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ABSTRACT 5 

 Recent ice-mass loss driven by warming along the Antarctic Peninsula (AP) has resulted 6 

in rapid changes in uplift rates across the region.  Are such events only a function of recent 7 

warming? If not, does the Earth response to such events last long enough to be preserved in 8 

Holocene records of relative sea levels (RSL), and thus have a bearing on global-scale glacial 9 

isostatic (GIA) models (e.g. ICE-5G)?  Answering such questions in Antarctica is hindered by the 10 

scarcity of RSL reconstructions within the region. Here, a new RSL reconstruction for Antarctica 11 

is presented based on beach ridges from Joinville Island on the AP. We find that RSL fell 4.9 ± 12 

0.58 m over the last 3100 years, and the island experienced a significant increase in the rate of 13 

RSL fall from 1540 ± 125 cal yr BP to 1320 ± 125 cal yr BP. This increase in the rate of RSL fall 14 

is likely due to the viscoelastic response of the solid Earth to terrestrial ice mass loss from the AP, 15 

similar to the Earth response experienced after ice mass loss following acceleration of glaciers 16 

behind the collapsed Larsen B ice shelf in 2002. Additionally, slower rates of beach-ridge 17 

progradation from 695 ± 190 cal yr BP to 235 ± 175 cal yr BP potentially reflect erosion of beach 18 

ridges from a RSL rise induced by a local glacial advance. The rapid response of the Earth to minor 19 

ice-mass changes recorded in the RSL record further supports recent assertions of a more 20 

responsive Earth to glacial unloading and at time scales relevant for GIA of Holocene and 21 

Pleistocene sea levels. Thus, current continental and global GIA models may not accurately 22 

capture the ice mass changes of the Antarctic ice sheets at decadal and centennial time scales. 23 
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INTRODUCTION  24 

In 2002, the Larsen B ice shelf on the eastern Antarctic Peninsula (AP) collapsed, initiating 25 

accelerated ice flow and glacial thinning in the glaciers it once buttressed (Rignot et al., 2004; 26 

Scambos et al., 2004). The subsequent terrestrial ice-mass loss from the glaciers that once fed the 27 

ice shelf resulted in a pronounced increase in uplift rates recorded in GPS data across the AP 28 

(Thomas et al., 2011). The amount of uplift exceeded that which could be explained by elastic 29 

deformation of the solid Earth alone and must have included a viscoelastic response (Nield et al., 30 

2014). Most current continental-scale glacial isostatic adjustment (GIA) models (Lambeck et al., 31 

1998; Peltier et al., 2015) for the behavior of the Earth in response to late Pleistocene through late 32 

Holocene ice-sheet changes fail to reflect rapid decadal to centennial Earth responses to ice-mass 33 

loss. This shortcoming is in part a reflection of the relatively limited resolution of the relative sea-34 

level (RSL) data available within Antarctica. While geologic evidence shows that many smaller 35 

ice shelves and glaciers around the AP have exhibited re-advances and retreats throughout the 36 

Holocene (Brachfeld et al., 2003; Hall, 2009; Hjort et al., 1997; Pudsey and Evans, 2001; Pudsey 37 

et al., 2006), the resolution of the few RSL curves in Antarctica prevents a full understanding of 38 

the solid-Earth response to such events.  39 

In the AP, coastal marshes, microatolls, and other geological formations containing 40 

biological proxies often used for the generation of high-precision RSL curves are absent. In their 41 

absence, most RSL reconstructions within Antarctica have turned to using radiocarbon dating of 42 

organic material preserved within morphologic features, such as beach ridges or isolation basins 43 

(Bentley et al., 2005; Fretwell et al., 2010; Hall, 2010; Hjort et al., 1997; Hodgson et al., 2013; 44 

Roberts et al., 2009; Roberts et al., 2011; Simkins et al., 2013; Simms et al., 2018; Watcham et al., 45 

2011). Isolation basins capture the age and elevation of RSL as the basin transitions from salt to 46 
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fresh water or vice versa. However, finding an adequate number of basins at varying elevations is 47 

difficult and has failed to produce any late Holocene RSL reconstructions with more than half a 48 

dozen sea-level index points. Beach ridges, whose elevations and formation ages have been used 49 

to estimate RSL changes, provide their own set of challenges. Often the little organic material 50 

preserved within paleo-beach ridges, such as bones, shells, or seaweed, was reworked and may not 51 

reflect the age of beach formation. As a result, the age obtained often provides only limiting data.  52 

Additionally, beach ridge elevation is a function of not only mean sea level, but also wave energy, 53 

storm energy, tidal range, grain size and shape, and sediment availability (Lindhorst and Schutter, 54 

2014; Scheffers et al., 2012).  55 

In this study, we present a new RSL reconstruction based on radiocarbon dated seaweed 56 

preserved within bedding of beach-ridge deposits from Joinville Island along the northeastern 57 

Antarctica Peninsula (Fig. 1). This new sea-level reconstruction is used to determine if similar 58 

periods of punctuated uplift, as occurred following the demise of the Larsen B Ice Shelf in 2002, 59 

occurred at other time periods during the Holocene. 60 

METHODS 61 

GPS and ground-penetrating radar (GPR) surveys were conducted across 31 beach ridges 62 

on the eastern side of Tay Head, a small (~2.5 x 2 km) peninsula on the southern side of Joinville 63 

Island (Fig. 1). Beaches on Tay Head Peninsula were numbered from 1 to 31, lowest to highest 64 

(i.e. youngest to oldest). Elevation data were obtained using a UNAVCO Trimble Net R9 GNSS 65 

Receiver, a local Trimble Net R9 Receiver base station, and the O’Higgins permanent GPS station 66 

(www.sonel.org), located ~115 km away, upon failure of the local base station. Beach-ridge 67 

elevations were obtained from kinematic mode GPS surveys across the crest of each beach ridge 68 

(Fig. 1c; Supplementary Fig. S1), except for beach ridges 2 and 3, which each have 3 static 69 

http://www.sonel.org/spip.php?page=gps&idStation=769.php
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elevation points due to the presence of wildlife. GPS data have horizontal and vertical precisions 70 

of < 0.25 m. Elevations were converted to mean sea level using 2 days of data from a locally 71 

deployed tide gauge matched to the tide gauge at Bahia Esperanza ~50 km away. 72 

The incorporation of seaweed into the modern beaches was observed during the field 73 

campaign (Fig. 2). Thirty cm deep pits in the crest of the lower 18 beach ridges, except for beach 74 

ridge 14, revealed stratified gravels with mats of seaweed (Fig. 2) that often incorporated limpet 75 

shells. Both mats and limpets were radiocarbon dated (Supplementary Table S1). Thus, the in situ 76 

(cf. reworked) samples obtained on Joinville Island likely provide a better estimate of the timing 77 

of beach-ridge formation than minimum or maximum beach age constraints in many previous 78 

studies. Radiocarbon ages were first calibrated in CALIB v7.1 (Stuiver et al., 2018) using the 79 

MARINE13 calibration curve (Reimer et al., 2013) with a reservoir correction of 791 ± 121 years 80 

(Hall et al., 2010). 81 

The Bacon age-depth modeling program (Blaauw and Christen, 2011) was used to estimate 82 

a progradation rate through time, using distance from the start of GPR LINE05 at the shoreline 83 

instead of the traditionally used depth. The RSL reconstruction was made using the mean elevation 84 

of beach ridges from GPS surveys and the median age for each beach ridge as derived from the 85 

Bacon age-model. To calculate the rate of RSL change (dRSL) through time, a Monte Carlo 86 

simulation was run using the equation 87 

 𝑑𝑅𝑆𝐿 =
(𝑧𝑖+1−𝑧𝑖)

(𝑡𝑖+1−𝑡𝑖)
 , (1) 88 

where z is the elevation of the beach ridge as chosen randomly from a Gaussian PDF determined 89 

from beach-ridge GPS surveys, and t is the age of the beach ridge chosen from ages output from 90 

the Bacon age-model, which prohibits age reversals.  91 

RESULTS 92 
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Ground-penetrating radar (GPR) profiles collected perpendicular to the beach ridges 93 

display seaward-dipping reflections, at about 5-7°, typical of beach progradation (Lindhorst and 94 

Schutter, 2014) (Fig. 3). An erosional surface is imaged below the crest of beach ridges 1 and 2 95 

and reflections within beach ridge 2 dip landward, onlapping the erosional surface (Fig. 3). 96 

Beaches 1-18 display no changes in grain characteristics within error, including sorting, rounding, 97 

or size (Fig. 4c).  98 

RSL on Tay Head Peninsula shows an overall fall of 4.9 ± 0.58 m from the oldest dated 99 

beach ridge at 3095 ± 195 cal yr BP (calibrated years before present; present defined as 1950) to 100 

the modern (Fig. 4a). A discrete fall in RSL of 1.32 ± 0.15 m is observed between beach ridges 7b 101 

and 8. A trough (Fig. 3) and potential RSL fall is observed between beach ridges 12 and 11b (Fig, 102 

4a), and a ~460-year hiatus occurs between beach ridges 3 and 2. Progradation of the beach ridges 103 

was relatively constant through time at a rate of ~9 cm/yr, until a significant decrease ~695 cal yr 104 

BP to present. 105 

An abrupt increase in the rate of RSL change occurs at 1540 ± 125 cal yr BP, increasing 106 

from -0.01 ± 3.95 mm/yr to 6.06 ± 4.72 mm/yr after the deposition of beach ridge 8 (Fig 4b). This 107 

increase is followed by a 500-year gradual decrease in rates of RSL fall, with another possible 108 

increase in the last 200 years (Fig. 4b).  109 

BEACH RIDGES AS RSL INDICATORS 110 

A change in formation processes on beach ridges (e.g. waves, sea ice, etc.), could inhibit 111 

the use of their elevation as RSL indicators. However, a change in these processes would also 112 

change the grain size and shape, as well as stratigraphy recorded in the GPR of the beach ridges. 113 

Yet, none of these characteristics within the GPR or grains change, except for an erosional surface 114 

observed beneath beach ridges 1 and 2 (discussed below). Additionally, features typical of ice-115 
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push processes, such as melt pits or push ridges (Butler, 1999), are not observed within the lower 116 

18 beach ridges. Furthermore, the lower beaches exhibit stratification, uncommon in ice-formed 117 

features. Together, this is taken to indicate that no significant changes in beach ridge formation 118 

mechanisms occurred over the last 3000 years.  119 

Other mechanisms that could be responsible for sudden elevation changes include 120 

earthquakes or tidal changes. Although the continent of Antarctica is stable, the Antarctic 121 

Peninsula is known to be an area of active seismicity (Kaminuma, 1995). However, existing 122 

catalogs of seismicity across the AP suggest earthquakes are centered around the South Shetland 123 

Islands (Fig. 1a) and the South Scotia Ridge (farther to the northeast) – both tectonic arcs. 124 

Furthermore, estimates of tectonic uplift in the South Shetland Islands range from 0.4 to 0.48 125 

mm/yr (Watcham et al., 2011), an order of magnitude less than the maximum rate of RSL change 126 

of 6.06 ± 4.72 mm/yr calculated for Joinville Island. Although no paleo-tide reconstructions are 127 

available for the Firth of Tay, the bathymetry of the fjord would not have changed greatly with 2-128 

3 m of RSL change. Thus, following Fretwell et al. (2010), the changes in beach-ridge elevations 129 

from Joinville Island are considered to largely reflect changes in RSL. 130 

LINKS TO ICE MASS CHANGES 131 

Coincident with the RSL falls at ~1540 cal yr BP and possibly ~2240 cal yr BP are two 132 

distinct diatomaceous ooze layers deposited beneath the former Larsen A ice shelf, dated from 133 

sediment cores to be 1400 ± 250 cal yr BP and ~2100 ± 250 cal yr BP (Brachfeld et al., 2003). The 134 

abundance of diatoms in these layers reflects higher surface water productivity, indicative of an 135 

ice free environment (Buffen et al., 2007). Additionally, low overall total organic carbon and 136 

elevated water content measured in the layers could indicate an increasing influence of meltwater 137 

(Brachfeld et al., 2003; Domack et al., 1993). Temperature anomaly records from an ice core at 138 
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James Ross Island (Fig. 1a), located south of Joinville Island, indicate increased warmth before 139 

these two time periods (Mulvaney et al., 2012), and smaller ice shelves are known to respond faster 140 

to climatic changes, enhanced by surface-crevasse propagation due to increased surface meltwater 141 

(Scambos et al., 2000). Southern Prince Gustav Channel, which had an ice shelf until it’s collapse 142 

in 1995, is thought to have had episodes of growth and decay during the Holocene, although the 143 

scarcity of carbonate material within cores from the channel preclude accurate age dating of these 144 

episodes (Nývlt et al., 2014; Pudsey et al., 2006).  145 

Following the 2002 break-up of Larsen B, the uplift rates recorded in GPS at Palmer Station 146 

increased from 0.08 ± 1.87 mm/yr to 8.75 ± 0.64 mm/yr (Thomas et al., 2011).  The increased rate 147 

of RSL fall ~1540 cal yr BP observed at Joinville Island, ~100 km away from Prince Gustav 148 

Channel and ~200 km away from Larsen A, is similar in magnitude to the uplift rates observed at 149 

Palmer Station, ~100 km away from the former Larsen B ice shelf. Changes in the sea surface 150 

height, including gravitational attraction between the ice and water, for the AP are estimated to be 151 

~0.2-0.3 mm/yr for the time period between 1500 cal yr BP and the present (Simms et al., 2018) 152 

indicating they alone cannot account for the high rate of RSL fall observed at Joinville Island. As 153 

ice shelves retreat, the glaciers that were once buttressed by them accelerate flow into marine 154 

waters, indicating that accelerated glacial mass loss following a potential collapse of the Larsen A 155 

or Prince Gustav Channel ice shelves may have been responsible for the increased rate of RSL fall. 156 

However, without more records of RSL from across the AP, the precise size or location of the ice 157 

mass loss resulting in the increase in the rate of RSL fall on Joinville Island cannot be determined.  158 

The hiatus in beach ridge formation and slowdown in progradation rate after 695 ± 190 cal 159 

yr BP may suggest a reduction in sediment supply and/or erosion of the beach. The erosional 160 

surface imaged beneath beach ridges 1 and 2 precedes 235 ± 175 cal yr BP and postdates the 161 
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deposition of beach ridge 3 at 695 ± 190 cal yr BP. Possible causes of the erosional surface include 162 

increased wave or storm activity, or a minor sea-level transgression. No changes in grain size or 163 

roundness were found between beach ridges 2 and 3, as would be expected if the erosion was the 164 

result of greater wave action or storm activity (Fig 3c). The hiatus in deposition and erosional 165 

surface correspond to cooler temperatures in the AP from 370 to 70 cal yr BP with minor glacial 166 

advances documented in West Antarctica (Consortium et al., 2013; Domack et al., 1995). 167 

Furthermore, temperature records from the nearby James Ross Island ice core show a cooling trend 168 

during this time interval (Mulvaney et al., 2012), causing an advance of local glaciers on the island 169 

(Davies et al., 2014). The erosional surface therefore may have formed as a result of RSL rise on 170 

Tay Head Peninsula driven by the GIA response to a local or regional glacial advance. Following 171 

the retreat of previously advancing glaciers, the land would once again rebound, causing an RSL 172 

fall, and the preservation of beach ridges 2 and 1.  173 

Overall, the RSL reconstruction of Joinville Island follows an exponential fall in sea-level 174 

through time, also reflected in the closest RSL curve ~100 km away at Beak Island (Roberts et al., 175 

2011). However, the limited resolution (3 RSL points) of the Beak Island data prevents comparison 176 

of decadal to centennial changes. The centennial timescale variability of RSL rates presented in 177 

our RSL reconstruction, suggests that even small episodes of growth and decay of ice sheets over 178 

time can induce a recordable solid Earth response. Such a response is only possible with lower 179 

upper mantle viscosities than currently assumed in most global-scale GIA models (e.g. ICE-5G; 180 

Simms et al., 2018). Thus not only are such low upper mantle viscosities necessary for explaining 181 

ongoing rapid changes recorded in GPS studies (e.g. Nield et al., 2014) but also at time scales 182 

relevant for the Holocene. As the resolution and number of RSL records increase, future GIA 183 

models should incorporate these smaller oscillations in ice sheets to investigate the impact on uplift 184 
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rates through time and if they may be masking the behavior of the ice sheets during the early 185 

Holocene and Late Pleistocene. 186 
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FIGURE CAPTIONS 312 
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Figure 1. Location map of Joinville Island. a, Regional map of the Antarctic Peninsula. Joinville 313 

Island is located at the northeastern tip of the peninsula, red box indicates area shown in panel b. 314 

b, Tay Head Peninsula, on the southern edge of Joinville Island, sticks out into the Firth of Tay, 315 

red box indicates area shown in panel c. c, Selected beach ridges to show morphology, shown by 316 

dashed white lines, on Tay Head Peninsula, as well as radiocarbon collection sites in green 317 

circles, and GPR transect LINE05 in yellow. 318 

 319 

Figure 2. Seaweed on and in the beach ridges. a, Picture showing wrack line of seaweed on the 320 

modern beach at Tay Head Peninsula. b, Layer of in situ seaweed, outlined in dashed white lines, 321 

from a pit dug into beach ridge 10.  322 

 323 

Figure 3. Beach ridge stratigraphy. a, 200 Mhz GPR LINE05 labeled by beach ridge. TTWT is 324 

two-way travel time, VE is vertical exaggeration, msl is mean sea level. b, Traces of GPR 325 

reflections, labeled by beach ridge age.  326 

 327 

Figure 4. RSL reconstruction, temperature anomaly, and sediment changes on beach ridges 328 

through the Late Holocene. 2 red lines show ages of diatomaceous ooze layers from Brachfeld et 329 

al., 2003, with error in grey boxes. Hiatus in beach ridge formation shown by brown box. a, RSL 330 

reconstruction for the beach ridges on Joinville Island, errors are shown as 2. b, Rates of RSL 331 

change, positive is RSL fall, negative is RSL rise, pink link shows the median rate of RSL 332 

change and boxes show 95% confidence intervals. c, James Ross Island temperature 333 

reconstruction, blue line shows 10-year average, red line shows 100-year average (Mulvaney et 334 
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al., 2012). d, Grain characteristics showing error as 1. Roundness is plotted using the Powers 335 

scales, 5 is well-rounded, 1 is angular.  336 
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