V*frontiers
in Plant Science

OPEN ACCESS

Edited by:
Kazu/d Sa/fo,
R/KE/V Cenfer  Susfa/nabZe

Resource Science (CSRSJ, Japan

Reviewed by:

Dae-Kyun Ro,

UnAlers/Yy of Ca/gary Canada
Josepf? Cf?appe//,

UnA/ers/ty of KenfucAy
Un/fed Stafes

Correspondence:
FM/pp Zerbe
pzerbeOucdaws. edu

Specialty section:

Tb/s arfe/e w/as subm/ffed fo Rfanf
Mefabo//sm and CbemodA/ers/fy
a seefibn of tbe youma/

Eronfiiers /n Rfanf Science

Received: 14 June 2019
Accepted: 26 August 2019
Published: 01 October2019

Citation:

Karunan/fb/ PS and Zerbe P (2079)
Terpene Synfbases as Mefabo/ic
GafeAeepers /n tbe Evo/ufibn of Pfanf
Terpenoid Cbemica/ OA/ers/7y

Pfonf. RZanfSc/. 70/7 766.

do/." 70.3360/407s.2070.07 766

Frontiers in Plant Science

www.frontiercin.org 1

REVIEW
published: 01 October 2019
del: 10.3389/pls.2019.01166

Terpene Synthases as Metabolic
Gatekeepers in the Evolution of Plant
Terpenoid Chemical Diversity

Prema S. Karunanithi and Philipp Zerbe*

Depa/fmenf of P/anf Bb/og% U/we/3#y of GaZ/fom/a DaWs, DaWs, C/4, Un/fed Sfafes

Terpenoids comprise tens of thousands of small molecule natural products that are widely
distributed across all domains of life. Plants produce by far the largest array of terpenoids
with various roles in development and chemical ecology. Driven by selective pressure to
adapt to their specific ecological niche, individual species form only a fraction ofthe myriad
plant terpenoids, typically representing unique metabolite blends. Terpene synthase (TPS)
enzymes are the gatekeepers in generating terpenoid diversity by catalyzing complex
carbocation-driven cyclization, rearrangement, and elimination reactions that enable
the transformation of a few acyclic prenyl diphosphate substrates into a vast chemical
library of hydrocarbon and, for a few enzymes, oxygenated terpene scaffolds. The
seven currently defined clades (a-h) forming the plant TPS family evolved from ancestral
triterpene synthase- and prenyl transferase-type enzymes through repeated events of
gene duplication and subsequent loss, gain, or fusion of protein domains and further
functional diversification. Lineage-specific expansion of these TPS clades led to variable
family sizes that may range from a single TPS gene to families of more than 100 members
that may further function as part of modular metabolic networks to maximize the number
of possible products. Accompanying gene family expansion, the TPS family shows a
profound functional plasticity, where minor active site alterations can dramatically impact
product outcome, thus enabling the emergence of new functions with minimal investment
in evolving new enzymes. This article reviews current knowledge on the functional diversity
and molecular evolution of the plant TPS family that underlies the chemical diversity of
bioactive terpenoids across the plant kingdom.

Keywords: terpenoids, terpene synthases, plant specialized metabolism, plant chemical diversity, terpenoid
biosynthesis, natural products

INTRODUCTION

Among the wealth of small molecule natural products, terpenoids (also referred to as isoprenoids)
form an especially diversified and evolutionary ancient superfamily, which likely emerged
alongside the formation of primitive membranes at the very origins of cellular life (Ourisson and
Nakatani, 1994). Ubiquitous presence of terpenoids in membranes supports this hypothesis and
suggests that ancient archaebacterial diphytanylglycerol ether membrane components, polyprenols,
and derived steranes and sterols represent early terpenoid predecessors (Ourisson and Nakatani,
1994; Rohmer and Bisseret, 1994; Van De Vossenberg et al., 1998; Matsumi et al., 2011). From
this origin, the staggering diversity of the terpenome has arisen, comprising more than 80,000
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compounds (Christianson, 2018) that are widespread across
living organisms, including archaeca (Matsumi et al, 2011),
bacteria (Yamada et al., 2012), fungi (Schmidt-Dannert, 2015),
social amoeba (Chen et al., 2016; Chen et al., 2019), marine
organisms (Gross and Konig, 2006), insects (Beran et al., 2016;
Lancaster et al., 2018), and plants (Gershenzon and Dudareva,
2007; Tholl, 2015). Plants are the champions of producing
different terpenoid structures (Tholl, 2015). This includes a few
isoprenoid derivatives with essential roles in plant growth and
development such as gibberellins, brassinosteroids, carotenoids,
and chlorophylls (Pallardy, 2008; Tripathy and Pattanayak,
2012). Conversely, the vast majority of plant terpenoids
represent specialized metabolites that are dedicated to mediating
interorganismal interactions or environmental defense and
adaptation (Gershenzon and Dudareva, 2007; Tholl, 2015). For
example, many terpenoids exhibit potent toxicity and serve
as core components of chemical defenses against herbivores,
insect pests, and microbial pathogens (Keeling and Bohlmann,
2006a; Vaughan et al., 2013; Schmelz et al., 2014). In addition,
functions in allelopathic interactions and roles in abiotic stress
responses have been reported (Lopez et al., 2008; Kato-Noguchi
and Peters, 2013; Vaughan et al., 2015). Terpenoid bioactivities
in cooperative interactions are equally diverse, including
various volatile terpenoids essential for attracting pollinators
and seed dispersers, as well as in mediating plant-plant and
plant-microbe interactions that impact plant fitness (Dudareva
and Pichersky, 2000; Pichersky and Gershenzon, 2002; Heil
and Ton, 2008; Agrawal and Heil, 2012). Driven by selective
pressures to adapt to the biotic and abiotic environments of the
ecological niche occupied by individual plant species, specialized
terpenoid metabolism has undergone an expansive evolutionary
divergence, resulting in often lineage-specific pathways and
products (Chen et al., 2011; Tholl, 2015; Zerbe and Bohlmann,
2015) . Biosynthesis and accumulation of these compounds also
are typically restricted to only a subset of organs, tissues, or
developmental stages and may be tightly regulated by internal
or external stimuli, granting plants the ability to fine-tune the
deployment of terpenoids for mediating dynamic interactions
with the environment (Keeling and Bohlmann, 2006a; Tholl,
2006; Schmelz et al., 2014). Owing to their diverse bioactivities,
terpenoid-forming plants and their products have a long history
of exploitation for human benefit. Historically, large-scale
extraction of terpenoid resins from coniferous trees has been
a resource for producing “turpentine”—giving the metabolite
class its name—and continue to be of economic relevance for the
manufacture of biopolymers and inks (Bohlmann and Keeling,
2008). Other uses of plant terpenoids span various industrial
sectors, including flavors and fragrances (Lange et al., 2011;
Schalk et al., 2012; Philippe et al., 2014; Celedon and Bohlmann,
2016) , pharmaceuticals and cosmetics (Paddon et al., 2013;
Pateraki et al., 2017; Booth and Bohlmann, 2019; Zager et al.,
2019), biofuels (Peralta-Yahya et al., 2012; D'espaux et al., 2015),
and natural rubber (Oh et al., 2000; Cornish and Xie, 2012; Qu
etal., 2015).

The biological and economic relevance of terpenoids has
fostered long-standing efforts in understanding the metabolic
enzymes that generate terpenoid chemical diversity. Following
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common metabolic patterns of scaffold-forming and tailoring
reactions in specialized metabolism (Anarat-Cappillino
and Sattely, 2014), terpenoid biosynthesis proceeds through
conversion of central 5-carbon isoprenoid precursors into a
range of core scaffolds that are then functionally elaborated
to generate the diversity of terpenoid bioactivities (Davis and
Croteau, 2000; Chen et al., 2011; Hamberger and Bak, 2013;
Zerbe and Bohlmann, 2015) (Figure 1). Functionally distinct
enzyme families ofterpene synthase (TPS) and cytochrome P450
monooxygenase (P450) enzymes are the major drivers of scaffold
formation and functional modifications, respectively (Peters,
2010; Chen et al., 2011; Nelson and Werck-Reichhart, 2011;
Zerbe and Bohlmann, 2015; Banerjee and Hamberger, 2018;
Bathe and Tissier, 2019) (Figure 1). In particular, TPSs serve as
the gatekeepers ofspecies-specific terpenoid pathways, catalyzing
stereo-specific carbocation cascades that transform a handful of
common prenyl diphosphate substrates into the core scaffolds
of numerous structurally distinct terpenoid groups. Recent
years have witnessed groundbreaking advances in genomics and
biochemical tools that have enabled the discovery of TPS and
P450 enzymes at an unprecedented scale and can be combined
with versatile metabolic engineering approaches toward
producing a broader range of terpenoid bioproducts (Keasling,
2012; Kitaoka et al.,, 2015; Mafu and Zerbe, 2018). Building
on comprehensive reviews on terpenoid biological function,
regulation, and biochemistry (Dudareva and Pichersky, 2000;
Tholl, 2006; Gershenzon and Dudareva, 2007, Hamberger and
Bak, 2013; Lange and Turner, 2013; Schmelz et al., 2014; Tholl,
2015), this review focuses on recent advances in the knowledge
ofterpenoid biosynthesis and the evolutionary divergence ofthe
TPS family.

METABOLIC ORIGIN OF TERPENOID
PRECURSORS

Biosynthesis of C5 Isoprenoid Building
Blocks

The metabolic origin ofall terpenoids centers around the assembly
of multiples ofthe common Cf5 isoprenoid precursor isopentenyl
diphosphate (IPP) and its double-bond isomer dimethylallyl
diphosphate (DMAPP) (Lange et al., 2000; Christianson, 2008).
Unlike most microbial organisms, plants utilize two distinct
pathways for producing these building blocks: the acetyl-CoA-
derived cytosolic mevalonate (MVA) pathway and the pyruvate-
derived plastidial 2-C-methyl-D-erythritol-4-phosphate (MEP)
pathway (McGarvey and Croteau, 1995; Hemmerlin et al., 2012)
(Figure 1). Presence of the MVA pathway in archaea (albeit
with some species being devoid of some pathway enzymes) and
phylogenetic relatedness of MVA pathway genes across multiple
taxa provide evidence that the MVA pathway represents the
ancestral isoprenoid-metabolic route that was present in the
last common ancestor and has been vertically transmitted to the
descendants (Lombard and Moreira, 2011; Matsumi et al., 2011).
By contrast, the plastidial MEP pathway was likely acquired
through horizontal gene transfer from different bacterial
progenitors such as cyanobacteria and various proteobacteria
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(Lange et al., 2000). The metabolic expense of retaining two
IPP/DMAPP-metabolic pathways in plants holds apparent
advantages by enabling broader ability to evolve specialized
terpenoid pathways and better control of compartment-specific
isoprenoid pools toward MEP-derived mono- and di-terpenoids,
carotenoids, plastoquinones and chlorophyll in plastids and
MVA-derived  sesquiterpenoids, sterols, brassinosteroids,
and triterpenoids. This physical separation of downstream
pathways has been supported—for example, by genome-wide
co-expression studies in Arabidopsis that showed minimal
interaction between MVA and MEP genes (Wille et al., 2004;
Vranova et al., 2013; Rodriguez-Concepcion and Boronat, 2015).
In addition, presently known pathway connections appear to
be largely negative in nature, where transcriptional activation
of MEP genes correlate with the repression of MVA genes and
vice versa (Ghassemian et al., 2006; Rodriguez-Concepcion and
Boronat, 2015). On the other hand, metabolic compensation,
for example, of cytosolic sterol biosynthesis through the MEP
pathway has been described (Hemmerlin et al., 2003; Laule et al.,
2003). Indeed, cross-talk between both pathways via exchange
of IPP, DMAPP, and CI0 I5 prenyl diphosphate intermediates
has been demonstrated in several species (Hemmerlin et al.,
2003; Laule et al., 2003; Opitz et al., 2014; Mendoza-Poudereux
et al.,, 2015), indicating that the metabolic fate of MEP- and
MV A-derived IPP and DMAPP is not as clear cut. For example,
isotope-labeling studies demonstrated incorporation of MEP-
derived IPP/DMAPP into both mono- and sesqui-terpenoids
in snapdragon {Antirrhinum majus) and carrot (Daucus carota)
(Dudareva et al., 2005; Hampel et al., 2005). Similar work in
cotton (Gossypium hirsutum) showed contribution of the MVA
pathway to Cl0-C4) terpenoid biosynthesis (Opitz et al., 2014).
How the cross-membrane exchange of MEP and MVA
intermediates is coordinated also requires further investigation.
Transport of IPP and GPP across the plastidial membrane
has been observed in isolated plastids (Soler et al., 1993; Bick
and Lange, 2003; Flugge and Gao, 2005), but transporters or
alternate transfer mechanisms are thus far unknown (Pick and
Weber, 2014). Recent studies further illustrated that terpenoid
biosynthesis via the MVA and MEP pathways is not solely routed
through IPP and DMAPP but can involve a pool ofthe respective
isopentenyl and dimethylallyl monophosphates, IP, and DMAP
(Henry et al., 2015; Henry et al., 2018). The IP and IPP pools
are controlled by two enzymes families, IP kinases and Nudix
hydrolases, that catalyze the phosphorylation and hydrolysis of
IP and IPP, respectively (Henry et al., 2015; Henry et al., 2018)
(Figure 1). IP kinases were first discovered in archaea and
Chloroflexi as an alternate pathway for isoprenoid biosynthesis
(Dellas et al., 2013). More recently, IP kinase homologs were
shown to be widely distributed in plant genomes, where they
occur alongside the complete set of MVA and MEP pathway
genes (Vannice et al., 2014). In Arabidopsis, 1P kinase was shown
to localize at the cytosol and regulate the formation of both
MVA- and MEP-derived terpenoids as based on reverse genetic
studies (Henry et al., 2015). AfTPKknockout in Arabidopsis using
T-DNA insertion lines caused a significant decrease in the levels
of sterols (37-50%) and sesquiterpenes produced (25-31%).
Conversely, overexpression of AfIPK in transgenic Nicotiana
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tabacum led to a 3-fold and 2-fold increase in sesquiterpenes
and monoterpenes, respectively. Further efforts to understand
the formation of IP/DMAP in plants identified a role of Nudix
hydrolases, a superfamily of two-domain hydrolases/peptidases
broadly found in bacteria, animals, and plants (Bessman et al.,
1996; Ogawa et al., 2005; Magnard et al., 2015; Henry et al., 2018).
In vitro and genetic studies ofthe two cytosolic Nudix hydrolases
in the Arabidopsis genome, AfNudxl and AfNudx3, demonstrated
their efficiency in dephosphorylating IPP and DMAPP (Henry
etal., 2018). Arabidopsis T-DNA insertion gene knock-down and
knock-out lines of AfNudxl and AfNudx3 resulted in increased
production of sesquiterpenes (28-60%), monoterpenes (148-
503%), and sterols (-50%) whereas overexpression of these
enzymes in N. tabacum resulted in decreased production of
monoterpenes (-50%) and sesquiterpenes (57-88%). Although
understanding the broader relevance of IP kinase and Nudix
hydrolase genes in plant terpenoid metabolism requires further
studies, these collective findings highlight the potential of these
pathway reactions to possibly function as additional regulatory
mechanisms for balancing the [IP’DMAP and IPP/DMAPP pools
in the biosynthesis of terpenoids and other isoprenoids (Henry
et al., 2015; Henry et al., 2018). Given the dramatic impact of
modulating IP kinase and Nudix hydrolases gene expression on
pathway productivity, combined tailoring ofthese pathway nodes
holds promise for advanced terpenoid pathway engineering.

Biosynthesis of Prenyl Diphosphate
Precursors

Downstream of the IPP and DMAPP biosynthesis, prenyl
transferases (PTs) catalyze the sequential condensation of
isoprenoid units via ionization of the allylic diphosphate ester
and subsequent rearrangement of the resulting carbocation
to generate prenyl diphosphate metabolites of distinct chain
length that serve as universal terpenoid precursors (Nagel et al.,
2019) (Figure 1). Head-to-tail condensation (C4-C1 alkylation)
reactions lead to Cl0 (geranyl diphosphate, GPP), CI5 (farnesyl
diphosphate, FPP), and C)( (geranylgeranyl diphosphate, GGPP)
intermediates as precursors in mono-, sesqui-, and di-terpenoid
metabolisms, respectively (Figure 2A). Notably, dimerization
has been shown to be a major factor impacting PT activity and
product specificity. For example, GPP synthases from Mentha
piperita, A. majus, and Clarkia breweri require formation of a
heterodimer of a small and a large subunits for their enzyme
function (Burke et al., 1999; Tholl et al., 2004). Interaction of
GPP small subunits with GGPP synthases from 4bies grandis and
Taxus canadensis were further shown to modify GGPP synthase
product specificity in favor of forming shorter Cl0 chains (Burke
and Croteau, 2002). Similarly, interaction of a c¢z's-PT with an
unusual ris-PT-like scaffolding enzyme was shown be a key
function in rubber biosynthesis in lettuce (Lactuca sativa) (Qu
et al., 2015). As alternative routes to the common head-to-tail
condensation reactions, C3}0 and C40 prenyl diphosphates are
formed via head-to-head condensation of FPP or GGPP through
the activity of squalene synthases or phytoene synthases en route
to triterpenoids and carotenoids, respectively (Christianson,
2008). Similarly, catalysis of non-head-to-tail or irregular CV-
2-3 isoprenoid condensation can occur as exemplified by a PT
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FIGURE 1 | Schematic overview of major terpenoid biosynthetic pathways, All terpenoids are derived from two isomeric 5-carbon precursors, isopentenyi
diphosphate (IPP), and dimethylallyl diphosphate (DMAPP). In turn, IPP and DMAPP are formed wa two pathways, the cytosolic mevalonate (MVA) pathway
originating from acetyl-CoA and the pyruvate and glyceraldehyde-3-phosphate (G3P)-derived 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway boated in

the plastids, However, active transfers of IPP, DMAPP, GPP, and FPP across the plastidial membrane enable some degree of pathway cross-talk, In addition,
interconversion of IPP and DMAPP with their respective monophosphate forms IP and DMAP by IP kinase (IPK) and Nudix hydrolase enzymes can impact pathway
flux in terpenoid metabolism, Except for isoprene and hemiterpene (CS5) biosynthesis, condensation of IPP and DMAPP units generates prenyl diphosphate
intermediates of different chain length. Condensatbn of IPP and DMAPP yields geranyl diphosphate (GPP) as the precursor to monoterpenoids (Cio), fusing GPP
with an additbnal IPP affords the sesquiterpenoid (C") precursor famesyl diphosphate (FPP), and fusing FPP with IPP generates geranylgeranyl diphosphate
(GGPP) en route to diterpenoids (Cgg). Furthermore, condensation of two FPP or two GGPP molecules forms the central substrates of triterpenoid (C*J and
carotenoids (C"o), respectively, lerpene synthases [TPS) are key gatekeepers in the bbsynthesis of Cio-Cao terpenoids, catalyzing the committed scaffold-forming
conversbn of the respective prenyl diphosphate substrates into a range of hydrocarbon or oxygenated structures. These TPS products can then undergo various
oxygenations through the activity of cytochrome P450 monooxygenases (P450), followed by further possible functional decorations, ultimately giving rise to

more than 80,000 distinct natural products. AACT, acetoacetyl-CoAthiolase; CMK, 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase; DXR, | -deoxy-D-xylulose
5-phosphate reductase; DXS, 1-deoxy-D-xylulose 5-phosphate synthase; HDR, (E)-4-hydroxy-3-methyl-but-2-enyl diphosphate reductase; HDS, (E)-4-hydroxy-3-
methyl-but-2-enyl diphosphate synthase; HMGR, 3-hydroxy-3-methylglutaryl-CoA reductase; HMGS, 3-hydroxy-3-methylglutaryl-CoA synthase; IDI, isopentenyi
diphosphate isomerase; MOT MEP cytidyltransferase; MDD, mevabnate-5-diphosphate decartx)xylase; MDS, 2-C-methyl-D-erythritol 2,4-cyclodiphosphate
synthase; MK, mevalonate kinase; P450, cytochrome P450-dependent monooxygenase; PHY, phytoene synthase; PMK, phosphomevabnate kinase; PT, prenyl
transferase; SOS, squalene synthase; SQE, squalene epoxbase; TPS, terpene synthase; TTS, triterpene synthase.
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FIGURE 2 | Schematic overview of representative carbocation-driven reactions catalyzed by prenyl transferases (PTs) and diterpene synthases (TPSs). (A) PT catalyzed

head-to-tail condensation of isopentenyl diphosphate (IPP) with its positional isomer dimethylallyl diphosphate (DMAPP) via ionization of the allylic diphosphate

ester bond (OPP) and subsequent coupling between the resulting carbocation and the C3-C4 double bond of IPP. Deprotonation of the carbocation intermediate
yields geranyl diphosphate (GPP). (B-C) Conversion of geranylgeranyl GGPP by class Il diTPSs using protonation-initiated cyclization of GGPP to facilitate scaffold
rearrangement into bicyclic prenyl diphosphates of enf-copalyl diphosphate (enf-CPP) (B) and related scaffolds of distinct stereochemistry and hydroxylation (C).
(D-E) Class | diTPS-catalyzed conversion of bicyclic prenyl diphosphate intermediates via ionization of the diphosphate moiety and subsequent cyclization and

rearrangement through various 1,2-hydride and methyl migrations to form, for example, enf-kaurene (D) and a range of other labdane diterpene scaffolds (E).

from Chrysanthemum cinerariaefolium that forms the irregular
monoterpene chrysanthemyl diphosphate (Rivera et al., 2001).
Recent years further revealed the biosynthetic enzymes forming
plant prenyl diphosphate products of other chain length,
including C25 intermediates en route to the rare group of
defensive sesterterpenoids in Brassicaceae and a few other species
(Luo et al., 2010; Nagel et al., 2015; Huang et al., 2017, Chen
et al., 2019). Arabidopsis studies further illustrated a trans-type
polyprenyl diphosphate synthase with the capacity to produce
variable chain length (C25-C45) products (Hsieh et al., 2011).

In addition to product chain length, PT enzymes can be
distinguished based on the cis- or trans-C-C double-bond
configuration of their product (Liang et al., 2002). Although PTs
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utilize the same isoprenoid substrates, cis- and trans-type PTs
differ in their protein structure and signature motifs that control
catalytic specificity (Liang et al., 2002). Similar to class I TPS
enzymes (described below), trans-PTs feature two aspartate-rich
motifs, FARM (DDx2/4D) and SARM (DDx,D), which are critical
for substrate binding, whereas ris-PTs lack these motifs, and
substrate binding is controlled by Asp and Glu residues broadly
distributed within the active site (Liang et al., 2002). Medium-
and long-chain (>C3(0) PTs more commonly produce ris-prenyl
diphosphate compounds, prominently
by ris-PTs of rubber biosynthesis (Asawatreratanakul et al.,
2003; Cornish and Xie, 2012; Chakrabarty et al,, 2015; Qu
et al.,, 2015). In contrast, the majority of short-chain (CI0 25)

most represented
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prenyl diphosphates occur in the frails configuration. However,
a number of cz\s-PTs have been identified in certain species
that produce intermediates featuring cis- and frtzzzs-configured
double bonds. For example, short-chain ris-PTs were identified
in tomato (Solatium sp.) (Sallaud et al., 2009; Schilmiller et al.,
2009; Akhtar et al.,, 2013; Matsuba et al., 2015). In the wild
tomato variety Solatium habrochaites, an FPP synthase, zFPS,
was demonstrated to form the cisoid FPP form Z,Z-FPP, which
is further converted by a Z,Z-FPP-specific TPS (SBS) to form
(+)-a-santalene, (+)-endo-(3-bergamotene, and (-)-endo-a-
bergamotene (Sallaud et al., 2009). Notably, zFPS localizes to the
chloroplast, contrasting the commonly cytosolic localization of
fitzzzs-FPP synthases (Sallaud et al., 2009; Schilmiller et al., 2009;
Akhtar et al., 2013). Further gene discovery studies in cultivated
tomato (Solatium Iycopersicum) identified neryl-diphosphate
synthase | (NDPS1) catalyzing the formation of a cz\s-neryl
diphosphate (NPP) as a precursor for a range of monoterpenoids
in addition to the canonical frczzzs-substrate GPP (Schilmiller et al.,
2009; Gutensohn et al., 2013). More recently, a diterpenoid-
metabolic cluster was reported in cultivated tomato that
included an unusual ris-PT (CPT2) that produces the cisoid C
GGPP variant Z,Z,Z-nerylneryl diphosphate (NNPP) (Matsuba
et al., 2015). NNPP conversion by a TPS (TPS21) and a P450
(CYP71BN1) located within this cluster yielded the unusual
diterpenoid lycosantalonol (Matsuba et al., 2015). Combinatorial
functional analysis of class II TPSs known to convert transoid
E,E,E-GGPP showed a broad capacity to also convert NNPP (Jia
and Peters, 2017; Pelot et al., 2019). Together, the identification
of ¢z's-PT enzymes in an increasing number of species and the
capacity of several TPSs to convert both fransoid and cisoid
prenyl diphosphate substrates may suggest that czs-prenyl
diphosphate-derived terpenoids are more widely distributed
than previously assumed.

EVOLUTION OF TERRENE SYNTHASES
DRIVES TERPENOID CHEMICAL
DIVERSITY

The family of TPS enzymes governs the committed scaffold-
forming C-C bonding and hybridization reactions in the
biosynthesis of terpenoid chemical diversity from a handful of
acyclic and achiral C5n prenyl diphosphate substrates. At the core
of TPS product specificity is the intramolecular rearrangement
of highly reactive carbocation intermediates. Although with far
greater variation, these reactions are mechanistically analogous
to those observed in PT enzymes (Figure 2), which suggested
an evolutionary relationship between both enzyme families
(Gao et al, 2012). Structural studies further strengthened
this hypothesis by illustrating that these enzymes share a
common TPS fold comprised of variations of three conserved
helical domains, a, (3a, or y(3a (Figure 3). Differences in the
functionality of these domains distinguish two major classes of
TPSs: class II TPSs generate the initial carbocation intermediate
vZez substrate protonation and catalyze scaffold rearrangements
without cleavage of the diphosphate ester bond, whereas class
I TPSs utilize ionization of the diphosphate moiety to form the
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intermediary carbocation (Davis and Croteau, 2000; Peters,
2010) (Figures 2B, C). The class II ((3y) domain adopts a
characteristic double a-barrel structure that likely evolved from
bacterial class II TPSs, which in turn are related to ancestral
class II triterpene synthases such as squalene-hopene cyclase
(Gao et al., 2010; Gao et al., 2012; Christianson, 2018) (Figure
3). Crystallization of the class II ezzf-copalyl diphosphate (GPP)
synthase from Streptomyces platensis empirically demonstrated
this typical a-barrel (3y-domain structure featuring a Dx4E
motif closely related to the DxDD signature motif critical for
the activity of plant class II diTPSs (Rudolf et al., 2016). Class [
activity occurs in the a-helical a-domain (Figure 3), predecessors
of which will have been ancestral bacterial class I PT and TPS
enzymes, as exemplified by the crystal structure of the class |
diTPS ezzf-kaurene synthase from Bradyrhizobium japonicum
that illustrates the presence of the characteristic a-domain fold
along with the signature catalytic DDxxD of class I TPSs (Liu
et al., 2014). Such consecutively acting ezzf-CPP and ezzf-kaurene
synthases are indeed broadly distributed in plant-associated
bacteria, including symbiotic rhizobia such as a-, (3-, and
y-proteobacteria (Rhizobiales) and some phytopathogens such as
species ofXanthomonas and Erwinia (Morrone et al., 2009; Nagel
and Peters, 2017; Nagel et al., 2018). Ancestral ezzf-CPP and ezzf-
kaurene synthases are core enzymes in the formation ofbioactive
gibberellin (GA) phytohormones, and all so far characterized
bacterial ezzf-CPP and ezzf-kaurene synthases function as part of
GA-biosynthetic operons, albeit with some end product variation
ranging from GA precursors to bioactive GA4 (Nagel and Peters,
2017). Based on the wide distribution of GA-biosynthetic gene
clusters in bacteria, it has been suggested that plants acquired
the ability to form GAs through ancient events of horizontal
gene transfer with soil bacteria (Gao et al., 2010; Smanski et al.,
2012), thus providing a selective advantage for phytohormone
biosynthesis to control growth and development, as well as
a genetic reservoir for the evolution of specialized diterpene
metabolites as discussed below.

Distribution of Plant Microbial-Like
Terpene Synthases (MTPSLs)

Recent studies revealed that some plant species retained a
previously unknown class of microbial-like TPSs, termed
microbial TPS-like (MTPSL). A family of MTPSL was first
discovered by Li et al. in the Selaginella moellendorffii genome,
where they co-occur with classical plant TPSs (Li et al., 2012). The
48 MTPSLs identified in S. moellendorffii are phylogenetically
more closely related to bacterial and fungal TPS-like sequences
and differ from classical plant TPSs on the basis of several key
features. Firstly, MTPSLs show a distinct gene structure with
a higher variability of introns (0-7) as compared to 12-14
introns in classical plant TPSs (Trapp and Croteau, 2001; Li
et al., 2012). Secondly, MTPSLs adopt a single domain a-fold
closely resembling the structure of microbial a-domain enzymes
rather than (3a-domain plant TPSs (Li et al, 2012). Lastly,
alongside the common class [ DDx,D signature motif, MTPSLs
contain additional DDx,D and DDx, motifs suggesting a distinct
evolutionary origin (Li et al.,, 2012). Despite their structural
distinctiveness, in vitro enzyme assays demonstrated that
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FIGURE 3 | Schematic overview of the proposed structural and evolutionary relationships among terpene synthases (TPSs) as based on known protein structures.
Proposed progenitors of TPSs include ancestral bacterial class I diTPSs with a signature a-barrel [3y-domain harboring a catalytic DxDD motif, here exemplified by

the e/if-copalyl diphosphate synthase from Streptomyces platensis (PDB 5BP8; Rudolf et af, 2016). These, in turn, are related to ancestral triterpene synthases

(TTS) and bacterial class | diterpene synthases (diTPSs) that adopt the signature a-domain structure with a conserved DDx2D motif, here exemplified by e/if-kaurene
synthase from Bradyrhizobium japonicum (PDB 4W4R; Liu et af, 2014) closely related to ancestral prenyltransferases (PT). Fusion of the ancestral monofunctional
genes will have given rise to diTPSs with three helical domains (a3y) represented here by Abies grandis abietadiene synthase (PDB 3S9V; Zhou et af, 2012a).
Duplication and subsequent loss of activity in the |3y- and a-domains, respectively, lead to the emergence of monofunctional plant class II, here represented by
Arabidopsis thaliana e/if-copalyl diphosphate synthase, (PDB 4LIX; Koksal et af, 2014) and class | diTPSs, here represented by Taxus brevifolia taxadiene synthase
(PDB 3P5P; Koksal et af, 2011). Through further loss of the y-domain and various neo-functionalization and specialization events, the large classes of [3a-domain
class mono- and sesqui-TPSs will have arisen. Domain colors illustrate the y-domain (orange), the p-domain (blue), the a-domain (red), as well as the conserved

DxDD (green) and DDx2D (cyan) motifs.

MTPSLs form common mono- and sesqui-terpene products,
including linalool, germacrene D, and nerolidol that naturally
occur in §. moellendorffii (Li et al., 2012). Following the discovery
of MTPSLs in S. moellendorffii, members of this TPS class were
also identified in the liverwort Marchantia polymorpha, the
hornwort Anthoceros punctatus, the moss Sphagnum lescurii,
and the monilophyte ferns Pityrogramma trifoliata and Woodsia
scopulina, suggesting a broader distribution across evolutionary
older plant lineages (Jia et al., 2016b; Jia et al., 2018b; Xiong
et al., 2018) (Figure 4). Functionally active MTPSLs were also
identified in the genomes of'some red algae (Rhodophyta) such as
Laurencia pacifica, Porphyridium purpureum, and Erythrolobus
australicus (Kersten et al., 2017; Wei et al.,, 2018). However,
expansive genomics studies across several hundred species
suggest that MTPSLs are absent in seed plants and green algae
(Jia et al., 2016b). Close phylogenetic relationships of MTPSLs
with fungal or bacterial TPSs support the evolution of MTPSL
genes through multiple events of horizontal gene-transfer events
between plants, bacteria, and fungi after the split from the last
common ancestor with the green algae lineage (Jia et al., 2016b;
Kersten et al., 2017; Jia et al., 2018b; Wei et al.,, 2018). It can

Frontiers in Plant Science | www.frontiersin.org

be speculated that the loss of MTPSLs in seed plant lineages is
due to the emergence of sesqui-TPS and mono-TPS functions
derived from the ancestral bifunctional diTPSs (Jia et al., 2018b).

Emergence and Diversification of
Bifunctional Terpene Synthases

A hallmark event in TPS evolution was the fusion of (3y- and
a-domain enzyme classes that gave rise to bifunctional class 1I/1
diTPSs with a (3ya-domain architecture (Figure 3), providing
an apparent evolutionary advantage of improved metabolite
channeling of reactive prenyl diphosphate intermediates. Such
bifunctional diTPSs have been identified in fungi, mosses, and
gymnosperms (Toyomasu et al., 2000; Keeling and Bohlmann,
2006b; Hayashi et al, 2006; Mafu et al., 2011; Zhou et al.,
2012a; Fischer et al., 2015; Kumar et al., 2016) but are absent in
angiosperms (Figure 4). Whether such domain fusions occurred
in the bacterial donor or after transfer of monofunctional
diTPS genes remains to be resolved. Moreover, the relevant
horizontal gene transfer events likely included only a subset of
genes rather than entire operons. For example, the bryophyte
Physcomitrella patens contain a single prototypical class II/1
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diTPS producing ent-kaurene and e/it-hydroxy-kaurene via
ent-CPP as an intermediate (Hayashi et al., 2006). However, R
patens lacks additional genes required for producing bioactive
GAs and instead forms the GA intermediate ent-kaurenoic acid
that functions as a growth and developmental regulator (Hayashi
et al., 2006). Presence of ancestral bifunctional diTPSs involved in
the biosynthesis of GA-related compounds in P. patens and related
land plants (Hayashi et al., 2006), but not algae (Lohr et al., 2012;
Jia et al., 2018b; Wei et al., 2018), places the evolutionary origin
of plant diterpene metabolism with the emergence of nonseed
plant lineages approximately 450 million years ago. Presumably
in the same time period, ancestral ezzf-(OH)-kaurene-producing
bifunctional diTPSs underwent neo-functionalization toward
the biosynthesis of diterpenoids with specialized functions in a
number of species. The moss Hypnum plumaeforme contains
a bifunctional diTPS that forms syzz-pimara-7,15-diene, a
diterpenoid also present in rice as precursor of anti-microbial
and allelopathic momilactones (Wilderman et al, 2004;
Kato-Noguchi and Peters, 2013; Schmelz et al., 2014; Okada
et al., 2016). Similarly, two class II/I diTPSs have been identified
in S. moellendorffii that produce miltiradiene via the enantiomer
of ezzf-CPP (9R,10R-CPP), namely, normal (9S10S) CPP or (+)-
CPP as an intermediate (SnzMDS) and labda-7,13£-dien-15-ol
(SmCPS/KSLI) via labda-15-en-8-ol diphosphate (LPP) (Mafu
etal.,,2011; Sugaietal., 2011). Although the physiological relevance
of these diterpenoids remains elusive, it is plausible that these
compounds or derivatives thereof function in disease and pest
defense, considering the bioactivity of closely related metabolites
in other plant species (Ma et al.,, 2012; Helmstadter, 2013). In
contrast, the role of specialized bifunctional class II/I diTPSs of
the gymnosperm-specific TPS-d clade is well established, where
these enzymes form the abietane- and pimarane-type labdane
scaffolds in the biosynthesis of diterpene resin acids (DBAs) that
serve as a durable defense against insect pests and associated
fungal pathogens (Keeling and Bohlmann, 2006a; Bohlmann,
2011). Bifunctional abietane- and pimarane-type diTPSs were
identified in Ginkgo biloba (Schepmann et al., 2001), species of
fir (4bies) (Peters et al., 2000; Zerbe et al., 2012b), spruce (Picea)
(Martin et al., 2004), and pine (Finns) (Ro and Bohlmann, 2006;
Hall et al., 2013). Notably, all so far identified enzymes utilize the
enantiomer of ezzf-CPP (9R,10R-CPP), namely, normal (9S10S)
CPP or (+)-CPP, as an intermediate en route to the their individual
diterpene products. In addition, some species feature diTPSs that
have undergone additional neo-functionalization. For example,
balsam fir (4bies balsamea) contains a cz's-abienol synthase
(AbCAS) that catalyzes conversion of GGPP into cz's-abienol via
the C-8 hydroxylated CPP intermediate LPP also observed in .
moellendorffii (Mafu et al., 2011; Zerbe et al., 2012b).

The bifunctional diTPSs involved in diterpenoid metabolism
of mosses, lycophytes, and gymnosperms are strikingly similar
to those identified in fungi, especially in Ascomycota and some
Basidiomycota species where they function in pathogenic or
plant growth-promoting pathways (Bomke and Tudzynski,
2009; Quin et al., 2014). A bifunctional diTPS with ezzf-CPP/
ezzf-kaurene synthase activity was first identified as a part of a
GA-biosynthetic gene cluster in Gibberella fujikuroi (genus
Fusarium), the causal agent of to bakanae disease in rice
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(Oryza sativa) (Tudzynski and Holter, 1998; Toyomasu et al.,
2000; Tudzynski, 2005). Beyond GA-biosynthetic diTPSs, certain
fungal species also contain enzymes for producing specialized
diterpenoids, as exemplified by the bifunctional aphidicolan-
16[3-ol synthase producing a key precursor to aphidicolin toxins
in the pathogenic fungus Phoma betae (Toyomasu et al., 2004) or
the ezzf-CPP/ezzf-kaurene synthase homologs PaDCI/2 involved
in the biosynthesis of phyllocladan-triol in Phomopsis amygdali
(Toyomasu et al., 2008). Recent studies proposed horizontal gene
transfer from a plant to an ancestral Ascomycota fungus as the
primary mechanism underlying the emergence of fungal class
II/1 diTPSs (Fischer et al., 2015). This hypothesis is supported by
several lines of'evidence, including the abundance of mutualistic
plant-fungal interactions often involving species containing TPS
genes such as Fusarium, the presence of diTPS in only some
Ascomycota and Basidiomycota species, and the lack of correlation
between the phylogenetic relationships of fungal diTPS and
the fungal species containing these genes (Fischer et al., 2015).
Interestingly, domain fusions between diterpenoid-biosynthetic
enzymes are not limited to bifunctional class II/I diTPSs in fungi
and other species but also include other chimeric enzymes that,
for example, represent fusions of PT and TPS domains (Minami
et al., 2018; Mitsuhashi and Abe, 2018), such as the R amygdali
Fusicoccadiene synthase that contains an N-terminal class |
TPS domain and a C-terminal PT domain and is involved in the
biosynthesis of Fusicoccin toxins (Toyomasu et al., 2007).

Functional Radiation of Monofunctional
Terpene Synthases
The absence of bifunctional class II/I diTPSs in angiosperms
(Chen et al., 2011) highlights another milestone in the expansion
of the TPS family; the duplication and sub-functionalization of
ancestral bifunctional y|kx-domain diTPSs with one descendent
retaining class I (ezzf-CPP synthase) activity in the (Sot-domain
and the other copy acting as a monofunctional class I diTPS (ezzf-
kaurene synthase) with a functional ot-domain (Figures 2B, C
and 3). Early examples of such monofunctional enzymes have
been described in S. moellendorffii, the liverwort M. polymorpha
(Li et al., 2012; Kumar et al., 2016), and gymnosperms (Keeling
et al., 2010) (Figure 4). While ancient vascular plants such as
S. moellendorffii did not yet use these enzymes for producing
bioactive GAs (Aya et al., 2011), monofunctional ezzf-CPP
and ezzf-kaurene synthase activities in GA biosynthesis are
conserved across vascular plants (Keeling et al., 2010; Chen
et al., 2011) (Figures 2B, D). In addition to their critical role in
phytohormone metabolism, monofunctional ezzf-CPP, and ezzf-
kaurene synthases will have served as a major genetic reservoir for
the lineage-specific expansion of functionally diverse class II and
class I TPSs across the plant kingdom (Zi et al., 2014) (Figure 4).
Derived from ancestral ezzf-CPP synthases, the TPS-c
clade of class II diTPSs has undergone a relatively moderate
diversification with known enzymes differing predominantly in
their expression patterns and product-specificity toward a range
of alternate stereo- and double-bond isomers and hydroxylated
(Peters, 2010; Zerbe and Bohlmann, 2015)
(Figures 2B, C). Most prominently, the ezzf-CPP enantiomer
(+)-CPP, first identified as an intermediate of gymnosperm class
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sesqui-, and di-TPSs; TPS-a, monofunctional class | sesqui- and di-TPSs; TPS-b, monofunctional class | mono-TPSs.

1I/1 diTPSs (Peters et al., 2000; Martin et al., 2004), is also a core
precursor to many labdane-related specialized diterpenoids in
various Lamiaceae species (Ma et al., 2012; Bruckner et al., 2014;
Gao et al.,, 2014; Zerbe et al., 2014; Bozic et al., 2015; Cui et al.,
2015; Ignea et al., 2016; Scheler et al., 2016) and some Poaceous
crops such as maize (Zea mays) and wheat (Triticum aestivum)
(Wu et ah, 2012; Mafu et ah, 2018). Class II diTPSs forming the
alternate stereoisomer syn-CPP (9S,10.R-CPP) appear to be of
narrower taxonomic distribution with current examples limited
to some Poaceous grasses (Otomo et ah, 2004; Xu et al., 2004;
Pelot et al., 2018). While ent-CPP, (+)-CPP, and syn-CPP are
the most commonly occurring labdane diterpene precursors,
variable series of 1,2-methyl and/or hydride migrations prior to
carbocation neutralization can result in other isomeric structures
(Peters, 2010). Examples include clerodienyl diphosphate
synthases identified in phylogenetically distant plants such as
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the Lamiaceae Salvia divinorum, the Poaceous grass switchgrass
{Panicum virgatum), and Celastraceae Tripterygium wilfordii
(Pelot et al., 2016; Chen et al., 2017; Hansen et al., 2017a; Pelot
et al., 2018); 7,13-CPP synthases described in S. moellendorffii
and the Asteraceae Grindelia robusta (Mafu et al., 2011; Zerbe
etal., 2015); and most recently, 8,13-CPP synthases in maize and
switchgrass (Murphy et al., 2018; Pelot et al., 2018). In addition
to variations in the scaffold rearrangement, a few class II diTPSs
evolved the ability to terminate the carbocation via oxygenation
rather than deprotonation, a function already present in the A.
balsamea czs-abienol synthase that forms LPP as an intermediate
(Zerbe et al., 2012b). Here, oxygenation commonly occurs at
the C-8 position to yield LPP with several such enzymes known
(Falara et al., 2010; Caniard et al., 2012; Zerbe et al., 2013;
Pelot et al., 2017). But also a C-9-oxygenated product has been
observed that is formed likely via alternate 1,2-hydride shift
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between C-8 and the neighboring methine group of the labda-
13-en-8-yl diphosphate carbocation prior to water quenching
(Zerbe et al., 2014; Heskes et al., 2018).

While the functional diversification ofclass II diTPSs has been
largely limited to variations in product specificity, the family of
class I diTPSs has seen a vast expansion and functional radiation
through which the large clades of class I diTPS (gymnosperm
TPS-d, angiosperms TPS-e/f), and ultimately, sesqui-TPSs
(gymnosperm TPS-d, angiosperm TPS-a) and mono-TPSs
(gymnosperm TPS-d, angiosperm TPS-b) have arisen (Chen
et al,, 2011; Gao et al.,, 2012) (Figure 3). In angiosperms, the
predominant blueprint for this class I TPS expansion will have
been the repeated duplication and functionalization of ancestral
monofunctional ent-kaurene synthases within the TPS-e/f clade
(Peters, 2010; Zi et al., 2014; Zerbe and Bohlmann, 2015). Beyond
the divergence of enzyme products, many specialized class [
diTPSs exhibit broad promiscuity for converting different class
II diTPS intermediates into the large class of labdane-related
diterpenoids (Figure 2E). This biochemical capacity enables
modular pathway networks where functionally distinct enzymes
can act in different combinations to generate a wider spectrum
of possible products. It then appears that dividing class II and
class I activities into two monofunctional enzymes has provided
an evolutionary advantage over the improved intermediate
channeling in bifunctional diTPSs that emerged through
the ancestral domain fusion events. Numerous examples of
species-specific modular diterpenoid-metabolic networks have
been described, including the biosynthesis of stress defensive
diterpenoid networks in several Poaceous crops such as wheat,
rice, and maize (Xu et al., 2007a; Morrone et al., 2011; Zhou et al.,
2012b;Zerbeetal., 2014; Cui etal., 2015; Fuetal., 2016; Mafu etal.,
2018), as well as specialized diterpenoid metabolism in species of
Salvia and other Lamiaceae (Bruckner et al., 2014; Zerbe et al.,
2014; Cui et al., 2015; Heskes et al., 2018). Further studies on how
interconnected pathway branches are regulated will be essential
to better understand how metabolic flux is coordinated between
general and specialized pathways, as well as specialized pathway
branches sharing key intermediates. Unlike angiosperms where
such modular pathways of pairwise-acting monofunctional
class II and class 1 diTPSs are the major metabolic strategy
(Peters, 2010; Morrone et al., 2011; Mafu et al., 2015; Zerbe
and Bohlmann, 2015), specialized diterpenoid metabolism in
gymnosperms largely relies on ancestral bifunctional enzymes.
However, the existence of modular pathways also in conifers was
suggested by the discovery of monofunctional class I diTPSs in
jack pine (Finns banksiana) and lodgepole pine (Finns contorta)
that derived from bifunctional progenitors and are capable of
utilizing the (+)-CPP intermediate produced by bifunctional class
II/T enzymes to form a set of pimarane-type labdanes (Hall et al.,
2013). Likewise, two groups of predictably monofunctional class
I diTPSs that likely evolved from both TPS-d and TPS-e/fdiTPSs
were recently identified in Western red cedar (Thuja plicata)
(Shalev et al., 2018). Biochemical analysis ofthese enzymes may
shed light on the distribution of modular class Il-class I diTPS
reactions in gymnosperm specialized diterpenoid metabolism.

This expansive diversification of class I diTPSs resulted in a
multitude of enzymes with altered substrate/product specificity
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and/or gene expression patterns as a critical contribution to the
emergence of species-specific specialized functions (Peters, 2010;
Zerbe and Bohlmann, 2015). Mostly, these catalytic alterations
resulted in variations of the carbocation rearrangement to yield
different pimarane, abietane, clerodane, kaurane, dolabradane, and
related labdane scaffolds (Figure 2E). While the majority ofthese
diTPS products are hydrocarbon scaffolds, a few class I diTPSs
were discovered in recent years that terminate the intermediary
carbocation not by deprotonation but via hydroxylation in a
manner analogous to class II diTPSs that produce C-8 or C-9
hydroxylated prenyl diphosphate products (Peters, 2010; Zerbe
and Bohlmann, 2015). Although examples are presently rare,
such enzymes seem to be widely distributed across different
plant families, including P. patens class I/I 16a-hydroxy-kaurane
synthase (Hayashi et al., 2006), S. moellendorffii labda-7,13£-
dien-15-ol synthase (Mafu et al, 2011), 13-hydroxy-8(14)-
abietene synthases in several gymnosperm species (Keeling et al.,
2011), 16a-hydroxy-ezzf-kaurane synthases from T wilfordii
(Hansen et al., 2017a) and Populus trichocarpa (Irmisch et al.,
2015), nezukol synthase from Isodon rubescens (Pelot et al.,
2017), and Salvia sclarea sclareol synthase (Caniard et al., 2012).
The regio-specific hydroxylation reactions catalyzed by these
diTPSs suggests that the ability of TPSs to ligate a water molecule
or hydroxyl group in the nonpolar active site for coordinated
carbocation quenching emerged multiple times independently
in terpenoid evolution. Notably, sclareol synthase belongs to a
recently discovered group of Pa-bi-domain class I diTPSs that
have undergone loss ofthe y-domain (Figure 3). Members of'this
diTPS group form a separate branch in the TPS-e/fclade and have
so farbeen identified in Poaceae and Lamiaceae species (Figure 4),
where they almost invariably form specialized terpenoid products
and exhibit broad substrate promiscuity, in some cases, such as
wheat (T. aestivum) KSL5 and maize TPS1 spanning mono-,
sesqui-, and di-terpenoid products (Hillwig et al., 2011; Caniard
etal., 2012; Zerbe et al., 2013; Zerbe et al., 2014; Fu et al., 2016; Jia
et al., 2016a; Pelot et al., 2016; Pelot et al., 2017; Pelot et al., 2018).
Close phylogenetic relationships to TPS-e/f diTPSs combined
with partial ezzf-kaurene synthase activity ofa few enzymes suggest
that these Pa-domain diTPSs derived more recently from YP«-
domain class | enzymes. These Pa-bi-domain diTPSs resemble
the likely progenitors of not only specialized class I diTPSs but
the vast classes of modern Pa-domain mono- and sesqui-TPSs.
Here, loss of the y-domain will have been accompanied by
various active site modifications toward converting the shorter
Cl0 and CI5 substrates and catalyzing manifold distinct scaffold
rearrangements and, in case of the sesqui-TPS family, alteration
of enzyme subcellular localization through loss of the N-terminal
plastidial transit peptide. Unlike the typically mid-sized diTPS
families of 2-30 members, mono- and sesqui-TPS families have
undergone a far greater expansion that resulted in diverse families
of—for example, 69 TPSs in grape (Vitis vinifera) (Martin et al.,
2010) and 113 TPS genes in Eucalyptus (Kiilheim et al., 2015),
enabling these species to produce an astounding variety of smaller
and more volatile terpenoids.

In addition to diTPS converting class II enzyme products,
class I diTPSs with the ability to directly convert GGPP as a
substrate emerged multiple times during terpenoid evolution
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and are abundant in a few plant families (Figure 4). In
gymnosperms, known GGPP-converting monofunctional
class I diTPSs are currently limited to taxadiene synthases in
species of yew (Taxus spp.) that produce the taxane scaffold in
the biosynthesis of the chemotherapeutic agent Taxol (Williams
et al.,, 2000) and pseudolaratriene synthase from golden larch
(Pseudolarix amabilis) that forms an unusual 5-7-ring scaffold
en route to the bioactive anti-cancer compound pseudolaric
acid B (Mafu et al., 2017) (Figure 5). These enzymes adopt the

GGPP
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characteristic y(la-domain architecture of gymnosperm diTPSs
and phylogenetic analyses clearly indicate that they represent
descendants of bifunctional class II/I diTPSs rather than
mono- or sesqui-TPSs of the TPS-d clade. In angiosperms, the
evolutionary path leading to GGPP-converting diTPSs appears
to be more diverse and resulted in enzymes that can produce
linear, unusual polycyclic, and macrocyclic scaffolds (Kirby et al.,
2010; Vaughan et al., 2013; Falara et al., 2014; King et al., 2014;
Luo et al., 2016) (Figure 5).

geranyllinalool

taxane
pseudolaratriene
rhizathalene
hydroxy-vulgarisane
casbane cembrane

FIGURE 5 | Schematic overview of prominent linear, polycyclic and macrocyclic diterpene scaffolds that are formed through the activity of monofunctional class |
diTPSs that are capable of directly converting geranylgeranyl diphosphate (GGPP) as a substrate.
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Among these class I diTPSs, geranyllinalool synthases (GLSs)
are y|kx-domain diTPSs that uniquely catalyze the ionization of
the GGPP diphosphate ester bond without subsequent cyclization
to occur (Figure 5), resulting in an acyclic geranyllinalool
intermediate in the biosynthesis of the homoterpenoid (£,£)-
4,8,12-trimethyltrideca-1,3,7,1l-tetraene (TMTT) with anti-
herbivory activity (Falara et al., 2014). Intriguingly, most of the
known GLSs form an ancient branch within the TPS-e/f clade
of kaurene(-like) synthases, whereas enzymes from Fabaceae
species fall into the more divergent TPS-g clade mostly comprised
of unusual mono- and sesqui-TPSs (Chen et al., 2011; Falara
et al.,, 2014). Although currently known GLSs are restricted to
angiosperm species, phylogenetic studies suggest that TPS-e/f
GLSs represent an ancient diTPS family that arose from a common
ancestor predating the split ofthe gymnosperm and angiosperm
lineages (Falara et al., 2014). Conversely, Fabaceae-speci&c GLSs of
the TPS-g family are likely the result of more recent independent
evolutionary events. Alike GLSs, class I enzymes converting
GGPP into non-labdane poly- or macro-cyclic scaffolds have
been identified in a few angiosperm families (Figure 4), including
casbene synthases and related macrocyclases in Euphorbiaceae
(Mau and West, 1994; Kirby et al., 2010; King et al., 2014; Luo etal.,
2016), cembratrienol synthases in Solanaceae species (Ennajdaoui
et al., 2010), Arabidopsis rhizathalene synthase (Vaughan et al.,
2013), and most recently, 11-hydroxy vulgarisane synthase from
the Lamiaceae Prunella vulgaris (Johnson et al., 2019b) (Figure
5). All known members of this group represent [3a-bi-domain
class I diTPSs and do not belong to the broad TPS-e/f family of
class I diTPSs but instead form a distinct branch in the TPS-a
clade of'sesqui-TPSs (Kirby et al., 2010; King et al., 2014; Johnson
et al., 2019b). Two possible evolutionary routes toward these more
unusual diTPSs can be envisioned: evolution from TPS-e/f type
diTPSs through neo-functionalization and loss of the plastidial
signaling peptide or divergence from sesqui-TPS progenitors,
which would have involved the re-acquisition of’a transit peptide
that was previously lostin the evolution ofthe cytosolic sesqui-TPS
family. The latter hypothesis is supported by the close phylogenetic
relationship of TPS-a diTPSs and sesqui-TPSs ofthe TPS-a clade
(King et al., 2014; Luo et al., 2016; Johnson et al., 2019b). Such
re-evolution events toward diterpenoid-producing TPSs appear
not be to restricted to the TPS-a clade, since a monofunctional
class I diTPS-producing miltiradiene was identified in T. wilfordii
that clusters with the TPS-b clade of mono-TPSs rather than with
other miltiradiene synthases of the TPS-e/f clade (Hansen et al.,
2017a). These collective findings support a highly branched rather
than linear evolutionary diversification of TPS functions with
many such bifurcations still unknown.

CATALYTIC PLASTICITY OF PLANT
TERPENE SYNTHASES

The rapid evolutionary divergence of terpenoid metabolism is
aided by the extensive functional plasticity of TPSs. Hence, there
has been a long-standing interest in deciphering the mechanisms
underlying TPS catalysis and substrate/product specificity.
Although TPS structural studies have provided important

Frontiers in Plant Science | www.frontierBin.org

Terpenoid Chemical Diversity in Plants

insight into TPS catalysis, successful crystallization of plant TPSs
currently remains limited to a handful of examples, including
Arabidopsis ent-GPP synthase (class II diTPS) (Koksal et al.,
2014), Taxus brevifolia taxadiene synthase (class I diTPS) (Koksal
et al., 2011), A. grandis abietadiene synthase (class 1I/I diTPS)
(Zhou et al., 2012a), and a few mono- and sesqui-TPS enzymes
(Starks, 1997; Whittington et al., 2002; Hyatt et al., 2007; Shishova
et al., 2008; Gennadios et al., 2009; McAndrew et al., 2011). The
conserved nature of the TPS fold further has enabled numerous
homology-based structure-function studies that provided a
deeper insight into the relative ease of functional change in TPS
enzymes, where as little as a single residue mutation can alter the
active site contour that largely determines product specificity (for
detailed reviews see also Gao et al., 2012; Christianson, 2017).
Early work on the class II/I abietadiene synthase from A.
grandis demonstrated that class II catalysis uses a general aid-
base mechanism to bring about the cyclo-isomerization of GGPP,
whereby the acid function is provided by the middle aspartate
ofthe conserved DxDD motif (Peters and Croteau, 2002; Prisic
et al,, 2007; Peters, 2010). Molecular-level insight into this
mechanism was recently gained through solving of the crystal
structure of Arabidopsis ent-GPP synthase at high resolution
(Koksal et al., 2014). In this study, Koksal and coworkers elegantly
demonstrated that proton transfer with this conserved aspartate
is enabled by hydrogen-bonded proton wires that link the active
site to the bulk solvent (Koksal et al., 2014). Accompanying
mutagenesis studies identified the relevant catalytic base in
Arabidopsis ent-GPP synthase as a water molecule that, in turn,
is coordinated by a dyad oftwo histidine and asparagine residues
conserved in ent-GPP synthases (Mann et al., 2010; Potter
et al.,, 2014) (Figure 6A). Alanine substitution of these residues
resulted in water quenching rather than deprotonation of the
labd-enyl carbocation intermediate to yield hydroxylated ent-
8-hydroxy-CPP products (Potter et al., 2014; Mafu et al., 2015).
The widely conserved relevance of this catalytic dyad has been
further supported by site-directed mutagenesis of analogous
residues in the bifunctional ezzf-CPP/ezzf-kaurene synthase from
P. patens and the fungus Fusarium fujikuroi, which both resulted
in the formation of ezzf-LPP as the class I product (Kawaide
et al., 2011; Mafu et al.,, 2015). Likewise, in the class II/I diTPS,
abietadiene synthase from A. grandis substitution of a tyrosine
corresponding to the catalytic histidine and a nearby histidine
led to the redirection of class II specificity from (+)-CPP to
8a-hydroxy-CPP (Criswell et al., 2012). In addition to its critical
role in ezzf-CPP synthase activity, residues in the position of'this
dyad have been shown to impact product specificity in several
class II diTPSs. For example, substitution of'the Arabidopsis ezzf-
CPP synthase histidine with phenylalanine or tyrosine rather
than Alanine redirected product outcome toward the formation
of clerodienyl diphosphate (Potter et al., 2016b) (Figure 6A).
Strikingly, reciprocal mutagenesis of the corresponding active
site positions in recently discovered clerodienyl diphosphate
synthases from S. divinorum and T. wilfordii blocked the series
of migration reactions required for forming the clerodane
scaffold and resulted in premature deprotonation to form
ezzf-CPP (Pelot et al.,, 2016; Hansen et al., 2017b). Further
supporting this evidence, a recent study by Schulte et al. showed
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FIGURE 6 | Continued

that the catalytic dyad in a conserved clade of Lamiaceae (+)-
CPP synthases is represented by a hydrogen-bonded histidine-
tyrosine pair (Schulte et al., 2018). Mutagenesis especially of
the tyrosine position in Salvia miltiorrhiza (+)-CPP synthase
as well as other Lamiaceae class 11 diTPSs showed a dramatic
impact on product outcome. Likewise, alanine substitution of
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a corresponding phenylalanine residue in a 8,13-CPP synthase
from switchgrass (PvCPS3) resulted in both positional isomers
and hydroxylated forms of the native 8,13-CPP product (Pelot
et al.,, 2018), thus highlighting the relevance of these active
site positions in specialized class II diTPSs across diverse
plant species.

October 2019 | Volume 10 | Article 1166



Karunanithi and Zerbe Terpenoid Chemical Diversity in Plants

FIGURE 6 | Examples of active site residues with impact on class |l or class | TPS product specificity. (Center) Structure of Abies grandis abietadiene synthase
(PDB 3S9V; Zhou et at, 2012a) that adopts the prototypical a-helical TPS fold with variations in three domains y (orange), p (blue), and a (red). Relative locations

of the highlighted active site residues are indicated A-F. (A) A widely conserved His-Asn dyad is critical for stereo-specificity of Arabidopsis enf-CPP synthase
(PDB 4LIX; Koksal et at, 2014) and other enf-CPP synthases (Mann et at, 2010; Potter et at, 2014; Mafu et at, 2015). Substitution of this dyad can result in the
formation of the alternate clerodienyl diphosphate product (Potter et at, 2014; Pelot et at, 2016). (B) His501 in the rice syn-CPP synthase OsCPS4 is critical for the
stereo-specific formation of syn-CPP and is conserved in known syn-CPP synthases but not class I diTPS producing alternate CPP stereoisomers (Potter et at,
2016a; Pelot et at, 2018). (C) A conserved Met residue in enf-kaurene synthases from Picea giauca and other species was shown to control enf-kaurene formation
(Xu et at, 2007b; Zerbe et at, 2012a). (D) Mutational studies of corresponding Ser-lle-Ala-Leu and Ser-lle-Ser-Leu motifs located at the hinge region of helix G1/2
of R abies levopimaradiene/abietadiene and isopimaradiene synthase showed their critical role in producing abietane or pimarane scaffolds (Keeling et at, 2008).
(E) Three residues were identified in the active site of Artemisia annua p-farnesene synthase, reciprocal exchange of which to corresponding residues in A. annua
amorphadiene synthase that control activation (Tyr402), reversion (Tyr430), and restoration (Val476) of cyclization capacity (Salmon et at, 2015). (F) Two residues,
Trp324 and His579, were shown in limonene synthase of Mentha spicata to control the reactions cascade toward the natural product 4(S)-limonene (Srividya et at,
2015). The signature catalytic motifs of the class Il (DxDD, green) and class | (DDx2D, cyan; NSE/DTE, magenta) active sites are highlighted. Protein abbreviations:
AtECPS, Arabidopsis thaliana enf-copalyl diphosphate (CPP) synthase; OsCPS4, Oryza sativa syn-CPP synthase; PvCPSS, Panicum virgatum 8,13-CPP synthase;
SmCPS, Salvia miltiorrhiza (+)-CPP synthase; MvCPSI, Marrubium vulgare peregrinol diphosphate synthase; SACPS2, Salvia divinorum clerodienyl diphosphate
(KPP) synthase; PpCPS/KS, Physcomitrella patens CPP/enf-kaurene synthase; AgAS, Abies grandis abietadiene synthase; PEEKS, Picea giauca enf-kaurene
synthase; P1TPS19, Populus trichocarpa enf-kaurene synthase; PaLAS, Picea abies levopimaradiene/abietadiene synthase; PalSO, P abies isopimaradiene
synthase; AaBFS, Artemisia annua p-farnesene synthase; AaADS, A. annua amorphadiene synthase.

Another key position contributing to product specificity in et al., 2015) (Figure 6C), thus suggesting a possible contribution

class II diTPSs was identified as a histidine (HisSOI) residue of mutations at this position to the evolution of dedicated enf-
in the rice syn-CPP synthase OsCPS4, where mutagenesis kaurene synthases.
to aspartate or phenylalanine resulted in additional scaffold Another key active site segment that impacts class I TPS

rearrangements to form syzz-halimadienyl diphosphate (Potter product specificity is a small hinge region between helix G1/2
etal., 2016a) (Figure 6B). A later study on the product specificity (Figure 6D). This helix break is already present in ancestral
of the functionally unique peregrinol diphosphate synthase squalene synthases, and recent structural studies of a bacterial
from Marrubium vulgare (MvCPSI) showed that substitution hedycaryol sesqui-TPSs illustrated a role of this helix break in
of the corresponding phenylalanine residue and a proximal generating a negative electrostatic potential that contributes to
tryptophan in MvCPSI also redirected product outcome to yield carbocation stabilization during catalysis (Pandit et al., 2000;
a halimadienyl diphosphate scaffold (Mafu et al., 2016). These Baer et al.,, 2014). For example, mutational analysis of a pair of
structure-function studies in conjunction with the conservation paralogous class II/I diTPSs from Norway spruce (Picea abies)
of the relevant histidine residue in known syn-CPP synthases, illustrated that reciprocal exchange of a largely conserved
but not functionally distinct class II diTPSs (Figure 6B), support SIAL/SISL motif located at this hinge region resulted in the
the relevance of this position for controlling biosynthesis of the complete interconversion of the respective abietadiene and
syn-CPP stereoisomer (Potter et al., 2016a). Given the relatively isopimaradiene synthase activities (Figure 6D) (Keeling et al.,
smaller functional range of plant class II diTPSs, knowledge 2010). A similar scenario was observed in several enf-kaurene

of active site determinants controlling product specificity can synthases, where mutagenesis of a conserved isoleucine residue
facilitate sequence-based prediction of class II diTPS functions at this helix break mitigates formation of a tetracyclic kaurane
as additional residues and functionally distinct enzymes structure and instead yielded tricyclic ezzf-pimaradiene scaffolds
are identified. as demonstrated in enzymes from rice, Arabidopsis, spruce,

By comparison to class Il diTPSs, functional annotation of and P. patens (Wilderman and Peters, 2007; Xu et al., 2007b;
class I TPSs is inherently more complex, due to the larger size Zerbe et al., 2012a). Reciprocal mutagenesis of a corresponding
and functional diversity of the class I TPS family spanning threonine residue in the specialized rice class I diTPS OsKSLS
diterpenoid as well as mono- and sesqui-terpenoid-producing shifted catalysis from forming ezzf-pimaradiene to producing
enzymes. However, numerous structure-guided functional ezzf-isokaurene and other tetracyclic scaffolds, further supporting
studies have provided a deeper understanding of active site the role of residues in this position in controlling the fate of
determinants that control the fate of intermediary carbocations the intermediary ezzf-pimarenyl carbocation likely through
derived from ionization ofthe respective linear or bicyclic prenyl electrostatic stabilization by a coordinated water or hydroxyl
diphosphate substrates. Mutational studies of the ent-CPPlent- group (Jia et al., 2017).

kaurene synthases from P. patens and the liverwortJungermannia More recently, mutational analysis of'sclareol synthase from S.
subulata that produce enf-kaurene and 16u-hydroxy-ezzf-kaurane sclarea (Caniard et al., 2012;Schalket al., 2012) identified a single
identified an alanineresidue that, when substituted for methionine asparagine residue, Asn431, located at the helix G break that

or phenylalanine, blocked formation of 16u-hydroxy-ezzf-kaurane impacts stereochemical control of product outcome. Switching
in favor of enf-kaurene (Kawaide et al., 2011). Similar studies Asn431 to glutamine reprogrammed the hydroxylation at C-13
on enf-kaurene synthases from spruce (Picea giauca) and polar from forming the native product 13R-sclareol to selectively
(P. trichocarpa) showed that mutagenesis of the corresponding producing its stereoisomer 13S-sclareol, thus highlighting the
methionine residues in these enzymes had the reciprocal effect critical role of this amino acid on stereospecific water addition
by redirecting product specificity toward 16a-hydroxy-enf- (Jia et al., 2018a). Collectively, these studies support a possibly
kaurane instead of enf-kaurene (Zerbe et al., 2012a; Irmisch critical role ofthe helix G hinge region in the catalytic control of
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product specificity in distinct diTPS and likely other class [ TPS
enzymes from ancestral ezzf-kaurene synthases.

Numerous studies also illuminated enzyme-specific active site
residues with impact on class | catalysis in mono- and sesqui-
TPSs. For example, alanine substitution of Asn338 in the Salvia

fructicosa 1,8-cineole synthase generated an enlarged active site
contour and redirected catalysis to effective conversion ofthe CI5
FPP substrate to yield a-bergamotene, [3-farnesene, and related
sesquiterpenoid products, highlighting how minor alterations in
the active cavity can enable the accommodation ofdifferent chain
length substrates (Kampranis et al., 2007). In addition, a triad of
active site residues impacting TPS capacity for generating cyclic
products was discovered using comparative studies of Artemisia
annua amorphadiene synthase and [3-farnesene synthase that
produce contrasting cyclic and linear products, respectively
(Salmon et al., 2015). Large-scale site-directed mutagenesis
studies of active site residues distinct between both enzymes
revealed two central residue switches that activate cyclization
in [3-farnesene synthase (Tyr402Leu) or revert cyclization in
the Tyr402Leu mutant (Val476Gly) (Figure 6E). Interestingly, a
third mutation (Tyr430Ala) restored cyclization activity in the
Val476Gly mutant background, illustrating that the ability to
form a cyclic product is controlled by combinatorial effects of
these active site positions. A growing body of knowledge exists
on active site residues that contribute to different rearrangements
of the initial cyclic carbocation intermediates in mono- and
sesqui-terpenoid biosynthesis. For example, structure-guided
mutagenesis of Mentha spicata limonene synthase, the key
enzyme in the menthol production (Lange et al., 2011), identified
two amino acids, His579 and Trp324, substitution of which led
to premature neutralization of the carbocation intermediate to
form both linear and cyclic monoterpenoids, including myrcene,
linalool, and terpineol (Srividya et al., 2015) (Figure 6F).
Similarly, reciprocal mutagenesis analyses of the mono-TPSs,
Sitka spruce (Picea sitchensis) 3-carene synthase, and sabinene
synthase associated with tree resistance against white pine weevil
(Hall et al., 2011) revealed that two corresponding residues,
3-carene synthase Leu596, and sabinene synthase Phe596
located near the helix G break are critical for rearranging the
central a-terpinyl. carbocation toward 3-carene and sabinene,
respectively (Roach et al., 2014).

The above examples and numerous related structure-function
studies not covered within the scope of this review provide a
mere glimpse into the plasticity of TPS catalysis, which relies on
a largely non-polar active site with various possible carbocation
rearrangements that enable the formation of myriad terpenoid
structures with minimal investment in evolving new enzymes.
However, despite these advances, our understanding of TPS
mechanisms remains incomplete, thus limiting the ability to
apply such knowledge for predicting the complex carbocation
cascades underlying TPS activity and engineering desired enzyme
functions. For instance, the taxonomic rather than functional
relatedness of plant TPSs limits the use of phylogenic analyses for
functional prediction (Chen et al., 2011; Zerbe and Bohlmann,
2015). Moreover, product re-direction through TPS mutagenesis
as discussed above can be accompanied by a decrease in overall
enzyme activity or additional byproducts resulting from a loss
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of steric control in the active site (Peters and Croteau, 2002;
Pelot et al., 2016; Mafu et al., 2017). In this context, combining
TPS structural analysis with quantum chemical calculations
and molecular dynamic modeling approaches is advancing as a
powerful tool kit to examine and predict TPS-mediated reaction
cascades as discussed in more detail in several recent expert
reviews (Tantillo, 2010; Tantillo, 2011; Gao et al., 2012; Major
et al,, 2014). For example, computational quantum chemical
analyses have provided deeper insight into the inherent energy
states driving terpene carbocation rearrangements and offer
tools for predicting terpene pathways, as shown—for example,
for predicting the often multi-product reactions catalyzed
by sesquiterpene synthases (Isegawa et al., 2014). Likewise,
structural studies combined with molecular dynamic modeling
of TPSs has been successfully employed to predict the chemical
space of possible carbocation rearrangements in mono-, di-,
and tri-TPSs (Tian et al., 2014; Tian et al., 2016; Driller et al.,
2018). Specifically, modeling of the catalytically relevant closed
conformer of taxadiene synthase enabled important insight into
the yet incompletely understood conformational changes of
class I TPSs that contribute to the enzymes’' control over product
outcome (Schrepfer et al., 2016). In addition, detailed insights
into how individual active site residues impact taxadiene synthase
catalysis was revealed using a combined quantum mechanics
and free energy simulation approach (Ansbacher et al., 2018).
Current challenges for such computational approaches, such as
predicting the role of water in the active site and the termination
of the carbocation via deprotonation or water capture require
further attention, but can likely be addressed with increasing
computing resources and available structural information on a
broader range of TPSs.

FUNCTIONAL ELABORATION OF THE
TERPENE SCAFFOLD

The vast majority of terpenoids feature multiple functional
decorations of the TPS-derived hydrocarbon scaffold that
critically contribute to the diverse bioactivities of'the metabolite
class (Pateraki et al., 2015; Bathe and Tissier, 2019). These
tailoring reactions almost invariably are initiated by position-
specific oxygenations. Although these reactions can be facilitated
by TPSs as outlined above, the vast majority ofterpene functional
modifications are controlled by the large family of cytochrome
P450 monooxygenases that function as versatile catalysts for a
variety ofmonooxygenation reactions, as well as phenol-coupling
reactions, oxidative rearrangements, and oxidative C-C bond
cleavage in some cases (Mizutani and Sato, 2011; Banerjee and
Hamberger, 2018). Given the vast diversity of P450-controlled
metabolic bifurcations, their roles in terpenoid metabolism will
be on briefly discussed here. For a more expansive overview,
we refer the reader to a selection of expert reviews (Nelson
and Werck-Reichhart, 2011; Pateraki et al., 2015; Banerjee and
Hamberger, 2018; Bathe and Tissier, 2019).

The P450 superfamily has expanded far beyond the mid-
sized TPS families observed in most plants studied thus far and
comprises on average more than 200 genes in an individual plant
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genome with various functions in both general and specialized
metabolisms. Among the 127 currently defined plant P450
families, only a handful have been shown to play major roles
in terpenoid metabolism. Within the CYP85 clan, members of
the CYP88A subfamily serve as e/zf-kaurenoic acid oxidases in
GA biosynthesis (Nelson and Werck-Reichhart, 2011), whereas
CYP725 and CYP720B enzymes are specific to gymnosperm
species and catalyze hydroxylation and carboxylation reactions
in the formation of taxol in species of Taxus and DRAs in
Pinaceae species, respectively (Ro et al., 2005; Ro and Bohlmann,
2006; Rontein et al., 2008; Hamberger et al., 2011; Guerra-Bubb
etal., 2012). More prominently, multiple families within the large
GYP71 clan contribute to the various functional modifications
of C1(0-C10 terpenoids (Hamberger and Bak, 2013). This includes
members of the CYP701A subfamily that act as ezzf-kaurene
oxidases in GA metabolism and, in several species, have been
recruited through gene duplication and neo-functionalization
for the formation of defensive specialized diterpenoids as
exemplified in Arabidopsis, maize, and rice (Morrone et al.,
2010; Wang et al., 2012b; Mafu et al, 2018). However, the
majority of terpenoid-modifying P450s fall into the vast GYP71
and GYP76 families with numerous such enzymes having been
characterized. Both P450 families are presumably evolutionary
younger with the GYP76 family first occurring in cycads and
Ginkgo, whereas the GYP71 family seemingly emerged with the
onset of angiosperm evolution but is absent in nonseed plants
(Nelson and Werck-Reichhart, 2011). Members ofboth families
predominantly function as position-specific hydroxylases that
catalyze (poly-)oxygenations of various mono-, sesqui-, and
di-terpenoid scaffolds (Swaminathan et al., 2009; Ikezawa et al.,
2011; Wu et al, 2011; Wang et al., 2012a; Diaz-Chavez et al.,
2013; Guo et al., 2013; Ignea et al., 2016; Mao et al., 2016; Scheler
et al., 2016; Mafu et al., 2018) but also alternate functions such
as diterpenoid epoxidation and the formation of furan rings in
mono- and di-terpenoid metabolisms have been demonstrated
(Bertea et al., 2001; Heskes et al., 2018; Mafu et al., 2018).
Notably, the first three-dimensional structure for a membrane-
bound plant P450 (S. miltiorrhiza CYP76AH1) has been
reported (Gu et al.,, 2019), providing resources to gain deeper
mechanistic insight into the activity of diterpenoid-metabolic
P450. In addition, recent P450 characterization studies expanded
terpenoid-metabolic functions to other P450 families such as
the gymnosperm-specific CYP750 family with a (+)-sabinene-3-
oxidase (CYP750B1) from Western red cedar potentially involved
in producing the anti-herbivory monoterpenoid thujone (Gesell
et al., 2015), as well as members of the CYP726A subfamily
from castor bean {Ricinus communis) that catalyze epoxidation
and oxidation reactions converting macrocyclic casbene and
neocembrene scaffolds in Euphorbiaceae species (King et al.,
2014; Luo et al., 2016).

In addition to and often subsequent to the activity of P450s
in the functional elaboration of terpene scaffolds, several other
enzyme families contribute to the biosynthesis of bioactive
terpenoids. This includes, but is not limited to, the function
of 2-oxoglutarate/Fe(I)-dependent dioxygenases (2-ODDs)
(Farrow and Facchini, 2014), for example, in GA phytohormone
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metabolism, as well as members of often large methyl-, glycosyl-,
and acetyl-transferases (Bathe and Tissier, 2019).

CONCLUDING REMARKS

Continued investigation of the evolutionary divergence and
function of the TPS family will provide important knowledge
of the still incompletely understood roles of terpenoids in
mediating defensive and cooperative interactions with other
organisms and the environment at large (Tholl, 2015). However,
to address knowledge gaps and experimental limitations,
research in several areas will be particularly important.
Advances in the computational annotation and biochemical
characterization of TPSs and P450 enzymes must continue in
order to fully capitalize on rapidly expanding sequence resources
across a broad range ofreference and non-model species. Here,
application of combinatorial functional studies in both microbial
and plant hosts systems have proven to be a powerful tool to
analyze modular terpenoid-metabolic networks comprised
of multiple functionally distinct enzymes (Zerbe et al., 2013;
Kitaoka et al., 2015; Andersen-Ranberg et al., 2016; Johnson
et al.,, 2019a). Along with more efficient identification of new
enzyme functions, continued structure-function studies will
provide a deeper understanding of the functional diversity and
molecular evolution of species-specific enzymes and pathways.
Likewise, advanced quantum and molecular mechanics
approaches for protein modeling and carbocation docking can
utilize deeper structural insight to improve the precision of TPS
functional prediction (Isegawa et al., 2014; Chow et al., 2015;
Tian et al., 2016; O’Brien et al., 2018). Knowledge of terpenoid-
metabolic genes, enzymes, and pathways will increasingly
enable the investigation of terpenoid physiological functions
in planta and under various environmental conditions. To this
end, gene editing and transformation techniques applicable to
a broader range of model and non-model species that produce
species-specific blends of bioactive terpenoids will be critical
(Wurtzel and Kutchan, 2016). Together, advanced genomic and
biochemical tools and a deeper understanding of terpenoid
biosynthesis and function have tremendous potential for
harnessing the natural diversity of plant terpenoids for, for
example, improving crop resistance and other quality traits and
developing advanced protein and pathway engineering strategies
for producing known and novel bioproducts.
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