤

(
1− 1

2d +3

)
W3/2(r

3/2c)

=

(
1− 1

2d +3

)(
1+

t
d +1

)
W3/2(r

3/2+tc).

Since W3/2(r
3/2+tc)> 0, we get(

1− 1
2d +3

)(
1+

t
d +1

)
≥ 1,

which implies that t ≥ 1/2 and concludes the proof of the claim.
We now fix m ∈ N+. We will show that there are constants c+m > 0 and c−m > 0,

depending only on d and m, such that
Kλ = /0 for every λ ∈ (2m−C−,2m+C+)\{2m}.

Let λ = 2m + t be an admissible frequency and c ∈ H1(∂B1), ‖c‖L2(B1) = 1, a
trace whose (2m+ t)-homogeneous extension r2m+tc(θ) is a minimizer of the thin-
obstacle problem.

Suppose first that t > 0. Let h be the competitor from (4.2). By the minimality
of r2m+tc, Theorem 1.2 and Lemma 2.4, applied with µ = 2m, we have that

W2m(r2m+tc)≤W2m(h)≤ (1− εtγ)W2m(r2mc)

= (1− εtγ)

(
1+

t
4m+d−2

)
W3/2(r

3/2+tc),

where for the first inequality we used that W2m(r2mc) ≥W2m(r2m+tc) = t > 0. By
the positivity of W2m(r2m+tc), we get

(1− εtγ)

(
1+

t
4m+d−2

)
≥ 1,

which provides us with the constant c+m .
Let now t < 0. Let h be the competitor from (6.4). By the minimality of r2m+tc,

Proposition 6.1 and Lemma 2.4, applied with µ = 2m, we have

W2m(r2m+tc)≤W2m(h)≤ (1+ ε)W2m(r2mc) = (1+ ε)

(
1+

t
4m+d−2

)
W3/2(r

3/2+tc).

Now since W2m(r2m+tc) = t < 0 we get that

(6.9) (1+ ε)

(
1+

t
4m+d−2

)
≤ 1,

which gives us c−m = ε(4m+d−2)/(1+ ε), where ε is the constant from Proposi-
tion 6.1. �
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Remark 6.2. Taking for instance d = 3, m = 2, we show how the constants in
Theorem 1.4 can be made explicit. The polynomial h4 of Remark 4.1 is given by
32
3 x4

3−10x2
3(x

2
1 + x2

2)+(x2
1 + x2

2)
2 (and ‖h4‖L2(∂B1) ∼ 9.6), the constant C1 = 16 in

(6.2) is the number of eigenfunctions with homogeneity less than 4, the constant
C2 in (6.7) is 15/4. Hence, the optimal ε in (6.8) and the corresponding c−2 deduced
from (6.9) are given by

ε =
C2

C1‖h4‖2
L2(∂B1)

112 and c−2 =
9ε

1+ ε
≥ 0.0015.

7 Regularity of the regular and singular parts of the free-boundary

The first part of Theorem 1.7 was first proved in [2]. Once we have the epiperi-
metric inequality (1.2), it follows by a standard argument that can be found for
example in [8, 13]. So we proceed with the proof of (ii). We start with the follow-
ing proposition.

7.1 Rate of convergence of the blow-up sequences
Before starting the proof we remark that, by a simple scaling argument, if in

Theorem 1.2 we replace the condition (1.3) with∫
∂B1

c2 dH d−1 ≤Θ and |W2m(z)| ≤Θ,

for some Θ > 0, then the epiperimetric inequality (1.4) still holds, with ε replaced
by ε Θ−γ . We will use this in the first step of the proof of the following

Proposition 7.1 (Decay of the Weiss’ energy). Let u ∈ H1(B1) be a minimizer
of E . Then for every m ∈ N and every compact set K b B′1 ∩S 2m, there is a
constant C := C(m,d,K,‖u‖H1(B1)) > 0 such that for every free boundary point
x0 ∈S 2m∩K, the following decay holds
(7.1)
‖ux0,t −ux0,s‖L1(∂B1) ≤C (− log(t))−

1−γ

2γ for all 0 < s < t < dist(K,∂B1) .

In particular the blow-up limit of u at x0 is unique.

Proof. We divide the proof in three steps.
Step 1. Applicability of epiperimetric inequality at every scale. Let

∫
B1

u2 dx =

Θ0. Then, by the monotonicity of Hx0 (r)
rd−1+2λ

, for every λ (see Lemma 2.2), we deduce
that

Θ0 ≥
∫

BR(x0)
u2 dx≥

∫ R

R/2

Hx0(r)dr ≥ (R/2)d−1+2λ Hx0(R/2)
R/2

,
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where R := dist(x0,∂B1). In particular we have, using again the monotonicity of
Hx0 (r)
rd−1+2λ

,

0≤ Hx0(r)
rd−1+2λ

≤
(

2
R

)d−1+2λ

Θ0 , for every 0 < r < R/2 and x0 ∈ B1 .

For what concerns W x0
λ

notice that

W x0
λ
(R)≤ Rd−2+2λ

∫
B1

|∇u|2 dx , for every x0 ∈ B1 .

Taking λ = 2m, it follows that for every 0 < r0 ≤ 1 and for every x0 ∈ B1−r0 , we

can apply (1.4) for every 0 < r < r0 and every rescaling ux0,r(x) =
u(x0 + rx)

r2m with

Θ depending on r0, d, m and ‖u‖H1(B1).

Step 2. Closeness of the blow ups for a given point x0. Let r0 > 0 and x0 ∈ B1−r0

and let r ∈ (0,r0]. Then by Step 1 we can apply (1.4) to ux0,r for every 0 < r < r0.
We claim that

‖ux0,t −ux0,s‖L1(∂B1) ≤C (− log(t/r0))
− 1−γ

2γ for all 0 < s < t < r0 .

We assume x0 = 0 without loss of generality, we fix m ∈ N and write W (r) =
W x0

2m(r,u). By (2.1)
(7.2)

d
dr

W (r) =
(d−2+4m)

r
(W (zr)−W (r))+

1
r

∫
∂B1

(∇ur ·ν−2mur)
2 dH d−1︸ ︷︷ ︸

=: f (r)

and the epiperimetric inequality of Theorem 1.2, there exists a radius r0 > 0 such
that for every r ≤ r0

(7.3)
d
dr

W (r)≥ d−2+4m
r

(
W (zr)−W (r)

)
+ f (r)≥ c

r
W (r)1+γ +2 f (r)

where c = ε Θ−γ(d−2+4m) and γ ∈ (0,1) is a dimensional constant. In particular
we obtain that

(7.4)
d
dr

( −1
γW (r)γ

− c logr
)
=

1
W (r)1+γ

d
dr

W (r)− c
r
≥ 1

W (r)1+γ
f (r)≥ 0

and this in turn implies that −W (r)−γ − cγ logr is an increasing function of r,
namely that W (r) decays as

(7.5) W (r)≤ (W (r0)
−γ + cγ logr0− cγ logr)

−1
γ ≤ (−cγ log(r/r0))

−1
γ .
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For any 0 < s < t < r0 we estimate the L1 distance between the blow-up at scales s
and t through the Cauchy-Schwarz inequality and the monotonicity formula (7.2)∫

∂B1

|ut −us| d H d−1 ≤
∫

∂B1

∫ t

s

1
r
|x ·∇ur−2ur| dr dH n−1

≤
(
dωd

)1/2
∫ t

s
r−1/2

(
1
r

∫
∂B1

|x ·∇ur−2ur|2 dH d−1
)1/2

dr

≤
(dωd

2

)1/2 ∫ t

s
r−1/2(W ′(r))1/2 dr(7.6)

≤
(dωd

2

)1/2
(log(t)− log(s))1/2(W (t)−W (s))1/2 .

Let 0 < s < t < r0/2 and 0 ≤ j ≤ i be such that s/r0 ∈ [2−2i+1
,2−2i

) and t/r0 ∈
[2−2 j+1

,2−2 j
). Applying the previous estimate (7.5) to the exponentially dyadic

decomposition, we obtain∫
∂B1

|ut −us|dH d−1 ≤
∫

∂B1

∣∣∣ut −u2−2 j+1 r0

∣∣∣ dH d−1

+
∫

∂B1

∣∣∣u2−2i r0
−us

∣∣∣ dH d−1 +
i−1

∑
k= j+1

∫
∂B1

∣∣∣u2−2k+1 r0
−u2−2k r0

∣∣∣ dH d−1

≤C
i

∑
k= j

(
log
(
2−2k)− log

(
2−2k+1))1/2(

W
(
2−2k

r0
)
−W

(
2−2k+1

r0
))1/2

≤C
i

∑
k= j

2k/2W
(
2−2k

r0
)1/2 ≤C

i

∑
k= j

2(1−1/γ)k/2

≤C2(1−1/γ)i/2 ≤C(− log(t/r0))
γ−1
2γ ,(7.7)

where C is a constant, depending on d, m, r0 and ‖u‖H1(B1), that may vary from
line to line.

Step 3. Conclusion. We notice that for t ≤ r2
0, we have log(t/r0) ≤ 1

2 log t, so
that

‖ux0,t −ux0,s‖L1(∂B1) ≤C (− log(t))−
1−γ

2γ for every 0 < s < t < r2
0.

Since ux0,t is bounded in L2(∂B1) for every t ≤ r0, by possibly enlarging the con-
stant C, the above inequality holds for 0 < s < t < r0. �

7.2 Non-degeneracy of the blow-up
We now use the previous Proposition to prove that the blow-up limits are non-

trivial. This is the only part of the proof of Theorem 1.7 where the frequency of
the point plays a role.
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Lemma 7.2 (Non-degeneracy). Let u ∈ H1(B1) be a minimizer of E and let x0 ∈
S λ , where λ ∈ {3/2}∪{2m : m∈N}. Then the following strict lower bound holds

Hx0
0 := lim

r→0

Hx0(r)
rd−1+2λ

> 0 .

In particular, since by the strong L2(∂B1) convergence of ux0,r to the unique blow
up px0 we have H0 := ‖px0‖2

L2(∂B1)
, it follows that px0 is non-trivial.

Proof. Without loss of generality we can suppose that x0 = 0. We give the proof
for λ := 2m = N(0) for some m ∈ N, the case λ = 3/2 being analogous. Assume
by contradiction that

h(r) :=
(

H(r)
rd−1

)1/2

= o(rλ )

and consider the sequence ur(x) :=
u(rx)
h(r)

. It follows that ‖ur‖L2(∂B1) = 1 for every

r, and so, by the monotonicity of the frequency function∫
B1

|∇ur|2 dx =
1

rd−2 D(r)≤ N(1)
1

rd−1 H(r)≤ N(1) ,

so that, up to a not relabeled subsequence, ur converges weakly in H1(B1) and
strongly in L2(∂B1) to some function pλ ∈ H1(B1) such that ‖pλ‖L2(∂B1) = 1.
Moreover, since N(0) = λ , pλ is a λ -homogeneous function. Notice also that
due to Theorem 2.1 the convergence is locally uniform in B1. Next, for every
ur consider its blow-up sequence [ur]ρ(x) := ρ

−λ ur(ρx). By Proposition 7.1, we
know that, for every r > 0, there exists a unique blow-up limit pλ ,r = limρ→0[ur]ρ .
Moreover, since all the functions ur are uniformly bounded in H1(B1), ‖ur‖2

H1(B1)
≤

N(1)+1, there is a constant C depending on the dimension, λ and N(1) such that

(7.8) ‖[ur]t − pλ ,r‖2
L2(∂B1)

≤C (− log(t))−
1−γ

γ for all 0 < t < 1 ,

where we used the regularity of u to replace the L1-norm from Proposition 7.1 with
the L2-norm. Using our contradiction assumption and the strong convergence of
[ur]ρ to pλ ,r in L2(∂B1), we have

‖pλ ,r‖L2(∂B1) = lim
ρ→0

1
ρd−1+2λ

∫
∂Bρ

u2
r dH d−1

=
rd−1+2λ∫

∂Br
u2 dH d−1 lim

ρ→0

1
(r ρ)d−1+2λ

∫
∂Brρ

u2 dH d−1 = 0
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for every r > 0. It follows that, for fixed ρ > 0 (that we will choose small enough),
we have

1 =
1

ρd−1+2λ

∫
∂Bρ

p2
λ

dH d−1

≤ 2
ρd−1+2λ

∫
∂Bρ

|pλ −ur|2 dH d−1 +
2

ρd−1+2λ

∫
∂Bρ

u2
r dH d−1

=
2

ρd−1+2λ

∫
∂Bρ

|pλ −ur|2 dH d−1 +2
∫

∂B1

[ur]
2
ρ dH d−1

≤ 2
ρd−1+2λ

∫
∂Bρ

|pλ −ur|2 dH d−1 +C (− log(ρ))−
1−γ

γ ,

where the first equality follows from the λ -homogeneity of pλ and the last inequal-
ity from the rate of decay of [ur]ρ to pλ ,r ≡ 0 in (7.8). Choosing first ρ > 0 and
then r = r(ρ)> 0 we reach a contradiction. �

7.3 Proof of Theorem 1.7
Let m∈N+ be fixed and let be x1,x2 ∈S 2m. Let px1 and px2 be the unique blow-

ups of u at x1 and x2 respectively. Then we can write px1 = λ1 p1 and px2 = λ2 p2,
where p1 and p2 are normalized such that p1, p2 ∈H2m \{0}. Notice that

(7.9) ‖p1− p2‖L∞(B1) ≤ c(d)
∫

∂B1

|p1(x)− p2(x)|dH d−1(x) ,

since ‖p1‖L2(∂B1) = 1 = ‖p2‖L2(∂B1) and they are 2m-homogeneous.
Next notice by the triangular inequality

‖px1− px2‖L1(∂B1)≤‖ux1,r− px1‖L1(∂B1)+‖ux1,r−ux2,r‖L1(∂B1)+‖ux2,r− px2‖L1(∂B1)

Recalling that u∈C1,1/2 and that ∇u(x1) = 0, we estimate the term in the middle
with

‖ux1,r−ux2,r‖L1(∂B1) ≤
∫

∂B1

∫ 1

0

|∇u(x1 + rx+ t(x2− x1))||x2− x1|
r2m dt dH d−1(x)

≤C‖u‖C1,1/2(Br(x1))

(r+ |x2− x1|)1/2 |x2− x1|
r2m ≤C|x1− x2|

1/8m,

(7.10)

where we have set r := |x1− x2|1/4m. Moreover, if we assume that r0 satisfies the

inequality |r0|(− log |r0|)−
1−γ

2γ ≤ dist({x1,x2},∂B1), then by Proposition 7.1 we see
that

‖ux1,r− px1‖L1(∂B1)+‖ux2,r− px2‖L1(∂B1) ≤C (− log(r))−
1−γ

2γ =C
(
− log |x1− x2|

)− 1−γ

2γ

(7.11)

Putting together this inequality with (7.10) and (7.11), we find

(7.12) ‖px1− px2‖L1(∂B1) ≤C(− log |x1− x2|)−
1−γ

2γ .



EPIPERIMETRIC INEQUALITIES FOR THE THIN OBSTACLE PROBLEM 33

Next, using (2.2) and (7.5) we can estimate

d
dr

(
Hxi(r)

rd−1+4m

)
= 2

W xi
2m(r)
r

≤ C

r(−γ log(r/r0))
1
γ

,

which integrated gives

(7.13)
Hxi(t)

td−1+4m −λ
2
xi
≤C (− log t)−

1−γ

γ for all 0 < t < dist(xi,∂B1) .

Notice that in the previous integration we have used the fact that, by definition of
pi and by the strong convergence in L2(∂B1) of the blow ups we have

lim
r→0

Hxi(r)
rd−1+4m = ‖pxi‖2

L2(∂B1)
= λ

2
xi
.

Using (7.10) together with (7.13), we get

|λx1−λx2 |2 ≤C
∣∣∣∣λ 2

x1
− Hx1(r)

rd−1+4m

∣∣∣∣+C
∣∣∣∣ Hx1(r)
rd−1+4m −

Hx2(r)
rd−1+4m

∣∣∣∣+C
∣∣∣∣λ 2

x2
− Hx2(r)

rd−1+4m

∣∣∣∣
≤C (− log(r))−

1−γ

γ +C
∫

∂B1

|u2
x1,r−u2

x2,r|dH d−1

≤C (− log(r))−
1−γ

γ +C‖ux1,r−ux2,r‖2
L1(∂B1)

(7.10)
≤ C(− log |x1− x2|)−

1−γ

γ ,(7.14)

where the choice of r is the same as above.
Finally, using (7.9), (7.12) and (7.14) we easily conclude that

(7.15)
‖p1− p2‖L∞(B1) ≤C (− log |x1− x2|)−

1−γ

γ for every x1,x2 ∈ K∩S 2m b B1

where the constant C depends on m,d,dist(K,∂B1).
Now consider the collection of points S 2m

k , for some m ∈ N and 0 < k < d−2
and notice that, for every K b B1 ∩S 2m

k , we can apply the Whitney extension
theorem [7, Whitney extension theorem] to extend the function (p̃x)x∈K ⊂H2m,
where λx p̃x = px is the unique blow up at x to get a function F ∈ C2m,log(Rd),
such that ∂ αF(x) = ∂ α p̃x(0). Since x ∈S 2m

k and the blow-ups are non-degenerate
(see Lemma 7.2), there are d− 1− k linearly independent vectors ei ∈ Rd−1, i =
1, . . . ,d−1− k, such that

ei ·∇x′ p̃x 6= 0 on Rd .

It follows that there are multi-indexes βi of order |βi|= 2m−1, such that ∂ei∂
βiF(x)=

∂ei∂
βi p̃x(0) 6= 0. On the other hand

S 2m∩K = K ⊂
d−1−k⋂

i=1

{∂ βiF = 0}

so that an application of the implicit function theorem in a neighborhood of each
point x ∈ K combined with the arbitrary choice of K yields that for every x ∈S 2m
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there exists r = r(x)> 0 such that

S 2m
k ∩Br(x) is contained in a k-dimensional C1,log submanifold .

From here the conclusion follows. �

8
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